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Gradient discretization of two-phase flows coupled with mechanical
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Abstract

We consider a two-phase Darcy flow in a fractured porous medium consisting in a matrix flow coupled with a
tangential flow in the fractures, described as a network of planar surfaces. This flow model is also coupled with
the mechanical deformation of the matrix assuming that the fractures are open and filled by the fluids, as well as
small deformations and a linear elastic constitutive law. The model is discretized using the gradient discretization
method [3030], which covers a large class of conforming and non conforming schemes. This framework allows for a
generic convergence analysis of the coupled model using a combination of discrete functional tools. Here, we de-
scribe the model together with its numerical discretization and, using discrete compactness techniques, we prove a
convergence result (up to a subsequence) assuming the non-degeneracy of the phase mobilities and that the discrete
solutions remain physical in the sense that, roughly speaking, the porosity does not vanish and the fractures remain
open. This is, to our knowledge, the first convergence result for this type of model taking into account two-phase
flows in fractured porous media and the non-linear poromechanical coupling. Previous related works consider a
linear approximation obtained for a single phase flow by freezing the fracture conductivity [4141, 4242]. Numerical tests
employing the Two-Point Flux Approximation (TPFA) finite volume scheme for the flows and P2 finite elements
for the mechanical deformation are also provided to illustrate the behavior of the solution to the model.
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1 Introduction

Many real-life applications in geosciences involve processes like multi-phase flow and hydromechanical coupling in
heterogeneous porous media. Such mathematical models are coupled systems of partial differential equations, including
non-linear and degenerate parabolic ones. Besides the inherent difficulties posed by such equations, further complexities
stem from the heterogeneity of the medium and the presence of discontinuities like fractures. This has a strong impact
on the complexity of the models, challenging their mathematical and numerical analysis and the development of
efficient simulation tools.

This work focuses on the so called hybrid-dimensional matrix fracture models obtained by averaging both the unknowns
and the equations across the fracture width and by imposing appropriate transmission conditions at the matrix fracture
interfaces. Given the high geometrical complexity of real-life fracture networks, the main advantages of these hybrid-
dimensional compared to full-dimensional models are to facilitate the mesh generation and the discretization of the
model, and to reduce the computational cost of the resulting schemes. This type of hybrid-dimensional models has
been the object of intensive researches over the last twenty years due to the ubiquity of fractures in geology and their
large impact on flow, transport and mechanical behavior of rocks. For the derivation and analysis of such models, let
us refer to [44, 3737, 4848, 5252, 66, 1818, 2020, 5555] for single-phase Darcy flows, [1212, 5757, 5454, 4444, 1919, 3131, 2121, 22] for two-phase Darcy
flows, and [4949, 5050, 4646, 4141, 4242, 3838, 4747, 3939, 6161] for poroelastic models.

In this article, we consider the two-phase Darcy flow in a network of pre-existing fractures represented as pd ´ 1q-
dimensional planar surfaces coupled with the surrounding d-dimensional matrix. The fractures are assumed to be open
and filled by the fluids. Both phase pressures are assumed continuous across the fractures. This is a classical assumption
for open fractures given the low pressure drop in the width of the fractures [1212, 5757, 5454, 1919]. For single-phase flows,
Poiseuille’s law is classically used to model the flow along the fractures. This leads to a Darcy-like tangential flow with
∗francesco.bonaldi@univ-cotedazur.frfrancesco.bonaldi@univ-cotedazur.fr
†konstantin.brenner@univ-cotedazur.frkonstantin.brenner@univ-cotedazur.fr
‡Corresponding author, jerome.droniou@monash.edujerome.droniou@monash.edu
§roland.masson@univ-cotedazur.frroland.masson@univ-cotedazur.fr

1

mailto:francesco.bonaldi@univ-cotedazur.fr
mailto:konstantin.brenner@univ-cotedazur.fr
mailto:jerome.droniou@monash.edu
mailto:roland.masson@univ-cotedazur.fr


conductivity equal to d3f
12 , where df is the fracture aperture [4141, 4242]. Following [4949], the extension to a two-phase flow is

based on the generalized Darcy laws involving appropriate relative permeabilities and the capillary pressure-saturation
relation. This hybrid-dimensional two-phase Darcy flow model is coupled with the matrix mechanical deformation
assuming small strains and a linear poroelastic behavior [4949, 5050, 4646]. The extension of the single-phase poromechanical
coupling [4141, 4242, 3838, 4747, 6161] to two-phase Darcy flows is based on the so-called equivalent pressure used both in the
matrix for the total stress and at both sides of the fractures as boundary condition for the mechanics. Typically,
the equivalent pressure is defined as a convex combination of the phase pressures and several different combinations
have been proposed in the literature [5656]. Our choice of the equivalent pressure follows the pioneer monograph by
Coussy [2222] and involves the capillary energy which, as already noticed in [5050, 4646], plays a key role to obtain energy
estimates for the coupled system. From the open fracture assumption, the fracture mechanical behavior reduces to
the continuity of the normal stresses at both sides of the fracture matching with the fracture equivalent pressure times
the unit normal vector. To our best knowledge, no theoretical or numerical analysis of the complete poromechanical
model, with all non-linear coupling, has been carried out so far.

In this work, the hybrid-dimensional coupled model is discretized using the gradient discretization method (GDM)
[3030]. This framework is based on abstract vector spaces of discrete unknowns combined with reconstruction operators.
The gradient scheme is then obtained by substitution of the continuous operators by their discrete counterparts in
the weak formulation of the coupled model. The main asset of this framework is to enable a generic convergence
analysis based on general properties of the discrete operators that hold for a large class of conforming and non
conforming discretizations. Two essential ingredients to discretize the coupled model are the discretizations of the
hybrid-dimensional two-phase Darcy flow and the discretization of the mechanics. Let us briefly mention, in both
cases, a few families of discretizations typically satisfying the gradient discretization properties. For the discretization
of the Darcy flow, the gradient discretization framework typically covers the case of cell-centered finite volume schemes
with Two-Point Flux Approximation on strongly admissible meshes [4848, 66, 22], or some symmetric Multi-Point Flux
Approximations [6060, 5858, 33] on tetrahedral or hexahedral meshes. It also accounts for the families of Mixed Hybrid
Mimetic and Mixed or Mixed Hybrid Finite Element discretizations such as in [44, 5252, 1818, 2020, 77]. The case of vertex-
based discretizations such as Control Volume Finite Element approaches (i.e. conforming finite element with mass
lumping) [1212, 5757, 5454] or the Vertex Approximate Gradient scheme [1818, 2020, 1919, 3131, 2121] is also accounted for. For the
discretization of the elastic mechanical model, the gradient discretization framework covers conforming finite element
methods such as in [4141], as well as the Crouzeix-Raviart discretization [4343, 2525], Discontinuous Galerkin methods [3535],
the Hybrid High Order discretization [2424], and the Virtual Element Method [99]. Note that many of these methods
are actually applicable to both the flow and the mechanical component of the model.

Without taking into account the poromechanical coupling, convergence results have been obtained in [66, 44, 5252, 1818, 2020]
for hybrid-dimensional single-phase Darcy flow models, and in [1919, 3131] for hybrid-dimensional two-phase Darcy flow
models. The well-posedness and convergence analysis of single-phase poromechanical models is studied in [4141, 4242].
Nevertheless those analyses consider a linear approximation of the coupled model obtained by freezing the fracture
conductivity d3f

12 , and hence eliminating the non-linear coupling between the fracture aperture and the Darcy flow. Let
us also mention the related recent work [1515] on unsaturated poroelasticity based on the Richards approximation of
the two-phase flow model, using partial linearizations, non-degeneracy conditions and Kirchhoff transformation (which
is made possible by assuming that the saturation–capillary pressure law is uniform across the domain). Note that
fractures are not considered in this work.

Our main result is the proof of convergence, in the GDM setting, of the approximate solutions to the weak solution
of the non-linear coupled model with two-phase flows. To our best knowledge, this is the first convergence result
for this type of hybrid-dimensional model taking into account the full non-linear poromechanical coupling. Since
it is based on discrete compactness techniques, the convergence is that of a subsequence of approximate solutions
(precisely, we prove that sequences of approximate solutions are compact, and that any of their limit points is a
weak solution of the continuous model). To establish this result, we make the following main assumptions. It is
first assumed that the approximate matrix porosity remains bounded below by a strictly positive constant and that
the approximate fracture aperture remains larger than some given aperture vanishing only at the tips. Let us point
out that these assumptions are due to the limitations of the model itself rather than to the shortcomings of the
numerical analysis. They cannot be avoided since the continuous model does not ensure the positivity of the porosity
nor of the fracture aperture, properties needed to guarantee existence of solutions. We note that previous works
on similar models circumvent these limitations by linearization processes (complete or partial freezing of the matrix
porosity and fracture apertures). Regarding the assumption on the fracture aperture, it could possibly be overcome
by introducing contact mechanics in the model [3838, 1010]. This direction will be investigated in a future work. It is
also assumed in the numerical analysis that the mobility functions are bounded below by strictly positive constants.
Independently of the poromechanical coupling, this is a classical assumption to enable the stability and convergence
analysis of two-phase Darcy flows with spatial discontinuity of the capillary pressure functions, as it is always the
case in the presence of fractures (see [3636, 1919, 3131]). To our knowledge, the only convergence analyses covering both
the degeneracy of the mobilities and discontinuous capillary pressures are limited to Two-Point Flux Approximations
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Figure 1: Example of a 2D domain Ω with three intersecting fractures Γi, i P t1, 2, 3u.

(see [1616, 1717]). Extending such analyses, even considering only the TPFA method for the flow, to the poromechanical
model considered here is far from straightforward and seems to bring additional challenges; given that our analysis is
already quite technical, we postpone this extension to degenerate mobility functions to a future work.

The rest of the article is organized as follows. Section 22 introduces the continuous hybrid-dimensional coupled model.
Section 33 describes the gradient discretization method for the coupled model including the definition of the recon-
struction operators, the discrete variational formulation and the properties of the gradient discretization needed for
the subsequent convergence analysis. Section 44 proceeds with the convergence analysis. The a priori estimates are
established in Subsection 4.14.1, the compactness properties in Subsection 4.24.2 and the convergence to a weak solution
is proved in Subsection 4.34.3. In Section 55, numerical experiments based on the Two-Point Flux Approximation finite
volume scheme for the flows and second-order finite elements for the mechanical deformation are carried out for a
cross-shaped fracture network in a two-dimensional porous medium, and illustrate the numerical convergence of the
solution. Appendices A.1A.1 and A.2A.2 state some technical results used in the convergence analysis.

2 Continuous model

We consider a bounded polytopal domain Ω of Rd, d P t2, 3u, partitioned into a fracture domain Γ and a matrix
domain ΩzΓ. The network of fractures is defined by

Γ “
ď

iPI

Γi

where each fracture Γi Ă Ω, i P I is a planar polygonal simply connected open domain with angles strictly lower than
2π. Without restriction of generality, we will assume that the fractures may intersect exclusively at their boundaries,
that is for any i, j P I, i ‰ j one has Γi X Γj “ H, but not necessarily Γi X Γj “ H. Since one can split a general
(non-simply connected) planar polygon into several simply connected pieces intersecting only at their boundaries (see
Figure 11) our assumptions on the fracture network are in fact quite general. Roughly speaking we only exclude the
non-planar fractures.

Since the fractures are assumed open with no contact, we also have to assume in the following that the boundary of
each connected component of ΩzΓ has a non zero measure intersection with BΩ.

The two sides of a given fracture of Γ are denoted by ˘ in the matrix domain, with unit normal vectors n˘ oriented
outward of the sides ˘. We denote by γ the trace operator on Γ for functions in H1pΩq, by γBΩ the trace operator for
the same functions on BΩ, and by J¨K the normal trace jump operator on Γ for functions in HdivpΩzΓq, defined by

JūK “ ū` ¨ n` ` ū´ ¨ n´ for all ū P HdivpΩzΓq.

We denote by ∇τ the tangential gradient and by divτ the tangential divergence on the fracture network Γ. The
symmetric gradient operator � is defined such that �pv̄q “ 1

2 p∇v̄ `tp∇v̄qq for a given vector field v̄ P H1pΩzΓqd.

The fracture aperture, denoted by d̄f , is defined by d̄f “ ´JūK for a displacement field ū P H1pΩzΓqd.

Let us fix a continuous function d0 : Γ Ñ p0,`8q vanishing at BΓzpBΓX BΩq (i.e. at the tips of Γ) and taking strictly
positive values at BΓ X BΩ. The discrete fracture aperture will be assumed to be greater than or equal to d0 almost
everywhere (by the established convergence result, the same will hold for its limit). We note that the assumptions on
d0 are minimal, allowing for very general behavior of the fracture aperture at the tips.

Let us introduce some relevant function spaces:

U0 “ tv̄ P pH
1pΩzΓqqd | γBΩv̄ “ 0u (1)
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Figure 2: Example of a 2D domain Ω with its fracture network Γ, the unit normal vectors n˘ to Γ, the phase pressures
p̄α in the matrix and γp̄α in the fracture network, the displacement vector field ū, the matrix Darcy velocities qαm and
the fracture tangential Darcy velocities qαf integrated along the fracture width.

for the displacement vector, and
V0 “ tv̄ P H

1
0 pΩq | γv̄ P H

1
d0pΓqu (2)

for each phase pressure, where the space H1
d0
pΓq is made of functions vΓ in L2pΓq, such that d

3{2

0 ∇τvΓ is in L2pΓqd´1,
and whose traces are continuous at fracture intersections BΓi X BΓj , pi, jq P I ˆ I (i ‰ j) and vanish on the boundary
BΓX BΩ.

The matrix and fracture rock types are denoted by the indices rt “ m and rt “ f , respectively, and the non-wetting
and wetting phases by the superscripts α “ nw and α “ w, respectively. Each rock type rt P tm, fu is characterized
by its own set of mobility functions pηαrtqαPtnw,wu and capillary pressure-saturation relation pSαrtqαPtnw,wu.

The PDEs model reads: find the phase pressures p̄α, α P tnw,wu, and the displacement vector field ū, both satisfying
homogeneous Dirichlet boundary conditions on BΩ, such that p̄c “ p̄nw ´ p̄w and, for α P tnw,wu,

$

’
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’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

%

Bt
`

φ̄mS
α
mpp̄cq

˘

` div pqαmq “ hαm on p0, T q ˆ ΩzΓ,

qαm “ ´η
α
mpS

α
mpp̄cqqKm∇p̄α on p0, T q ˆ ΩzΓ,

Bt

´

d̄fS
α
f pγp̄cq

¯

` divτ pq
α
f q ´ JqαmK “ hαf on p0, T q ˆ Γ,

qαf “ ´η
α
f pS

α
f pγp̄cqqp

1

12
d̄3
f q∇τγp̄α on p0, T q ˆ Γ,

´div
´

�pūq ´ b p̄EmI
¯

“ f on p0, T q ˆ ΩzΓ

�pūq “ 2µ �pūq ` λ divpūq I on p0, T q ˆ ΩzΓ,

(3)

with
$

’

’

&

’

’

%

Btφ̄m “ b divBtū`
1

M
Btp̄

E
m on p0, T q ˆ ΩzΓ,

p�pūq ´ b p̄EmIqn˘ “ ´p̄Ef n˘ on p0, T q ˆ Γ,

d̄f “ ´JūK on p0, T q ˆ Γ,

(4)

and the initial conditions
p̄α|t“0 “ p̄α0 , φ̄m|t“0 “ φ̄0

m.

Here, we have denoted by p̄c the capillary pressure, and the equivalent pressures p̄Em and p̄Ef are defined, following [2222],
by

p̄Em “
ÿ

αPtnw,wu

p̄α Sαmpp̄cq ´ Umpp̄cq, p̄Ef “
ÿ

αPtnw,wu

γp̄α Sαf pγp̄cq ´ Uf pγp̄cq,

where

Urtpp̄cq “

ż p̄c

0

z pSnw
rt q

1
pzqdz (5)

is the capillary energy density function of the rock type rt P tm, fu. As already noticed in [5050, 4646], this is a key choice
to obtain the energy estimates that are the starting point for the convergence analysis.

We make the following main assumptions on the data:

(H1) For each phase α P tnw,wu and rock type rt P tm, fu, the mobility function ηαrt is continuous, non-decreasing,
and there exist 0 ă ηαrt,min ď ηαrt,max ă `8 such that ηαrt,min ď ηαrtpsq ď ηαrt,max for all s P r0, 1s.
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(H2) For each rock type rt P tm, fu, the non-wetting phase saturation function Snw
rt is a non-decreasing Lipschitz

continuous function with values in r0, 1s, and Sw
rt “ 1´ Snw

rt .

(H3) b P r0, 1s is the Biot coefficient, M ą 0 is the Biot modulus, and λ ą 0, µ ą 0 are the Lamé coefficients. These
coefficients are assumed to be constant for simplicity.

(H4) The initial pressures are such that p̄α0 P V0 X L8pΩq and γp̄α0 P L8pΓq, α P tnw,wu; the initial porosity is such
that φ̄0

m P L
8pΩq.

(H5) The source terms satisfy f P L2pΩqd, hαm P L2pp0, T q ˆ Ωq, and hαf P L
2pp0, T q ˆ Γq.

(H6) The matrix permeability tensor Km is symmetric and uniformly elliptic on Ω. Note that the variation of the
matrix permeability with the porosity is neglected.

The notion of weak solution for (33)–(44) is classically obtained multiplying each flow equation and the mechanical
equation by a separate test function, integrating by parts and, for each phase, adding together the equations resulting
from the flows in the matrix and the fractures. When the capillary pressure has continuous first temporal and
second spatial derivatives in p0, T qˆpΩzΓq, its trace has continuous first temporal and second tangential derivatives in
p0, T qˆΓ, and the displacement has continuous second spatial derivatives, the following weak formulation is equivalent
to the PDE model.

Definition 2.1 (Weak solution of the model). A weak solution of the model is given by p̄α P L2p0, T ;V0q, α P tnw,wu,
and ū P L8p0, T ;U0q, such that, for any α P tnw,wu, d̄

3{2

f ∇τγp̄α P L2pp0, T q ˆΓqd´1 and, for all ϕ̄α P C8c pr0, T q ˆΩq

and all smooth functions v̄ : r0, T s ˆ pΩzΓq Ñ Rd vanishing on BΩ and whose derivatives of any order admit finite
limits on each side of Γ,

ż T

0

ż

Ω

´

´φ̄mS
α
mpp̄cqBtϕ̄

α ` ηαmpS
α
mpp̄cqqKm∇p̄α ¨∇ϕ̄α

¯

dxdt

`

ż T

0

ż

Γ

´

´d̄fS
α
f pγp̄cqBtγϕ̄

α ` ηαf pS
α
f pγp̄cqq

d̄ 3
f

12
∇τγp̄α ¨∇τγϕ̄α

¯

dσpxqdt

´

ż

Ω

φ̄0
mS

α
mpp̄

0
cqϕ̄

αp0, ¨qdx´

ż

Γ

d̄0
fS

α
f pγp̄

0
cqγϕ̄

αp0, ¨qdσpxq

“

ż T

0

ż

Ω

hαmϕ̄
αdxdt`

ż T

0

ż

Γ

hαf γϕ̄
α dσpxqdt,

(6)

ż T

0

ż

Ω

´

�pūq : �pv̄q ´ b p̄Emdivpv̄q
¯

dxdt`

ż T

0

ż

Γ

p̄Ef Jv̄K dσpxqdt

“

ż T

0

ż

Ω

f ¨ v̄ dxdt,

(7)

with p̄c “ p̄nw´ p̄w, d̄f “ ´JūK, φ̄m´ φ̄0
m “ b divpū´ ū0q`

1

M
pp̄Em´ p̄

E,0
m q, d̄0

f “ ´Jū0K, where ū0 is the solution of (77)

without the time integral and using the initial equivalent pressures p̄E,0m and p̄E,0f obtained from the initial pressures
p̄α0 and γp̄α0 , α P tnw,wu.

Remark 2.2 (Regularity of the fracture aperture). Notice that, by the Sobolev–trace embeddings [11, Theorem 4.12],
ū P L8p0, T ;U0q implies that d̄f “ ´JūK P L8p0, T ;L4pΓqq. All the integrals above are thus well-defined.

3 The gradient discretization method

The gradient discretization (GD) for the Darcy continuous pressure model, introduced in [1818], is defined by a finite-
dimensional vector space of discrete unknowns X0

Dp and

• two discrete gradient linear operators on the matrix and fracture domains

∇mDp : X0
Dp Ñ L8pΩqd, ∇fDp : X0

Dp Ñ L8pΓqd´1;

• two function reconstruction linear operators on the matrix and fracture domains

Πm
Dp : X0

Dp Ñ L8pΩq, Πf
Dp : X0

Dp Ñ L8pΓq,

which are piecewise constant [3030, Definition 2.12].

5



A consequence of the piecewise-constant property is the following: there is a basis peiqiPI of X0
Dp such that, if

v “
ř

iPI viei and if, for a mapping g : R Ñ R with gp0q “ 0, we define gpvq “
ř

iPI gpviqei P X
0
Dp by applying g

component-wise, then Πrt
Dpgpvq “ gpΠrt

Dpvq for rt P tm, fu. Note that the basis peiqiPI is usually canonical and chosen
in the design of X0

Dp . The vector space X0
Dp is endowed with

}v}Dp – }∇mDpv}L2pΩq ` }d
3{2

0 ∇fDpv}L2pΓq,

assumed to define a norm on X0
Dp .

The gradient discretization for the mechanics is defined by a finite-dimensional vector space of discrete unknowns X0
Du

and

• a discrete symmetric gradient linear operator �Du : X0
Du
Ñ L2pΩ,SdpRqq,

• a displacement function reconstruction linear operator ΠDu : X0
Du
Ñ L2pΩqd,

• a normal jump function reconstruction linear operator J¨KDu : X0
Du
Ñ L4pΓq,

where SdpRq is the vector space of real symmetric matrices of size d. Let us define the divergence and stress tensor
operators by

divDupvq “ Tracep�Dupvqq and �Dupvq “ 2µ�Dupvq ` λ divDupvqI,

and the fracture width df,Du “ ´JuKDu . It is assumed that the following quantity defines a norm on X0
Du

:

}v}Du – }�Dupvq}L2pΩ,SdpRqq.

Remark 3.1 (On the boundary conditions). The exponent 0 in the spaces means that homogeneous Dirichlet boundary
conditions are encoded in these spaces. We restrict our analysis to these boundary conditions for simplicity but, as
shown in [3030], the GDM analysis can easily be adapted to other types of boundary conditions – in particular to mixed
Dirichlet/Neumann boundary conditions (with non-homogeneous Dirichlet values) as used for the flow part of the
model in the numerical tests of Section 55.

A spatial GD can be extended into a space-time GD by complementing it with

• a discretization 0 “ t0 ă t1 ă ¨ ¨ ¨ ă tN “ T of the time interval r0, T s;

• interpolators IDp : V0 Ñ X0
Dp and ImDp : L2pΩq Ñ X0

Dp of initial conditions.

For n P t0, . . . , Nu, we denote by δtn`
1
2 “ tn`1 ´ tn the time steps, and by ∆t “ maxn“0,...,N δt

n` 1
2 the maximum

time step.

The spatial operators are extended into space-time operators as follows. Let χ represent either p or u. If w “

pwnq
N
n“0 P pX

0
Dχq

N`1, and ΨDχ is a spatial GD operator, its space-time extension is defined by

ΨDχwp0, ¨q “ ΨDχw0 and, @n P t0, . . . , N ´ 1u , @t P ptn, tn`1s, ΨDχwpt, ¨q “ ΨDχwn`1.

For convenience, the same notation is kept for the spatial and space-time operators. Moreover, we define the discrete
time derivative as follows: for f : r0, T s Ñ L1pΩq piecewise constant on the time discretization, with fn “ f|ptn´1,tns

and f0 “ fp0q, we set δtfptq “
fn`1´fn

δtn`
1
2

for all t P ptn, tn`1s, n P t0, . . . , N ´ 1u.

Notice that the space of piecewise constant X0
Dχ-valued functions f on the time discretization together with the initial

value f0 “ fp0q can be identified with pX0
Dχq

N`1. The same definition of discrete derivative can thus be given for an
element w P pX0

Dχq
N`1. Namely, δtw P pX0

Dχq
N is defined by setting, for any n P t0, . . . , N ´ 1u and t P ptn, tn`1s,

δtwptq “ pδtwqn`1 –
wn`1´wn

δtn`
1
2

. If ΨDχpt, ¨q is a space-time GD operator, by linearity the following commutativity
property holds: ΨDχδtwpt, ¨q “ δtpΨDχwpt, ¨qq.

The gradient scheme for the system consists in replacing the “continuous” functional space and differential operators in
(66)–(77) by their discrete counterparts. This results in the following discrete problem: find pα P pX0

Dpq
N`1, α P tnw,wu,
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and u P pX0
Du
qN`1, such that for all ϕα P pX0

Dpq
N`1, v P pX0

Du
qN`1 and α P tnw,wu,

ż T

0

ż

Ω

´

δt

´

φDΠm
Dps

α
m

¯

Πm
Dpϕ

α ` ηαmpΠ
m
Dps

α
mqKm∇mDppα ¨∇mDpϕα

¯

dxdt

`

ż T

0

ż

Γ

δt

´

df,DuΠf
Dps

α
f

¯

Πf
Dpϕ

αdσpxqdt

`

ż T

0

ż

Γ

ηαf pΠ
f
Dps

α
f q
d3
f,Du

12
∇fDpp

α ¨∇fDpϕ
αdσpxqdt

“

ż T

0

ż

Ω

hαmΠm
Dpϕ

αdxdt`

ż T

0

ż

Γ

hαfΠf
Dpϕ

αdσpxqdt,

(8a)

ż T

0

ż

Ω

´

�Dupuq : �Dupvq ´ b Πm
Dpp

E
m divDupvq

¯

dxdt

`

ż T

0

ż

Γ

Πf
Dpp

E
f JvKDudσpxqdt “

ż T

0

ż

Ω

f ¨ΠDuv dxdt,

(8b)

with the closure equations
$

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

%

pc “ pnw ´ pw, sαm “ Sαmppcq, sαf “ Sαf ppcq,

pEm “
ÿ

αPtnw,wu

pαsαm ´ Umppcq, pEf “
ÿ

αPtnw,wu

pαsαf ´ Uf ppcq,

φD ´Πm
Dpφ

0
m “ b divDupu´ u0q ` 1

MΠm
Dppp

E
m ´ p

E,0
m q,

df,Du “ ´JuKDu ,

�Dupvq “ 2µ�Dupvq ` λ divDupvqI.

(8c)

The initial conditions are given by pα0 “ IDp p̄
α
0 (α P tnw,wu), φ0

m “ ImDp φ̄
0
m, and the initial displacement u0 is

the solution of (8b8b) without the time variable and with the equivalent pressures obtained from the initial pressures
ppα0 qαPtnw,wu.

Remark 3.2 (Non-homogeneous boundary conditions). The homogeneous Dirichlet boundary conditions are embedded
in the discrete spaces X0

Dp and X0
Du

. Non-homogeneous (or other types of) boundary conditions are equally easy to
handle in the GDM setting [3030, Section 2.2 and Chapter 3].

Remark 3.3 (GDM framework). As shown above, the GDM framework enables a presentation of the schemes in a way
that is almost as compact as the weak formulation itself (compare with Definition 2.12.1). This presentation is valid for
conforming methods, that already have a compact writing but may not be the best suited in practical applications
(especially for the flow component), but also for non-conforming methods of practical interest in engineering; explicitly
writing, for example, the TPFA formulation for the flow component of the model would lead to much lengthier
equations. Additionally, the GDM analysis is also carried out in a compact way, identifying key properties and
manipulating discrete equations almost as their continuous counterparts; notwithstanding the fact that this analysis
applies to many different methods at once, developing it for a given specific scheme would not lead to any simplification
– the complexity in the upcoming analysis comes from the poromechanical model we consider, not from the numerical
analysis framework we use.

3.1 Properties of gradient discretizations

Let pDlpqlPN and pDluqlPN be sequences of GDs. We state here the assumptions on these sequences which ensure
that the solutions to the corresponding schemes converge. Most of these assumptions are adaptation of classical
GD assumptions [3030], except for the chain-rule, product rule and cut-off properties used in Subsection 4.24.2 to obtain
compactness properties; we note that all these assumptions hold for standard discretizations used in porous media
flows.

Following [1818], the spatial GD of the Darcy flow Dp “
´

X0
Dp ,∇mDp ,∇

f
Dp ,Π

m
Dp ,Π

f
Dp

¯

is assumed to satisfy the following
coercivity, consistency, limit-conformity and compactness properties.

Coercivity of Dp. Let CDp ą 0 be defined by

CDp “ max
0‰vPX0

Dp

}Πm
Dpv}L2pΩq ` }Π

f
Dpv}L2pΓq

}v}Dp
. (9)
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Then, a sequence of spatial GDs pDlpqlPN is said to be coercive if there exists Cp ą 0 such that CDlp ď Cp for all l P N.

Consistency of Dp. Let r ą 8 be given, and for all w P V0 and v P X0
Dp let us define

SDppw, vq “ }∇mDpv ´∇w}L2pΩq ` }∇fDpv ´∇τγw}LrpΓq
` }Πm

Dpv ´ w}L2pΩq ` }Π
f
Dpv ´ γw}LrpΓq,

(10)

and SDppwq “ minvPX0
Dp
SDppw, vq. Then, a sequence of spatial GDs pDlpqlPN is said to be consistent if for all w P V0

one has limlÑ`8 SDlppwq “ 0. Moreover, if pDlpqlPN is a sequence of space-time GDs, then it is said to be consistent if
the underlying sequence of spatial GDs is consistent as above, and if, for any ϕ P V0 and ψ P L2pΩq, as lÑ `8,

∆tl Ñ 0 , }Πm
Dlp
IDlpϕ´ ϕ}L2pΩq ` }Π

f
Dlp
IDlpϕ´ ϕ}L2pΓq Ñ 0 and }Πm

Dlp
ImDlpψ ´ ψ}L

2pΩq Ñ 0. (11)

Remark 3.4 (Consistency). In [1818], the consistency is only considered for r “ 2. As it will appear clear in the analysis,
dealing with the coupling and non-linearity of the model requires us to adopt here a slightly stronger consistency
assumption. Under standard mesh regularity assumptions, this stronger consistency property is still satisfied for all
classical GDs [3030, Part III].

Limit-conformity of Dp. For all prm, rf q P C8pΩzΓqd ˆ C8pΓqd´1 and v P X0
Dp , let us define

WDpprm, rf , vq “

ż

Ω

´

rm ¨∇mDpv ` Πm
Dpv divprmq

¯

dx

`

ż

Γ

´

rf ¨∇fDpv ` Πf
Dpv pdivτ prf q ´ JrmKq

¯

dσpxq,

(12)

and WDpprm, rf q “ max
0‰vPX0

Dp

|WDpprm, rf , vq|

}v}Dp
. Then, a sequence of spatial GDs pDlpqlPN is said to be limit-conforming

if for all prm, rf q P C8pΩzΓqd ˆ C8c pΓq
d´1 one has limlÑ`8WDlpprm, rf q “ 0. Here C8c pΓqd´1 denotes the space of

functions whose restriction to each Γi is in C8pΓiqd´1 tangent to Γi, compactly supported away from the tips, and
satisfying normal flux conservation at fracture intersections not located at the boundary BΩ.

Remark 3.5 (Compactly supported fluxes). The role of prm, rf q is that of test functions (they do not represent the
continuous fluxes), to show that the limits of the discrete fluxes are indeed the continuous fluxes, see [1818, Lemma 5.5].

(Local) compactness of Dp. A sequence of spatial GDs pDlpqlPN is said to be locally compact if for all sequences
pvlqlPNP pX

0
Dlp
qlPN such that suplPN }v

l}Dlp ă `8 and all compact sets Km Ă Ω and Kf Ă Γ, such that Kf is disjoint

from the intersections pΓi X Γjqi ­“j , the sequences pΠm
Dlp
vlqlPN and pΠf

Dlp
vlqlPN are relatively compact in L2pKmq and

L2pKf q, respectively.

Remark 3.6 (Local compactness through estimates of space translates). For Km,Kf as above, set

TDlp,Km,Kf pξ, ηq “ max
vPX0

Dlp
zt0u

}Πm
Dlp
vp¨ ` ξq ´Πm

Dlp
v}L2pKmq `

ř

iPI }Π
f
Dlp
vp¨ ` ηiq ´Πf

Dlp
v}L2pKfXΓiq

}v}Dlp
,

where ξ P Rd, η “ pηiqiPI with ηi tangent to Γi; for ξ and η small enough, this expression is well defined since Km

and Kf are compact in Ω and Γ, respectively. Following [3030, Lemma 2.21], an equivalent formulation of the local
compactness property is: for all Km,Kf as above,

lim
ξ,ηÑ0

sup
lPN

TDlp,Km,Kf pξ, ηq “ 0.

Remark 3.7 (Usual compactness property for GDs). The standard compactness property for GD is not local but global,
that is, on the entire domain and not any of its compact subsets (see, e.g., [3030, Definition 2.8] and also below for Du).
Two reasons pushed us to consider here the weaker notion of local compactness: firstly, for standard GDs, the global
compactness does not seem obvious to establish (or even true) in the fractures, because of the weight d0 in the norm
} ¨}Dp , which prevents us from estimating the translates of the reconstructed function by the gradient near the fracture
tips; secondly, we will only prove compactness on saturations, which are uniformly bounded by 1 and for which local
and global compactness are therefore equivalent.

In the following, for brevity we refer to the local compactness of pDlpqlPN simply as the compactness of this sequence
of GDs.
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Chain rule estimate on pDlpqlPN: for any Lipschitz-continuous function F : R Ñ R, there is CF ě 0 such that, for
all l P N, v P X0

Dlp
,

}∇mDlpF pvq}L2pΩq ď CF }∇mDlpv}L2pΩq.

Product rule estimate on pDlpqlPN: there exists CP such that, for any l P N and any ul, vl P X0
Dlp

, it holds

}∇mDppulvlq}L2pΩq ď CP

´

|ul|8}∇mDpvl}L2pΩq ` |v
l|8}∇mDpul}L2pΩq

¯

,

where |w|8 – maxiPI |wi| whenever w “
ř

iPI wiei with peiqiPI the canonical basis of X0
Dlp

.

Cut-off property of pDlpqlPN: for any compact set K Ă ΩzΓ, there exists CK ě 0 and pψlqlPN P pX0
Dlp
qlPN such that

p|ψl|8qlPN is bounded and, for l large enough:

Πm
Dlp
ψl ě 0 on Ω; Πm

Dlp
ψl “ 1 on K; }∇mDlpψ

l}L2pΩq ď CK

Πf
Dlp
pvlψlq “ 0 and ∇fDlppv

lψlq “ 0 for all vl P X0
Dlp

Coercivity of pDluqlPN. Let CDu ą 0 be defined by

CDu “ max
0‰vPX0

Dlu

}ΠDluv}L2pΩq ` }JvKDlu}L4pΓq

}v}Dlu
. (13)

Then, the sequence of spatial GDs pDluqlPN is said to be coercive if there exists Cu ą 0 such that CDlu ď Cu for all
l P N.

Consistency of pDluqlPN. For all w P U0, it holds limlÑ`8 SDlupwq “ 0 where

SDlupwq “ min
vPX0

Dlu

”

}�Dlupvq ´ �pwq}L2pΩ,SdpRqq ` }ΠDluv ´w}L2pΩq `
›

›JvKDlu ´ JwK
›

›

L4pΓq

ı

. (14)

Limit-conformity of pDluqlPN. Let C8Γ pΩzΓ,SdpRqq denote the vector space of smooth functions � : ΩzΓ Ñ SdpRq
whose derivatives of any order admit finite limits on each side of Γ, and such that �`pxqn` ` �´pxqn´ “ 0 and
p�`pxqn`qˆn` “ 0 for a.e. x P Γ. For all � P C8Γ pΩzΓ,SdpRqq, it holds limlÑ`8WDlup�q “ 0 where

WDlup�q “ max
0‰vPX0

Dlu

1

}v}Dlu

„
ż

Ω

´

� : �Dlupvq `ΠDluv ¨ divp�q
¯

dx´

ż

Γ

p�n`q ¨ n`JvKDludσpxq



.

Compactness of pDluqlPN. For any sequence pvlqlPNP pX0
Dlu
qlPN such that suplPN }v

l}Dlu ă `8, the sequences
pΠDluv

lqlPN and pJvlKDluqlPN are relatively compact in L2pΩqd and in LspΓq for all s ă 4, respectively.

Remark 3.8 (Compactness through estimates of space translates). Similarly to Remark 3.63.6 (see also [3030, Lemma 2.21]),
the compactness of pDluqlPN is equivalent to

lim
ξ,ηÑ0

sup
lPN

TDlu,spξ, ηq “ 0 @s ă 4,

where

TDlu,spξ, ηq “ max
vPX0

Dlu
zt0u

}ΠDluvp¨ ` ξq ´ΠDluv}L2pΩq `
ř

iPI

›

›JvlKDlup¨ ` ηiq ´ JvlKDlu
›

›

LspΓiq

}v}Dlu
,

with ξ P Rd, η “ pηiqiPI with ηi tangent to Γi, and the functions extended by 0 outside their respective domain Ω or
Γ.

4 Convergence analysis

The main result of this work is the following theorem stating the convergence of the sequence of discrete solutions to
a weak solution up to a subsequence.
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Theorem 4.1 (Convergence to a weak solution). Let pDlpqlPN, pDluqlPN, tptlnqN
l

n“0ulPN (where N l is the number of time
steps of Dlp), be sequences of space time GDs assumed to satisfy the properties described in Section 3.13.1. Let φm,min ą 0

and assume that, for each l P N, the gradient scheme (8a8a)–(8b8b) has a solution pαl P pX0
Dlp
qN

l
`1, α P tnw,wu,

ul P pX0
Dlu
qN

l
`1 such that

(i) df,Dlupt,xq ě d0pxq for a.e. pt,xq P p0, T q ˆ Γ,

(ii) φDlpt,xq ě φm,min for a.e. pt,xq P p0, T q ˆ Ω.

Then, there exist p̄α P L2p0, T ;V0q, α P tnw,wu, and ū P L8p0, T ;U0q satisfying the weak formulation (66)–(77) such
that for α P tnw,wu and up to a subsequence

Πm
Dlp
pαl á p̄α weakly in L2p0, T ;L2pΩqq,

Πf
Dlp
pαl á γp̄α weakly in L2p0, T ;L2pΓqq,

ΠDluu
l á ū weakly-‹ in L8p0, T ;L2pΩqdq,

φDl á φ̄m weakly-‹ in L8p0, T ;L2pΩqq,

df,Dlu Ñ d̄f in L8p0, T ;LppΓqq for 2 ď p ă 4,

Πm
Dlp
Sαmpp

l
cq Ñ Sαmpp̄cq in L2p0, T ;L2pΩqq,

Πf
Dlp
Sαf pp

l
cq Ñ Sαf pγp̄cq in L2p0, T ;L2pΓqq,

where φ̄m “ φ̄0
m ` b divpū´ ū0q `

1

M
pp̄Em ´ p̄

E,0
m q, d̄f “ ´JūK, and p̄c “ p̄nw ´ p̄w.

Remark 4.2 (Discrete porosity and fracture aperture). As mentioned in the introduction, the assumptions that the
discrete porosity and fracture aperture remain bounded below is a requirement coming from the model itself (which
does not account for possible contact). It is not a fundamental restriction of the numerical framework and analysis.

We first present in Subsections 4.14.1 and 4.24.2 a sequence of intermediate results that will be useful for the proof of
Theorem 4.14.1 detailed in Subsection 4.34.3.

Remark 4.3 (Incompressible limit for the solid matrix). The above convergence result also holds when 1{M “ 0, i.e.,
in the incompressible limit for the grains of the solid matrix (M Ñ `8). Indeed, in this case, Lemma 4.44.4 below does
not ensure L8pL2q-boundedness of the reconstructed matrix equivalent pressure. Nevertheless, L2pL2q-boundedness
for this quantity (needed in the proof of the above theorem, cf. Subsection 4.34.3) can be readily inferred, based on the
L2pL2q-boundedness of the reconstructed phase pressures (resulting from Lemma 4.44.4), the fact that reconstructed
saturations are bounded, and the definition (55) of the capillary energy density.

4.1 Energy estimates

Using the phase pressures and velocity (time derivative of the displacement field) as test functions, the following a
priori estimates can be inferred.

Lemma 4.4 (A priori estimates). Let pα,u be a solution to problem (88) such that

(i) df,Dupt,xq ě d0pxq for a.e. pt,xq P p0, T q ˆ Γ,

(ii) φDpt,xq ě φm,min for a.e. pt,xq P p0, T q ˆ Ω, where φm,min ą 0 is a constant.

Under hypotheses (H1)(H1)–(H6)(H6), there exists a real number C ą 0 depending on the data, the coercivity constants CDp ,
CDu , and φm,min, such that the following estimates hold:

}∇mDppα}L2pp0,T qˆΩq ď C, }d
3{2

f,Du
∇fDpp

α}L2pp0,T qˆΓq ď C,

}UmpΠ
m
Dppcq}L8p0,T ;L1pΩqq ď C, }d0Uf pΠ

f
Dppcq}L8p0,T ;L1pΓqq ď C,

}Πm
Dpp

E
m}L8p0,T ;L2pΩqq ď C, }�Dupuq}L8p0,T ;L2pΩ,SdpRqqq ď C,

}df,Du}L8p0,T ;L4pΓqq ď C.

(15)

Proof. For a piecewise constant function v on r0, T s with vptq “ vn`1 for all t P ptn, tn`1s, n P t0, . . . , N ´ 1u, and the
initial value vp0q “ v0, we define the piecewise constant function v̂ such that v̂ptq “ vn for all t P ptn, tn`1s. We notice
the following expression for the discrete derivative of the product of two such functions:

δtpuvqptq “ ûptqδtvptq ` vptqδtuptq. (16)
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In (8a8a), upon choosing ϕα “ pα we obtain T1 ` T2 ` T3 ` T4 “ T5 ` T6, with

T1 “

ż T

0

ż

Ω

δt

´

φDΠm
Dps

α
m

¯

Πm
Dpp

αdxdt, T2 “

ż T

0

ż

Ω

ηαmpΠ
m
Dps

α
mqKm∇mDppα ¨∇mDppαdxdt,

T3 “

ż T

0

ż

Γ

δt

´

df,DuΠf
Dps

α
f

¯

Πf
Dpp

αdσpxqdt, T4 “

ż T

0

ż

Γ

ηαf pΠ
f
Dps

α
f q
d3
f,Du

12
∇fDpp

α ¨∇fDpp
αdσpxqdt,

T5 “

ż T

0

ż

Ω

hαmΠm
Dpp

αdxdt, T6 “

ż T

0

ż

Γ

hαfΠf
Dpp

αdσpxqdt.

(17)

First, we focus on the matrix and fracture accumulation terms T1 and T3, respectively. Using (1616) and the piecewise
constant function reconstruction property of Πrt

Dp , rt P tm, fu, we can write

δtpφDS
α
mpΠ

m
Dppcqq “ φ̂DδtS

α
mpΠ

m
Dppcq ` S

α
mpΠ

m
DppcqδtφD,

δtpdf,DuS
α
f pΠ

f
Dppcqq “ d̂f,DuδtS

α
f pΠ

f
Dppcq ` S

α
f pΠ

f
Dppcqδtdf,Du .

Summing on α P tw,nwu, we obtain

ÿ

α

pT1 ` T3q “
ÿ

α

´

ż T

0

ż

Ω

φ̂DΠm
Dpp

α δtS
α
mpΠ

m
Dppcqdxdt`

ż T

0

ż

Ω

SαmpΠ
m
DppcqΠ

m
Dpp

α δtφDdxdt

`

ż T

0

ż

Γ

d̂f,DuΠf
Dpp

α δtS
α
f pΠ

f
Dppcqdσpxqdt`

ż T

0

ż

Γ

Sαf pΠ
f
DppcqΠ

f
Dpp

α δtdf,Dudσpxqdt
¯

.

Now, for rt P tm, fu,
ÿ

α

Πrt
Dpp

α δtS
α
rtpΠ

rt
Dppcq “ Πrt

Dppc δtS
nw
rt pΠ

rt
Dppcq ě δtUrtpΠ

rt
Dppcq. (18)

Indeed, for n P t0, . . . , N ´ 1u, by the definition (55) of the capillary energy Urt and letting πrt
c,n “ Πrt

Dppc,n, we have

πrt
c,n`1pS

nw
rt pπ

rt
c,n`1q ´ S

nw
rt pπ

rt
c,nqq “ Urtpπ

rt
c,n`1q ´ Urtpπ

rt
c,nq `

ż πrt
c,n`1

πrt
c,n

pSnw
rt pqq ´ S

nw
rt pπ

rt
c,nqqdq

ě Urtpπ
rt
c,n`1q ´ Urtpπ

rt
c,nq,

where the last inequality holds since Snw
rt is a non-decreasing function (see (H2)(H2)). Thus, we obtain

ÿ

α

pT1 ` T3q ě

ż T

0

ż

Ω

φ̂DδtUmpΠ
m
Dppcqdxdt`

ż T

0

ż

Γ

d̂f,DuδtUf pΠ
f
Dppcqdσpxqdt

`
ÿ

α

´

ż T

0

ż

Ω

SαmpΠ
m
DppcqΠ

m
Dpp

α δtφDdxdt`

ż T

0

ż

Γ

Sαf pΠ
f
DppcqΠ

f
Dpp

α δtdf,Dudσpxqdt
¯

.

Applying again (1616), we have

φ̂DδtUmpΠ
m
Dppcq “ δtpφDUmpΠ

m
Dppcqq ´ UmpΠ

m
DppcqδtφD,

d̂f,DuδtUf pΠ
f
Dppcq “ δtpdf,DuUf pΠ

f
Dppcqq ´ Uf pΠ

f
Dppcqδtdf,Du .

In the light of the closure equations (8c8c), this allows us to infer that

ÿ

α

pT1 ` T3q ě

ż T

0

ż

Ω

δtpφDUmpΠ
m
Dppcqqdxdt`

ż T

0

ż

Γ

δtpdf,DuUf pΠ
f
Dppcqqdσpxqdt

`

ż T

0

ż

Ω

1

2M
δt

´

Πm
Dpp

E
m

¯2

dxdt`

ż T

0

ż

Ω

bΠm
Dpp

E
m divDupδtuqdxdt

´

ż T

0

ż

Γ

Πf
Dpp

E
f JδtuKDudσpxqdt,

(19)

where we have used the fact that

vδtv ě δt

ˆ

v2

2

˙

(20)

for v piecewise constant on r0, T s. Then, taking into account assumptions (H1)(H1)–(H6)(H6), there exists a real number C ą 0
depending only on the data such that

ÿ

α

pT2 ` T4q ě C
´

ż T

0

ż

Ω

ÿ

α

|∇mDppα|2dxdt`

ż T

0

ż

Γ

ÿ

α

|d
3{2

f,Du
∇fDpp

α|2dσpxqdt
¯

. (21)

11



On the other hand, upon choosing v “ δtu in (8b8b), we get T7 ` T8 ` T9 “ T10, with

T7 “

ż T

0

ż

Ω

�Dupuq : �Dupδtuqdxdt, T8 “ ´

ż T

0

ż

Ω

bΠm
Dpp

E
m divDupδtuqdxdt

T9 “

ż T

0

ż

Γ

Πf
Dpp

E
f JδtuKDudσpxqdt, T10 “

ż T

0

ż

Ω

f ¨ΠDupδtuqdxdt.

(22)

Using (2020) and developing the definition of �Dupuq, we see that

T7 ě

ż T

0

ż

Ω

δt

´1

2
�Dupuq : �Dupuq

¯

dxdt, (23)

so that, all in all, taking into account that
ř

αpT1`T2`T3`T4q`T7`T8`T9 “
ř

αpT5`T6q`T10 and inequalities
(1919)–(2121)–(2323), we obtain the following estimate for the solutions of (88): there is a real number C ą 0 depending on
the data such that

ż T

0

ż

Ω

δtpφDUmpΠ
m
Dppcqq dxdt`

ż T

0

ż

Γ

δtpdf,DuUf pΠ
f
Dppcqqdσpxqdt

`

ż T

0

ż

Ω

δt

ˆ

1

2
�Dupuq : �Dupuq `

1

2M
pΠm
Dpp

E
mq

2

˙

dxdt

`
ÿ

α

ż T

0

ż

Ω

|∇mDppα|2 dxdt`
ÿ

α

ż T

0

ż

Γ

|d
3{2

f,Du
∇fDpp

α|2 dσpxqdt

ď C

˜

ż T

0

ż

Ω

f ¨ δtΠDuudxdt`
ÿ

α

ż T

0

ż

Ω

hαmΠm
Dpp

α dxdt

`
ÿ

α

ż T

0

ż

Γ

hαfΠf
Dpp

α dσpxqdt

¸

.

(24)

Now, we have
ż T

0

ż

Ω

f ¨ δtΠDuudxdt “

ż

Ω

f ¨ pΠDuupT q ´ f ¨ΠDuup0qqdx

ď CDu}f}L2pΩqp}�DupuqpT q}L2pΩ,SdpRqq ` }�Dupuqp0q}L2pΩ,SdpRqqq,

ÿ

α

´

ż T

0

ż

Ω

hαmΠm
Dpp

α dxdt`

ż T

0

ż

Γ

hαfΠf
Dpp

α dσpxqdt
¯

ď CDp
ÿ

α

p}hαm}L2pp0,T qˆΩq ` }h
α
f }L2pp0,T qˆΓqqp}∇mDppα}L2p0,T ;L2pΩqq ` }d

3{2

f,Du
∇fDpp

α}L2p0,T ;L2pΓqqq,

where we have used the coercivity properties of the two gradient discretizations along with the Cauchy–Schwarz
inequality and d0 ď df,Du . Using Young’s inequality in the last two estimates as well as hypotheses (H1)(H1)–(H6)(H6) and
(ii) in the lemma, it is then possible to infer from (2424) the existence of a real number C ą 0 depending on the data
and on φm,min such that

}UmpΠ
m
DppcqpT q}L1pΩq ` }d0Uf pΠ

f
DppcqpT q}L1pΩq ` }pΠ

m
Dpp

E
mqpT q}

2
L2pΩq

` }�DupuqpT q}
2
L2pΩ,SdpRqq `

ÿ

α

´

}∇mDppα}2L2p0,T ;L2pΩqq ` }d
3{2

f,Du
∇fDpp

α}2L2p0,T ;L2pΓqq

¯

ď C
´

}f}2L2pΩq `
ÿ

α

´

}hαm}
2
L2pp0,T qˆΩq ` }h

α
f }

2
L2pp0,T qˆΓq

¯

` }UmpΠ
m
Dppcqp0q}L1pΩq ` }df,Dup0qUf pΠ

f
Dppcqp0q}L1pΓq

` }pΠm
Dpp

E
mqp0q}

2
L2pΩq ` }pΠ

f
Dpp

E
f qp0q}

2
L2pΓq

¯

.

The consistency property (1111) shows that the terms above involving the discrete initial conditions are bounded and
thus, together with the fact that T can be replaced by any t P p0, T s in the left-hand side, this inequality yields the a
priori estimates (1515) on pα, pc, pEm and u. The estimate on df,Du follows from its definition and from the definition
(1313) of CDu .

4.2 Compactness properties

Throughout the analysis, we write a À b for a ď Cb with constant C depending only on the coercivity constants CDp ,
CDu of the considered GDs, and on the physical parameters.
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4.2.1 Estimates on time translates

Proposition 4.5. Let Dp, Du, ptnqNn“0 be given space time GDs and φm,min ą 0. It is assumed that the gradient
scheme (8a8a)–(8b8b) has a solution pα P pX0

Dpq
N`1, α P tnw,wu, u P pX0

Du
qN`1 such that φDpt,xq ě φm,min for a.e.

pt,xq P p0, T q ˆ Ω and df,Dupt,xq ě d0pxq for a.e. pt,xq P p0, T q ˆ Γ. Let τ, τ 1 P p0, T q and, for s P p0, T s, denote by
ns the natural number such that s P ptns , tns`1s. For any ϕ P X0

Dp , it holds
ˇ

ˇ

ˇ
xrφDΠm

Dps
α
mspτq ´ rφDΠm

Dps
α
mspτ

1q,Πm
DpϕyL2pΩq

` xrdf,DuΠf
Dps

α
f spτq ´ rdf,DuΠf

Dps
α
f spτ

1q,Πf
DpϕyL2pΓq

ˇ

ˇ

ˇ

À

nτ 1
ÿ

n“nτ`1

δtn`
1
2

´

ξp1q,α,n`1
m }∇mDpϕ}L2pΩq ` ξ

p1q,α,n`1
f }∇fDpϕ}L8pΓq

` ξ
p2q,α,n`1
m }Πm

Dpϕ}L2pΩq ` ξ
p2q,α,n`1
f }Πf

Dpϕ}L2pΓq

¯

,

(25)

with
N´1
ÿ

n“0

δtn`
1
2

´

ξ
pjq,α,n`1
rt

¯2

À 1 for rt P tm, fu, j P t1, 2u,

and

ξp1q,α,n`1
m “ }∇mDppαn`1}L2pΩq and ξ

p1q,α,n`1
f “ }pdn`1

f,Du
q
3{2∇fDpp

α
n`1}L2pΓq}d

n`1
f,Du

}
3{2

L4pΓq,

ξp2q,α,n`1
m “

›

›

›

1

δtn`
1
2

ż tn`1

tn

hαmpt, ¨qdt
›

›

›

L2pΩq
ξ
p2q,α,n`1
f “

›

›

›

1

δtn`
1
2

ż tn`1

tn

hαf pt, ¨qdt
›

›

›

L2pΓq
.

Proof. For any ϕ P X0
Dp , writing the difference of piecewise-constant functions at times τ and τ 1 as the sum of their

jumps between these two times, one has
ˇ

ˇ

ˇ
xrφDΠm

Dps
α
mspτq ´ rφDΠm

Dps
α
mspτ

1q,Πm
DpϕyL2pΩq

` xrdf,DuΠf
Dps

α
f spτq ´ rdf,DuΠf

Dps
α
f spτ

1q,Πf
DpϕyL2pΓq

ˇ

ˇ

ˇ

ď

nτ 1
ÿ

n“nτ`1

δtn`
1
2

ˇ

ˇ

ˇ
xδtrφDΠm

Dps
α
msptn`1q,Π

m
DpϕyL2pΩq ` xδtrdf,DuΠf

Dps
α
f sptn`1q,Π

f
DpϕyL2pΓq

ˇ

ˇ

ˇ
.

(26)

From the gradient scheme discrete variational equation (8a8a), we deduce that
ˇ

ˇ

ˇ
xδtrφDΠm

Dps
α
msptn`1q,Π

m
DpϕyL2pΩq ` xδtrdf,DuΠf

Dps
α
f sptn`1q,Π

f
DpϕyL2pΓq

ˇ

ˇ

ˇ

À }∇mDppαn`1}L2pΩq }∇mDpϕ}L2pΩq ` }pd
n`1
f,Du

q
3{2∇fDpp

α
n`1}L2pΓq }pd

n`1
f,Du

q
3{2∇fDpϕ}L2pΓq

`

›

›

›

1

δtn`
1
2

ż tn`1

tn

hαmpt, ¨qdt
›

›

›

L2pΩq
}Πm
Dpϕ}L2pΩq

`

›

›

›

1

δtn`
1
2

ż tn`1

tn

hαf pt, ¨qdt
›

›

›

L2pΓq
}Πf
Dpϕ}L2pΓq

À ξp1q,α,n`1
m }∇mDpϕ}L2pΩq ` ξ

p1q,α,n`1
f }∇fDpϕ}L8pΓq

` ξp2q,α,n`1
m }Πm

Dpϕ}L2pΩq ` ξ
p2q,α,n`1
f }Πf

Dpϕ}L2pΓq,

(27)

where the term }pdn`1
f,Du

q
3{2∇fDpϕ}L2pΓq has been estimated using the generalized Hölder inequality with exponents

p8, 8{3q, which satisfy 1
8 `

3
8 “

1
2 . Hence the result follows from (2626), (2727), the a priori estimates of Lemma 4.44.4, and

from the assumptions hαm P L2pp0, T q ˆ Ωq, hαf P L
2pp0, T q ˆ Γq.

Remark 4.6. Summing the estimate (2525) on α P tnw,wu we obtain the following time translate estimates on φD and
df,Du :

ˇ

ˇ

ˇ
xφDpτq ´ φDpτ

1q,Πm
DpϕyL2pΩq ` xdf,Dupτq ´ df,Dupτ

1q,Πf
DpϕyL2pΓq

ˇ

ˇ

ˇ

À
ÿ

αPtnw,wu

nτ 1
ÿ

n“nτ`1

δtn`
1
2

´

ξp1q,α,n`1
m }∇mDpϕ}L2pΩq ` ξ

p1q,α,n`1
f }∇fDpϕ}L8pΓq

` ξ
p2q,α,n`1
m }Πm

Dpϕ}L2pΩq ` ξ
p2q,α,n`1
f }Πf

Dpϕ}L2pΓq

¯

.

(28)
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4.2.2 Compactness properties of Πm
Dps

α
m

Proposition 4.7. Let pDlpqlPN, pDluqlPN, tptlnqN
l

n“0ulPN be sequences of space time GDs assumed to satisfy the properties
described in Section 3.13.1. Let φm,min ą 0 and assume that, for each l P N, the gradient scheme (8a8a)–(8b8b) has a solution
pαl P pX

0
Dlp
qN

l
`1, α P tnw,wu, ul P pX0

Dlu
qN

l
`1 such that

(i) df,Dlupt,xq ě d0pxq for a.e. pt,xq P p0, T q ˆ Γ,

(ii) φDlpt,xq ě φm,min for a.e. pt,xq P p0, T q ˆ Ω.

Then, the sequence pΠm
Dps

α,l
m qlPN, with sα,lm “ Sαmpp

l
cq, is relatively compact in L2pp0, T q ˆ Ωq.

Proof. Let K be a fixed compact set of ΩzΓ and let us consider cut-off functions ψl as defined in the cut-off property
of the sequence of spatial GDs pDlpqlPN. The superscript l P N will be dropped in the proof, and assumed to be large
enough. All hidden constants in the following estimates are independent of l. Using that φDpt,xq ě φm,min for a.e.
pt,xq P p0, T q ˆ Ω, the properties of the cut-off functions, and noting that Πm

Dps
α,l
m “ SαmpΠ

m
Dpp

l
cq P r0, 1s, we obtain

ż T

0

}Πm
Dps

α
mp¨ ` τ, ¨q ´Πm

Dps
α
m}

2
L2pKqdt

À τ `

ż T´τ

0

ż

Ω

pΠm
Dpψq φD

´

Πm
Dps

α
mp¨ ` τ, ¨q ´Πm

Dps
α
m

¯2

dxdt “ τ ` T1 ` T2,

where

T1 “

ż T´τ

0

ˇ

ˇ

ˇ
xrφDΠm

Dps
α
mspt` τq ´ rφDΠm

Dps
α
msptq,Π

m
Dpζ

α
mptqyL2pΩq

ˇ

ˇ

ˇ
dt,

T2 “

ż T´τ

0

ˇ

ˇ

ˇ
xφDpt` τq ´ φDptq,Π

m
Dpχ

α
mptqyL2pΩq

ˇ

ˇ

ˇ
dt,

with ζαmptq “
´

sαmpt` τq´ s
α
mptq

¯

ψ and χαmptq “ ζαmptq s
α
mpt` τq. From the cut-off property it results that Πf

Dpζ
α
m “ 0

and ∇fDpζαm “ 0. Then, in view of the estimates (2525), we have

T1 À

ż T´τ

0

npt`τq
ÿ

n“nt`1

δtn`
1
2

´

ξp1q,α,n`1
m }∇mDpζαmptq}L2pΩq ` ξ

p2q,α,n`1
m }Πm

Dpζ
α
mptq}L2pΩq

¯

dt

À

ż T´τ

0

npt`τq
ÿ

n“nt`1

δtn`
1
2

´

pξp1q,α,n`1
m q2 ` pξp2q,α,n`1

m q2 ` }∇mDpζαmptq}2L2pΩq ` }Π
m
Dpζ

α
mptq}

2
L2pΩq

¯

dt.

From Proposition 4.54.5, we have
N´1
ÿ

n“0

δtn`
1
2

´

pξp1q,α,n`1
m q2 ` pξp2q,α,n`1

m q2
¯

À 1.

Using the a priori estimates of Lemma 4.44.4, hαm P L2pp0, T q ˆ Ωq, the Lipschitz property of Sαm, the chain rule and
product rule estimates on the sequence of GDs pDlpqlPN, and the cut-off property, we obtain that

ż T´τ

0

´

}∇mDpζαmptq}2L2pΩq ` }Π
m
Dpζ

α
mptq}

2
L2pΩq

¯

dt À 1.

We deduce from [55, Lemma 4.1] that T1 À τ ` ∆t with a hidden constant depending on K but independent of l.
Similarly, using the time translate estimate (2828), one shows that T2 À τ ` ∆t, which provides the time translates
estimates on Πm

Dps
α
m in L2p0, T ;L2pKqq.

The space translates estimates for Πm
Dps

α
m in L2p0, T ;L2pKqq derive from the a priori estimates of Lemma 4.44.4, the

Lipschitz properties of Sαm and from the compactness property of the sequence of spatial GDs pDlpqlPN (cf. Remark
3.63.6). Combined with the time translate estimates, the Fréchet–Kolmogorov theorem implies that Πm

Dps
α
m is relatively

compact in L2p0, T ;L2pKqq for any compact set K of ΩzΓ. Since Πm
Dps

α
m P r0, 1s, it results that Πm

Dps
α
m is relatively

compact in L2pp0, T q ˆ Ωq.
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4.2.3 Uniform-in-time L2-weak convergence of φDΠm
Dps

α
m and φD

Proposition 4.8. Under the assumptions of Proposition 4.74.7, the sequences pφDlqlPN and pφDlΠm
Dps

α,l
m qlPN, with sα,lm “

Sαmpp
l
cq, converge up to a subsequence uniformly in time weakly in L2pΩq.

Proof. Let K be a fixed compact set of ΩzΓ and let ψl be cut-off functions for this compact set, as defined in the
cut-off property of pDlpqlPN. The superscript l P N will be dropped when not required for the clarity of the proof, and
assumed to be large enough.

For w P V0 we let PDpw P X0
Dp be the element that realizes the minimum in SDppwq, so that

}∇mDpPDpw ´∇w}L2pΩq ` }∇fDpPDpw ´∇τγw}LrpΓq
` }Πm

DpPDpw ´ w}L2pΩq ` }Π
f
DpPDpw ´ γw}LrpΓq “ SDppwq. (29)

Let ϕ P C8c pΩq and set ϕ “ PDpϕ. It results from the cut-off property that Πf
Dppψϕq “ 0 and ∇fDppψϕq “ 0. Using

the GD consistency property of pDlpqlPN and (2929), we see that }∇mDppψϕq}L2pΩq and }Πm
Dppψϕq}L2pΩq are bounded by

constants depending on K and ϕ but independent of l. Then, from Proposition 4.54.5, we have with hidden constants
independent of l but possibly depending on K and ϕ, that

ˇ

ˇ

ˇ
xΠm
Dpψ

´

rφDΠm
Dps

α
mspτq ´ rφDΠm

Dps
α
mspτ

1q

¯

,Πm
DpϕyL2pΩq

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ
xrφDΠm

Dps
α
mspτq ´ rφDΠm

Dps
α
mspτ

1q,Πm
DppψϕqyL2pΩq

ˇ

ˇ

ˇ

À

nτ 1
ÿ

n“nτ`1

δtn`
1
2

´

ξp1q,α,n`1
m }∇mDppψϕq}L2pΩq ` ξ

p2q,α,n`1
m }Πm

Dppψϕq}L2pΩq

¯

À

˜

nτ 1
ÿ

n“nτ`1

δtn`
1
2

ˆ

´

ξp1q,α,n`1
m

¯2

`

´

ξp2q,α,n`1
m

¯2
˙

¸
1
2
˜

nτ 1
ÿ

n“nτ`1

δtn`
1
2

¸
1
2

À |τ ´ τ 1|
1
2 `∆t

1
2 .

Since Πm
Dps

α
m P r0, 1s, φD is bounded in L8p0, T ;L2pΩqq (see (8c8c) and (1515)), and Πm

Dpψ is uniformly bounded, one has

ˇ

ˇ

ˇ
xΠm
Dpψ

´

rφDΠm
Dps

α
mspτq ´ rφDΠm

Dps
α
mspτ

1q

¯

, ϕyL2pΩq

ˇ

ˇ

ˇ
À |τ ´ τ 1|

1
2 `∆t

1
2 ` ωDp , (30)

with ωDp “ }ϕ´ Πm
Dpϕ}L2pΩq a consistency error term such that limlÑ`8 ωDlp “ 0. It follows from the discontinuous

Ascoli-Arzelà theorem [3030, Theorem C.11] that (up to a subsequence) the sequence pΠm
DpψqφDpΠ

m
Dps

α
mq “ φDΠm

Dpps
α
mψq

converges uniformly in time weakly in L2pΩq.

Let us now take w P C8c pΩzΓq and let K be the support of w. For l large enough, by definition of ψl we have
`

φDlΠ
m
Dlp
sα,lm

˘

|K “ φDlΠ
m
Dlp
pψlsα,lm q. Hence,

xφDlΠ
m
Dlp
sα,lm , wyL2pΩq converges uniformly with respect to t P r0, T s. (31)

Since pφDlΠm
Dlp
sα,lm qlPN is bounded in L8p0, T ;L2pΩqq, the density of C8c pΩzΓq in L2pΩq shows that the convergence

(3131) is valid for any w P L2pΩq, which concludes the proof that the sequence φDlΠm
Dlp
sα,lm converges uniformly in time,

weakly in L2pΩq.

We deduce that the sequence φDl “
ř

αPtnw,wu φDlΠ
m
Dlp
sα,lm also converges uniformly in time, weakly in L2pΩq.

4.2.4 Uniform-in-time L2-weak convergence of df,DuΠf
Dps

α
f and df,Du

Proposition 4.9. Under the assumptions of Proposition 4.74.7, the sequences pdf,DluqlPN and pdf,DluΠf
Dps

α,l
f qlPN, with

sα,lf “ Sαf pp
l
cq, converge up to a subsequence uniformly in time weakly in L2pΓq.
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Proof. Let K be a fixed compact set of ΩzΓ and let us consider cut-off functions ψl as defined in the cut-off property
of pDlpqlPN. In the following, the superscript l P N (assumed to be large enough) is dropped when not required for
the clarity of the proof, and the hidden constants are independent of l. Let ϕ P C8c pΩq and set ϕ “ PDpϕ, with PDp
characterised by (2929). From Proposition 4.54.5 we have

ˇ

ˇ

ˇ
xrdf,DuΠf

Dps
α
f spτq ´ rdf,DuΠf

Dps
α
f spτ

1q,Πf
DpϕyL2pΓq

ˇ

ˇ

ˇ

À

ˇ

ˇ

ˇ
x

´

rφDΠm
Dps

α
mspτq ´ rφDΠm

Dps
α
mspτ

1q

¯

,Πm
DpϕyL2pΩq

ˇ

ˇ

ˇ

`max
´

}∇mDpϕ}L2pΩq, }∇fDpϕ}L8pΓq, }Π
m
Dpϕ}L2pΩq, }Π

f
Dpϕ}L2pΓq

¯

ˆ

˜

nτ 1
ÿ

n“nτ`1

δtn`
1
2

ˆ

´

ξp1q,α,n`1
m

¯2

`

´

ξ
p1q,α,n`1
f

¯2

`

´

ξp2q,α,n`1
m

¯2

`

´

ξ
p2q,α,n`1
f

¯2
˙

¸
1
2

ˆ

˜

nτ 1
ÿ

n“nτ`1

δtn`
1
2

¸
1
2

À

´

|τ ´ τ 1|
1
2 `∆t

1
2

¯

`

ˇ

ˇ

ˇ
x

´

rφDΠm
Dps

α
mspτq ´ rφDΠm

Dps
α
mspτ

1q

¯

,Πm
DpϕyL2pΩq

ˇ

ˇ

ˇ
.

Since φDΠm
Dps

α
m is bounded in L8p0, T ;L2pΩqq (see the proof of Proposition 4.84.8), we have

ˇ

ˇ

ˇ
x

´

rφDΠm
Dps

α
mspτq ´ rφDΠm

Dps
α
mspτ

1q

¯

,Πm
DpϕyL2pΩq

ˇ

ˇ

ˇ

À }ϕ̄´Πm
Dpϕ}L2pΩq `

ˇ

ˇ

ˇ
xrφDΠm

Dps
α
mspτq ´ rφDΠm

Dps
α
mspτ

1q, ϕ̄yL2pΩq

ˇ

ˇ

ˇ

and
ˇ

ˇ

ˇ
xrdf,DuΠf

Dps
α
f spτq ´ rdf,DuΠf

Dps
α
f spτ

1q, ϕ̄´Πf
DpϕyL2pΓq

ˇ

ˇ

ˇ
À }df,Du}L8p0,T ;L2pΓqq}ϕ̄´Πf

Dpϕ}L2pΓq.

Using the a priori estimates of Lemma 4.44.4, and Proposition 4.84.8 stating the uniform-in-time L2pΩq-weak convergence
of φDΠm

Dps
α
m (which implies the equi-continuity of the functions τ ÞÑ xrφDΠm

Dps
α
mspτq, ϕ̄yL2pΩq), we deduce that

ˇ

ˇ

ˇ
xrdf,DuΠf

Dps
α
f spτq ´ rdf,DuΠf

Dps
α
f spτ

1q, ϕ̄yL2pΓq

ˇ

ˇ

ˇ
À ωp|τ ´ τ 1|q `∆t

1
2 `$Dp ,

with limhÑ0 ωphq “ 0 and$Dp “ }ϕ´Πm
Dpϕ}L2pΩq`}ϕ̄´Πf

Dpϕ}L2pΓq a consistency error term such that limlÑ`8$Dlp “

0. It follows from the discontinuous Ascoli-Arzelà theorem [3030, Theorem C.11] that (up to a subsequence) the sequence
df,DuΠf

Dps
α
f converges uniformly in time weakly in L2pΓq. Summing over α P tnw,wu, we also deduce the uniform-in-

time L2pΓq-weak convergence of df,Du .

4.2.5 Strong convergence of df,Du , df,DuΠf
Dps

α
f , and Πf

Dps
α
f

Proposition 4.10. Under the assumptions of Proposition 4.74.7, the sequence pdf,DluqlPN converges up to a subsequence
in L8p0, T ;LppΓqq for all 2 ď p ă 4, and the sequences pdf,DluΠf

Dps
α,l
f qlPN and pΠf

Dps
α,l
f qlPN, with sα,lf “ Sαf pp

l
cq,

converge up to a subsequence in L4p0, T ;L2pΓqq.

Proof. By the characterization in Remark 3.83.8 of the compactness of pDluqlPN and the estimate on �Dupuq in Lemma
4.44.4, we have, for all i P I, all ηi tangent to Γi, a.e. t P p0, T q and all s ă 4,

›

›df,Dlupt, ¨ ` ηiq ´ df,Dlupt, ¨q
›

›

LspΓiq
ď TDlu,sp0, ηq}�Dupuqpt, ¨q}L2pΩ,SdpRqq À TDlu,sp0, ηq,

where η “ p0, . . . , 0, ηi, 0, . . . , 0q and df,Dlu has been extended by 0 in the hyperplane spanned by Γi. Together with
the uniform-in-time L2pΓq-weak convergence of df,Dlu from Proposition 4.94.9, this shows that we can apply Lemma A.2A.2
to df,Dlu with p “ `8 and get the convergence of this sequence in L8p0, T ;L2pΓqq. Since, from the a priori estimates
of Lemma 4.44.4, this sequence df,Dlu is bounded in L8p0, T ;L4pΓqq, it follows that it converges in L8p0, T ;LqpΓqq for
all 2 ď q ă 4.

For any compact set Kf Ă Γ that is disjoint from the intersections pΓi X Γjqi ­“j , using that Πf
Dps

α
f P r0, 1s, that

}df,Dupt, ¨q}L4pΓq is uniformly bounded in t, and the Lipschitz properties of Sαf , it follows that, for all i P I and ηi
tangent to Γi small enough,

}rdf,DuΠf
Dps

α
f spt, ¨ ` ηiq ´ rdf,DuΠf

Dps
α
f spt, ¨q}L2pKfXΓiq
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ď }df,Dupt, ¨ ` ηiq ´ df,Dupt, ¨q}L2pKfXΓiq

` }Πf
Dps

α
f pt, ¨ ` ηiq ´Πf

Dps
α
f pt, ¨q}L4pKfXΓiq}df,Dupt, ¨q}L4pKfXΓiq

À }df,Dupt, ¨ ` ηiq ´ df,Dupt, ¨q}L2pKfXΓiq ` }Π
f
Dps

α
f pt, ¨ ` ηiq ´Πf

Dps
α
f pt, ¨q}

1
2

L2pKfXΓiq

À }df,Dupt, ¨ ` ηiq ´ df,Dupt, ¨q}L2pKfXΓiq ` }Π
f
Dppcpt, ¨ ` ηiq ´Πf

Dppcpt, ¨q}
1
2

L2pKfXΓiq
.

From the compactness properties of pDluqlPN and pDlpqlPN (see Remarks 3.63.6 and 3.83.8) it results that

ÿ

iPI

›

›

›
sup
|ηi|ďδ

}rdf,DuΠf
Dps

α
f sp¨, ¨ ` ηiq ´ rdf,DuΠf

Dps
α
f sp¨, ¨q}L2pKfXΓiq

›

›

›

L4p0,T q

À TKf pδq
´

}�Dupuq}L8p0,T ;L2pΩqq `
ÿ

αPtnw,wu

p}d
3{2

0 ∇fDpp
α}L2p0,T ;L2pΓqq ` }∇mDppα}L2p0,T ;L2pΩqqq

¯

with limδÑ0 TKf pδq “ 0. From the a priori estimates of Lemma 4.44.4, and the uniform-in-time L2pΓq-weak conver-
gence of df,Dus

α
f of Proposition 4.94.9, it follows from Lemma A.2A.2 that df,DuΠf

Dps
α
f converges up to a subsequence in

L4p0, T ;L2pKf qq.

From the assumption df,Dupt,xq ě d0pxq, df,Du is bounded below by a strictly positive constant on Kf . Writing
that Πf

Dps
α
f “

1
df,Du

pdf,DuΠf
Dps

α
f q, it follows that Πf

Dps
α
f converges in L4p0, T ;L2pKf qq. Since this is true for any

Kf compact in Γ that does not touch the fractures intersections, and since Πf
Dps

α
f P r0, 1s, we deduce that Πf

Dps
α
f

converges in L4p0, T ;L2pΓqq.

4.3 Convergence to a weak solution

Proof of Theorem 4.14.1. The superscript l will be dropped in the proof, and all convergences are up to appropriate
subsequences. From Lemma 4.44.4 and Proposition 4.104.10, there exist d̄f P L8p0, T ;L4pΓqq and s̄αf P L

8pp0, T q ˆ Γq such
that

df,Du Ñ d̄f in L8p0, T ;LppΓqq, 2 ď p ă 4,

Πf
Dp
Sαf ppcq Ñ s̄αf in L4p0, T ;L2pΓqq.

(32)

From Proposition 4.74.7, there exists s̄αm P L8pp0, T q ˆ Ωq such that

Πm
Dp
Sαmppcq Ñ s̄αm in L2p0, T ;L2pΩqq. (33)

The identification of the limit [1818, Lemma 5.5], resulting from the limit-conformity property, can easily be adapted to
our definition of V0, with weight d

3{2

0 and the use in the definition of limit-conformity of fracture flux functions that
are compactly supported away from the tips. Using this lemma and the a priori estimates of Lemma 4.44.4, we obtain
p̄α P L2p0, T ;V0q and gαf P L

2p0, T ;L2pΓqd´1q, such that the following weak limits hold

Πm
Dpp

α á p̄α in L2p0, T ;L2pΩqq weak,
Πf
Dpp

α á γp̄α in L2p0, T ;L2pΓqq weak,
∇mDppα á ∇p̄α in L2p0, T ;L2pΩqdq weak,
d

3{2

0 ∇fDppα á d
3{2

0 ∇τγp̄α in L2p0, T ;L2pΓqd´1q weak,
d

3{2

f,Du
∇fDppα á gαf in L2p0, T ;L2pΓqd´1q weak.

(34)

Let ϕ P C0
c pp0, T q ˆΓqd´1 whose support is contained in p0, T q ˆK, with K compact set not containing the tips of Γ.

We have
ż T

0

ż

Γ

d
3{2

f,Du
∇fDpp

α ¨ϕ dσpxqdtÑ

ż T

0

ż

Γ

gαf ¨ϕ dσpxqdt.

On the other hand, it results from (3434) and the fact that d0 is bounded away from 0 on K (because d0 is continuous and
does not vanish outside the tips of Γ) that ∇fDppα á ∇τγp̄α in L2p0, T ;L2pKqd´1q. Combined with the convergence

d
3{2

f,Du
ϕÑ pd̄f q

3{2ϕ in L8p0, T ;L2pΓqd´1q given by (3232), we infer that

ż T

0

ż

Γ

d
3{2

f,Du
∇fDpp

α ¨ϕ dσpxqdtÑ

ż T

0

ż

Γ

pd̄f q
3{2∇τγp̄α ¨ϕ dσpxqdt.

This shows that gαf “ pd̄f q
3{2∇τγp̄α on p0, T q ˆ Γ.
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Combining the strong convergence of Πm
Dp
Sαmppcq “ SαmpΠ

m
Dp
pcq (resp. of Πf

Dp
Sαf ppcq “ Sαf pΠ

f
Dp
pcq), the weak conver-

gence of Πm
Dp
pc (resp. Πf

Dp
pc), and the monotonicity of Sαm (resp. Sαf q, it results from the Minty trick (see e.g. [3636,

Lemma 2.6]) that s̄αm “ Sαmpp̄cq (resp. s̄αf “ Sαf pγp̄cq) with p̄c “ p̄nw ´ p̄w.

From the a priori estimates of Lemma 4.44.4 and the limit-conformity property of the sequence of GDs pDluqlPN (see
Lemma A.3A.3), there exists ū P L8p0, T ;U0q, such that

ΠDuuá ū in L8p0, T ;L2pΩqdq weak ‹,
�Dupuq á �pūq in L8p0, T ;L2pΩ,SdpRqqq weak ‹,
divDuuá divpūq in L8p0, T ;L2pΩqq weak ‹,
df,Du “ ´JuKDu á ´JūK in L8p0, T ;L2pΓqq weak ‹,

(35)

from which we deduce that d̄f “ ´JūK and that �Dupuq converges to �pūq in L8p0, T ;L2pΩ,SdpRqqq weak ‹.
From the a priori estimates and the closure equations (8c8c), there exist φ̄m P L8p0, T ;L2pΩq and p̄Em P L8p0, T ;L2pΩq
such that

φD á φ̄m in L8p0, T ;L2pΩqq weak ‹,
Πm
Dpp

E
m á p̄Em in L8p0, T ;L2pΩqq weak ‹. (36)

Since 0 ď Urtpzq “
şp

0
zpSnw

rt q
1pzqdz ď 2|p| for rt P tm, fu, it results from the a priori estimates of Lemma 4.44.4 that

there exist p̄Ef P L
2p0, T ;L2pΓqq, Ūf P L2p0, T ;L2pΓqq and Ūm P L2p0, T ;L2pΩqq such that

Πf
Dpp

E
f á p̄Ef in L2p0, T ;L2pΓqq weak,

Πf
DpUf ppcq á Ūf in L2p0, T ;L2pΓqq weak,

Πm
DpUmppcq á Ūm in L2p0, T ;L2pΩqq weak.

(37)

For rt P tnw,wu, it is shown in [3131], following ideas from [2828], that Urtppq “ BrtpS
nw
rt ppqq where Brt : r0, 1s ÞÑ R is

a convex lower semi-continuous function with finite limits at s “ 0 and s “ 1 (note that Brt is therefore actually
continuous on r0, 1s). Since Πm

Dps
nw
m converges strongly in L2pp0, T q ˆΩq to Snw

m pp̄cq, it converges a.e. in p0, T q ˆΩ. It
results that BmpΠm

Dps
nw
m q converges a.e. in p0, T q ˆ Ω to BmpSnw

m pp̄cqq, and hence that Ūm “ BmpS
nw
m pp̄cqq “ Umpp̄cq.

Similarly, Ūf “ Bf pS
nw
f pγp̄cqq “ Uf pγp̄cq. We deduce that

p̄Em “
ÿ

αPtnw,wu

p̄αSαmpp̄cq ´ Umpp̄cq and p̄Ef “
ÿ

αPtnw,wu

γp̄αSαf pγp̄cq ´ Uf pγp̄cq.

Using the estimate

|Urtpp2q ´ Urtpp1q| “

ˇ

ˇ

ˇ

ˇ

ż p2

p1

zpSnw
rt q

1pzqdz

ˇ

ˇ

ˇ

ˇ

ď |p2 ´ p1| ` |p2S
nw
rt pp2q ´ p1S

nw
rt pp1q|,

the Lipschitz property of Snw
rt , p̄α0 P V0 X L8pΩq, γp̄α0 P L8pΓq, α P tnw,wu, and the consistency of the sequence of

GDs pDlpqlPN, we deduce that
Πm
Dpp

E,0
m Ñ p̄E,0m in L2pΩq,

Πf
Dpp

E,0
f Ñ p̄E,0f in L2pΓq.

(38)

Then, from Proposition A.4A.4 it holds that

divDupu
0q Ñ divpū0q in L2pΩq,

Ju0KDu Ñ Jū0K “ ´d̄0
f in L2pΓq.

(39)

It results from (3636), (3535), (3838) and (3939) and the definition of φD that

φ̄m “ φ̄0
m ` b divpū´ ū0q `

1

M
pp̄Em ´ p̄

E,0
m q.

Let us now prove that the functions p̄α, α P tnw,wu, and ū satisfy the variational formulation (66)–(77) by passing to
the limit in the gradient scheme (88).

For θ P C8c pr0, T qq and ψ P C8c pΩq let us set, with PDp characterised by (2929),

ϕ “ pϕ1, . . . , ϕN q P pX0
Dpq

N with ϕi “ θpti´1qpPDpψq.
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From the consistency properties of pDlpqlPN with given r ą 8, we deduce that

Πm
DpPDpψ Ñ ψ in L2pΩq, Πf

DpPDpψ Ñ γψ in L2pΓq,

Πm
DpϕÑ θψ in L8p0, T ;L2pΩqq, Πf

DpϕÑ θγψ in L8p0, T ;L2pΓqq,

∇mDpϕÑ θ∇ψ in L8p0, T ;L2pΩqdq, ∇fDpϕÑ θ∇τγψ in L8p0, T ;LrpΓqd´1q.

(40)

Setting

T1 “

ż T

0

ż

Ω

δt

´

φDΠm
Dps

α
m

¯

Πm
Dpϕ dxdt

T2 “

ż T

0

ż

Ω

ηαmpΠ
m
Dps

α
mqKm∇mDppα ¨∇mDpϕ dxdt

T3 “

ż T

0

ż

Γ

δt

´

df,DuΠf
Dps

α
f

¯

Πf
Dpϕ dσpxqdt

T4 “

ż T

0

ż

Γ

ηαf pΠ
f
Dps

α
f q
d3
f,Du

12
∇fDpp

α ¨∇fDpϕ dσpxqdt

T5 “

ż T

0

ż

Ω

hαmΠm
Dpϕ dxdt`

ż T

0

ż

Γ

hαfΠf
Dpϕ dσpxqdt,

the gradient scheme variational formulation (8a8a) states that

T1 ` T2 ` T3 ` T4 “ T5.

For ω P C8c pr0, T qq and a smooth function w : ΩzΓ Ñ Rd vanishing on BΩ and admitting finite limits on each side of
Γ, let us set

v “ pv1, . . . ,vN q P pX0
Du
qN with vi “ ωpti´1qpPDuwq

where PDuw realizes the minimum in the definition (1414) of SDupwq. From the consistency properties of pDluqlPN, we
deduce that

ΠDuvÑ ωψ in L8p0, T ;L2pΩqdq,
�Dupvq Ñ ω�pwq in L8p0, T ;L2pΩ,SdpRqqq,
JvKDu Ñ ωJwK in L8p0, T ;L2pΓqq.

(41)

Setting

T6 “

ż T

0

ż

Ω

´

�Dupuq : �Dupvq ´ bpΠ
m
Dpp

E
mqdivDupvq

¯

dxdt,

T7 “

ż T

0

ż

Γ

pΠf
Dpp

E
f qJvKDudσpxqdt,

T8 “

ż T

0

ż

Ω

f ¨ΠDuv dxdt.

the gradient scheme variational formulation (8b8b) states that

T6 ` T7 “ T8.

Using a discrete integration by part [3030, Section D.1.7], we have T1 “ T11 ` T12 with

T11 “ ´

ż T

0

ż

Ω

φDpΠ
m
Dps

α
mqpΠ

m
DpPDpψqθ

1ptq dxdt,

T12 “ ´

ż

Ω

pΠm
DpI

m
Dp φ̄

0qpΠm
DpS

α
mpIDp p̄

α
0 qqpΠ

m
DpPDpψqθp0q dx.

Using (4040) and (3636), and that Πm
Dps

α
m P r0, 1s converges to Sαmpp̄cq a.e. in p0, T q ˆ Ω (this follows from (3333)), it holds

that

T11 Ñ ´

ż T

0

ż

Ω

φ̄mS
α
mpp̄cqψθ

1ptq dxdt.

Using (4040), that Πm
DpI

m
Dp φ̄

0 converges in L2pΩq to φ̄0 and that Πm
DpS

α
mpPDp p̄

α
0 q P r0, 1s converges a.e. in Ω to Sαmpp̄α0 q,

we deduce that
T12 Ñ ´

ż

Ω

φ̄0Sαmpp̄
α
0 qψθp0q dx.

Writing T3 “ T31 ` T32 with

T31 “ ´

ż T

0

ż

Γ

df,DupΠ
f
Dps

α
f qpΠ

f
DpPDpψqθ

1ptq dσpxqdt,
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T32 “

ż

Γ

Ju0KDupΠ
f
DpS

α
f pIDp p̄

α
0 qqpΠ

f
DpPDpψqθp0q dσpxq,

we obtain, using similar arguments and (3939), that

T31 Ñ ´

ż T

0

ż

Γ

d̄fS
α
f pγp̄cqγψθ

1ptq dσpxqdt,

and
T32 Ñ ´

ż

Γ

d̄0
fS

α
f pγp̄

α
0 qγψθp0q dσpxq.

Using that 0 ď ηαmpΠ
m
Dps

α
mq ď ηαm,max, the continuity of ηαm, the convergence of Πm

Dps
α
m a.e. in p0, T q ˆ Ω to Sαmpp̄cq,

(3434) and (4040), it holds that

T2 Ñ

ż T

0

ż

Ω

ηαmpS
α
mpp̄cqqKm∇p̄α ¨ θ∇ψ dxdt.

The convergence

T4 Ñ

ż T

0

ż

Γ

ηαf pS
α
f pγp̄cqq

d̄ 3
f

12
∇τγp̄α ¨ θ∇τγψ dσpxqdt

is established using 0 ď ηαf pΠ
f
Dps

α
f q ď ηαf,max, the continuity of ηαf , the convergence of Πf

Dps
α
f a.e. in p0, T q ˆ Γ to

Sαf pγp̄cq, combined with the weak convergence of d
3{2

f,Du
∇fDppα to d̄

3{2

f ∇τγp̄α in L2pp0, T qˆΓqd´1, the strong convergence

of d
3{2

f,Du
to d̄

3{2

f in Lspp0, T q ˆ Γq for all 2 ď s ă 8
3 (resulting from (3232)), and the strong convergence (4040) of ∇fDpϕ to

θ∇τγψ in L8p0, T ;LrpΓqq with r ą 8.

The convergence

T5 Ñ

ż T

0

ż

Ω

hαm θψ dxdt`

ż T

0

ż

Γ

hαf θpγψq dσpxqdt

is readily obtained from (4040). The following convergences of T6, T7, T8

T6 Ñ

ż T

0

ż

Ω

´

�pūq : �pwqω ´ bp̄Emdivpwqω
¯

dxdt,

T7 Ñ

ż T

0

ż

Γ

p̄Ef JwKω dσpxqdt,

T8 Ñ

ż T

0

ż

Ω

f ¨wω dxdt

classically result from the strong convergences (4141) combined with the weak convergences (3535).

Using the above limits in T1 ` T2 ` T3 ` T4 “ T5 and T6 ` T7 “ T8 concludes the proof that p̄α, α P tnw,wu, and ū
satisfy the variational formulation (66)–(77).

5 Two-dimensional numerical example

The objective of this section is to numerically investigate the convergence of the discrete solutions on a simple geomet-
rical configuration based on a cross-shaped fracture network. We refer to [1414] for the presentation of a more advanced
application to the desaturation by suction at the interface between a ventilation tunnel and a Callovo-Oxfordian
argilite fractured storage rock.

5.1 Setting

Let us consider the system (33)–(44) in the square domain Ω “ p0, Lq2, with L “ 100m, lying in the xy-plane and
containing a cross-shaped fracture network Γ made up of four fractures (cf. Figure 33), each of length L

8 , aligned with
the coordinate axes and intersecting at the center of the domain pL2 ,

L
2 q. More precisely, the fracture network is defined

as follows: Γ “
Ť4
i“1 Γi, where Γ1 “ p

3
8L,

L
2 qˆt

L
2 u, Γ2 “ p

L
2 ,

5
8Lqˆt

L
2 u, Γ3 “ t

L
2 uˆp

3
8L,

L
2 q, and Γ4 “ t

L
2 uˆp

L
2 ,

5
8Lq.

The data set employed is inspired by [5959, Section 5.1.2]. The matrix and fracture network have the following mobility
laws:

ηαmps
αq “

psαq2

µα
, ηαf ps

αq “
sα

µα
, α P tw,nwu, (42)
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Figure 3: Computational domain.

where µw “ 10´3 Pa¨s and µnw “ 1.851¨10´5 Pa¨s are the dynamic viscosities of the wetting and non-wetting phases,
respectively. Notice that ηαm and ηαf do not satisfy the assumptions of our analysis, as they are not bounded below by a
strictly positive number; these choices are however physically relevant, and as the test shows, do not seem to impair the
convergence of the numerical scheme. A non-degenerate regularization of these mobilities is also investigated below.
The function yielding the saturation in both rock types in terms of the capillary pressure is provided by Corey’s law:

snw
rt “ Snw

rt ppcq “ max
´

1´ exp
´

´
pc
Rrt

¯

, 0
¯

, rt P tm, fu,

with Rm “ 104 Pa and Rf “ 10 Pa. The matrix is homogeneous and isotropic, i.e. Km “ ΛmI, characterized by a
permeability Λm “ 3¨10´15 m2, an initial porosity φ0

m “ 0.2, effective Lamé parameters λ “ 833 MPa, µ “ 1250 MPa,
effective (drained) bulk modulus11 Kdr “ λ`µ “ 2083 MPa, and solid grain bulk modulusKs “ 11244 MPa. From these,
one can infer the values of the Biot coefficient b “ 1 ´ Kdr

Ks
» 0.81, and of the Biot modulus M “ Ks

b´φ0
m
» 18.4 GPa.

Since we consider a horizontal domain with no gravity effect, we set f “ 0 in Ω and no gravity term appears in the
Darcy laws as in (33). The domain is assumed to be clamped all over its boundary, i.e. u “ 0 on p0, T q ˆ BΩ; for the
flows, we impose a wetting saturation sw

m “ 1 on the north side of the boundary p0, T q ˆ pp0, Lq ˆ tLuq, whereas the
remaining part of the boundary is considered as impervious (qαm ¨ n “ 0, α P tnw,wu). The system is subject to the
initial conditions pnw

0 “ pw
0 “ 105 Pa, which in turn results in an initial saturation snw

0,rt “ 0, rt P tm, fu. The final
time is set to T “ 1000 days “ 8.64¨107 s. The system is excited by the following source term, representing injection
of non-wetting fluid at the center of the fracture network:

hnw
f pt,xq “

gpxq
ż

Γ

gpxqdσpxq

Vpor

T {5
, pt,xq P p0, T q ˆ Γ,

where Vpor “
ş

Ω
φ0
mpxqdx is the initial porous volume and gpxq “ e´β|px´x0q{L|

2

, x0 “ p
L
2 ,

L
2 q, with β “ 1000 and |¨|

the Euclidean norm. The remaining source terms hw
f and hαm, α P tw,nwu, are all set to zero.

As mentioned in the introduction, the GDM framework covers many possible schemes for both the flow and mechanical
components of the model. For the flow, one would typically consider finite volume methods (or mixed finite elements),
such as the low-order two- and multi-point flux approximations or hybrid mimetic mixed schemes [3030, Chapters 12,
13]; even though high-order finite volume methods such as the hybrid high-order scheme [2727] or non-conforming virtual
elements [88] also fit into the GDM [2626], their usage in the current context seem less justified given the expected low
regularity of the solution. Given that our simulations are done on triangular meshes, we opted to discretise the flow
part using the cheap and robust Two-Point Flux Approximation (TPFA). For the elasticity equation in (33), standard
conforming finite element methods in standard displacement formulation as well as other more advanced techniques
(such as stabilised nodal strain formulation or Hu-Washizu-based formulations) are known to fit in the GDM [3232].
Our choice was on the second order P2 finite element in displacement formulation in the matrix [2323, 4545], adding
supplementary unknowns on the fracture faces to account for the discontinuities. It provides a better accuracy than
P1 finite element especially on the normal stresses at fracture tips and intersections.

The adaptation of the TPFA discretization to the hybrid-dimensional two-phase Darcy flow model follows [22] using
mf -linear m-upwind model for matrix-fracture interactions. However, unlike [22], we consider here a centered approx-
imation of the mobilities, and the scheme used in the test can therefore be written as a gradient scheme (8a8a)–(8b8b).

1In general, Kdr “ λ` 2µ{d, where d P t2, 3u is the space dimension.
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Figure 4: Example of admissible triangular mesh with three fracture edges in bold. The dot lines joining each cell
center to the center of each of its edges are assumed orthogonal to the edge. The discrete unknowns are presented
for the two-phase flow and the mechanics. Note that the discontinuities of the saturations and of the displacement
are captured at matrix fracture interfaces. The matrix and fracture saturations sαm, sαf at matrix–fracture interfaces
are computed using a single primary unknown parametrizing the capillary pressure graphs (cf. [22]). Note also that
additional nodal unknowns are defined at intersections of at least three fractures.

The discrete unknowns for the phase pressures, the phase saturations and for the displacement field are shown in Fig-
ure 44. The computational domain Ω is decomposed using admissible triangular meshes for the TPFA scheme (cf. [3434,
Section 3.1.2] and the example Figure 44). Let n P N‹ denote the time step index. The time stepping is adaptive,
defined as

δtn`
1
2 “ mint%δtn´

1
2 ,∆tmaxu,

where δt
1
2 “ 0.025 days is the initial time step, ∆tmax “ 5 days is the maximal time step (except for the finest mesh

for which it is set to ∆tmax “ 2 days), and % “ 1.1. At each time step, the flow unknowns are computed by a
Newton-Raphson algorithm. At each Newton-Raphson iteration, the Jacobian matrix is computed analytically and
the linear system is solved using a GMRes iterative solver. The time step is reduced by a factor 2 whenever the
Newton-Raphson algorithm does not converge within 50 iterations, with the stopping criteria defined by the relative
residual norm lower than 10´5 or a maximum normalized variation of the primary unknowns lower than 10´4. On the
other hand, given the matrix and fracture equivalent pressures pEm and pEf , the displacement field u is computed using
the direct solver MA48 (see [3333]). Following [1111, 2323, 4545, 5151, 5353, 4040], the coupling between the two-phase Darcy flow
and the mechanical deformation is solved by means of a fixed-point algorithm. This algorithm computes the matrix
porosity and the fracture aperture, using discrete versions of the coupling laws (44), at each time step and fixed-point
iteration. The algorithm is summarized in the following scheme, where k denotes the current fixed-point iteration and
n the current time step.
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Iterative coupling algorithm
At each time step n, for k “ 1, . . . , until convergence, solve the following Darcy and mechanical subproblems:

(i) Compute pα,n,krt , sα,n,krt , α P tw,nwu, rt P tm, fu, solving the Darcy flow model using dn,k´1
f in the fracture

conductivity and the following porosity and fracture aperture in the accumulation term:
$

&

%

φn,km ´ φn´1
m “ Cr,mpp

E,n,k
m ´ pE,n,k´1

m q ` b divpun,k´1 ´ un´1q `
1

M
ppE,n,km ´ pE,n´1

m q,

dn,kf ´ dn´1
f “ Cr,f pp

E,n,k
f ´ pE,n,k´1

f q ´ Jun,k´1 ´ un´1K.

(ii) Compute the displacement field un,k using the equivalent pressures pE,n,km and pE,n,kf computed at step (i)(i).

Initialization
For given n ą 1, set

$

’

’

&

’

’

%

pE,n,0rt ´ pE,n´1
rt

δtn´
1
2

“
pE,n´1,0

rt ´ pE,n´2
rt

δtn´
3
2

, rt P tm, fu,

un,0 ´ un´1

δtn´
1
2

“
un´1 ´ un´2

δtn´
3
2

;

For n “ 1, set
#

pE,´1
rt “ pE,0rt , rt P tm, fu,

u´1 “ u0.

Here, Cr,m and Cr,f are positive relaxation parameters mimicking the rock compressibility (see e.g. [1111, 2323, 4545, 5151, 5353,
4040]). For our numerical simulations, we choose Cr,m “ 16b2

2µ`2λ (cf. [5353]), and Cr,f “ rdfCr,m with rdf “ 10´3 m. The
convergence of this fixed-point algorithm is achieved if the relative norm of the displacement field increment between
two successive iterations is lower than 10´5.

5.2 Numerical convergence

To verify the convergence of the method, we take into account six refined admissible triangular grids with N “ N0,
4N0, 16N0, 64N0, 256N0, 1024N0 cells, N0 “ 224. All the numerical experiments of this subsection consider the
centered approximation of the degenerate mobilities (4242). The non-degenerate regularization consisting in replacing
the mobilities with

µαηαrtps
αq ` ε

µαp1` εq
(for rt P tm, fu and α P tw,nwu)

has also been investigated, and found to exhibit significant differences, compared to the degenerate case, mainly on
the matrix saturations and only for ε ě 10´3; the differences are small for ε “ 10´4 and not observable for ε ď 10´5.

Figure 77 shows the convergence of the displacement field and gas saturation profiles along the line y “ 55m, intersecting
the vertical fracture, computed at the final time for the first five grids. In addition, we consider a reference solution
(denoted with the subscript ref) computed on the finest (sixth) grid, made up by 1024N0 “ 229376 cells, and used
to showcase the time histories of the solution as well as to compute the time histories of the relative errors for each
grid. Figure 66 shows the variation with respect to the curvilinear abscissa (x or y, depending on the orientation) of
the initial and final apertures for the fractures in the cross-shaped network, based on the reference solution. Note
that the non-symmetry of the y plot results from the output boundary condition on the north-side. At time t “ 0,
the widths of both x- and y-oriented fractures coincide. Figure 55 displays the final non-wetting matrix pressure and
saturation computed on the fifth grid; as expected, the non-wetting fluid accumulates at the tips, flows through the
fracture network and is attracted towards the upper open boundary. Figure 88 showcases the time histories of the
average of some relevant physical quantities computed based on the reference solution (the average of a is denoted by
a‹). In particular, we notice the increase in width for the fracture network as a result of the gas injection, followed by
a decrease after attaining a maximum due to an increasing gas matrix mobility in the neighborhood of the fractures.
The same remark holds for the equivalent pressure pEm. The mean saturation in the matrix, as expected, grows linearly
with time until the gas front reaches the upper boundary. To illustrate the spatial convergence of the scheme, Figure
77 plots on 4 meshes the cuts at y “ 55 m of both components of the displacement field and of the matrix non-wetting
saturation. The non-monotone profile of the saturation cut results from the fronts propagating from the different tips
of the fractures. Figure 99 shows the convergence of the errors

˜

şT

0
pa‹N ptq ´ a

‹
refptqq

2dt
şT

0
a‹refptq

2dt

¸

1
2

,
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NbCells N∆t NNewton NGMRes NFixedPoint CPU (s)
N0 246 11902 81037 11163 23
4N0 246 4685 47352 4234 35
16N0 246 4626 53870 4138 130
64N0 246 4713 65293 4063 500
256N0 246 4951 88106 4062 2600
1024N0 537 5788 125495 4147 14500

Table 1: Performance of the method with the centered scheme in terms of the number of mesh elements, the number
of successful time steps, the total number of Newton-Raphson iterations, the total number of GMRes iterations, the
total number of fixed-point iterations, and the CPU time.

(a) pnwm pT ;x, yq (b) snwm pT ;x, yq

(c) u1pT ;x, yq (d) u2pT ;x, yq

Figure 5: Final non-wetting matrix pressure and saturation (a)-(b), and final (c)-(d) displacement field on the fifth
mesh of size 57344 cells.

as a function of the mesh step for the first five meshes and a “ df , s
nw
m , pEm. Computations are carried out, again,

using averaged quantities (a‹N denotes the spatial average of quantity a computed using N triangular elements). A
similar convergence rate is observed for all quantities. Finally, we give an insight into the performance of our method
in Table 11, where

• NbCells is the number of cells of the mesh,

• N∆t is the number of successful time steps,

• NNewton is the total number of Newton-Raphson iterations,

• NGMRes is the total number of GMRes iterations,

• NFixedPoint is the total number of fixed point iterations,

• CPU (s) is the CPU time of the simulation in seconds.

The iterative coupling algorithm exhibits good robustness with respect to the mesh size, and has a linear convergence
behaviour as proved in [4040] in the linear case. As expected for incompressible fluids in fractured porous media [4040],
the convergence rate is however very sensitive to small initial time steps. This issue is shown in [1313] to be efficiently
solved by using a Newton Krylov acceleration of the fixed-point algorithm.
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Figure 6: Initial and final widths of the x- and y-oriented fractures vs. corresponding curvilinear abscissae, computed
using the finest grid (reference solution). The initial width for both the x- and y-oriented fractures is the same.

NbCells N∆t NNewton NGMRes NFixedPoint CPU (s)
256N0 246 4809 82085 4054 2250
1024N0 537 5486 114763 4136 13600

Table 2: Performance of the method with the upwind scheme in terms of the number of mesh elements, the number
of successful time steps, the total number of Newton-Raphson iterations, the total number of GMRes iterations, the
total number of fixed-point iterations, and the CPU time.

5.3 Comparison between the upwind and centered schemes

In this subsection, the solutions obtained by the upwind approximation of the mobilities [22] are compared to the
solutions obtained in the previous subsection based on the centered approximation. Small differences can be noticed
on the upper part of the matrix saturation at final time in Figures 1010 and 1111 due to the larger numerical diffusion of
the upwind scheme. They clearly reduce with the mesh refinement as can be observed from the comparison between
the line cut plots in these figures. The cuts at y “ 80 m in the right Figure 1212 for the fifth and sixth meshes confirm
that, compared to the upwind scheme, the centered scheme converges more quickly with the mesh refinement. This
is also checked on the left Figure 1212 which exhibits the convergence of the error for the average quantities d‹f , s

nw,‹
m

and pE,‹m with respect to the reference mesh solutions. It shows that the upwind scheme is slightly more accurate on
the two coarsest meshes but that the centered scheme has a better convergence rate. It has been checked that the
displacement field and fracture aperture for both schemes exhibit very little differences on the finest meshes. Table
22 shows the numerical performances of the upwind scheme. Comparing with the results obtained for the centered
scheme (Table 11), the upwind scheme offers a slighly more efficient nonlinear convergence. It was also checked that the
upwind scheme can accommodate larger time steps with successful nonlinear convergence than the centered scheme.

We note that a GDM discretisation of (33)–(44) with upwind approximation of the mobilities as in [22] for the TPFA
scheme requires a scheme-dependent definition of the Darcy fluxes, and hence loses the generality of the GDM. Once
such definition is provided, the convergence analysis would entail a specific treatment which needs to be investigated
due to the nonlinearity introduced by the upwinding; however, this analysis could benefit from the tools developed
here, such as the relative compactness results.

6 Conclusions

We developed, in the framework of the gradient discretization method, the numerical analysis of a two-phase flow
model in deformable and fractured porous media. The model considers a linear elastic mechanical model with open
fractures coupled with an hybrid-dimensional two-phase Darcy flow assuming continuity of each phase pressure across
the fractures. The model accounts for a general network of planar fractures including immersed, non-immersed
fractures and fracture intersections, and considers different rock types in the matrix and fracture network domains.

It is assumed, for the convergence analysis, that the porosity remains bounded below by a strictly positive constant,
and that the fracture aperture remains larger than a fixed non-negative continuous function vanishing only at the tips
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(a) (b)

(c)

Figure 7: Convergence of the profiles of the displacement field components (m) u1 (a), u2 (b), and gas saturation
snw
m (c) at the final time, along the line y “ 55m intersecting the vertical fracture, for four grids, with N triangular
elements, and N0 “ 224.
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Figure 8: Time histories of the average of some physical quantities based on the reference solution (a‹ denotes the
spatial average of a).

1e-05

0.0001

0.001

0.01

0.1

0.0025 0.005 0.01 0.02

E
rr
or
s

h/L

df

Snw
m

pEm

(h/L)
3
2

Figure 9: Relative L2 norm of the error as a function of the mesh step computed on the first five meshes for the
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(cf. Figure 88).
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Figure 10: On the fifth mesh with 256N0 cells, final non-wetting phase matrix saturations for the centered scheme
(top left) and upwind scheme (top right), and line cuts of both solutions at y “ 55 m and y “ 80 m (bottom).

Figure 11: On the finest mesh with 1024N0 cells, final non-wetting phase matrix saturations for the centered scheme
(top left) and upwind scheme (top right), and line cuts of both solutions at y “ 55 m and y “ 80 m (bottom).
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Figure 12: (Top): on the fifth (256N0 cells) and sixth (1024 N0 cells) meshes, cuts at y “ 80 m of the non-wetting
phase matrix saturations for both the centered and upwind schemes. (Bottom): for both the centered and upwind
schemes, relative L2 norm of the error as a function of the mesh step computed on the first five meshes for the time
histories of the mean quantities d‹f , s

nw,‹
m and pE,‹m with respect to the corresponding reference time histories.
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of the fracture network. These assumptions stem from the limitations of the continuous model itself. In addition, the
mobility functions are assumed to be bounded below by strictly positive constants. However, unlike previous works,
the fracture conductivity d3

f {12 was not frozen and the complete non-linear coupling between the flow and mechanics
equations was considered.

Assuming that the gradient discretization meet generic coercivity, consistency, limit-conformity and compactness
properties, we proved the weak convergence of the phase pressures and displacement field to a weak continuous
solution, as well as the strong convergence of the fracture aperture and of the matrix and fracture saturations.
Numerical experiments carried out for a cross-shaped fracture network immersed in a two-dimensional porous medium
and using a TPFA finite volume scheme for the flow combined with a P2 finite element method for the mechanics,
confirmed the numerical convergence of the scheme.

A Appendix

A.1 Appendix 1

Proposition A.1. Let X Ă Rd be bounded, δ ą 0 and let
`

Aδm
˘

mPMδ
be a covering of X in disjoint cubes of length δ.

Let Rδ : L2pRdq Ñ L2pXq be such that, for any v P L2pRdq,

`

Rδv
˘

|AδmXX “
1

δd

ż

Aδm

vpxq dx @m PMδ,

Then, we have
}Rδv ´ v}L2pXq ď 2d{2 sup

|z|ďδ

}vp¨ ` zq ´ v}L2pXq.

Proof. The proof can be found in [2929, p. 756]. Note that the assumption, in this reference, that v is zero outside X is
actually not useful.

Lemma A.2. Let X Ă Rd be bounded, and U be an open subset of Rd such that tx P Rd : distpx, Xq ă δ0u Ă U for
a given δ0 ą 0, where the distance is considered for the supremum norm in Rd. Let pwkqkPN be a bounded sequence in
L8p0, T ;L2pUqq that converges uniformly in time and weakly in L2pUq to w P L8p0, T ;L2pUqq. Let p P r1,`8s and
let us define

T pδq “ sup
k

›

›

›
sup
|z|ďδ

}wkp¨, ¨ ` zq ´ wkp¨, ¨q}L2pXq

›

›

›

Lpp0,T q
.

If limδÑ0 T pδq “ 0, then the sequence pwkqkPN converges to w in Lpp0, T ;L2pXqq.

Proof. For 0 ă δ ă δ0, let
`

Aδm
˘

mPMδ
be a covering of X in disjoint cubes of length δ and let Rδ be the corresponding

L2 projection operator as defined in Proposition A.1A.1. We write

wk ´ w “ pwk ´R
δwkq ` pR

δwk ´R
δwq ` pRδw ´ wq

and we establish the convergence to 0 of each bracketed term in the right-hand side. First, in view of Proposition A.1A.1

}wkpt, ¨q ´R
δwkpt, ¨q}L2pXq À sup

|z|ďδ

}wkpt, ¨ ` zq ´ wkpt, ¨q}L2pXq

implying that
}wk ´R

δwk}Lpp0,T ;L2pXqq À T pδq.

Setting vk “ wk ´R
δwk, k P N, we have, if p “ 8, }vkpt, ¨q}L2pXq À T pδq for a.e. t P p0, T q. Since Id´Rδ : L2pXq Ñ

L2pXq is linear, the weak convergence of wkpt, ¨q implies that vkpt, ¨q á vpt, ¨q – wpt, ¨q ´ Rδwpt, ¨q weakly in L2pXq,
and thus that

}wpt, ¨q ´Rδwpt, ¨q}L2pXq ď lim inf
kÑ`8

}vkpt, ¨q}L2pXq À T pδq.

For p ă 8, we have, using the above weak convergence of pvkpt, ¨qqkPN and Fatou’s lemma,
ż T

0

}vpt, ¨q}pL2pXqdt ď

ż T

0

lim inf
kÑ`8

}vkpt, ¨q}
p
L2pXqdt ď lim inf

kÑ`8

ż T

0

}vkpt, ¨q}
p
L2pXqdt À T ppδq.

Hence, for any p,
}w ´Rδw}Lpp0,T ;L2pXqq À T pδq.
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Finally,

Rδwk ´R
δw “

ÿ

mPMδ

aδkmptq1AδmXX , with aδkmptq “
1

δd

ż

Aδm

pwkpt,xq ´ wpt,xqqdx,

Since the covering
`

Aδm
˘

mPMδ
is finite and since, for all m PMδ, the term aδkmptq converges uniformly in time to zero,

it results that pRδwk ´Rδwq converges as k Ñ `8 to zero in L8pp0, T q ˆXq.

Gathering the estimates, we have that

}wk ´ w}Lpp0,T ;L2pXqq À 2T pδq ` }Rδwk ´R
δw}Lpp0,T ;L2pXqq.

Passing to the superior limit as k Ñ `8, we deduce that lim supkÑ`8 }wk ´ w}Lpp0,T ;L2pXqq À 2T pδq which yields,
letting δ Ñ 0, lim supkÑ`8 }wk ´ w}Lpp0,T ;L2pXqq “ 0.

A.2 Appendix 2

Lemma A.3. Let pDluqlPN be a sequence of GDs assumed to satisfy the coercivity and limit-conformity properties. Let
pulqlPN be a sequence of vectors with ul P X0

Dlu
such that there exist C independent of l P N with }ul}Du ď C. Then,

there exists ū P U0 such that, up to a subsequence, the following weak limits hold:

ΠDluu
l á ū in L2pΩqd,

�Dlupu
lq á �pūq in L2pΩ,SdpRqq,

divDlupu
lq á divpūq in L2pΩq,

JulKDlu á JūK in L2pΓq.

Proof. By assumption the sequence p}�Dlu}L2pΩ,SdpRqqqlPN is bounded which implies, from the coercivity property,
that the sequences p}ΠDluu

l}L2pΩqqlPN and p}JulKDlu}L2pΓqqlPN are also bounded. Hence there exist ū P L2pΩqd, �̄ P
L2pΩ,SdpRqq and ḡ P L2pΓq such that, up to a subsequence, one has

ΠDluu
l á ū in L2pΩqd,

�Dlupu
lq á �̄ in L2pΩ,SdpRqq,

JulKDlu á ḡ in L2pΓq.

Passing to the limit in the definition of the limit-conformity yields, for any � P C8Γ pΩzΓ,SdpRqq,
ż

Ω

´

� : �̄` ū ¨ divp�q
¯

dx´

ż

Γ

p�n`q ¨ n`ḡ dσpxq “ 0.

Selecting first � with a compact support in ΩzΓ, and then a generic �, it results that ū P U0 with �̄ “ �pūq and
ḡ “ JūK. Since divDlupu

lq “ Tracep�Dlupu
lqq, it also holds that divDlupu

lq á divpūq in L2pΩq.

Let us fix p̄α P V0, α P tnw,wu, f P L2pΩqd, and define

p̄Em “
ÿ

αPtnw,wu

p̄αSαmpp̄cq ´ Umpp̄cq and p̄Ef “
ÿ

αPtnw,wu

γp̄αSαf pγp̄cq ´ Uf pγp̄cq.

with p̄c “ p̄nw ´ p̄w. We consider the solution ū P U0 of the following variational formulation
ż

Ω

´

�pūq : �pv̄q ´ b p̄Emdivpv̄q
¯

dx`

ż

Γ

p̄Ef Jv̄Kdσpxq “
ż

Ω

f ¨ v̄ dx, @v̄ P U0. (43)

Let us take pα P Dp, α P tnw,wu, pc “ pnw ´ pw and

pEm “
ÿ

αPtnw,wu

pαSαmppcq ´ Umppcq and pEf “
ÿ

αPtnw,wu

pαSαf ppcq ´ Uf ppcq.

We consider the following gradient scheme for (4343): Find u P X0
Du

such that, for all v P X0
Du

,
ż

Ω

´

�Dupuq : �Dupvq ´ b pΠ
m
Dpp

E
mqdivDupvq

¯

dx`

ż

Γ

pΠf
Dpp

E
f qJvKDudσpxq “

ż

Ω

f ¨ΠDuv dx. (44)

The Lax-Milgram theorem ensures that the exact solution ū and approximate solution u exist and are unique. The
following proposition provides an error estimate.
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Proposition A.4. Let ū P U0 be the solution of (4343) and u P X0
Du

the solution of the gradient scheme (4444). Then,
there exists a hidden constant depending only on the coercivity constant CDu and on the physical data such that the
following error estimate holds

}�Dupuq ´ �pūq}L2pΩ,SdpRqq ` }ΠDuu´ ū}L2pΩq ` }JuKDu ´ JūK}L2pΓq

À SDupūq `WDup�pūq ´ b p̄
E
mIq ` }p̄Em ´Πm

Dpp
E
m}L2pΩq ` }p̄

E
f ´Πf

Dpp
E
f }L2pΓq.

(45)

As a consequence, if pDluqlPN is a sequence of coercive, consistent and limit-conforming GDs, if ul is the solution of
(4444) for Du “ Dlu, if pDlpqlPN is a sequence of GDs and pα,l P X0

Dlp
, l P N, are such that Πm

Dlp
pE,lm Ñ p̄Em in L2pΩq and

Πf
Dlp
pE,lf Ñ p̄Ef in L2pΓq, then, as lÑ `8,

�Dlupu
lq Ñ �pūq in L2pΩ,SdpRqq,

ΠDluu
l Ñ ū in L2pΩqd,

JulKDlu Ñ JūK in L2pΓq.

(46)

Proof. We note that even thoughWDu was considered, in the definition of limit-conformity of a sequence of GDs, only
on C8Γ pΩzΓ,SdpRqq, it can be defined on

Hdiv,ΓpΩzΓ;SdpRqq –
 

� P L2pΩ;SdpRqq : divp�q|Ωβ P L
2pΩβqd, β P Ξ,

�`n` ` �´n´ “ 0 on Γ, p�`n`qˆn` “ 0 on Γ
(

,

where pΩβqβPΞ are the connected components of ΩzΓ. Setting � “ �pūq ´ b p̄EmI P Hdiv,ΓpΩzΓ;SdpRqq as an argument
of WDu and using div� “ ´f , we obtain that for all v P X0

Du

ˇ

ˇ

ˇ

ˇ

ż

Ω

´

p�pūq ´ �Dupuqq : �Dupvq ´ bpp̄
E
m ´Πm

Dpp
E
mqdivDupvqq

¯

dx`

ż

Γ

pp̄Ef ´Πf
Dpp

E
f qJvKDudσpxq

ˇ

ˇ

ˇ

ˇ

ď }v}DuWDup�pūq ´ b p̄
E
mIq.

Setting v “ PDu ū´ u, where PDu ū realizes the minimum in SDupūq, we infer

}PDu ū´ u}Du À SDupūq `WDup�pūq ´ b p̄
E
mIq ` }p̄Em ´Πm

Dpp
E
m}L2pΩq ` }p̄

E
f ´Πf

Dpp
E
f }L2pΓq.

Combined with the definition of CDu , the estimates above establish (4545).

Under the assumptions in the second part of the proposition, the hidden constant in (4545) is independent of l, the
last two terms in the left-hand side of this estimate converge to 0 as l Ñ `8, as well as SDlupuq by definition of
the consistency of the sequence of GDs. When its argument � is in the vector space C8Γ pΩzΓ,SdpRqq, WDlup�q also
converges to 0 by definition of limit-conformity; since this space is dense in Hdiv,ΓpΩzΓ;SdpRqq, the arguments in [3030,
Lemma 2.17] show that this convergence also holds for the argument � “ �pūq ´ b p̄EmI. Estimate (4545) therefore yields
the convergences (4646).
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