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Adhesive bondline mechanical behaviour is frequently described with cohesive zone models (CZM). For mode I loading condition these phenomenological laws simply represent the evolution of the peel stress as a function of the two adherends relative displacement normal to the joint. Generally, these laws are identified rather than really measured using experimental data obtained from crack initiation and propagation experiments such as the Double Cantilever Beam Test (DCB). The uncertainty on parameter estimation are generally not indicated, as for a DCB test it is only the critical energy release rate that has the most influence on the results. However, the uncertainties on the other parameters prevent the use of the identified TSL for other mechanical tests where mode I solicitations are predominant. In this article, the purpose is to evaluate the methodologies reliability for the assessment of mode I CZM. To do so, several methods used to evaluate CZM parameters are compared in terms parameter estimation reliability. Synthetic noisy data are considered for a χ² function minimisation. Then, sensitivity calculations are performed to determine the estimated parameters standard deviation. By applying this procedure on different type of synthetic measurements (respectively P(), J(,), backface strain and DIC) the ability of these different techniques to capture the best parameters for a chosen CZM shape can be rigorously evaluated.

Nomenclature

Adhesive bonding has gained growing interest in many fields in particular in the transportation industry. Indeed, this joining technique is known to offer a very competitive strength to mass ratio. It is very adequate for composite structure assembly and leads to drastic reduction of the fasteners numbers. However, the reliability of bonded joints is difficult to assess especially in the aeronautical sector where the certification procedure for structural parts are very demanding. The variability on the bonded joint strength may be due to strong sensitivity to any surface pollution, or uncontrolled ageing phenomena but is also a consequence of inadequate mechanical testing protocols. Indeed, the bonded interface behaviour is still mainly determined with standard procedure, the tensile test on single lap joint specimen being the most common one. The test results are known to be dependent on the test conditions such as the loading rate, but also on the specimen geometry (adherend and adhesive thicknesses, overlap length) and not only on the interface properties.

These past years Cohesive Zone Model (CZM) were introduced to describe the interface behaviour and simulate the joint behaviour. These phenomenological laws have been also used to simulate delamination processes in laminates. They represent the cohesive stresses versus interface relative displacement evolution and could be considered as more robust models since they describe not only the interface elastic behaviour but also irreversible phenomena such as damage and/or plasticity. They enable a refined evaluation of the cohesive stresses distribution along the interface during monotonous loading of the joint.

These models have been studied extensively from a theoretical and numerical point of view and many contributions have used them for failure load prediction of many different materials [START_REF] Cornec | On the practical application of the cohesive model[END_REF] [2] [START_REF] Chandra | Some issues in the application of cohesive zone models for metal--ceramic interfaces[END_REF]. Considering pure mode I loading condition, these models are alternatively called traction separation laws (TSL). Their shapes and corresponding parameters are usually empirically chosen according to the expected material global behaviour (i.e. brittle, ductile). TS parameters are adjusted using iterative procedure so that a good agreement is found between experimental data and theoretical value found with an analytical [START_REF] Škec | Identification of parameters of a bi-linear cohesive-zone model using analytical solutions for mode-I delamination[END_REF] or numerical model [5] [6]. The data used for the identification are generally simple applied load versus resulting displacement even if more sophisticated technique are also described.

The use of CZM should improve the joint strength prediction through more precise description of the interface mechanical behaviour. However, the prediction of both crack initiation and propagation regime may still suffer from a lack of precision mainly because the TSL shape is chosen empirically rather than really being measured. Previous contributions have evidenced that the predicted mechanical response of the joint depends on the TSL shape especially for ductile adhesives [7] [8] [9]. This is why an extensive work has been ongoing

for the development of specialized experimental techniques for measuring precisely the interface separation law (i.e. cohesive stress versus displacement jump across the interface).

These new characterization protocols lead to the use of new specimen and loading systems such as the DCB fixture developed by Sørensen et al. which enable the direct determination of the TSL through the differentiation of the J-integral [10] [11]. This same technic is used by Anderson et al. but the adhesive elongation is measured with interference patterns [START_REF] Andersson | The stress--elongation relation for an adhesive layer loaded in peel using equilibrium of energetic forces[END_REF]. The development of digital image correlation over the last decades has also given access to a whole new range of mechanical response. As it is possible to monitor the adherends' deflection and rotation throughout the entire test. Shen and Paulino then used a hybrid inverse method based on finite element analysis and Digital Image Correlation (DIC) to determine the TSL shape and associated parameters [START_REF] Shen | Direct extraction of cohesive fracture properties from digital image correlation: a hybrid inverse technique[END_REF]. DIC was also used by Lelias et al as a direct method to extract the CZM using the differentiation of displacement and rotation at crack tip [START_REF] Lelias | An extended semi-analytical formulation for fast and reliable mode I/II stress analysis of adhesively bonded joints[END_REF]. More systematic routine to identify CZM from DCB test with digital image correlation monitoring has been proposed by Alfano et al. [START_REF] Alfano | Global sensitivity analysis in the identification of cohesive models using full-field kinematic data[END_REF] and Blaysat et al. [START_REF] Blaysat | Interface debonding characterization by image correlation integrated with double cantilever beam kinematics[END_REF]. Adherends' deformation can also be measured using optical [START_REF] Sans | Assessment of the influence of the crack monitoring method in interlaminar fatigue tests using fiber Bragg grating sensors[END_REF] or resistive [START_REF] Jumel | Instrumented End Notched Flexure--Crack propagation and process zone monitoring. Part I: Modelling and analysis[END_REF] strain gauges. As it enable a precise location of the crack tip but can also be used for the direct identification of the CZM through the differentiation of the backface strain signal evolution [START_REF] Jumel | Measurement of interface cohesive stresses and strains evolutions with combined mixed mode crack propagation test and Backface Strain Monitoring measurements[END_REF]. Direct inversion techniques have also been proposed for the CZM reconstruction from the experimental data obtain with BSM and J() techniques. On the contrary inverse methods should be used to analyse DIC and P() measurements [START_REF] Lelias | An extended semi-analytical formulation for fast and reliable mode I/II stress analysis of adhesively bonded joints[END_REF]. In these cases, some assumptions are made on the TSL shape which must be set arbitrary and which can lead to errors on latter predictions [START_REF] Jaillon | Mode I Cohesive Zone Model Parameters Identification and Comparison of Measurement Techniques for Robustness to the Law Shape Evaluation[END_REF]. Moreover, the incorrect estimation of the TSL parameters can also lead to erroneous prediction when applied to other kind of mechanical tests that are subjected to mode I or more complex solicitations (i.e. SLJ, DLJ, … ).

Then, this contribution aims at proposing a systematic procedure to evaluate the sensitivity of the four methods (P(), DIC, J(,), BSM) to evaluate a triangular TSL parameters such as interface stiffness, strength and fracture energy. A simple semi-analytical model of a DCB experiment considering non-linear interface behaviour is used to generate synthetic experimental data with known interface behaviour. Some Gaussian noise [START_REF] Haddadi | Use of rigid-body motion for the investigation and estimation of the measurement errors related to digital image correlation technique[END_REF] is added to the data then a Levenberg-Marquart algorithm is used to minimize an error function and identify the triangular TSL parameters. The Confidence domains for the group of fitted parameters are obtained at the end of the minimization procedure for all four measurement-techniques. They can be used for the evaluation of the identification quality and the techniques' comparison.

χ minimisation and confidence intervals theoretical background

Obtaining model parameters from a set of experimental data can be achieved with different techniques. The most common technique consists in minimizing an error function which may exhibit significantly non-linear behaviour. In the following, least square minimization is realised considering the Chi square, 𝜒 2 , function defined with relation :

𝜒 2 (𝑎) = ∑ [ 𝑌(𝑡 𝑖 ) -𝑌 ̂(𝑎, 𝑡 𝑖 ) 𝜎 𝑌 (𝑡 𝑖 ) ] 2 𝑛 𝑑 𝑡 𝑖 =1
(eq 1)

In equation (eq 1) Y(𝑡 𝑖 ), 𝑡 𝑖 ={1,…, 𝑛 𝑑 } represent the 𝑛 𝑑 measured data used to identify the 𝑎 𝑘 k={1,…,p} parameters. 𝑌 ̂ are the corresponding theoretical data obtained with the model. In equation (eq 1), the terms in the sum are weighted by the measurement error on the experimental data 𝜎 𝑌 . This function is minimized using steepest gradient technique such as Levenberg-Marquart algorithm until the minimum 𝜒 2 value is found and the corresponding optimum set of parameters is determined. The quality of the optimization process can then be evaluated using the R²-value.

Once 𝑎, the optimal parameters' vector is found, parameters confidence intervals can be evaluated by analysing the 𝜒 2 function evolution near the minima. Indeed, the small variation of one or several parameters will lead to an increase of the 𝜒 2 value, a steep increase meaning a high sensibility to any parameter fluctuation and then high reliability of the identification process. First, evaluation of the confidence interval is obtained by performing second order Taylor expansion of the 𝜒 2 function near the minima. This results in a simple quadratic approximation of the error function given by:

𝛥𝜒 2 = 𝛿𝑎 𝐶 -1 𝛿𝑎 (eq 2)
Where the covariance matrix is defined as

𝐶 = 𝜎 𝑌 2 (𝑆𝑆 𝑇 ) -1 (eq 3)
with S corresponding to sensitivity function:

𝑆 = [𝑆 𝑘 (𝑡 𝑖 )] = 𝜕𝑌 ̂(𝑎, 𝑡 𝑖 ) 𝜕𝑎 𝑘 (eq 4)
Assuming the standard deviation, 𝜎 𝑌 2 , is constant for all data points (eq 5), it can be estimated with the equation [START_REF] Marsili-Libelli | Confidence regions of estimated parameters for ecological systems[END_REF]:

𝜎 𝑌 2 = ∑ (𝑌(𝑡 𝑖 ) -𝑌 ̂(𝑝, 𝑡 𝑖 )) 2 𝑛 𝑑 𝑡 𝑖 =1 𝑛 𝑑 -𝑛 𝑝 𝑖 ∈ [1: 𝑛 𝑑 ] (eq 5)
The confidence intervals on the identified parameters can be obtained from the analysis of the 𝜒 2 function evolution near the minimum. Indeed, for a given reliability and number of degree of freedom (nd -identified parameters) the variation ∆𝜒 2 of the error function due to parameters variation 𝛿𝑎 should be less than the value defined by 𝜒 2 function values table.

From the asymptotic analysis and expression, these confidence intervals can be estimated once the covariance matrix has been determined. The envelope of the confidence domain is then represented by an ellipsoid, when three parameters are identified. Likewise, for two parameters it is represented as an ellipse. However, the real shape of the confidence region might be different if the minimization problem is highly nonlinear.

For visualisation and analysis purposes, it might be needed to reduce the number of parameters used. As joint confidence regions are larger than individual intervals for the same confidence. It is then possible to project the covariance matrix on a lesser dimension.

The confidence region analysis can also give information on the correlation of the parameters. A correlation matrix can be determined using the covariance matrix [START_REF] Hartmann | Identifiability of material parameters in solid mechanics[END_REF]. It will give access to a normalised estimation of the linear correlation between each pair of parameters, diagonal parameters being equal to one.

𝑐𝑜𝑟𝑟(𝑖. 𝑗) = 𝐶(𝑖, 𝑗) √𝐶(𝑖, 𝑖)√𝐶(𝑗, 𝑗) (𝑖, 𝑗) ∈ [1: 𝑛 𝑝 ] (eq 6)
Knowing the correlation between parameters is important as it gives indication on how uncertainties on one parameter propagate to another.

Parameter estimation and confidence regions determination for a model require numerous model calculation that can become quite time costly. In order to avoid too much calculation time, it appeared wiser to implement an analytical model rather than using finite element (FE) model. The purpose of this analytical model is to simulate the mechanical response that could be measured during an experimental DCB test. That is to say that it needs to give access to all the specimen mechanical response enabling the determination of the load, the opening at loading point, the rotation at loading point, the adherends' deformation along the overlap and the adherends' rotation along the overlap. These responses can be determined with the mechanical fields computed during the crack propagation along the overlap for an adhesive having a bilinear CZM.

Modelling of DCB test with nonlinear interface behaviour

The DCB specimen, illustrated in Figure 1, is modelled as two Timoshenko beams having rectangular cross section (width: w, thickness: t) and bonded with an adhesive layer whose TS behaviour is represented with a bilinear TSL. The length of the bonded part is L. On the right end of the specimen the two slabs are left unbounded over a distance equal to 𝑎 0 and considered as the initial crack length. These TSL can be displayed as stress function of displacement jump at crack tip, as Figure 2 illustrates it. In order to emphasize the importance of the TSL on the bonded specimen mechanical response, these three laws will be used to compare the mechanical fields obtained for each measurement method commonly used for DCB tests. Moreover, as this test is most sensitive to the value of the critical energy rate, all three examples have the same one in order to better visualize the differences due to the TSL parameters' value only.

Figure 2: Three bilinear TSL.

TSL identification from the P(Δ) measurement technique

The first method proposed to evaluate TSL from DCB experiment is based on the analysis of the force, P, versus opening displacement evolution, Δ. Since the original analysis of DCB test [START_REF] Mostovoy | Fracture toughness of an epoxy system[END_REF], these data are systematically measured as it enables the evaluation of the interface critical energy release rate which is based on compliance measurement evolution. As it can be seen on Figure 3(a), P(Δ) curve is typically composed of three parts corresponding to the CZM. The first one is linear. Then, once the adhesive begins to soften, the force keeps increasing but nonlinearly and finally, when the critical energy release rate is reached crack propagation begins. Moreover, when the modulus is high, its impact become less significant and can be concealed by the measurement noise.

TSL identification from the J(,) measurement technique

The J integral evolution during the DCB test is obtained directly by measuring the specimen end rotation together with the applied load [START_REF] Gunderson | Alternative test method for interlaminar fracture toughness of composites[END_REF] 

TSL identification from the Backface Strain measurement technique

Resistive gauges can be placed on the adherend's upper face. The measurement of the slabs deformation, 𝜀 𝑠 , gives insight on the stress state of the adhesive bond directly underneath the gauges using the relation:

𝜎 = -2 𝐸𝐼 𝑤𝑡 𝜕 2 𝜀 𝑠 𝜕𝑥 2 (eq 7)
The gauges response is an indicator of the stress state of the adhesive below which phases are given by Figure 5(a). It is worth noticing that the adherend deformation is maximal when the crack tip is close to the gauge and that its value and curvature is influenced by the TSL as 

TSL identification from DIC measurement technique

During a DCB test digital image correlation (DIC) can be used to determine the deflection and rotation of the adherends along the bonded area. Experimentally, this requires the use of a speckle pattern and one or a couple of cameras. In the analytical model, the adherends deflection and rotation of the neutral fibre are directly computed along the specimen without generating any images of the adherends side. Moreover, in order to only investigate the behaviour of the adhesive, the deflection and rotation of the adherend are analysed from the crack tip abscissa X = -50 mm to X = 120 mm. The test is also only considered for an opening at loading point included between Δ = 1 mm and Δ = 2 mm. Poisson ratio ( -) 0.3

Synthetic experimental data generation

The analytical model is used to generate the nominal response of each mechanical field previously described. In order to carry out the inverse identification and to estimate the confidence intervals, a first approach is to generate synthetic experimental data by applying a Gaussian noise. This noise enables the representation of experimental uncertainties that are due to the measurement chain (i.e. load captors, gauges, DIC...). For each mechanical response, a custom noise is generated as a normal distribution whose mean is equal to zero and whose standard deviation is approximately 1% of the maximal mechanical response (Table 3). Figure 7 displays the associated experimental data and optimisation results. The minimization and confidence interval identification procedure were carried out for each mechanical response that can be obtained on a DCB test. For clarity purpose, the process will only be detailed for the force-displacement curve as it is similar for the other methods.

Application to the Force-displacement curve

The χ² minimization is executed on experimental data in order to determine the optimized parameters triplet. To identify the confidence regions, sensitivity functions are determined analytically using equation (eq 4). Mechanical responses are computed for a ±5% variation of each parameters. The standard deviation (eq 5) between the optimized model data and the experimental data are then computed enabling the determination of the covariance matrix. It is possible to draw the confidence region in three-dimension, projected on 2-parameters plane and projected in 1 dimension which gives access to confidence regions and intervals. The confidence regions at 95% of the force-displacement curves are illustrated in Figure 8. The The coupling between the parameters (i.e. 𝐸 𝑎 /𝜎 𝑚𝑎𝑥 , 𝐸 𝑎 /𝛿 𝑝 , 𝜎 𝑚𝑎𝑥 /𝛿 𝑝 ) can also be obtained with the correlation matrix (eq 6), in the force-displacement case it gives:

𝑐𝑜𝑟𝑟 = [ 1 -0.51 0.50 -0.51 1 -0.99 0.5 -0.99 1 ] ( eq 8) 
The correlation matrix indicates that the variation of the maximal stress and displacement jump at propagation are so highly correlated that the variation of one can be quasi entirely compensated by the other one, posing the problem of evaluation reliability. This implicates that the parameters triplet chosen is not well defined for this mechanical response. To eliminate this constraint, one could want to study the variation of critical energy release rate instead of 𝑣 𝑝 for instance.

Moreover, the confidence regions and interval should be analysed carefully as the methods uses quadratic approximation when it is not necessarily true. Thus, the real confidence regions might not be regular ellipses and confidence intervals in one dimension might not be symmetric. However, this method enables the easy comparison of the different mechanical responses that can be used to determine the adhesive traction separation law parameters.

Comparisons

The analysis procedure presented earlier has been applied to the other mechanical response as well. From this study, an evaluation of the methods can be made from the comparison of the confidence intervals, confidence regions and parameters coupling.

Confidence intervals and regions

The most straightforward results to analyse are the confidence intervals for each parameter individually. They are symmetric and centred around the nominal value. Therefore, the comparison between the methods will only be made with the interval radius. The results for every method and every parameter for a 95% confidence interval are summarized in Table 4 Table Overall, it appears that the results obtained using DIC are better than the other methods especially for the determination of the initial modulus where the deflection confidence interval (CI) radius is of 5.3 MPa. For the stress and the displacement jump, the DIC-rotation dominates once again with radius of 0.12 MPa and 1.15 μm respectively. However, J(,)

gives close results with CI radius of 0.17 MPa and 1.21 μm.

Another insight on the differences between the methods is given by the correlation matrix (Table 5). Indeed, for each method parameters coupling appears to be different but follow the same tendencies. The couple 𝜎 𝑚𝑎𝑥 /𝛿 𝑝 appears to be strongly correlated for every methods.

This implies that during the minimisation their correct value might not have been found

accurately as a small variation of one compensate the deviation of the other. The two other couples are moderately correlated. The use of DIC-deflection seems to ensure a low correlation between the modulus and both 𝜎 𝑚𝑎𝑥 and 𝛿 𝑝 . The visual analysis of the confidence ellipses given by the projection of the ellipsoid on two dimensions planes gives complementary information (Figure 9). The smallest interval regions are obtained for both DIC methods again. The ellipsoid volume analysis gives the overall confidence intervals as it reflects the tightness of the confidence intervals in three dimensions. A small volume indicates a better estimation.

Table 6 shows that the DIC in rotation gives the smallest volume. 

TSL confidence envelop

From the three dimensions confidence volume, it is possible to determine the TSL that are on the verge of the 95% confidence surface. Each parameter triplet, which is on the ellipsoid surface, is used to generate the CZM envelope illustrated in Figure 10(a,c,e,g,i). From these envelops the associated mechanical field envelop can be computed (Figure 10(b,d,f,h,j)). It appears that even for the broader envelops the impact on the computed mechanical fields seems to be negligible. That is to say that if the motivation of the CZM identification is only the simulation of the mechanical fields response, then each of these methods gives correct results. However, if the TSL parameters are used to simulate the behaviour of other kind of assemblies that can have a failure behaviour more sensitive to them than to 𝐺 𝑐 , then better results will be obtained for DIC or J(,) methods as the parameters identified are closer to the real nominal response. Moreover, as the DCB test was designed to determine the critical energy release rate 𝐺 𝑐 in mode I, another verification can be done using its evaluation for the 95% confidence ellipsoid surface. In Table 7, it appears that all methods except the gauges give a prediction with less than 0.05% variation from the nominal value, which is equal to 1.41780 N/mm. [START_REF] Martin | Initiation of edge debonding: coupled criterion versus cohesive zone model[END_REF]. Table 8 presents the geometric and material characteristics of the SLJ test.

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) 
To evaluate the impact of the TSL, the superior and inferior boundaries of the P(Δ) CZM envelope were tested (Figure 11 

Conclusion

The DCB test is widely used to identify the adhesive behaviour. However, the identification of the correct TSL parameters from this test can be challenging because its mechanical response appears not to be very sensitive. However, a reliable estimation of the mode I TSL is needed when simulating other mechanical tests that are subjected to more complex solicitations. A virtual test campaign has then been carried out in order to determine if one or several of its mechanical fields enables a more accurate identification of the triangular TSL parameter. To do so, the χ² minimization has been applied on synthetic experimental data. Its analysis enables the identification of the parameters confidence domains, as well as their coupling. It showed that in order to determine the parameters of an arbitrarily chosen TSL shape (triangular) with an inverse method, the smallest confidence regions are given by digital image correlation. The overall parameter estimation is better when measuring the adherends' rotation but the analysis of the deflection ensures a smaller coupling between the parameters. The slight augmentation of the confidence volume might be compensated by a more accurate prediction of the parameters. This is to be expected has DIC gives access to more data throughout the test. However, as the use of DIC needs a high investment in equipment, the parameters can also be obtained using the J(,) method. It gives similarly good results but its analysis needs to be done more carefully as its theoretical background is limiting.
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 10 Figure 10: Traction separation law envelope for 95% confidence regions: (a) P(Δ); (b) J(,);

  (a)). As illustrated in Figure11(b), for a similar shear behaviour but different TSL in mode I, the differences obtained are quite important. It appears that there is a variation of 2000N in maximum load. This stresses out the importance of a reliable estimation of the TSL parameters when carrying out the identification on a different mechanical test.
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 11 Figure 11: (a) TSL envelope for the force-displacement; (b) Force versus displacement results

Table 1 :

 1 To illustrate the need for TSL identification techniques, some DCB test simulations are carried out for three bilinear TSLs. The DCB test specimen characteristics are presented below considering triangular TSL which are defined by the adhesive effective modulus 𝐸 𝑎 , the maximum stress 𝜎 𝑚𝑎𝑥 , and the critical energy release rate 𝐺 𝑐 . The chosen values are summed up in Table1. Traction separation laws parameters

	Reference	𝑬 𝒂 (MPa)	𝝈 𝒎𝒂𝒙 (MPa)	𝑮 𝒄 (𝑁/𝑚𝑚)
	TS1	146	14	1.4178
	TS2	20	11	1.4178
	TS3	300	20	1.4178

3.2 Indirect traction-separation law identification techniques.

Table 2 :

 2 Table 2 includes the chosen nominal parameters and the associated critical energy release rate in mode I and surface area under the elastic part, respectively 𝐺 𝑐 and 𝑌 0 . DCB specimen geometric and material characteristics

	Adherends		Adhesive TSL	
	Total length (mm)	180	𝐸 𝑎 (MPa)	146
	Overlap length (mm)	130	𝜎 𝑚𝑎𝑥 (MPa)	14
	Initial crack length (mm)	50	𝑣 𝑝 (µm)	101.27
	Thickness (mm)	10	𝑌 0 (N/mm)	0.67
	Width (mm)	15	𝐺 𝑐 (N/mm)	1.42
	Young modulus (GPa)	70		

Table 3 :

 3 Applied noise mean value for each mechanical response.

	Method	P(Δ)	J(,)	Gauges	DIC -Deflection	DIC -Rotation
	Units	N	kJ/m²	μdef	mm	rad
	𝝈 𝒏𝒐𝒊𝒔𝒆	10	10	20	0.01	0.005

Table 5 :

 5 Correlation between the parameters couple

	Method	P(Δ)	J(,)	Gauges	DIC -Deflection	DIC -Rotation
	𝑬 𝒂 /𝝈 𝒎𝒂𝒙	-0.510	-0.639	-0.751	-0.149	-0.551
	𝑬 𝒂 /𝜹 𝒑	0.500	0.635	-0.747	0.160	0.476
	𝝈 𝒎𝒂𝒙 /𝜹 𝒑	-0.990	-0.996	-0.998	-0.980	-0.975

Table 6 :

 6 95% confidence ellipsoid volume

		P(Δ)	J(,)	Gauge	DIC -deflection	DIC -rotation
	Volume	35.71	2.06	11.74	1.86	1.52

Table 7 :

 7 Critical energy release rate evaluation for the 95% confidence volumeIn order to highlight the importance of the TSL parameter estimation, a semi analytical model developed by Paroissien et al. has been used to simulate the force-versus displacement results of a single-lap-joint test[START_REF] Lelias | An extended semi-analytical formulation for fast and reliable mode I/II stress analysis of adhesively bonded joints[END_REF] [START_REF] Paroissien | A comparison between macro-element and finite element solutions for the stress analysis of functionally graded single-lap joints[END_REF]. The test geometry presented in Table8has been chosen in order to obtain a failure caused predominantly by peeling rather than shear[START_REF] Hart-Smith | Adhesive-Bonded Single-Lap Joints[END_REF]. According to Martin et al. for this test case, the mode mixity is simply managed by setting the same TS law in mode II than in mode I. Moreover, the numerical results provided come from converged model in terms of element density per characteristic length

		P(Δ)	J(,)	Gauge	DIC -deflection	DIC -rotation
	𝑮 𝒄,𝒎𝒐𝒚	1.41708	1.41766	1.41622	1.41773	1.41775
	std	0.0071	0.0018	0.0049	0.0051	0.0048

Table 8 :

 8 SLJ specimen geometric and material characteristics

	Adherends			Adhesive
	Length outside the overlap (mm)	50	𝐺 𝑎 (MPa)	50
	Overlap length (mm)	50	𝑒 𝑎 (mm)	0.247
	Initial crack length (mm)	50	𝐸 𝑎 𝑖𝑛𝑓 (MPa)	163
	Thickness (mm)	10	𝜎 𝑚𝑎𝑥 𝑖𝑛𝑓 (MPa)	13.3
	Width (mm)	25	𝐺 𝑐 𝑖𝑛𝑓 (N/mm)	1.4167
	Young modulus (GPa)	210	𝐸 𝑎 𝑠𝑢𝑝 (MPa)	129
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