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Abstract It is illustrated that a sharply truncated initial kinetic energy spectrum

evolves to a staircase-shaped spectrum at short times. This effect is directly as-

sociated with the triadic nature of the energy transfer. A rigorous analysis leads

to predictions on the time-dependence of this effect, and these predictions are veri-

fied by both direct numerical simulations and eddy-damped quasi-normal Markovian

closure integrations.
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I. INTRODUCTION

The nonlinearity of the Navier-Stokes equations is responsible for the transfer of energy

between scales in turbulent flows. The precise understanding and modeling of this transfer

is one of the most difficult issues in turbulence research and many theories and models have

been developed to represent the energy transfer. For high Reynolds number turbulence,

the fundamental framework is the Kolmogorov 1941 theory [29], which associates the for-

ward energy cascade in the inertial range of fully developed turbulence with a conserved

flux from the production to the dissipation scales. Dimensional arguments lead then to a

prediction of the shape of the kinetic energy spectrum E(k) ∼ k−γ with γ = 5/3, where k

is the wavenumber. This scaling is observed with reasonable precision in experiments and

simulations [30, 31] (see Ref. [32] for refinements of these arguments).

Obviously in many flow situations the production and dissipation of turbulent kinet-

ic energy are not in equilibrium. A typical academic case is freely decaying turbulence.

Experimentally such flows are studied using grid-turbulence in wind-tunnels, and recent in-

vestigations have shown that in such experiments the scaling of the dissipation of kinetic

energy in the early times, just beyond the production zone, does not concord completely

with dimensional arguments associated with Kolmogorov’s ideas [33]. Perturbative argu-

ments allow to show that this scaling anomaly is explainable as a first-order perturbation

of the Kolmogorov state [34]. Indeed, in the experiments the kinetic energy spectrum is

observed to approximately satisfy Kolmogorov scaling. How the spectrum develops before

the Kolmogorov scaling is observed is hard to investigate in these experiments, where the

near-grid flow is highly statistically inhomogeneous.

Clearly, in grid-turbulence the exact shape of the initial spectrum is hard to control. In

numerical experiments, however, turbulent decay can be studied starting from well-designed

initial conditions, corresponding to a localized initial spectrum. Such numerical experiments

were for instance carried out in the context of the possible determination of vorticity blow-up

and singularity formation, where starting from a Taylor-Green vortex, the transient spectrum

showed a steep scaling before all spatial scales were excited [35, 36]. The short-time scaling

was further investigated in the context of diffusion models, where it was discovered that a

transient scaling was observed with an exponent of the order 1.8 < γ < 1.9 again steeper

than the Kolmogorov value [37]. The same scaling was confirmed by more elaborate closure,
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Fig. 1. Definition of the different wavenumber bands of the kinetic energy spectrum. Initially,

“band 0” contains all the energy and all other bands are unexcited.

of the eddy-damped quasi-normal Markovian (EDQNM) type [38]. The first appearance

of such scaling was observed in magnetohydrodynamic wave-turbulence, where a spectral

exponent of 7/3 was observed before the expected γ = 2 inertial slope established [39] and

in subsequent wave-turbulence studies this was confirmed [40]. A review of different systems

and the scaling predictions from simplified models is given in reference [41].

In the present investigation we will scrutinize the very early development of the kinetic

energy spectrum from a spectrally localized initial condition even before power-law scaling is

observed. We show that, if the initial condition is not spectrally smooth, the steep gradient

from the initial spectrum is not continuously smoothed out, as expected if energy transfer

was of purely diffusive nature, but the triadic interactions of the energy transfer causes

a stepwisely decreasing energy spectrum at short times. We will then illustrate that this

behaviour can be quantitatively predicted. The predictions are assessed using both direct

numerical simulations (DNSs) and numerical integration of the EDQNM model.

II. THEORETICAL ANALYSIS

In this section we will show how, at very short times, the energy evolves from an initial

condition confined to low wavenumbers towards higher wavenumbers. The effect we describe

is inherent to the triadic nature of energy transfer in fluid turbulence. Indeed, the quadratic

nonlinearity of the Navier-Stokes equations gives rise, in scale space, to the coupling of

three scales. In order to understand the inter-scale energy transfer it turns out that the
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Fourier-decomposition is extremely useful, in particular when statistically homogeneous or

periodic flows are concerned. In Fourier-space the three-scale or triadic coupling corresponds

to the interaction of energy at three different wavevectors, k,p, q which can form a triangle,

k − p − q = 0. This particular triadic interaction will give rise to an irregularity in the

short-time energy spectrum when the kinetic energy of the initial condition is confined to

the smallest wavenumbers. In order to evaluate the short-time behaviour in an analytical

manner, we use the helical mode decomposition which allows, as we will show, to give correct

predictions for the evolution of the kinetic energy at short times.

We consider three-dimensional, incompressible, homogenous isotropic turbulence. Fol-

lowing Refs. [42–44], we decompose an incompressible velocity field by using the helical

decomposition. This decomposition is a natural one since it takes directly into account the

incompressible nature of the flow. The velocity field v(x) in physical space is translated to

u(k) in Fourier space with k the wave vector. Being divergence-free, k · u(k) = 0, each

velocity component in Fourier space has only two degrees of freedom. Two orthonormal

complex helical waves are chosen to represent the velocity modes, h± = ŵ × k̂ ± iŵ, with

i =
√
−1. The unit vector ŵ can be chosen as ŵ = z × k/∥z × k∥ with z an arbitrary

vector. We then have

u(k) = u+(k)h+(k) + u−(k)h−(k). (1)

Using this decomposition, the Fourier-transform of the Navier-Stokes equation yields(
∂t + νk2

)
usk(k) = −1

4

∑
k+p+q=0

∑
sp,sq

(spp− sqq)[h
sp × hsq · hsk ]usp(p)usq(q), (2)

where ν is viscosity, • stands for complex conjugate. The superscripts sk, sp, sq = ± denote

the six different helical modes involved in a triad. When sk, sp, sq are appearing as variables

in the expressions, their values are ±1.

We concentrate on the dynamics of an isolated triad, assuming that energy transfer only

occurs among three wave numbers (k,p, q) with specific helical modes (sk, sp, sq) respec-

tively. In the inviscid case, this leads to three ordinary differential equations (ODEs) in the

complex domain

u̇sk(k) =g(spp− sqq)u
sp(p)usq(q),

u̇sp(p) =g(sqq − skk)u
sq(q)usk(k),

u̇sq(q) =g(skk − spp)u
sk(k)usp(p),

(3)
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with •̇ time derivative, and g = −1/4[hsp × hsq · hsk ].

We consider an initial spectral energy distribution truncated at wavenumber k0 by a

spectral cutoff filter. This band which initially contains all the energy is denoted as “band

0”, as shown in Fig. 1. In the figure the energy spectrum is assumed to be uniform in band

0, but a non-uniform distribution will not qualitatively affect the result. In order to describe

the small-scale response scaling, we denote the band between nk0 and (n + 1)k0 as “band

n”, with n a positive integer. If k is located in band n, the energy density en(k, t) is defined

as en(k, t) =
1

4πk2

∫
|k|=k

(u+(k, t)2 + u−(k, t)2) dk.

Now that we have defined the helical decomposition and the discretization of wavenum-

ber space, we will show how the kinetic energy evolves under the influence of the isolated

triad dynamics (3). To do this, we have the following proposition that we will prove by

mathematical induction.

Proposition 1. For a fixed wave vector k with wavenumber k = |k| located in band n, the

magnitude of the helical mode usk
n (k, t) is of order tn for small time t, and the energy density

en(k, t) is thereby of order t2n.

Proof. i) Illustrating that for n = 1 Proposition 1 is satisfied. At the initial momen-

t, for a fixed wave vector k located in band 1, all triad interactions involve exclusively

modes with the wave vectors located in band 0, denoted (k,p, q). From Eq. (3), we can

obtain u̇sk(k, t)|t=0 ̸= 0 when spp ̸= sqq. (Note that spp = sqq is a special case where

u̇sk(k, t), u̇sp(p, t), u̇sq(q, t) are all zero and there is no energy transfer among the three

modes). At short times, u̇sk(k, t) can therefore be considered as a nonzero constant.

Besides, there is no energy in band 1 at the initial moment, thus usk(k, t)|t=0 = 0.

Therefore, for a triad with two legs (p, q) in band zero and one (k) in band 1, the first

equation of (3) gives,

u̇sk(k) = Constant, (4)

so that usk
1 (k, t) ∼ O(t) for small time t. From the definition of energy density, we

obtain e1(k, t) ∼ O(t2) for small time t. Proposition 1 is satisfied.

ii) Inductive step:

Assuming that Proposition 1 is satisfied for all n 6 m with m positive integer

greater than 1, we will prove the propositions for m+ 1. Without losing gener-
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ality, we assume that for a triad interaction (k,p, q), wave vector k is located in band

m+1, p in band a, and q in band b, with a and b positive integers smaller than, or equal

to m. For Proposition 1, we can obtain that in a short period of time usp(p, t) ∼ O(ta)

and usq(q, t) ∼ O(tb). From Eq. (3), we can obtain u̇sk(k, t) ∼ O(ta+b) in this triad

interaction. By the triangle inequality, the lengths of these three wavevectors must

satisfy p+ q > k which implies (a+1)+ (b+1) > (m+1)+1, and therefore a+ b > m.

This means that the contribution from a single triad interaction (k,p, q) to the energy

growth at k is of the order ta+b & tm. From Eq. (2), u̇sk(k, t) is the summation of all

these triad interactions, thus u̇sk(k, t) ∼ O(tm). Therefore, usk
m+1(k, t) ∼ O(tm+1) for s-

mall time t. From the definition of energy density, we can obtain em+1(k, t) ∼ O(t2(m+1))

for small time t. Proposition 1 is thereby satisfied.

Therefore, Proposition 1 is satisfied for all n ∈ N+.

We remark that Proposition 1 is a general result for the scaling of short-time energy

transfer. However, the growth rate can be affected by phase correlations and the helical

properties of the velocity modes [44–46] constituting the initial field. For instance, we can

imagine a single-scale initial velocity field constructed by homochiral modes (i.e., sp=sq), and

usk(k) is the same for all wave vectors k with the same length k. It is easy to show that this

(perhaps somewhat pathological) case is a fixed point of the Euler equation corresponding

to zero energy transfer. Such initial conditions will lead to slow initial transfer of energy.

III. NUMERICAL RESULTS

In the foregoing section we have argued that the energy density en(k, t) in band n will

evolve proportional to t2n. In this section, we will assess this using DNS and EDQNM,

respectively.

A. DNS results

DNSs are performed using a standard pseudo-spectral solver and a fourth-order Runge-

Kutta time integration scheme, with a semi-implicit treatment of the viscous term [47]. The

computational domain has 2563 grid points, with domain size (2π)3, so that the minimum

wavenumber is kmin = 1. A hyper-viscous term of the form ∇4v is used to increase the
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Fig. 2. (a) Energy spectra at different time in the DNS case. Curves correspond to t =

0, 0.00005, 0.0005, 0.005 and 0.01 respectively. The arrow indicates the direction of time. (b)

Energy evolution at given wavenumbers in the DNS case. Curves with the same symbol are locat-

ed in the same energy band. (c) Temporal scaling exponent at different times (chosen as in Fig.

(a)).

size of the inertial range for a given resolution. Rogallo’s method[48] is used to generate

Gaussian initial field with random phase correlations. We remark that different initial phase

correlations may slow down or accelerate the energy transfer, but the staircase scaling should

not change. The band width is selected as kc = 10, indicating that the ratio between the

lengths of the longest and shortest legs in a triad can be upto 10. This is to guarantee that
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Fig. 3. (a) Energy spectra at different time in the EDQNM case. Curves correspond to t =

0, 0.00088, 0.0067, 0.072 and 0.144 respectively. The arrow indicates the direction of time. (b)

Temporal scaling exponent at different times (chosen as in Fig. (a)).

the DNS case is consistent to the theoretical analysis, where both local and non-local triad

interactions contribute to the staircase scaling[49, 50].

The energy spectra E(k), defined as the integral of energy density e(k) over a sphere

with radius k, are shown in Fig. 2(a) at short times. Clearly, there are discontinuities in

the spectral slope at the boundaries of each band, denoted as vertical lines in the figure. We

then select wavenumbers around these band boundaries, and show their energy evolution in

Fig. 2(b). It is found that wavenumbers in the same band obey the same time scaling in the

very beginning of the simulation. As an example, when k = 1.90kc, energy increases as t2,

whereas this scaling is proportional to t4 for k = 2.01kc. In order to quantitatively examine

these results, we define the local time-scaling exponent n(k, t) as

n(k, t) =
∂E(k, t)

∂t

t

E(k, t)
, (5)

which is shown in Fig. 2(c). Staircase time scalings are clearly observed. At higher wavenum-

bers the wavenumber dependence of the scaling exponent smoothens rapidly, since the spec-

trum is less sharply truncated there. The reason is that there are few triad combinations to

transfer energy to the largest wavenumbers.



9

B. EDQNM results

We also integrate the EDQNM closure to assess the small-scale response. The closed

equation for E(k) reads [51, 52],(
∂

∂t
+ 2νk2

)
E(k, t) =

∫∫
∆

θkpq(t)b(k, p, q)E(q, t)
[
k3E(p, t)− kp2E(k, t)

] dpdq
pq

, (6)

where ∆ indicates the subspace in the p, q plane where k, p, q can form a triangle, b is a

geometrical coefficient, depending on the triad-shape and θkpq is a function of time

θkpq(t) =
1− e−Λt

Λ
(7)

with Λ = µkpq + ν(k2 + p2 + q2), µkpq = µk + µp + µq and µk = 0.5[
∫ k

s2E(s)ds]1/2. The

model details are the same as the “Unforced Case” of Ref. [38], except that the initial energy

spectrum is constant and sharply truncated (as in Fig. 1). The band width is selected such

that the initial band contains 100 discrete wave numbers, in order to produce correctly both

local and non-local triad interactions.

The energy evolution for short times is shown in Fig. 3(a). Similar to the DNS results,

there are discontinuities in the spectral slope at the boundaries of each band. Also the

local time-scaling exponent n(k, t) is shown in Fig. 3(b) at different time instants. The

scaling exponents are staircase-shaped as expected. Comparing to Fig. 2(c), we see that the

behaviour is very similar to the DNS results, therefore qualititatively the results show that

EDQNM correctly captures the staircase scaling. However, the large n behavior differs for

the two cases (for EDQNM the scaling exponent is slightly greater than the theoretical values

(horizontal lines) whereas for DNS it is slightly less than the theoretical values). Possibly

this difference is due to higher-order terms neglected in Proposition 1, or the direct influence

of viscous damping, more strongly present in the DNS than in the closure integration.

The advantage with closures such as the EDQNM model is that we solve directly equa-

tions for the ensemble average, so that we should be able, in principle, to understand the

behavior of the solution from the equations we integrate. We will analyze the structure of

the EDQNM model to understand the origin of the staircase scaling on the level of this

closure, which is not confined to a single triad such as the analysis in the foregoing section

supposed.

Initially, all the energy is confined in “band 0”, as illustrated in Fig. 1, and we call

its value E0. Let k be contained in “band 1”. The energy density in this empty band, is



10

governed (ignoring viscosity) by the equation

∂E1

∂t
≈

∫∫
∆;p,q<k0

θkpq(t)k
3b(k, p, q)E2

0

dpdq

pq
, (8)

where the only contributions are from p, q < k0, where E(p) = E(q) = E0. Since all interac-

tions are restricted to p, q < k0, the triad condition k = p+q will not allow interactions with

modes beyond 2k0. If the integrand would be constant in time, the energy in band 1 would

grow proportional to t, but in the simulations and the theoretical analysis a t2 dependence

is observed. Analyzing the integrand, it is observed that it is the timescale θkpq which is

time-dependent. Using a Taylor expansion, for small t Eq. (7) writes

θkpq(t) ≈ t, (9)

so that the integrand is proportional to t and the evolution of E1,

∂E1

∂t
∼ E2

0t, (10)

yielding a time-dependence for E1 proportional to t
2. The exact shape of the triad-interaction

time θkpq is thus important to reproduce the correct stair-case scaling.

We note that this analysis can also be extended to higher bands to obtain staircase time

scalings. For example, the energy transfer to band 2 can be either the case that two wave

vectors are in band 0 and 1 respectively (denoted as ∆1), or the case that two wave vectors

are both in band 1 (denoted as ∆2). Therefore in short time we can write

∂E2

∂t
≈

∫∫
∆1

θkpq(t)k
3b(k, p, q)E0E1

dpdq

pq
+

∫∫
∆2

θkpq(t)k
3b(k, p, q)E2

1

dpdq

pq
. (11)

Using the fact that E0 ∼ t0 and E1 ∼ t2 immediately yields a time-dependence for E2

proportional to t4. For higher bands the derivations are analogous.

IV. CONCLUDING REMARKS

In the present contribution we illustrated that a sharply truncated initial spectrum leads

to staircase time scalings of the small-scale response. This phenomenon is verified by DNS

and EDQNM respectively. The origin of this scaling behaviour is the triadic interaction

underlying the Navier-Stokes nonlinearity.
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In many cases, the spectral properties of the Navier-Stokes equations can be reproduced

by a diffusion of energy in wavenumber space. The classical Leith closure [53] represents

this phenomenology using a simple model-equation for the nonlinear energy transfer. The

present phenomenon cannot be captured by such a model. Also the Heisenberg closure [54],

which models nonlocal interactions cannot represent this, since it does not take into account

the triadic nature of the nonlocal interactions. Indeed, both closures can be derived as limits

of degenerate triad interactions, as was illustrated in Refs. [55, 56].

The present investigation shows how irregularities in the initial conditions can be trans-

ferred to higher wavenumbers. These irregularities are therefore not due to a nonphysical

transfer mechanism, but they reflect the shape of the initial conditions.
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