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1 Introduction

This paper is devoted to general translation invariant time-dependent solutions of ghost-free
massive gravity (for reviews of massive gravity, see [1–3]), and is a follow up paper to [4]
which will hereafter be referred to as [I]. The general framework of massive gravity and the
motivations were presented in detail in [I] where one particular mass term — which is cubic
in the vielbien in D = 4 dimensions, and corresponds to the β1 mass term in the metric
formulation (see e.g. [3]) — was considered. This case was singled out in [5] as allowing
a simple and covariant way of deducing an extra scalar constraint. It is also singled out
in the Hamiltonian analysis, being the only one allowing the constraints to be determined
explicitly [6–8].

The general mass term in D dimensions depends on D−1 constants βi (i = 1, . . . , D−1)
in addition to the cosmological constant term. Here we shall consider the one linear in the
vielbein, namely βD−1. In that case, the covariant analysis of [5] shows that a symmetry
condition is imposed on the moving frame veilbein components, but does it not lead to an
extra scalar constraint. Within the simplified framework of space-independent solutions, we
shall show the origin of the necessary extra scalar constraint, and thus determine explicitly
all the constraints and the equations of motion. We show that the time evolution is well
posed provided the lapse function N does not vanish. In fact, the lapse is obtained from the
extra scalar constraint and is fully determined by the other fields and their first derivatives.
As opposed to the β1 case (namely the mass term which depends on D − 1 factors of the
vielbein) in which the lapse function N(t) is strictly positive, here we show that the sign of
N(t) can change. This leads to singularities in the time evolution which occur at a finite
time. This is the crucial difference with respect to the β1 case where the sign of N remains
constant. In [I] we showed that there is a sector in the β1-theory which is stable (for related
pathologies of massive gravity theories see also [9–12]): for β3-theory this is no longer the
case, and singularities are generic for D > 3.
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The paper is organised as follows. In section 2 we give a brief summary of the mov-
ing frame formulation of massive gravity. Section 3 is devoted to the general analysis of
translation-invariant fields. We use a convenient ADM-like decomposition with a lapse func-
tion, a shift vector and a symmetric (D − 1) × (D − 1) matrix. We show that the Bianchi
identities1 together with the constraints arising from the 0i-components of the equations of
motion lead to the vanishing of the shift vectors. This is similar to the β1 case and we expect
it to be a general property of massive gravity. The Bianchi identities leave one further scalar
constraint which once used in the equations of motion — and in particular after putting
these in a form showing their well-posedness — leads to a new scalar constraint. This extra
scalar constraint, which was missing in the analysis of [5], provides the expression of the lapse
function in terms of the symmetric matrix and its first derivative. The equations of motion
are well posed provided the lapse function does not change sign. Contrary to the β1 case, this
condition is not manifestly true and a case by case study is necessary to prove its validity.
This is what we do in section 4 where we consider some particular cases. In section 4.1, we
solve analytically the three dimensional case and show that the lapse function is constant.
Section 4.2 is devoted to the diagonal solutions in any D ≥ 4 where all the eigenvalues are
equal except one. We show that in that case, for initial conditions in a certain region, N can
vanish. This seems to be the most important difference with respect to the β1 case and in
that respect the latter mass term does not have this pathology. In the appendix, we show
how using the translation-invariant solutions of this paper and [I] it is possible, by performing
a Lorentz transformation, to obtain “plane wave” solutions, which can also be seen as the
generalisation of the pp-waves of general relativity.

2 Action, equations of motion, and constraints in non-linear massive grav-
ity

We consider non-linear massive gravity in D-dimensions in the vierbein formulation, see [2,
3, 5, 13]. This is described by a dynamical metric gµν as well as a non-dynamical one fµν ,
with the corresponding families of 1-forms given by θA and fA where

ηABθ
A
µθ
B
ν = gµν , (2.1)

ηABf
A
µf

B
ν = fµν . (2.2)

Here the Lorentz indices A,B = 0, . . . D−1 are raised and lowered with the Minkowski metric
ηAB, and the dual vectors eA to the 1-forms θA satisfy

θA(eB) = θAµeB
µ = δAB. (2.3)

As has been discussed extensively in the literature [14–16], if the symmetry property

eCµfBµ = eBµfCµ (2.4)

holds, then the matrix g−1f has a real square-root, and hence the potential in the metric
formulation of massive gravity is well defined. As a result, the action in terms of vierbeins
reads [5, 13, 17]

S =
1

2

∫
ΩAB ∧ θ∗AB +

D−1∑
n=0

βn

∫
fA1 ∧ · · · ∧ fAn ∧ θ∗A1...An

, (2.5)

1The Bianchi identities correspond, in the Hamiltonian language, to the secondary constraints.

– 2 –
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where the βn are arbitrary parameters, and [18]

θ∗A1...An
≡ 1

(D − n)!
εA1...AD

θAn+1 ∧ · · · ∧ θAD (2.6)

is a (D − n)-form. The curvature 2-form ΩAB is defined by

ΩAB ≡ dωAB + ωAC ∧ ωCB , (2.7)

where the spin-connection ωAB results from the torsion-free condition DθA ≡ dθA + ωAB ∧
θB = 0 and the antisymmetry in the indices A and B. From the definition (2.7) the curvature
2-form satisfies the Bianchi identity

DΩAB ≡ dΩAB + ωAC ∧ ΩCB + ωBC ∧ ΩAC = 0 . (2.8)

We now take (2.5) as our starting point (that is, the condition (2.4) on the vielbeins is
not imposed). As shown in [5], for some βn this condition is obtained dynamically, though
this is not always necessarily the case (for an example where it does not hold see [20]). In fact,
the class of theories of massive gravity described by (2.5) is larger than that of the metric
formulation, and it potentially has a larger space of solutions. Furthermore the moving frame
formulation does not rely on matrix square roots and is technically much easier to deal with,
particularly concerning the Bianchi identities which will be extensively used in the following.
In fact the expression of the derivative of a matrix square root in terms of the derivative of
the matrix is complicated and involves time ordering.

Here we focus on β0 6= 0 and βD−1 6= 0 in which case (2.4) is imposed dynamically (see
below and [5]). The action (2.5) breaks both diffeomorphism and local Lorentz invariance
if the non-dynamical vielbein fA is fixed. In the following we choose fA ≡ dxA, which is
always possible when fµν = ηµν . The isometry group SO(1,D− 1) of the background metric
fµν is a global symmetry group of the theory. Thus fAµ = δAµ, and we can identify Lorentz
and spacetime indices. Now we define the Einstein tensor as the (D − 1)-form

GA ≡ −
1

2
ΩBC ∧ θ∗ABC ≡ GABθ∗B , (2.9)

where GAB = RAB − ηABR/2 with RAB = ΩACB
C . Thus

GAB = eC
µ∂µω

C
AB − eBµ∂µωCAC − ωCADωDBC + ωDABω

C
DC

+
ηAB

2

[
−ωCDEωDEC + 2eI

µ∂µω
CI

C + ωDEDω
FE

F

]
(2.10)

where
ωAB = ωABCθ

C .

Then the field equations following from (2.5) read

GA = tA , (2.11)

or equivalently GAB = tAB, with

tA ≡
D−1∑
n=0

βnf
A1 ∧ · · · ∧ fAn ∧ θ∗AA1...An

≡ tABθ∗B (2.12)

– 3 –
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so that

tA ∧ θB = (−1)D−1 tAB ε (2.13)

with ε the volume element ε ≡ θ0 ∧ θ1 ∧ . . .∧ θD−1. For β0 6= 0 and βD−1 6= 0, it follows that

tAB = β0ηAB + βD−1(D − 1)!
θBA
det θ

. (2.14)

As mentioned before, Lorentz and space-time indices are identified so that θAB = θCµηCAδ
µ
B.

Notice that as a result of diffeomorphism invariance of the Einstein-Hilbert term, the
Bianchi identity

DGA = 0 = DtA (2.15)

must hold, whilst Lorentz invariance imposes

G[AB] = 0 = t[AB] . (2.16)

Thus from (2.14), the symmetry of tAB = tBA implies the symmetry of the matrix θAB. In
order to guarantee that Minkowski space is a vacuum solution, and that the equations of
motion reduce to those of Fierz-Pauli [21] in the linearized limit, we choose β0 and βD−1

to be related to the mass m of the spin 2 field by β0 = m2 = −βD−1(D − 1)!. Thus the
equations of motion (2.11) become

GAB = m2

[
ηAB −

θAB
det θ

]
. (2.17)

Finally [5] the Bianchi identity (2.15) leads to the D constraints

ωBACθ
C
B = 0 (2.18)

or equivalently

∂Aθ
B
B − ∂BθBA = 0. (2.19)

As discussed in [5] the various traces of the equation of motion do not lead to a further scalar
constraint, contrary to the cases in which only β1 or β2 are non-zero. In that respect, the
situation we consider here of βD−1 6= 0 is singled out from those considered before.

In the following, we will use the simplified framework of translation invariant fields to
analyse in detail the equations of motion and find the origin of this extra scalar constraint
needed to have the correct number of degrees of freedom.

3 Equations of motion and constraints

We now consider solutions invariant under spatial translations and split the symmetric mov-
ing frame components eAB and θAB into the ADM-type form

e00 = −N , e0i = −Nni , eij = πij −Nninj , (3.1)

and so from (2.3)

θ00 = −
(

1

N
− ζijninj

)
, θ0i = −ζijnj , θij = ζij . (3.2)

– 4 –



J
C
A
P
0
6
(
2
0
1
4
)
0
5
8

Here ζij is the inverse of πij , and the D(D+ 1)/2 variables all depend on t = x0. Notice that

det θ = det (ζ)
N .

In the following, we first write down the constraints arising from the Bianchi identi-
ties (2.19), and then those coming from the equations of motion (2.11). These latter con-
straints will enable us to show that shift vector ni vanishes (subsection 3.2). As a result the
remaining equations of motion take a simplified form, and these are discussed in section 3.3.
Finally, we show how the equations of motion and Bianchi identities lead to further scalar
constraint which determines the lapse function N in terms of (ζ, ∂tζ).

3.1 Bianchi identities

The time component of the vector constraint (2.19) yields a first constraint (denoted by C1

for future reference)
C1 ≡ ∂t(trζ) = 0 (3.3)

or equivalently trζ = c for a constant c, while the spatial components give

∂t(ζ
ijnj) = 0 . (3.4)

We now use the constraints coming from the equations of motion (2.11) to show that ni = 0,
so that (3.4) is trivially satisfied.

3.2 Vanishing shift, ni = 0

The most succinct way of finding the D constraints included in the equations of motion is to
proceed as follows.

Let G
(s)
A denote the spatial components of the D − 1 form GA, that is

G
(s)
A ≡

1

(D − 1)!
GAi1i2...iD−1

dxi1 ∧ . . . ∧ dxiD−1 (3.5)

so that
GA = G

(s)
A +G

(t)
A

where the remaining time components, G
(t)
A , contains one dt. Since we consider time-

dependent metrics only, dGA = dG
(s)
A and the Bianchi identity (2.15) reads dG

(s)
A +ω B

A GB =

0. Thus, at most, G
(s)
A is first order in time derivatives meaning that the D equations

G
(s)
A = t

(s)
A (3.6)

are constraint equations. The second order equations of motion are contained in

G
(t)
A = t

(t)
A . (3.7)

From (2.9) it follows that only the components ΩAB
ij of the curvature tensor are needed

to determine the constraints, and furthermore from (2.7) we have

ΩAB
ij = ωAC[iω

CB
j] . (3.8)

The relevant components, ωACi, of the spin connexion2 can be determined from

ωABµ = ωABCθ
C
µ =

1

2
(CABC + CACB + CCBA)θCµ .

2Note that the first term of (2.7) will only contribute time-derivatives, and hence will appear in ΩAB
0i.

– 5 –
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The only non-vanishing components of the structure functions

CAB
C = e[A

µ∂µeB]
νθCν = −eAµeBν∂[µθν]

C

are C0i
0 = ∂t(ζn)i and C0i

k = −∂tζik. Thus

ω0ki = −N
2
�ki , ωjki =

N

2
(�T )i[jnk]

where

� ≡ {∂tζ, π}ζ.

Finally, substituting into (3.8) gives

Ωqp
ij =

N2

4

{
(1− n2)�q [i�

p
j] + �q [i(�

Tn)j]n
p + (�Tn)[i�

p
j]n

q
}
, (3.9)

Ω0q
ij =

N2

4

{
(�Tn)[j�

q
i]

}
. (3.10)

From (2.9) as well as (3.9) and (3.10), we then obtain

G(s)
p = G

(s)
0 np

with

G
(s)
0 =

N2

8
(det ζ)

[
tr(S2)− tr(S)2 − nT (S2 − Str(S))n

]
dV

where dV = dx1 ∧ . . . ∧ dxD−1 is the spatial volume element, and the symmetric matrix S is
defined by

S ≡ {∂tζ, π} (3.11)

so that � = Sζ. The r.h.s. of (3.6), is determined directly from (2.12) and we find

t(s)p = m2np(det ζ)dV

t
(s)
0 = m2 [(det ζ)− 1] dV .

Hence, the we finally arrive at the D constraints contained in G
(s)
A = t

(s)
A :

N2

8

[
tr(S2)− tr(S)2 − nT (S2 − Str(S))n

]
np = m2np (3.12)

N2

8

[
tr(S2)− tr(S)2 − nT (S2 − Str(S))n

]
= m2

[
1− 1

(det ζ)

]
. (3.13)

On substituting (3.13) into (3.12) it follows that

ni = 0 (3.14)

whilst the remaining scalar constraint reads

N2

8

[
tr(S2)− tr(S)2

]
= m2

[
1− 1

(det ζ)

]
. (3.15)

– 6 –
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3.3 Equations of motion

The constraint ni = 0 which we have found above enormously simplifies the analysis. In this
subsection we write down the remaining dynamical Einstein equations, namely (3.7).

To do so, it is convenient to change variables. Notice that the dynamical metric now
takes the form

ds2 = gµνdx
µdxν

= − 1

N2
dt2 + (π−2)ijdx

idxj ,

≡ −dT 2 + (B−2)ijdx
idxj (3.16)

where B ≡ π2 and the new time coordinate T is unambiguously determined from (3.16) only
if N does not vanish at some finite t = t?. We will return to this important point and its
interpretation below.3 In the following we denote by a dot a derivative with respect to T

· ≡ ∂T = N∂t. (3.17)

On using
NS = −ζḂB−1π,

(which follows from the definition of S in (3.11)), the second constraint C2 in (3.15) reads

C2 ≡
(

tr(ḂB−1)
)2
− tr

(
(ḂB−1)2

)
+ 8m2(1− detπ) = 0. (3.18)

The equations of motion for B(T ), are given by the (ij)-component of the Einstein
equation. From (2.10) and (2.17) they read

−∂T (ḂB−1) + ∂T tr(ḂB−1)1 +
1

2
(ḂB−1)tr(ḂB−1)

−1
4

[(
tr(ḂB−1)

)2
+ tr

(
(ḂB−1)2

)]
= −2m2 [ζ(Ndetπ)− 1] , (3.19)

and we will refer to them as E (standing for ‘equations of motion’) in the following. Notice
that even when they are written in terms of the new time coordinate T , these equations
depend explicitly on the lapse function N(T ) which is still undetermined. As we will discuss
in the next subsection, E and C1 together in fact generate a third constraint C3 which will
determine N(T ).

Before doing so, let us discuss the main properties of the equations E. First notice that
the l.h.s. of (3.19) can be simplified by using (3.18) to eliminate the second term in the square
bracket. Then on defining

ε ef ≡ detπ , ε =
detπ

|detπ|
= ±1, (3.20)

the equations E become

1

2
∂T (e−f ḂB−1) = ∂T (e−f ḟ)1 +m2

[
(ε− 2e−f )1 +Nζε

]
. (3.21)

3Recall, [I], that for β1 6= 0 the constraints always imply that N > 1; in the case of βD−1 we will see that
N can vanish for D > 3.
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Second, note that the antisymmetric part of this equation yields the conserved matrix

γ ≡ 1

2
e−f [Ḃ, B−1], (3.22)

with γ̇ = 0. Thus the system contains (D−1)(D−2)/2 conserved quantities, which correspond
to the expected conservation of angular momentum since the system is invariant under spatial
rotations. These will be used extensively below when we construct exact solutions.

Third, on taking the trace of (3.21) we find

Nβε (trζ) = (D − 2)∂T (e−f ḟ) +m2(D − 1)(ε− 2e−f ) (3.23)

which, when substituted back into (3.21) can be used to eliminate N . Indeed we then find a
unique traceless 2nd order equation for B which is independent of N(T ), namely

1

2
∂T (e−f ḂB−1)−∂T (e−f ḟ)

[
1− (D − 2)

ζ

tr(ζ)

]
= m2(ε−2e−f )

[
1− (D − 1)

ζ

tr(ζ)

]
. (3.24)

If this equation is well posed — something which is not manifest and will be discussed below
— it follows that it can be used to find ζ̈ in terms of lower derivatives of ζ. As a result, the
first term on the right hand side of (3.23) can be expressed in terms of (ζ̇, ζ) thus eliminating
all second derivatives from (3.23) which then becomes a constraint. This will be done in
detail in the next subsection. Notice that in the β1 case, see [I], the analogue of (3.23) is
already a constraint since in that case the analogue of C1 is ḟ = 0 so that N is determined
directly in terms of ζ.

Before writing out this third constraint C3 explicitly, it is useful introduce a final set of
variables which simplify the equations and constraints further. Motivated from (3.21) define

∂u ≡ e−f∂T , C ≡ e−2fB , (3.25)

with ′ = ∂u. Then the conserved quantity γ and the equation of motion E become

γ =
1

2
[C ′, C−1] , (3.26)

∂u[C−1C ′] = 2m2e−f [Nζε− (2e−f − ε)1] , (3.27)

whilst the constraints C1 and C2 become

C̃1 ≡ (trζ)′ = 0 , (3.28)

C̃2 ≡ tr
(
(C ′C−1)2

)
− 4(D − 2)f ′2 − 8m2(e−2f − εe−f ) = 0. (3.29)

eqs. (3.23) and (3.24) in turn read

−m2(trζ)Nε = (D − 2)f ′′ef −m2(D − 1)(2e−f − ε) , (3.30)

∂u(C−1C ′) + 2
ζ

trζ
(D − 2)f ′′ = 2m2e−f (ε− 2e−f )

[
1− (D − 1)

ζ

trζ

]
. (3.31)

Fourth, in these new variables it is straightforward to verify the compatibility of the
constraints C̃1 and C̃2 with the equation of motion. To do so, we first multiply (3.31) by
C−1C ′ and then take the trace. This gives

1

2
∂u
[
tr(C−1C ′)2

]
− 4(D − 2)

trζ
f ′′
[
(trζ)′ + f ′trζ

]
= 2m2e−f (ε− 2e−f )

{
2f ′ +

2(D − 1)(trζ)′

trζ

}
(3.32)
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which can be rewritten as

∂u(C̃2) = −8m2(trζ)′e−fNε . (3.33)

Thus we deduce that if C̃2 is valid for all u and the equations of motion hold, then C̃1 follows
provides N 6= 0. In the Hamiltonian language, this is expressed as C̃1 being a secondary
constraint, with C̃2 a primary constant. An alternative way of interpreting (3.33) is that if
C̃1 holds for all u and C̃2 is true at an initial u, then must be true for all u.

Finally let us verify that Fierz-Pauli theory is recovered in the linearized limit, π = 1+h
and B = 1 + 2h. In that case, the first constraint C̃1 in equation (3.28) gives trh′ = 0
whilst from C̃2 in (3.29) it follows that trh = 0. Thus detπ = 1 so that from (3.20) that
f = 0 = f ′ = f ′′. Also tr(ζ) = (D − 1), so that from (3.30), N = 1. Thus u = T = t and
finally the equation of motion (3.31) reduces to

d2hij
dt2

+m2hij = 0 (3.34)

as required.

3.4 The third constraint

In the previous subsection we obtained N in terms of the second derivative of f (or equiva-
lently ζ), see (3.30). We also have the equation of motion (3.31). If this equation is well posed
it follows that it can be used to find ζ ′′ in terms of lower derivatives of ζ. As a result, the first
term on the right hand side of (3.30) can be expressed in terms of (ζ ′, ζ) thus eliminating all
second derivatives from (3.30) which then becomes a constraint.

Alternatively, we can determine N in terms of (ζ, ζ ′) directly from the observation
that the equations of motion (3.31) combined with the first constraint C̃1 yield a 3rd scalar
constraint C3. Schematically the reason is the following: in terms of ζ, eq. (3.31) can be
rewritten in the form ζ ′′ = g(ζ, ζ̇, N) for some (matrix) function g which will be determined
below but which is clearly linear in N . On taking the trace of this equation of motion, it
follows that the left hand side must vanish by C̃1. Thus we are left with a third constraint C3

namely tr(g(ζ, ζ ′, N)) = 0, which a priori determines N giving N = N(ζ, ζ ′). (As mentioned
above, in the β1 6= 0 case [I], the analogue of (3.31) contains no terms in first and second
derivatives of ζ and directly determines N = N(ζ).)

The crucial step is to show the well posedness of the the equations of motion (3.31) —
that is to put them in a form in which it is manifest that ζ ′′ is determined in terms of lower
derivatives. To carry out this procedure, we write the real symmetric matrix ζ(u) in the form

ζ(u) =
D−1∑
i=1

e−∆i(u)|vi(u)〉〈vi(u)|, (3.35)

where the |vi(u)〉 are its orthonormal eigenvectors with eigenvalues4 e−∆i . Thus from (3.20)
we have f =

∑
i ∆i, and from (3.25) C is given by C = π2e−2f . The constraint C̃1 in (3.28)

then implies that

(trζ)′′ = 0 ⇐⇒
∑
i

∆′′i e
−∆i =

∑
i

∆′2i e
−∆i , (3.36)

4From now on we only consider positive eigenvalues so that ε = +1
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whilst the conserved anti-symmetric matrix γ defined in (3.26) is given by

γ =
1

2
[C ′, C−1] = 2

∑
i,j

sinh2 (∆i −∆j)〈vi(u)|v′j(u)〉|vj(u)〉〈vi(u)| (3.37)

so that

〈vi(u)|v′j(u)〉 =
〈vj(u)|γ|vi(u)〉

2 sinh2 (∆i −∆j)
(i 6= j). (3.38)

The matrix elements of γ in a time independent basis give (D − 1)(D − 2)/2 constants of
motion. If we choose that basis to be the eigenvectors |va(0)〉at the initial time u = 0, these
are given by

γab = 2
∑
i,j

sinh2 (∆i −∆j)〈vi(u)|v′j(u)〉〈va(0)|vj(u)〉〈vi(u)|vb(0)〉

= 2 sinh2 (∆a −∆b)(0)〈vb(0)|v′a(0)〉. (3.39)

We can now proceed to find the third constraint C3. The (ii) components of equations
of motion (3.27) reduce to

2(∆′′i − f ′′)−Ai = 2m2e−f
[
Ne−∆i + (1− 2e−f )

]
(3.40)

where

Ai ≡
1

2

∑
j 6=i

sinh 2(∆i −∆j)

(
〈vj(u)|γ|vi(u)〉
sinh2 (∆i −∆j)

)2

, (3.41)

so that
∑

iAi = 0. The (ij) components of the equations of motion are a consequence of the
constraints (as in the β1 case [I]). On summing (3.40) over i, we find

f ′′ = − m2e−f

(D − 2)

[
Ntrζ + (D − 1)(1− 2e−f )

]
which is of course identical to (3.30). Then substituting into (3.40) gives

∆′′i =
Ai
2

+
m2e−f

(D − 2)

[
N
(
(D − 2)e−∆i − trζ

)
− (1− 2e−f )

]
. (3.42)

Finally, the constraint C3 comes from combining (3.42) with (3.36):

C3 ≡ m2e−fN =

∑
i ∆′2i e

−∆i + m2trζ
D−2 e

−f (1− 2e−f )− 1
2

∑
iAie

−∆i

tr(ζ2)− (trζ)2

D−2

. (3.43)

Notice that in the limit ∆ → 0 then trζ → D − 1, and N → 1 as it should from the
linear analysis above.5 For completeness, in terms of the variables ∆i and |vi〉, the first two
constraints read

C̃1 ≡ −
∑
i

∆′ie
−∆i = 0 (3.44)

1

4
C̃2 ≡

∑
i

∆′i
2 −

(∑
i

∆′i

)2
+

1

4

∑
i 6=j

(
〈vj(u)|γ|vi(u)〉
sinh2 (∆i −∆j)

)2

+ 2m2e−f (1− e−f ) = 0 .(3.45)

5In the Hamiltonian language, this constraint C3 is expressed as the determination of the Lagrange mul-
tiplier N .
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Now we are in a position to analyse the initial value formulation. A combination of (3.43)
and (3.42) shows that the problem is well posed provided N does not diverge. Indeed,
suppose that at u = 0, we are given ∆i(0), ∆′i(0), |vi(0)〉 and |v′i(0)〉 that satisfy the two
constraints (3.44) and (3.45) with γ given by (3.39). From these we obtain ∆i(δu), |vi(δu)〉.
From (3.38) we determine |v′i(δu)〉 and from eqs. (3.42) and (3.43) we get ∆′i(δu) provided N
does not diverge. Thus, as long as N remains finite, our system of equations are sufficient to
solve the system completely once a correct set of initial values satisfying the constraints is
given. It is possible that N diverges at a finite u, since the denominator in (3.43) can vanish
consistently with the constraints C̃1 and C̃2.

To finish the problem, we of course need to transform back to the original time variable
t, defined from (3.17) and (3.25) by

dt

du
= e−f(u)N(u) (3.46)

with N(u) determined from (3.43). In order to be able to determine u(t), N(u) should not
change sign. Indeed, if N(u) were to change sign then t would not be a monotonic function
of u and so we could not invert to find t(u). From (3.43) notice that while the first term in
the numerator of N(u) is definitely positive, the remaining two terms do not have a definite
sign. Hence generically nothing appears to guarantee that N can never vanish. Below we
give an example where, indeed, N(u) changes sign.

4 Examples

To understand whether N can change sign, study instabilities etc, it is instructive to search
for exact solutions of the equations of motion E and constraints C1, C2, C3. We will consider
two simple situations: D = 3 dimensions, and D-dimensional space-time but vanishing γ.

Before doing so, notice that due to the constraints, phase space (πij , π
′
ij) contains the

D(D − 1) − 2 degrees of freedom necessary to describe a massive spin 2 field, and of those,
(D − 1)(D − 2)/2 + 1 are constants of motion.

4.1 Solutions in D = 3 dimensions

In D = 3 the system is integrable. It is simplest to proceed by writing π(u) = π0(u) +
π1(u)σ1 + π3(u)σ3, where σi are the Pauli matrices, so that

detπ = (π2
0 − π2

1 − π2
3) . (4.1)

Then from C̃1,

trζ = c = 2
π0

detπ
(4.2)

where c is a constant, and from the conserved matrix γ in (3.26)

γ12 ≡ L = c2[π′1π3 − π′3π1] (4.3)

with dL/du = 0. The constraint equation C̃2 in (3.29) reads

(detπ)(π′1
2

+ π′3
2 − π′0

2
) +

(
L

c2

)2

= m2(1− detπ) . (4.4)

One can check that the equation of motion (3.31) is the derivative of this equation.
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In order to solve (4.4) we change variables to

π0 = ρ cosh ξ, π1 = ρ sinh ξ sin θ, π3 = ρ sinh ξ cos θ, (4.5)

so that detπ = ρ2 =
(

2
c cosh ξ

)2
and L = θ′ sinh2(2ξ). Then (4.4) reads

ξ′
2

+ Veff(ξ) = 0, (4.6)

with

Veff =
1

4

[
L2

4 sinh2 ξ
−m2c2

(
c2

4 cosh2 ξ
− 1

)]
. (4.7)

This is the equation of motion for a particle moving in 1 dimension with an effective poten-
tial (4.7). Notice that as ξ → ±∞, V → m2c2/4, and hence the field dynamics is bounded
in a region of finite ξ. When L = 0, the potential is negative at ξ = 0 only for c ≥ 2. When
L 6= 0 there is a potential barrier at ξ = 0 meaning that ξ cannot change sign during the
evolution. In fact it is straightforward to show that Veff < 0 only if

L < mc(c− 2). (4.8)

In fact the solution can be obtained exactly, and is given by

ξ(u) = arcsinh

([
E2

2B2
+

(
E4

4B2
− F 2

)1/2
1

B
sin(2B(u− u0))

])1/2

(4.9)

where

F =
L

4
, B =

mc

2
, E =

√
m2c4

16
− F 2 −B2 , (4.10)

and u0 determines the initial value of ξ. As expected the motion is periodic in terms of the
variable u.

However, we must check whether or not N(u) changes sign during the evolution. To
do so, we use the third constraint C3 given in (3.43). From (4.5), the two eigen-values and
vectors of ζ (see (3.35)) are given by

e−∆1 =
c

2

e−ξ

cosh ξ
, e−∆2 =

c

2

eξ

cosh ξ
, |v1〉 =

(
cos(θ/2)
sin(θ/2)

)
, |v2〉 =

(
sin(θ/2)
− cos(θ/2)

)
so that from its definition in (3.41) it follows that

A1 = L2 cosh 2ξ

sinh3(2ξ)
= −A2 . (4.11)

On using (4.7) we finally find from (3.43) that N is given by

N =
c

2

(
1− L2

m2c4

)
. (4.12)

Thus for L’s satisfying the requirement (4.8), N is positive and constant for all ξ. Finally,
in terms of the original time coordinate t,

t =

∫
N(u)

detπ
du =

Nc2

4

∫
1

cosh2(ξ(u))
du (4.13)

where ξ(u) is given in (4.9). This can be integrated exactly, but the answer is not particularly
illuminating. Crucially t is well defined and monotonic, and ξ is also periodic in t.

As we now show, however, the situation is very different in D > 3 dimensions.
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4.2 The diagonal case, γ = 0, in D dimensions

We now study the diagonal case

ζ = diag(e−∆1 , . . . , e−∆D−2 , e−∆) (4.14)

where ∆ = ∆D−1. Thus γ = 0, and the equations of motion and constraints C1, C2, C3 given
in (3.42)–(3.45) can be solved numerically. It is useful to get some analytic understanding of
the dynamics by focusing on the simple case in which all but one of the ∆i are identical,6 thus

∆a(u) = δ(u) for a = 1 . . . D − 2 .

We have checked that the generic solutions show similar properties to the ones we discuss
below.

In that case, the equations of motion and constraints directly determine δ since one can
use the constraint C̃1 to eliminate ∆:

trζ = (D − 2)e−δ + e−∆ = c, (4.15)

where c is a constant. Before doing so, notice that the previous condition implies that e−δ is
bound in the range

0 ≤ e−δ ≤ c

D − 2
. (4.16)

We then find that the constraint (3.45) reduces to7

δ′2 + V (δ) = 0 (4.17)

where

V = −2m2e−(D−2)δ

((
c− (D − 2)e−δ

)2
D − 2

) [
1− c e−(D−2)δ + (D − 2)e−(D−1)δ

]
{c(D − 3)− (D − 2)(D − 1)e−δ}

. (4.18)

(In D = 3 dimensions, this potential agrees with the one of the previous section when we
set L = 0 and on correctly identifying δ and ξ.) In order to have a perturbative solution for
δ � 1 we require V (0) < 0, which leads to

(D − 1)(D − 2)

D − 3
> c > D − 1 . (4.19)

Notice also that

V (δ →∞)→ 0 , V (δ → −∞)→∞ (4.20)

and furthermore that for D > 3, even though the system has no generalised angular momen-
tum (that is γ = 0 here), the potential diverges at δ = δ∗ where

e−δ∗ =
c(D − 3)

(D − 2)(D − 1)
<

c

(D − 2)
. (4.21)

6The easiest particular case is the one in which all the ∆i for i = 1, . . . D − 1 are equal, so that π is
proportional to the identity. However, it is straightforward to see that in that case π must be the identity
itself. Homogenous and diagonal numerical solutions to bigravity theories were considered in [19].

7One can check that the equation of motion (3.31) is the derivative of equation (4.17).
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As a result of this potential barrier, the evolution of δ is divided into disconnected sectors
depending on the initial conditions. Furthermore, in each sector we need to determine N
which, from (3.43), is given by

N =
c e−(D−2)δ

[
(D − 3)e(D−2)δ − 2c(D − 3) + 2(D − 2)2e−δ

]
(e−δ − e−δ∗)2(D − 2)2(D − 1)2

. (4.22)

(When D = 3 this reduces to N = c/2 as it should from (4.12) with L = 0.) Notice that N
also diverges at δ∗. Whether or not N can change sign is determined by the square brackets
in the numerator which we denote by f(e−δ). This function f has a minimum at

e−δ0 =

(
D − 3

2(D − 2)

) 1
D−1

(4.23)

where it takes the value
fmin = −2(D − 3)[c− ccrit], (4.24)

with

ccrit =
D − 1

21/(D−1)

(
D − 2

D − 3

)D−2
D−1

(4.25)

which lies in the range given by (4.19). (For instance, in D = 4 dimensions 6 ≤ c ≤ 3 with
ccrit = (54)1/3 ' 3.78.) Furthermore,

f(e−δ∗) = −2c
D − 3

D − 1

[
1−

(ccrit

c

)D−1
]
. (4.26)

Thus for c < ccrit N is always positive, while for c > ccrit N is negative in a range of values
of δ around δ0 which includes δ∗. Figure 1 shows this generic behaviour as well as that of V
for D = 4.

To conclude, for c > ccrit, N necessarily vanishes at a finite time u∗ so that the system
is badly defined. For c < ccrit there is well defined evolution if δ is initially in the minimum
of V near δ = 0. However, if initially δ > δ∗ then depending on the sign of δ′, either δ → δ∗
in a finite u (and correspondingly infinite time t), or δ →∞ as u→∞.

A numerical study of the generic system in D = 4 in which all the eigenvalues of ζ
are initially different (with γ = 0, see (4.14)) shows that the behaviour of the system is
qualitatively similar. Crucially there are initial conditions for which N changes sign in a
finite time.

5 Conclusion

In this paper we have studied massive gravity in its vielbein formulation, considering the
mass terms parametrised by the parameters β0 and βD−1 only. In this case, the covariant
analysis of [5] showed that a symmetry condition is imposed on the moving frame veilbein
components, but does it not lead to an extra scalar constraint. By focusing on time-dependent
and spatially translational invariant metrics — which in the context of Fierz-Pauli would
correspond to studying plane waves, and in the context of General Relativity to Bianchi I
and Kasner solutions — we were able to determine the origin of this extra scalar constraint
which is required for the theory to have the correct D(D− 1)− 2 degrees of freedom needed
to describe a massive spin 2 particle.
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Figure 1. The potential V (δ) (red, solid lines) and N(δ) (blue dashed lines) in D = 4 dimensions
for which ccrit ' 3.78. LH panel: c = 3.3 < ccrit; RH panel c = 4 > ccrit.

We carried out the analysis using a convenient ADM-like decomposition of the veilbein,
with a lapse function N , a shift vector ni and a symmetric (D− 1)× (D− 1) matrix πij (or
equivalently its inverse ζij). In section 3.2 we showed that as a result of the Bianchi identities
and the constraints coming from the 0i-components of the equations of motion, ni = 0. In
terms of the variable u, which is linked to the original time coordinate t through (3.46), we
also showed how the Bianchi identities give rise to the scalar constraint (which was denoted
by C1). This, once used in the equations of motion, was shown to lead to the new scalar
constraint, C3, which was missing in the analysis of [5]. As discussed in section 3.4, a crucial
step in the determination of C3 was to put the equations of motion in a form showing their
well-posedness, that is with ζ ′′ explicitly expressed in terms of its lower derivatives. In passing
we also showed that of the D(D−1)−2 degrees of freedom, (D−1)(D−2)/2+1 are constants
of motion (coming from the conserved anti-symmetric matrix γ as well as trζ).

A notable difference with the β1 case studied in [I] is that the equations of motion
are well posed provided the lapse function does change sign (nor diverge). While this was
guaranteed in the β1 case (where N(t) ≥ 1 ∀t), it is not longer manifestly true for the
βD−1 mass term considered here. A case by case study was needed to prove its validity: in
section 4.1, we solved analytically the theory in D = 3 and showed that the lapse function
is constant and hence the theory is well defined. However, as shown in section 4.2 this no
longer holds in D = 4 where for initial conditions in a certain region, N can change sign at
a finite time t, leading to singular time evolution. In this respect, an important conclusion
is that in D = 4 dimensions the β3 mass term can be pathological and should be treated
with care.

Finally, in the appendix, we have shown how the translation-invariant solutions pre-
sented here and in [I] can be generalised by performing a Lorentz transformation. As a result
we obtain “plane wave” solutions, which can also be seen as the generalisation of the pp-waves
of general relativity.

In the future it would be interesting to use the intuition gained here to understand how
to obtain the constraint C3 for a general space-time metric, and hence complete the covariant
Lagrangian approach of [5] to this β3-case.
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A Plane waves

In this appendix we show how, from the time-dependent solutions presented above, we can
obtain space- and time-dependent solutions. These are the generalisation of the plane waves
of Fierz-Pauli theory, and can also be seen as the generalisation of the pp-waves of general
relativity.

As we have taken fA = dxA from the start, the theory is globally Lorenz invariant and
hence it is sufficient to perform a boost on the time-dependent solutions, thus mapping the
rest-frame D-vector pµ0 = (m,~0) to a general momentum D-vector pµ = Λµνpν0 with

p2 = −m2. (A.1)

Recall that for a general D-vector v, we define the longitudinal and transverse components by

vL = −v.p
m2

p, vT = v − vL (A.2)

with vT .p = 0, and similarly for a general D-tensor tµν , its transverse and longitudinal parts
are given by

tµνLL =
pµpν

m4
pαpβt

αβ, tµνLT = −p
µpα
m2

∆ν
βt
αβ, tµνTT = ∆µ

α∆ν
βt
αβ, (A.3)

where
∆µν = ηµν +

pµpν
m2

(A.4)

and t = tTT + tTL + tLT + tLL.
Define the D polarisation vectors ε(A)(p)µ, A = 0, . . . D − 1 by

ε(A)(Λp0) = Λε(A)(p0) (A.5)

where
ε(ν)(p0)µ = δνµ . (A.6)

These form a basis with
ε(A) · ε(B) = ηAB, ε(0) =

p

m
. (A.7)

The plane wave solution for the moving frame θA = θAµdx
µ is then explicitly given in terms

of the translation-invariant solutions by

θµνLL(x) = N(−x · ε(0))εµ(0)ε
ν
(0), θµνTL = 0, θµνTT = πij(−x · ε(0))ε(i)µε(j)ν . (A.8)

In particular the full solution for the metric gµν is given by gµν(x) = ηABθ
A
µ(x)θBν(x) where

θAB = θABLL + θABTT . Thus, to conclude

gµν(x) = −N2(−x · ε(0))
pµpν
m2

+ (π2)ijε
(i)
µ ε

(j)
ν (A.9)

where N and πij can be replaced by any of the time-dependent solutions determined above.
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