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Abstract

We consider a two-phase Darcy flow in a fractured porous medium consisting in a matrix flow coupled with a
tangential flow in the fractures, described as a network of planar surfaces. This flow model is also coupled with
the mechanical deformation of the matrix assuming that the fractures are open and filled by the fluids, as well as
small deformations and a linear elastic constitutive law. The model is discretized using the gradient discretization
method [30], which covers a large class of conforming and non conforming schemes. This framework allows for a
generic convergence analysis of the coupled model using a combination of discrete functional tools. Here, we de-
scribe the model together with its numerical discretization and, using discrete compactness techniques, we prove a
convergence result (up to a subsequence) assuming the non-degeneracy of the phase mobilities and that the discrete
solutions remain physical in the sense that, roughly speaking, the porosity does not vanish and the fractures remain
open. This is, to our knowledge, the first convergence result for this type of model taking into account two-phase
flows in fractured porous media and the non-linear poromechanical coupling. Previous related works consider a
linear approximation obtained for a single phase flow by freezing the fracture conductivity [41, 42]. Numerical tests
employing the Two-Point Flux Approximation (TPFA) finite volume scheme for the flows and P, finite elements
for the mechanical deformation are also provided to illustrate the behavior of the solution to the model.
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1 Introduction

Many real-life applications in geosciences involve processes like multi-phase flow and hydromechanical coupling in
heterogeneous porous media. Such mathematical models are coupled systems of partial differential equations, including
non-linear and degenerate parabolic ones. Besides the inherent difficulties posed by such equations, further complexities
stem from the heterogeneity of the medium and the presence of discontinuities like fractures. This has a strong impact
on the complexity of the models, challenging their mathematical and numerical analysis and the development of
efficient simulation tools.

This work focuses on the so called hybrid-dimensional matrix fracture models obtained by averaging both the unknowns
and the equations across the fracture width and by imposing appropriate transmission conditions at the matrix fracture
interfaces. Given the high geometrical complexity of real-life fracture networks, the main advantages of these hybrid-
dimensional compared to full-dimensional models are to facilitate the mesh generation and the discretization of the
model, and to reduce the computational cost of the resulting schemes. This type of hybrid-dimensional models has
been the object of intensive researches over the last twenty years due to the ubiquity of fractures in geology and their
large impact on flow, transport and mechanical behavior of rocks. For the derivation and analysis of such models, let
us refer to [4, 37, 48, 52, 6, 18, 20, 55| for single-phase Darcy flows, [12, 57, 54, 44, 19, 31, 21, 2] for two-phase Darcy
flows, and [49, 50, 46, 41, 42, 38, 47, 39, 61] for poroelastic models.

In this article, we consider the two-phase Darcy flow in a network of pre-existing fractures represented as (d — 1)-
dimensional planar surfaces coupled with the surrounding d-dimensional matrix. The fractures are assumed to be open
and filled by the fluids. Both phase pressures are assumed continuous across the fractures. This is a classical assumption
for open fractures given the low pressure drop in the width of the fractures [12, 57, 54, 19]. For single-phase flows,
Poiseuille’s law is classically used to model the flow along the fractures. This leads to a Darcy-like tangential flow with
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conductivity equal to %, where d; is the fracture aperture [41, 42]. Following [49], the extension to a two-phase flow is
based on the generalized Darcy laws involving appropriate relative permeabilities and the capillary pressure-saturation
relation. This hybrid-dimensional two-phase Darcy flow model is coupled with the matrix mechanical deformation
assuming small strains and a linear poroelastic behavior [49, 50, 46]. The extension of the single-phase poromechanical
coupling [41, 42, 38, 47, 61] to two-phase Darcy flows is based on the so-called equivalent pressure used both in the
matrix for the total stress and at both sides of the fractures as boundary condition for the mechanics. Typically,
the equivalent pressure is defined as a convex combination of the phase pressures and several different combinations
have been proposed in the literature [56]. Our choice of the equivalent pressure follows the pioneer monograph by
Coussy [22] and involves the capillary energy which, as already noticed in [50, 46], plays a key role to obtain energy
estimates for the coupled system. From the open fracture assumption, the fracture mechanical behavior reduces to
the continuity of the normal stresses at both sides of the fracture matching with the fracture equivalent pressure times
the unit normal vector. To our best knowledge, no theoretical or numerical analysis of the complete poromechanical

model, with all non-linear coupling, has been carried out so far.

In this work, the hybrid-dimensional coupled model is discretized using the gradient discretization method (GDM)
[30]. This framework is based on abstract vector spaces of discrete unknowns combined with reconstruction operators.
The gradient scheme is then obtained by substitution of the continuous operators by their discrete counterparts in
the weak formulation of the coupled model. The main asset of this framework is to enable a generic convergence
analysis based on general properties of the discrete operators that hold for a large class of conforming and non
conforming discretizations. Two essential ingredients to discretize the coupled model are the discretizations of the
hybrid-dimensional two-phase Darcy flow and the discretization of the mechanics. Let us briefly mention, in both
cases, a few families of discretizations typically satisfying the gradient discretization properties. For the discretization
of the Darcy flow, the gradient discretization framework typically covers the case of cell-centered finite volume schemes
with Two-Point Flux Approximation on strongly admissible meshes [48, 6, 2|, or some symmetric Multi-Point Flux
Approximations [60, 58, 3] on tetrahedral or hexahedral meshes. It also accounts for the families of Mixed Hybrid
Mimetic and Mixed or Mixed Hybrid Finite Element discretizations such as in [4, 52, 18, 20, 7]. The case of vertex-
based discretizations such as Control Volume Finite Element approaches (i.e. conforming finite element with mass
lumping) [12, 57, 54] or the Vertex Approximate Gradient scheme [18, 20, 19, 31, 21] is also accounted for. For the
discretization of the elastic mechanical model, the gradient discretization framework covers conforming finite element
methods such as in [41], as well as the Crouzeix-Raviart discretization [43, 25], Discontinuous Galerkin methods [35],
the Hybrid High Order discretization [24], and the Virtual Element Method [9]. Note that many of these methods
are actually applicable to both the flow and the mechanical component of the model.

Without taking into account the poromechanical coupling, convergence results have been obtained in [6, 4, 52, 18, 20]
for hybrid-dimensional single-phase Darcy flow models, and in [19, 31| for hybrid-dimensional two-phase Darcy flow
models. The well-posedness and convergence analysis of single-phase poromechanical models is studied in [41, 42].
Nevertheless those analyses consider a linear approximation of the coupled model obtained by freezing the fracture
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conductivity %, and hence eliminating the non-linear coupling between the fracture aperture and the Darcy flow. Let
us also mention the related recent work [15] on unsaturated poroelasticity based on the Richards approximation of
the two-phase flow model, using partial linearizations, non-degeneracy conditions and Kirchhoff transformation (which
is made possible by assuming that the saturation—capillary pressure law is uniform across the domain). Note that
fractures are not considered in this work.

Our main result is the proof of convergence, in the GDM setting, of the approximate solutions to the weak solution
of the non-linear coupled model with two-phase flows. To our best knowledge, this is the first convergence result
for this type of hybrid-dimensional model taking into account the full non-linear poromechanical coupling. Since
it is based on discrete compactness techniques, the convergence is that of a subsequence of approximate solutions
(precisely, we prove that sequences of approximate solutions are compact, and that any of their limit points is a
weak solution of the continuous model). To establish this result, we make the following main assumptions. It is
first assumed that the approximate matrix porosity remains bounded below by a strictly positive constant and that
the approximate fracture aperture remains larger than some given aperture vanishing only at the tips. Let us point
out that these assumptions are due to the limitations of the model itself rather than to the shortcomings of the
numerical analysis. They cannot be avoided since the continuous model does not ensure the positivity of the porosity
nor of the fracture aperture, properties needed to guarantee existence of solutions. We note that previous works
on similar models circumvent these limitations by linearization processes (complete or partial freezing of the matrix
porosity and fracture apertures). Regarding the assumption on the fracture aperture, it could possibly be overcome
by introducing contact mechanics in the model [38, 10]. This direction will be investigated in a future work. It is
also assumed in the numerical analysis that the mobility functions are bounded below by strictly positive constants.
Independently of the poromechanical coupling, this is a classical assumption to enable the stability and convergence
analysis of two-phase Darcy flows with spatial discontinuity of the capillary pressure functions, as it is always the
case in the presence of fractures (see [36, 19, 31]). To our knowledge, the only convergence analyses covering both
the degeneracy of the mobilities and discontinuous capillary pressures are limited to Two-Point Flux Approximations
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Figure 1: Example of a 2D domain 2 with three intersecting fractures I';, i € {1, 2, 3}.

(see [16, 17]). Extending such analyses, even considering only the TPFA method for the flow, to the poromechanical
model considered here is far from straightforward and seems to bring additional challenges; given that our analysis is
already quite technical, we postpone this extension to degenerate mobility functions to a future work.

The rest of the article is organized as follows. Section 2 introduces the continuous hybrid-dimensional coupled model.
Section 3 describes the gradient discretization method for the coupled model including the definition of the recon-
struction operators, the discrete variational formulation and the properties of the gradient discretization needed for
the subsequent convergence analysis. Section 4 proceeds with the convergence analysis. The a priori estimates are
established in Subsection 4.1, the compactness properties in Subsection 4.2 and the convergence to a weak solution
is proved in Subsection 4.3. In Section 5, numerical experiments based on the Two-Point Flux Approximation finite
volume scheme for the flows and second-order finite elements for the mechanical deformation are carried out for a
cross-shaped fracture network in a two-dimensional porous medium, and illustrate the numerical convergence of the
solution. Appendices A.1 and A.2 state some technical results used in the convergence analysis.

2 Continuous model

We consider a bounded polytopal domain €2 of R? d e {2,3}, partitioned into a fracture domain I' and a matrix
domain Q\I'. The network of fractures is defined by

r-Jr

el

where each fracture I'; < Q, i € I is a planar polygonal simply connected open domain with angles strictly lower than
2m. Without restriction of generality, we will assume that the fractures may intersect exclusively at their boundaries,
that is for any 4,5 € I,i # j one has I'; nI'; = &, but not necessarily Tin fj = (. Since one can split a general
(non-simply connected) planar polygon into several simply connected pieces intersecting only at their boundaries (see
Figure 1) our assumptions on the fracture network are in fact quite general. Roughly speaking we only exclude the
non-planar fractures.

Since the fractures are assumed open with no contact, we also have to assume in the following that the boundary of
each connected component of Q\I" has a non zero measure intersection with 5.

The two sides of a given fracture of I' are denoted by + in the matrix domain, with unit normal vectors n® oriented
outward of the sides +. We denote by ~ the trace operator on I' for functions in H'(), by yaq the trace operator for

the same functions on 02, and by [-] the normal trace jump operator on I' for functions in Hg;, (Q\I'), defined by
[a] = 4" -n* + 4@ -n~ for all @e Hyy(Q\D).

We denote by V. the tangential gradient and by div, the tangential divergence on the fracture network I'. The

symmetric gradient operator is defined such that (v) = 1(Vv +'(Vv)) for a given vector field v € H*(Q\I')%.

The fracture aperture, denoted by dy, is defined by dy = —[a] for a displacement field 6 € H*(Q\I')%.

Let us fix a continuous function dy : I' — (0, +0) vanishing at 0I'\(0I' n 02) (i.e. at the tips of T") and taking strictly
positive values at o' n 0Q2. The discrete fracture aperture will be assumed to be greater than or equal to dy almost
everywhere (by the established convergence result, the same will hold for its limit). We note that the assumptions on
dy are minimal, allowing for very general behavior of the fracture aperture at the tips.

Let us introduce some relevant function spaces:

U = {ve (HY(Q\D)? | yoqv = 0} (1)



Figure 2: Example of a 2D domain © with its fracture network I, the unit normal vectors n* to I', the phase pressures
p* in the matrix and yp® in the fracture network, the displacement vector field @1, the matrix Darcy velocities q, and
the fracture tangential Darcy velocities q} integrated along the fracture width.

for the displacement vector, and
Vo = {0 € Hy(Q) | yv € Hy, ()} (2)

for each phase pressure, where the space Hj (T') is made of functions vp in L*(T'), such that dg/ *V,vr is in L2(T)41,
and whose traces are continuous at fracture intersections 0I'; N dL';, (4,5) € I x I (i # j) and vanish on the boundary

o' n oN).

The matrix and fracture rock types are denoted by the indices rt = m and rt = f, respectively, and the non-wetting
and wetting phases by the superscripts @ = nw and « = w, respectively. Each rock type rt € {m, f} is characterized

by its own set of mobility functions (1}) ,enw,w; @nd capillary pressure-saturation relation (Si) e fnww-

The PDEs model reads: find the phase pressures p%, « € {nw, w}, and the displacement vector field u, both satisfying
homogeneous Dirichlet boundary conditions on 02, such that p. = p™¥ — p% and, for a € {nw, w},

Ot (dm S5 (Pe)) + div (aiy,) = hs, on (0,T) x Q\T,

A = N (S (Pe) ) K VD on (0,T) x Q\T,

2, (chS;“ (vpc)) + div,(q9) — [a%] = h§  om (0,T) x T, o

af = 1} (57 (100 (5 )V 7" on (0,7) x T,

—div( (@) — b p,f;iﬂ) —f on (0,T) x O\T

(@) =2p (u)+Adiv(a)I on (0,T) x Q\TI,
with . .

O1dm = b divo,u + M@mi on (0,7) x O\T,
( (8)—bpEDn* = —pFn*  on (0,7) x T, (4)
dy = —[ua] on (0,T) x T,

and the initial conditions - -
P*li=0 = B3, bmle=0 = Opn-
Here, we have denoted by p,. the capillary pressure, and the equivalent pressures pZ and ;5? are defined, following [22],
by
=D P Snpe) —Un(pe), D7 =D 40" SF(vpe) — Us(vpe),
ac{nw,w} ac{nw,w}
where .
Ust(pe) = J 2 (52 (=) d= (5)
0
is the capillary energy density function of the rock type rt € {m, f}. As already noticed in [50, 46], this is a key choice
to obtain the energy estimates that are the starting point for the convergence analysis.
We make the following main assumptions on the data:

(H1) For each phase o € {nw,w} and rock type rt € {m, f}, the mobility function 7% is continuous, non-decreasing,
and there exist 0 < 77 i, < 75 max < +00 such that ng 0 < 9 (s) < M ax for all s € [0,1].



(H2) For each rock type rt € {m, f}, the non-wetting phase saturation function S}V is a non-decreasing Lipschitz
continuous function with values in [0, 1], and Sy = 1 — Si™.

(H3) b e [0,1] is the Biot coefficient, M > 0 is the Biot modulus, and A > 0, u > 0 are the Lamé coefficients. These
coeflicients are assumed to be constant for simplicity.

(H4) The initial pressures are such that p§ € Vo n L*(Q) and ypg € L*(I'), a € {nw, w}; the initial porosity is such
that ¢¥ € L*(Q).
(H5) The source terms satisfy £ € L2(Q)%, h%, € L2((0,T) x ), and h e L2((0,T) x ).

(H6) The matrix permeability tensor K, is symmetric and uniformly elliptic on 2. Note that the variation of the
matrix permeability with the porosity is neglected.

The notion of weak solution for (3)—(4) is classically obtained multiplying each flow equation and the mechanical
equation by a separate test function, integrating by parts and, for each phase, adding together the equations resulting
from the flows in the matrix and the fractures. When the capillary pressure has continuous first temporal and
second spatial derivatives in (0, 7)) x (Q\I'), its trace has continuous first temporal and second tangential derivatives in
(0, T) xT, and the displacement has continuous second spatial derivatives, the following weak formulation is equivalent
to the PDE model.

Definition 2.1 (Weak solution of the model). A weak solution of the model is given by p® € L?(0,T; Vo), € {nw, w},
and € L*(0,T;Uyp), such that, for any o € {nw, w}, Jﬁ/QVT*yﬁO‘ € L2((0,T) x T4~ and, for all > € CZ([0,T) x Q)
and all smooth functions v : [0,7] x (Q\I') — R¢ vanishing on 02 and whose derivatives of any order admit finite
limits on each side of T',

T
f L (—¢msg(pc)at¢a + 15 (S5, (Pe)) K VD - V@“)dxdt
0
T _ J‘3
" f L(‘de? (1Pe)00@" + 0 (SF (19e)) 15 VD" Vw@“)da(x)dt
0

- f 3,52 (15" (0, -)dx — j B8 (105" (0, o (x)

T
=J J-h%*“dxdt—l—_[ J- $yp” do(x)dt,
o Jo

J J (u): — b pEdiv(v) dxdtJrJ pr [v] do(x)dt
:fo JQf~\7 dxdt,

_ - 1 _
with p. = p™ —p¥, dy = —[0], ép — 8%, = b div(a—a°) + M(ﬁm —p0y, d} = —[a°], where @” is the solution of (7)

without the time integral and using the initial equivalent pressures pZ° and ]3]]:3’0 obtained from the initial pressures
g and vp§, o € {nw, w}.

(7)

Remark 2.2 (Regularity of the fracture aperture). Notice that, by the Sobolev—trace embeddings [1, Theorem 4.12],
ue L*®(0,T;Up) implies that df = —[a] € L*(0,T; L*(T)). All the integrals above are thus well-defined.

3 The gradient discretization method

The gradient discretization (GD) for the Darcy continuous pressure model, introduced in [18], is defined by a finite-
dimensional vector space of discrete unknowns X%p and

e two discrete gradient linear operators on the matrix and fracture domains
Vi o Xp - L)Y, Vi i Xp - L)
e two function reconstruction linear operators on the matrix and fracture domains
p : Xy, —L(Q), I :Xp — L7(I),

which are piecewise constant [30, Definition 2.12].



A consequence of the piecewise-constant property is the following: there is a basis (e;);er of XODp such that, if
v = Y. vie and if, for a mapping g : R — R with g(0) = 0, we define g(v) = >},.; g(vi)e; € X%p by applying g
component-wise, then H%p g(v) = g(H%pv) for rt € {m, f}. Note that the basis (e;);cs is usually canonical and chosen
in the design of X7, . The vector space X3, is endowed with

m 3,
lollp, = IV, vlza) + Idd V5 vlzz(r),

assumed to define a norm on X%p.
The gradient discretization for the mechanics is defined by a finite-dimensional vector space of discrete unknowns X%u
and

e a discrete symmetric gradient linear operator p, : X3, — L*(Q,S4(R)),

e a displacement function reconstruction linear operator Ilp, : X%u — L2(Q)?,

e a normal jump function reconstruction linear operator []p, : X3 — L*(T),

where S4(R) is the vector space of real symmetric matrices of size d. Let us define the divergence and stress tensor
operators by
divp, (v) = Trace( p (v)) and  p, (V) =2u p,(v)+ Adivp, (v)I,

and the fracture width dyp, = —[u]p,. It is assumed that the following quantity defines a norm on X%U:

Ivlp, = | Du(v)”L2(Q,Sd(R))~

Remark 3.1 (On the boundary conditions). The exponent 0 in the spaces means that homogeneous Dirichlet boundary
conditions are encoded in these spaces. We restrict our analysis to these boundary conditions for simplicity but, as
shown in [30], the GDM analysis can easily be adapted to other types of boundary conditions — in particular to mixed
Dirichlet/Neumann boundary conditions (with non-homogeneous Dirichlet values) as used for the flow part of the
model in the numerical tests of Section 5.

A spatial GD can be extended into a space-time GD by complementing it with
e a discretization 0 =ty < t; < --- <ty =T of the time interval [0,T];
e interpolators Ip,: Vo — X%p and Iy : L*(Q) — X%p of initial conditions.

For n € {0,..., N}, we denote by Stnti = tn+1 — t, the time steps, and by At = max,—o, .~ §t"*3 the maximum
time step.

The spatial operators are extended into space-time operators as follows. Let x represent either p or u. If w =
(wn)N_, € (XODX)N“7 and Vp_is a spatial GD operator, its space-time extension is defined by

Up w(0,-) = ¥p wo and, Vn € {0,...,N — 1}, Vt € (ty, tni1], ¥p w(t,-) = ¥p wni1.

For convenience, the same notation is kept for the spatial and space-time operators. Moreover, we define the discrete
time derivative as follows: for f : [0,T] — L'(2) piecewise constant on the time discretization, with f,, = Ji(tn_ tn]

and fo = f(0), we set §:f(t) = fé*éf for all t € (tn,tny1], n€{0,...,N —1}.

s
Notice that the space of piecewise constant X%X—valued functions f on the time discretization together with the initial
value fo = f(0) can be identified with (X%X)N +1 The same definition of discrete derivative can thus be given for an
element w € (X3 )V*'. Namely, d,w e (X3 )" is defined by setting, for any n € {0,...,N — 1} and t € (tn,tni1],
Sew(t) = (Opw)py1 = === If Wp (t,-) is a space-time GD operator, by linearity the following commutativity

n+i

property holds: ¥p d;w(t,-) = §:(Vp w(t,-)).

The gradient scheme for the system consists in replacing the “continuous” functional space and differential operators in
(6)—(7) by their discrete counterparts. This results in the following discrete problem: find p* € (X%p)N“, a € {nw, w},



and u € (X )N+, such that for all p* € (X3, )¥ !, ve (X3 )N and a € {nw, w},

J f (60 (pTE, 5, T8, 0 + g, (05, 56, /K VB, p* - V3, 07 ) et

K dfpunf sf)ng o®do(x)dt

+f fn?(ﬂ{)ps? fD“pr V ¢ do(x)dt
o Jr

ho I3 o™ dxdt +f J h?l’[épgp"da(x)dt,
Q 0o Jr

D)+ Dy (v) = b IIE p% divp, (v )dxdt
J JH;;pf [v]p,do(x)dt = f ff Ip,v dxdt,

K

with the closure equations
Pec = pnw - pw’ s%z = S%(pc)a 5? = S(fl(pc)»

pa= >, Psm—Un(pe), pf= D, p"s§—Us(pe),

ae{nw,w} ae{nw,w}

¢p —TI5, 60, = b divp, (u—u®) + LTI (o2 — pE0), (8¢)
dvau = 7[[uHDu’

Du (V) =2u Da (V) + )\diVDu (V)]I

The initial conditions are given by p§ = Ip,p§ (o € {nw,w}), ¢,, = IP q’) , and the initial displacement u® is
the solution of (8b) without the time variable and with the equlvalent pressures obtained from the initial pressures
(pg)ae{nw,w}'

Remark 3.2 (Non-homogeneous boundary conditions). The homogeneous Dirichlet boundary conditions are embedded
in the discrete spaces X%y and X%u. Non-homogeneous (or other types of) boundary conditions are equally easy to
handle in the GDM setting [30, Section 2.2 and Chapter 3].

Remark 3.3 (GDM framework). As shown above, the GDM framework enables a presentation of the schemes in a way
that is almost as compact as the weak formulation itself (compare with Definition 2.1). This presentation is valid for
conforming methods, that already have a compact writing but may not be the best suited in practical applications
(especially for the flow component), but also for non-conforming methods of practical interest in engineering; explicitly
writing, for example, the TPFA formulation for the flow component of the model would lead to much lengthier
equations. Additionally, the GDM analysis is also carried out in a compact way, identifying key properties and
manipulating discrete equations almost as their continuous counterparts; notwithstanding the fact that this analysis
applies to many different methods at once, developing it for a given specific scheme would not lead to any simplification
— the complexity in the upcoming analysis comes from the poromechanical model we consider, not from the numerical
analysis framework we use.

3.1 Properties of gradient discretizations

Let (D )ien and (D!)jen be sequences of GDs. We state here the assumptions on these sequences which ensure
that the solutions to the corresponding schemes converge. Most of these assumptions are adaptation of classical
GD assumptions [30], except for the chain-rule, product rule and cut-off properties used in Subsection 4.2 to obtain
compactness properties; we note that all these assumptions hold for standard discretizations used in porous media
flows.

Following [18], the spatial GD of the Darcy flow D, = (X%p, gp, Vép, H%P, Hép) is assumed to satisfy the following

coercivity, consistency, limit-conformity and compactness properties.
Coercivity of D,. Let Cp, > 0 be defined by
I w2 + 1T vlz2ry

Cp. = max . 9
P oA, ol ®)




Then, a sequence of spatial GDs (Di,)zeN is said to be coercive if there exists C), > 0 such that CD% < CpforallleN.

Consistency of D,. Let r > 8 be given, and for all we Vp and v € X%p let us define

Sp,(w,v) = [VB v = Vw| g2y + |V v = Veyw| o)

(10)

+ T3, v — w20y + [T v — W]y,

and Sp, (w) = min,e xo Sp,(w,v). Then, a sequence of spatial GDs (Dé)leN is said to be consistent if for all w € Vj
p

one has lim;_, | o SDL (w) = 0. Moreover, if (D;,)leN is a sequence of space-time GDs, then it is said to be consistent if

the underlying sequence of spatial GDs is consistent as above, and if, for any ¢ € V, and v € L*(2), as | — +c0,

N0, HH%ZIDI’)W — |2 + HH;;LID;J%U — ¢llz2ry — 0 and ”Hgﬂgyﬂ —Y|lp2) — 0. (11)

Remark 3.4 (Consistency). In [18], the consistency is only considered for r = 2. As it will appear clear in the analysis,
dealing with the coupling and non-linearity of the model requires us to adopt here a slightly stronger consistency
assumption. Under standard mesh regularity assumptions, this stronger consistency property is still satisfied for all
classical GDs [30, Part III|.

Limit-conformity of D,. For all (r,,,ry) € C*(Q\)? x C*(I)*" and v € X3, , let us define

W’DP(I‘m,I‘f,U) = J

(rm -Vp v+ Hp v div(rm)>dx
Q

(12)
+J (v - Vb0 + 1 v (div, ()~ [en]) ) do(r0),
r
Wp, (tm,rs,v . L o .
and Wp, (rys,Ty) = max M. Then, a sequence of spatial GDs (Dé,)leN is said to be limit-conforming

osvexy  [vlo,
if for all (rp,,ry) € CO(O\D)4 x CP(I')?~1 one has lim;_, 4o Woi (rm,rs) = 0. Here C*(I')4~! denotes the space of
functions whose restriction to each I'; is in C®(T';)4~! tangent to I';, compactly supported away from the tips, and
satisfying normal flux conservation at fracture intersections not located at the boundary o0f).

Remark 3.5 (Compactly supported fluxes). The role of (r,,,r) is that of test functions (they do not represent the
continuous fluxes), to show that the limits of the discrete fluxes are indeed the continuous fluxes, see [18, Lemma 5.5].

(Local) compactness of D,. A sequence of spatial GDs (Di,)leN is said to be locally compact if for all sequences
(V") 1ene (X%L)ZEN such that sup;cy HUZHD; < +o0 and all compact sets K,,, € Q and K; < T, such that K is disjoint

from the intersections (T'; N T';);+;, the sequences (117, v!)jen and (H{)l v!)jen are relatively compact in L?(K,,) and
P P

L*(Ky), respectively.

Remark 3.6 (Local compactness through estimates of space translates). For K,,, K as above, set

HH%ZU(‘ +&) — H%év“LQ(K77L) + ZiEI HH&?U(' +mi) — Hé}tijLQ(Kfml“i)

Tp Kk, k,(§,n) = max
b Ko 15 (6571) veX2,\(0) lvlot ’

where € € RY, n = (1;)ie; with 7; tangent to I';; for & and 7 small enough, this expression is well defined since K,,
and Ky are compact in Q and I, respectively. Following [30, Lemma 2.21], an equivalent formulation of the local
compactness property is: for all K,,, Ky as above,

(m, sup Toy ge, r¢, (€)= 0.

Remark 3.7 (Usual compactness property for GDs). The standard compactness property for GD is not local but global,
that is, on the entire domain and not any of its compact subsets (see, e.g., [30, Definition 2.8] and also below for Dy,).
Two reasons pushed us to consider here the weaker notion of local compactness: firstly, for standard GDs, the global
compactness does not seem obvious to establish (or even true) in the fractures, because of the weight dy in the norm
| -|lp,, which prevents us from estimating the translates of the reconstructed function by the gradient near the fracture
tips; secondly, we will only prove compactness on saturations, which are uniformly bounded by 1 and for which local
and global compactness are therefore equivalent.

In the following, for brevity we refer to the local compactness of (Dé)leN simply as the compactness of this sequence
of GDs.



Chain rule estimate on (Dé)zeNi for any Lipschitz-continuous function F' : R — R, there is Cr > 0 such that, for
allleN,ve X2,
P

vaéF(U)HLZ(Q) < CFHV%Z’UHLQ(Q)

Product rule estimate on (Di,)leN: there exists C'p such that, for any [ € N and any u!,v* € X2, , it holds

DL
[ l l l l
V8, (') 2@y < Cr ([ IVE, 2@ + [ VB, 112 )

where |w|y = max;es |w;| whenever w = Y}, ; w;e; with (e;);er the canonical basis of X%l .
P

Cut-off property of (D.)en: for any compact set K < Q\I', there exists Cx > 0 and (¢')en € (X3 Jien such that
(|1*|s)1en is bounded and, for I large enough:
gl =000 Q; MR =1on K;  |ViEd!|2) < Ok
Hgé (W' =0 and v{)le (W) =0 for all vl e X%é

Coercivity of (D!))en. Let Cp, > 0 be defined by

Il v + |[{[v
R R P [\ P Ty ”
0#veX?, HVHD{,

Then, the sequence of spatial GDs (D.,)en is said to be coercive if there exists Cy > 0 such that Cpr < C for all
leN.

Consistency of (D.,);en. For all w € Uy, it holds lim;_, , Spi (w) = 0 where

Spy(w) = min [| oy (v) = (W)la@s,m) + Moy = wlzae + Moy = 9] o |- (14)

veX?,
Du

Limit-conformity of (D.,)ien. Let CF(Q\T, Sq(R)) denote the vector space of smooth functions : Q\I' — Su(R)
whose derivatives of any order admit finite limits on each side of T', and such that *(x)n™ + ~(x)n~ = 0 and
( F(x)n")xn* =0 for a.e. x e I'. For all € COF(Q\I', Sq(R)), it holds lim;, ;oo Wpe (1) = 0 where

1

Woy() =, mis, o [ ou oy ai())ax = [ () 0 vlnyotx)|.

Compactness of (D!)en. For any sequence (v!)ene (X%L)IGN such that sup,cy v} |lpy, < +00, the sequences
(H'Dflvl)lEN and ([I:VZII'Dfl)ZGN are relatively compact in L2(2)¢ and in L*(T') for all s < 4, respectively.

Remark 3.8 (Compactness through estimates of space translates). Similarly to Remark 3.6 (see also [30, Lemma 2.21]),
the compactness of (D! )en is equivalent to

lim supTp 4(&,1n) =0 Vs <4,
En—0 ey W

where

T v(- + &) = Tpr vl 20y + ey [[vVIpr (- + mi) — [[VZHDQ‘LSW)
Tp (&,m) = max =,
w vexy, \(0} Ivlp

with £ € R¢, 1N = (n;)ier with n; tangent to I';, and the functions extended by 0 outside their respective domain 2 or
I.

4 Convergence analysis

The main result of this work is the following theorem stating the convergence of the sequence of discrete solutions to
a weak solution up to a subsequence.



Theorem 4.1 (Convergence to a weak solution). Let (D) )ien, (Dl)ien, {(t;)ﬁio}leN (where N is the number of time
steps of ’Dé), be sequences of space time GDs assumed to satisfy the properties described in Section 3.1. Let ¢y min > 0

and assume that, for each | € N, the gradient scheme (8a)—(8b) has a solution p§* € (X%;)Nl*'l, a € {nw,w},
ul e (X%L)Nl+1 such that '

(i) dgp(t,x) = do(x) for a.e. (t,x) € (0,T) x T,

(i1) dpi(t,X) = Gm,min for a.e. (t,x) € (0,T) x .

Then, there exist p* € L?(0,T;Vp), a € {nw,w}, and . € L*(0,T;Uy) satisfying the weak formulation (6)—(7) such
that for a € {nw,w} and up to a subsequence

17, pl — p© weakly in L2(0,T; L?(2)),
Hf,pl — yp* weakly in L*(0,T; L*(T")),

prlu —1 weakly-* in L*°(0,T; L?(2)%),

dpt — Om weakly- in L®(0,T; L%(£2)),

ds —dy in L®(0,T; LP(T")) for 2 < p < 4,

T, S5 (0h) — Siu(pe) in L2(0,T; L*(92),
1], S7(pk) — S§(vpe) in L*(0,T; L*(I),

- - PR 1, _ = _ _ _ _
where ¢, = ¢0, + b div(a — a’) + M(pm pﬁo), dy = —[u], and p. = p™™ —p*.

Remark 4.2 (Discrete porosity and fracture aperture). As mentioned in the introduction, the assumptions that the
discrete porosity and fracture aperture remain bounded below is a requirement coming from the model itself (which
does not account for possible contact). It is not a fundamental restriction of the numerical framework and analysis.

We first present in Subsections 4.1 and 4.2 a sequence of intermediate results that will be useful for the proof of
Theorem 4.1 detailed in Subsection 4.3.

Remark 4.3 (Incompressible limit for the solid matrix). The above convergence result also holds when 1/M = 0, i.e.,
in the incompressible limit for the grains of the solid matrix (M — +00). Indeed, in this case, Lemma 4.4 below does
not ensure L (L?)-boundedness of the reconstructed matrix equivalent pressure. Nevertheless, L?(L?)-boundedness
for this quantity (needed in the proof of the above theorem, cf. Subsection 4.3) can be readily inferred, based on the
L?(L?)-boundedness of the reconstructed phase pressures (resulting from Lemma 4.4), the fact that reconstructed
saturations are bounded, and the definition (5) of the capillary energy density.

4.1 Energy estimates

Using the phase pressures and velocity (time derivative of the displacement field) as test functions, the following a
priori estimates can be inferred.

Lemma 4.4 (A priori estimates). Let p®,u be a solution to problem (8) such that
(i) d¢p,(t,x) = do(x) for a.e. (t,x) € (0,T) xT,
(i1) dp(t,X) = Gm,min for a.e. (t,x) € (0,T) x Q, where ¢y min > 0 is a constant.

Under hypotheses (H1)—(H6), there exists a real number C' > 0 depending on the data, the coercivity constants Cp,,
Cpy» and Ppy min, such that the following estimates hold:

VD, p* L2 (0.1)x0) < C, ||df/2D D, P “lz2(0.r)xr) < C,
U (I pe) | Lo (0,701 (02)) < €, |doU s (115, Pe)ll 0,700 (r)) < C, (15)
Iy Pm||L°0(0TL @) <C, | Do ()] (0,1:2(2,5.®) < C,
lds,pullLe=0,7;08(r)) < C.
Proof. For a piecewise constant function v on [0,7"] with v(¢) = vy,41 for all ¢ € (¢, tn41], n € {0,..., N — 1}, and the

initial value v(0) = vy, we define the piecewise constant function ¢ such that o(t) = v,, for all ¢ € (¢, t,+1]. We notice
the following expression for the discrete derivative of the product of two such functions:

O (uw)(t) = 4(t)dev(t) + v(t)dpu(t). (16)

10



In (8a), upon choosing ® = p® we obtain Ty + Ts + T3 + Ty = Ts + Tg, with

T
Ty = J J 5t ¢pllp, S?n) p, " dxdt, T, = f f M ( m) KV p* - Vi p*dxdt,
_ f  a _ oz a Dy f a [« 17
5t deH 5§ )y p*do(x)dt, Ty = fH 5%) Vi, 0™ - Vip p*do(x)dt, (17)
Ts = J J R T p*dxdt, Ts = f Jh;ﬁn{) p*do(x)dt.
o Ja i o Jr v

First, we focus on the matrix and fracture accumulation terms 77 and T3, respectively. Using (16) and the piecewise
constant function reconstruction property of H%p, rt € {m, [}, we can write

51(dp S % pe)) = 06 S, (B, pe) + Sin (I, pe) 816,
01(ds SF(IT, pe)) = dy,p,0:5F (T, pe) + SF (15, pe)didy,p,.
Summing on « € {w,nw}, we obtain

Z(Tl +T3) = f J ¢DHm P~ 0S5, (H%‘ pe)dxdt +J f S ( Hg pC)Hm p* dpppdxdt

[0}

+J f dy.p, 1T p® 6,57 (1) p.)do(x)dt +J J SF (I, pe)lT), p° 5tdf,Duda(x)dt>.
0 T 0o JI°

Now, for rt € {m, f},
Z H%,,pa 15T (H%pPC) = H%ppc 0ty (H%pPC) = 6¢Ur (H%pPC)- (18)

Indeed, for n € {0,..., N — 1}, by the definition (5) of the capillary energy U, and letting ', = H%ppcyn, we have

rt
c,n+1

Tem 1 (S (Tep 1) = Si™ () = Une(meg) — Un(me,) + J (Si¥(q) — Si™(me))dg

T
= Urt (’/Tg,cn-i—l) - Urt (ﬂ-zfn)’

where the last inequality holds since S}V is a non-decreasing function (see (H2)). Thus, we obtain

T
Z(Tl + T3) f f 6 Up, (I, pe)dxdt +J f df’puéth(Héppc)da(x)dt
o Jr

T
* Z (L JQ Sim (ngpc) gppa dppdxdt + L JF S? (Héppc)H{)ppa 5tdf,z)ud0'(x)dt).

Applying again (16), we have

$p0Unn (I3, pe) = 6¢(¢pUnm (LB, pe)) — Upn (I3, pe)Se ¢,
dy p,0:U5 (1T, pe) = 6¢(dy.p,Us (1T, pe)) — Ur (I pe)didy p,.

In the light of the closure equations (8c), this allows us to infer that

DT+ Ty) J f 6t (dpUpn( %ppc))dxdt—f—JO L5t(df,DuUf(H;;ppc))da(x)dt

«

2 T
J J —@ HD pﬁ) dxdt + f LI pZ divp, (§,u)dxdt (19)
o 2M 0 Jo ’

~ f J 1}, % [ulp, do(x)dt
0 I

where we have used the fact that )
’U(Stl} = (St <U2> (20)

for v piecewise constant on [0,T]. Then, taking into account assumptions (H1)—(H6), there exists a real number C' > 0
depending only on the data such that

DT +Ty) > f JZ|VDP |2dxdt+f JZ\d?{ZDuV£ppa|2da(x)dt). (21)

11



On the other hand, upon choosing v = d;u in (8b), we get Ty + Tg + Ty = T19, with

T T
T: = f f p.(u): p, (Spu)dxdt, Tg= —f J bILE pE divp, (6,u)dxdt
a o ” (22)

T T
Ty :J J 11}, p¥ [s;u]p,do(x)dt, Tip = f f f-TIp, (6,u)dxdt.
P Q

Using (20) and developing the definition of p,(u), we see that

J f 5. (= pu(u): u(u))dxdt, (23)

so that, all in all, taking into account that > (11 +To +T5 +Ty) +T7 +Ts + Ty = >, (T5 + Ts) + Tho and inequalities
(19)—(21)—(23), we obtain the following estimate for the solutions of (8): there is a real number C' > 0 depending on
the data such that

| ], St poy) st + [ [ 6utdyo, U (115, ) dota
0 Q 0 I

[ (5 o w1 ) axar
+Zf J V5 p° |2dxdt+2f fld% Vb, 0" do(x)d (24)

C <f f f -0 0Ip, udxdt +ZJ f h%H%ppo‘ dxd¢
0 Ja ~Jo Ja
T
+ Zf f YL, p© da(x)dt> .
o Jo Jr ?

Now, we have
T
J J f-0,llp,udxdt = J f - (Up,u(T)—f -Ip,u(0))dx
0 Jo Q

< Op,[f ]2 (| 2o (@) (1) 22,500 + | D (W)(0)] 22 (02,5.(®))»

3 f fho‘l_[%p dxdt+J fhaH;;p do(x )dt)
<

Cp, Z(||hm|\L2((o,T)xQ) + Al 20,1y <)) (IVD, P [ 20, 7;22(0)) + de/,zpuvépp Iz2(0,7:L2(r)))

where we have used the coercivity properties of the two gradient discretizations along with the Cauchy—-Schwarz
inequality and dy < dyp,. Using Young’s inequality in the last two estimates as well as hypotheses (H1)-(H6) and
(ii) in the lemma, it is then possible to infer from (24) the existence of a real number C' > 0 depending on the data
and on ¢, min such that

U (108, pe)(T) [ 26 + [ doU (1, pe)(T) 1) + I(TLB, p12) (1) 720y
m (3 3 (e
+ [ 2o (WD) Z2(0.5,m) + Z(vapp 1220222 + 1670, V2 Be0.iz2(r)

< (Il + D010 * 1512 0.1740)

+ [ Unn (T8, 1) (0) | 1 0y + dg,0, (0) U (I, pe) (0) 111y

+ (T3, pE) 0220y + | (T, pF)(0) 321 )-

The consistency property (11) shows that the terms above involving the discrete initial conditions are bounded and
thus, together with the fact that T' can be replaced by any t € (0, 7] in the left-hand side, this inequality yields the a
priori estimates (15) on p®, p., pZ and u. The estimate on d; p, follows from its definition and from the definition
(13) of Cp,. O

4.2 Compactness properties

Throughout the analysis, we write a < b for a < Cb with constant C' depending only on the coercivity constants Cp,,
Cp,, of the considered GDs, and on the physical parameters.
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4.2.1 Estimates on time translates

Proposition 4.5. Let D), Dy, (tn)N_o be given space time GDs and ¢umin > 0. It is assumed that the gradient
scheme (8a)—(8b) has a solution p® € (X%p)NH, o€ {nw,w}, ue (X3 )Nt such that ¢p(t,X) = Gmmin for a.e.

(t,x) € (0,T) x Q and djp,(t,x) = do(x) for a.e. (t,x) € (0,T) x . Let 7,7’ € (0,T) and, for s € (0,T], denote by
ns the natural number such that s € (t,,,tn,+1]. For any ¢ € X%p, it holds

K[enTB, 50,1(7) — [6pT18, 55,1(7'). TT5, )12 (@)

+ (g0, 531(7) = [dyo, T 1), 1 @paqr|

) L (e L P i L A P

n=n,+1
2),a,n+1 2),a,n+1
T ER IR ey + €7, ploay)

with
N1 L . 2
> atrtd (€0 <1 Jorte fm, ) de (1,2},
n=0
and
a,n m .« 1),a,n+1 n n 3
Gt = VB pala@  and 0O =GB )MV w4y, iy
1 tnt1 tn41
(2),a,n+1 _ H f Y (£, )dt (2),a,n+1 _ H J\ ROt dt .
fm 5tn+% . m( I ) L2(Q) g 6tn+% . f( ) ) L2(T)

Proof. For any ¢ € X%p7 writing the difference of piecewise-constant functions at times 7 and 7’ as the sum of their
jumps between these two times, one has

K[8pTIE, 55,1(7) — [6pT18, 55,1(), 118, )20

+([dy,p 1T, sF1(7) = (g0, 115, s§1(7), T, @) r2(ry

(26)
<DL SR GpTIE 55 (bns1), TR, ©)pa(a) + Orldr D I 551 (tn 1), T @)rar)|.
n=n,+1
From the gradient scheme discrete variational equation (8a), we deduce that
(GuléDIT, 53] (i) TIB, D120 + (Guld 0, I, 551(Ensn ), I, )2y
< |IVp, phiilez) [V, el @) + ||(d?%1u)3/zvf Priilzem) ||(d?%1u)3/zvf ellzzr
1 bnt1
+H—f Ko (1, -)dt e
St tn m( ) L2(2) H ’Dp(’OHL%Q) (27)

1 tn+1
+|= L h3 (¢, -)dt

ot tz L2(T)
a,n m 1),a,n+1
< €Dt T ol L2y + EHVE ollsr

an (2),a,n+1
+ 57(73)’ ’ HHH SDHLZ(Q) +€f) " HH LPHLZ(F)’

Hﬂépsﬁ\\m(r)

where the term | (d;ﬁ%luf/zv%;pgoﬂ r2(r) has been estimated using the generalized Hoélder inequality with exponents

(8,8/3), which satisfy 1 + 2 = 1. Hence the result follows from (26), (27), the a priori estimates of Lemma 4.4, and
from the assumptions A, € L*((0,T) x Q), h} € L*((0,T) x T). O

Remark 4.6. Summing the estimate (25) on « € {nw, w} we obtain the following time translate estimates on ¢p and
df,p,:

‘<¢D(T) — (), 115, ©)12(0) + (s, (7) — dpp, (7), T, ‘P>L2(F)‘

< XY et (e VR ol + €IV el (28)

ae{nw,w} n=n-+1

+ 553)’“’”“HH @l + &5 (@), nHHH 80\|L2(r))
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4.2.2 Compactness properties of H’” o

Proposition 4.7. Let (D})en, (D)en, {(tln)ﬁio}leN be sequences of space time GDs assumed to satisfy the properties
described in Section 3.1. Let ¢ min > 0 and assume that, for each | € N, the gradient scheme (8a)—(8b) has a solution

€ (X%;))NZH, ae{nw,w}, ul e (X%L)NZJrl such that
(i) dgp(t,x) = do(x) for a.e. (t,x) € (0,T) x T
(11) ¢pi(t,X) = G min for a.e. (t,x) € (O T) x Q.
Then, the sequence (H%psa’l)leN, with st = S2 (pl), is relatively compact in L*((0,T) x Q).

m

Proof. Let K be a fixed compact set of Q\I" and let us consider cut-off functions 1! as defined in the cut-off property
of the sequence of spatial GDs (D )IGN The superscript | € N will be dropped in the proof, and assumed to be large
enough. All hidden constants in the following estimates are independent of I. Using that ¢p(¢,X) = @y min for a.e.
(t,x) € (0,T) x 9, the properties of the cut-off functions, and noting that I3 sg,' = Sp, (II pl) € [0, 1], we obtain

T
J;) ”ngsgn(-‘f"ﬂ ) ,D Sm”LQ K)dt
T—1 ,
s [ [ e oo (08,55~ T ) e = 74 T3,
0 Q

where

([opp, sp](t + 7) — [Pl 55,1(), 5, (i (£)) L2 () |dE,

(pp(t+7) = ép(t), I X5 (8)) L2 |dE

T—T1
T = f

0

T—1
T, = j

0

with 2 (t) = (5%@ +7)— s%(t))z/; and x% (t) = (5 (t) s%,(t+ 7). From the cut-off property it results that H{)pg‘; =0
and V{)P (2 = 0. Then, in view of the estimates (25), we have

T—71 T(t+7)
T §L Z gt (5(1 (”LHHVDP G z2(0) fg)’a’nHHﬂgpggm(t)um(ﬂ)) dt

n=n:+1

T—7 Pt
SJ- Z 6tn+%((§7(&),a,n+l)2 + (fg)va,n-&-l)Z + H m Ca( )”%2(52) + HH%pC%(t)H%z(Q)) dt.

0 n=n:+1

From Proposition 4.5, we have

NZ“ <€(1),a n+1) (gg),a,n+1)2) <1.

Using the a priori estimates of Lemma 4.4, h% € L?((0,T) x Q), the Lipschitz property of S, the chain rule and
product rule estimates on the sequence of GDs (D )ien, and the cut-off property, we obtain that

T—1
| (98,6000 + 108, 0l )t < 1.

We deduce from [5, Lemma 4.1] that 73 < 7 + At with a hidden constant depending on K but independent of .
Similarly, using the time translate estimate (28), one shows that T < 7 + At, which provides the time translates
estimates on Il s7, in L?(0,T; L*(K)).

The space translates estimates for 17 st in L?(0,T; L*(K)) derive from the a priori estimates of Lemma 4.4, the

Lipschitz properties of S5, and from the compactness property of the sequence of spatial GDs (Dll,)leN (cf. Remark
3.6). Combined with the time translate estimates, the Fréchet—-Kolmogorov theorem implies that H”ﬁp s is relatively

compact in L?(0,T; L?(K)) for any compact set K of Q\I'. Since g sp, € [0,1], it results that Iy sy, is relatively
compact in L2((0,T) x Q). O
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4.2.3 Uniform-in-time L?-weak convergence of ¢plly sp, and ¢p

Proposition 4.8. Under the assumptions of Proposition 4.7, the sequences (¢pi)ien and (QSDlanlpSf;;l)leN; with s%! =

S2 (pL), converge up to a subsequence uniformly in time weakly in L*(Q).

Proof. Let K be a fixed compact set of Q\I' and let ¢! be cut-off functions for this compact set, as defined in the
cut-off property of (,Dé,)leN- The superscript [ € N will be dropped when not required for the clarity of the proof, and
assumed to be large enough.

For w e Vy we let Pp w € X%p be the element that realizes the minimum in Sp,(w), so that

IV, Pp,w — V| 120 + |VH, Pp,w — Voyw| o)
+ T3, Pp,w — w|2(0) + [T, Pp,w — yw| L) = Sp, (w). (29)

Let o € C(Q) and set ¢ = Pp @. It results from the cut-off property that H{)p(mp) = 0 and Vép () = 0. Using

the GD consistency property of (D.);en and (29), we see that IVB, (V@) r2(0) and |17 (¢¢)|r2(0) are bounded by
constants depending on K and ® but independent of [. Then, from Proposition 4.5, we have with hidden constants
independent of [ but possibly depending on K and @, that

arg, v ([opl15,53,1(r) — [op115, 531(7)) . 1B, @)z

= [((op113, $5.0(r) — (o118, s2.1(7'). 1B, (¥ 12(0)|

< Y (DO VE W)l + €2, (6) e

n=nr+1
1 1
< ( % 6tn+% ((g(l),a,nJ—l)z + (E(Q),a,n+1>2>> ’ ( % 5tn+%> ’
n=n,+1 n=n,+1

< ‘T—T’|% + At3,

Since Iy s7, € [0,1], ¢p is bounded in L*(0, T} L2()) (see (8c) and (15)), and II75 ¢ is uniformly bounded, one has

K113, v ([6pT15, 55.1(7) — (60115, 55.1(7) ) Dreey| < I = 71F + AtF +wp,, (30)
with wp, = @ — nggoH L2(Q) a consistency error term such that lim;_, 4 wpt = 0. It follows from the discontinuous
Ascoli-Arzela theorem [30, Theorem C.11] that (up to a subsequence) the sequence (IIy ¥)¢p(II5 s7,) = ¢pllp (s,¢)

converges uniformly in time weakly in L?(Q).

Let us now take w € CP(Q\I') and let K be the support of w. For [ large enough, by definition of 9! we have
(qﬁDzHgés?n’lﬂK = (ZSDLH%Z (yls®!). Hence,

(pp T 55 w)r2() converges uniformly with respect to ¢ € [0, T]. (31)

Since (¢ppiII, s )ien is bounded in L*(0,T; L?(Q2)), the density of CP(Q\I') in L?(2) shows that the convergence
P
(31) is valid for any w € L?(2), which concludes the proof that the sequence G 1T, 5%l converges uniformly in time,
P
weakly in L?(Q).

We deduce that the sequence ¢pr = >, . (nw,w} Dot L, 5%l also converges uniformly in time, weakly in L2(Q). O
’ P

4.2.4 Uniform-in-time L?-weak convergence of dﬁpuﬂép s? and d¢ p,

Proposition 4.9. Under the assumptions of Proposition 4.7, the sequences (df’DL)leN and (df’Dleéps?’l)leN, with

3(}"1 = S]?‘(pi), converge up to a subsequence uniformly in time weakly in L?(T).

15



Proof. Let K be a fixed compact set of Q\I" and let us consider cut-off functions ¢! as defined in the cut-off property
of (Df,)leN. In the following, the superscript | € N (assumed to be large enough) is dropped when not required for
the clarity of the proof, and the hidden constants are independent of . Let @ € C°(Q2) and set ¢ = Pp @, with Pp,
characterised by (29). From Proposition 4.5 we have

(lds0. 115, 57)(7) = [d7.p, 105, 551, 11, @)r2r)|
< [((16o118, 53,1(7) = [60115, 551(7)) 1B, )12

+ max (| V3, @), 195, @lesy, 108, 012 11, el e )

(LB o (o e ' o))

n=n,+1

><< Ti 6t"+§>2

n=n,+1

[N

A

(17 = 71% + at#) + (00113, 551(7) — 00108, 55,)(7) ) TIB, D120
Since ¢plly sy, is bounded in L*(0, T L?(9Q)) (see the proof of Proposition 4.8), we have

(([op113,50.1(7) = [6p115,531(7) ) . 115, @) 2|
< 10— 108, lra(o) + [(6pTIH, 55.1(7) = [6p115, 55.1(7), D120
and
KLy, p,Tth, 551(7) = [d7, 0,10, 551(7), & = Ty, &> )| < lgpulpeo.m:r20 |6 = T ol cry-

Using the a priori estimates of Lemma 4.4, and Proposition 4.8 stating the uniform-in-time L?(2)-weak convergence
of gpr%p s% (which implies the equi-continuity of the functions 7 +— <[¢DH$p sl (7), @)12(0)), we deduce that

m
Ky, 551(7) = [dr, 0,10, s51(7), @y | < wllr = 7)) + Ath + =,

with limj,,o w(h) = 0 and wp, = [@—1IIF ¢l r2(0)+ H@—H{)papHLz(p) a consistency error term such that lim_, o @wpr =
0. It follows from the discontinuous Ascoli-Arzela theorem [30, Theorem C.11] that (up to a subsequence) the sequence
dsp, H%p s% converges uniformly in time weakly in L?(T'). Summing over o € {nw, w}, we also deduce the uniform-in-
time L?(T)-weak convergence of dy p,. O

4.2.5 Strong convergence of d;p,, dfpuﬂéps}", and H%ps;’é

Proposition 4.10. Under the assumptions of Proposition 4.7, the sequence (df’Da)leN converges up to a subsequence
in L®(0,T; LP(T)) for all 2 < p < 4, and the sequences (df’Dlunéps(;J)leN and (Héps‘;’l)leN, with s?’l = Sj?(plc),
converge up to a subsequence in L*(0,T; L*(T)).

Proof. By the characterization in Remark 3.8 of the compactness of (D, ),y and the estimate on p,(u) in Lemma
4.4, we have, for all i € I, all n; tangent to I';, a.e. t € (0,T) and all s < 4,

de,DL (ta C+ 771) - df,'ij (t7 )‘ L#(T;) < T’ij,s(oa 77)” Du (u)(t7 ')HLQ(Q,SGL(R)) < TDL,S(Oa 77)7

where n = (0,...,0,7;,0,...,0) and dspi has been extended by 0 in the hyperplane spanned by I';. Together with
the uniform-in-time L?(I")-weak convergence of d #,p1, from Proposition 4.9, this shows that we can apply Lemma A2
to dypi with p = 400 and get the convergence of this sequence in L*®(0,T; L3(T')). Since, from the a priori estimates
of Lemma 4.4, this sequence dyp: is bounded in L*(0,T; L*(T)), it follows that it converges in L*(0,T; L(T)) for
all 2 < g < 4.

For any compact set Ky < I' that is disjoint from the intersections (T; N fj)iﬂ-, using that H{)ps? € [0,1], that
|dspy(t, )| L4ry is uniformly bounded in ¢, and the Lipschitz properties of S¢, it follows that, for all i € I and
tangent to I'; small enough,

llds 0 s§1(t - +mi) = [dg.p 05 sF1(t )2, ~ro)

16



< ldsp, (¢, + i) — dgp, (E )| L2, AT

+ [ Tp, 5 (t, - +m:) =TI, 5§ (¢,-)] (&, ) zacr, ary)

< Iyt + ) — dyoy (1 ->HL2<KW1.) ¥ uné,,s?(t, P )Hm(w )
< de7Du (t" + ni) - d.f)Du (t’ ')HLz(KfmFi) + Hnéppc(t, -+ 77i) - Hé pC( )HLZ (K§nly)®

From the compactness properties of (D} )en and (D} )ien (see Remarks 3.6 and 3.8) it results that
S| sup g 0,8 1+ ) — [y 0,18, 71y or
iel = mil<d

3 (e} m (e}
< Tk, (5)(H Do (W) Lo (0,1522(0)) + Z (Hdo/QV{app lz20.1:02(r)) + VD, p HL2(0,T;L2(Q)))>

ae{nw,w}

L4(0,T)

with lims .o Tk, (0) = 0. From the a priori estimates of Lemma 4.4, and the uniform-in-time L?(T)-weak conver-
gence of dy p, s} of Proposition 4.9, it follows from Lemma A.2 that df,DuH{)ps‘]%‘ converges up to a subsequence in
L40,T; L*(Ky)).

From the assumption d; p,(t,x) = do(x), dsp, is bounded below by a strictly positive constant on Ky;. Writing
that Héps?‘ = ﬁ(df}puHQPS?), it follows that Hépsj‘é converges in L*(0,T;L?(Ky)). Since this is true for any
Ky compact in I' that does not touch the fractures intersections, and since H{)p s§ € [0,1], we deduce that H%p s
converges in L*(0,T; L*(T)). O

4.3 Convergence to a weak solution

Proof of Theorem 4.1. The superscript | will be dropped in the proof, and all convergences are up to appropriate
subsequences. From Lemma 4.4 and Proposition 4.10, there exist dy € L*(0,7T; L*(T")) and 8¢ € L7((0,T) x T') such
that

drp, — df in L*(0,T; LP(T)), 2 < p < 4,
I, S¥(pc) — ¢ in LA(0,T; LA(T)). (32)
From Proposition 4.7, there exists 5%, € L*((0,T") x Q) such that
Hm Se (p.) — 5% in L?(0,T; L*(Q)). (33)

The identification of the limit [18, Lemma 5.5], resulting from the limit-conformity property, can easily be adapted to
our definition of V, with weight dg/ * and the use in the definition of limit-conformity of fracture flux functions that
are compactly supported away from the tips. Using this lemma and the a priori estimates of Lemma 4.4, we obtain

p* € L*(0,T;Vp) and g§ € L*(0,T; L?(I")?~1), such that the following weak limits hold

Iy p* — p* in L2(0,T; L?(2)) weak,

H%S P — 3p° in L2(0,T; L2(I")) weak,

Vmpp — Vp© in L2(0,T; L2(Q)d) weak, (34)
dy*Vh p* — d*VoAp®  in L2(0,T; L3(1)*) weak,

) Vh p* — 8§ in L2(0, T; L2(T)~1) weak.

Let ¢ € C2((0,T) x I')4~! whose support is contained in (0,T') x K, with K compact set not containing the tips of T.

We have -
f f d’? Véppo‘ - do(x)dt — J J g} - do(x)dt.
o Jr

On the other hand, it results from (34) and the fact that dy is bounded away from 0 on K (because dy is continuous and
does not vanish outside the tips of I') that V;;ppa — V,4p® in L2(0,T; L?(K)?!). Combined with the convergence
d;/D @ — (df)"?¢ in L®(0,T; L*(I')%"1) given by (32), we infer that
3, T =
f f 40, Vh,p" - do(x)dt - f f (df)"*V D™ - p do(x)dt.
o Jr

This shows that g§ = (dy)"*Vvp™ on (0,T) x
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Combining the strong convergence of II; Sy (pe) = S, (II5 pe) (vesp. of Hpo S%¥(pe) = S§ (H’;ppc)), the weak conver-
gence of 7 pe (resp. Hpopc), and the monotonicity of S% (resp. SJ?‘)7 it results from the Minty trick (see e.g. [36,
Lemma 2. 6]) that s7, = Sy, (pe) (vesp. 5§ = S§(vpe)) with pe = p™ — p¥.

From the a priori estimates of Lemma 4.4 and the limit-conformity property of the sequence of GDs (D!)en (see
Lemma A.3), there exists u € L*(0,T; Up), such that

IIp,u—nu in L*(0,T; L*()?) weak *,

p,(u) — (@) in L*(0,7T; L?(22,S4(R))) weak *, (35)
divp,u — div(a) in L®(0,T; L?(Q2)) weak *,
dsp, = —[u]p, — —[u] in L*(0,T;L*(T)) weak *,

from which we deduce that dy = —[@] and that p, (u) converges to (@) in L*(0,T; L2(1, Sd(]R))) weak *.

From the a priori estimates and the closure equations (8c), there exist ¢,,, € L®(0,T; L(Q) and pE € L*(0,T; L?*(Q)

such that _
¢p — ¢m in L*(0,T; L?()) weak *,

Iy, pE —pE in L®(0,T; L*(Q)) weak *. (36)
Since 0 < = {0 2(58V) (2)dz < 2[p| for rt € {m, [}, it results from the a priori estimates of Lemma 4.4 that
there exist p e L2(0 T; L*(T )) Uf e L*(0,T; L*(T")) and U,, € L*(0,T; L*(f2)) such that
1, pf — p¥ in L2(0,T; L3(T)) weak,
I}, Us(pe) = Uy in L*(0,T; L*(T")) weak, (37)

1% U (pe) — Uy in L2(0,T; L*(Q)) weak.

For rt € {nw, w}, it is shown in [31], following ideas from [28], that Uy (p) = By (S (p)) where By : [0,1] — R is
a convex lower semi-continuous function with finite limits at s = 0 and s = 1 (note that B, is therefore actually
continuous on [0, 1]). Since I sj converges strongly in L2((0,T) x Q) to S™(p,), it converges a.e. in (0,7) x Q. It

results that B, (I s;*) converges a.e. in (0,7) x © to By, (5" (Pe)), and hence that U = B (™ (pe)) = Upn(Pe)-
Similarly, U; = Bf(S}lW(’ypc)) = Uy (yp.). We deduce that

prEn = Z ﬁaSgL(ﬁc) - Um(ﬁc) and p?‘ = Z "Yﬁasfa(fﬂjc) - Uf(’)/ﬁc)

ae{nw,w} ae{nw,w}

Using the estimate

f Y (2)d

P1

|Ure(p2) — Uri(p1)| = < [p2 — pi| + [p2SEY (p2) — PSS (1)),

the Lipschitz property of S&Y, p§ € Vo n L*(Q), vpg € L*(T'), a € {nw,w}, and the consistency of the sequence of
GDs (Dé,)leN, we deduce that
Iy, pﬁo — pEO in L2(Q),

ng O pf? in LA(D). (38)

Then, from Proposition A.4 it holds that

divp, () — div(@®)  in L%(9),
[W]p, — [8°] = —d% in LA(T).

It results from (36), (35), (38) and (39) and the definition of ¢p that

- - 1
m = b+ b div(a—a°) + 77 (P = Pi°)-

Let us now prove that the functions p®, « € {nw, w}, and u satisfy the variational formulation (6)—(7) by passing to
the limit in the gradient scheme (8).

For 6 € CX([0,T)) and ¢ € CF () let us set, with Pp characterised by (29),

e =", ¢") e (Xp,)" with ' = 0(t;—1)(Pp,¥).
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From the consistency properties of (Dé,) len With given r > 8, we deduce that

I Pp— ¢ in L3(Q),
My ¢ -6y in L2(0,T; L2())
B¢ = OVY d

1}, Pp, — i in LA(T),
: H;; © — Oyip in L*(0,T; L*(T)),
in L®(0,T; L2(Q)%), v{) © — OV, v in L0, T; L™ ()4 1).

e [

Setting

5, ¢DHD s )ngw dxdt

Q
T
= J‘ f 77 Kmv’p p VfD © dxdt
0 Ja
T
=J J 5t(dfp Hf sf>H{) o do(x)dt
o Jr
T .
=J Jn ;} "vg;p -V, @ do(x)dt
o Jr

T
tha cpdxdt—l—ffhal'[{)cpda( )dt,
0o JQ

the gradient scheme variational formulation (8a) states that

T+ T+ T3+ T4 =1T5.

For w e C¥([0,T)) and a smooth function w : Q\I' — R? vanishing on 02 and admitting finite limits on each side of
I', let us set

v=. ., vM) e (X3 )N with vi = w(ti_1)(Pp,w)

where Pp,w realizes the minimum in the definition (14) of Sp, (w). From the consistency properties of (D
deduce that

)lEN7 we
Mp,v — wi in L*(0 T; L2(Q)d)7
p,(V) > w (w) in L*(0,T;L3(Q, Sa(R))), (41)
[Vlp, = w[w]  in L"O(O,T; L*(I)).
Setting
T
Ts =J f ( p,(0): p,(v)— b(H%ppfl)diVDu(dexdt,
0o Ja
T
Tr = f f (I}, pf)[vlp,do(x)dt
o Jr
T
Ts = f J f -Ilp,v dxdt.
0 Jo
the gradient scheme variational formulation (8b) states that
Te + 17 =Tg.
Using a discrete integration by part [30, Section D.1.7], we have Ty = T1; + T12 with
T
Ty = —f J gi)p(H%pS%)(H”ﬁpPppip)Q/(t) dxdt,
0 Ja
Ty = = [ (13,15, °) 113, 57 (7o, 75)) 113, Pr, 1)0(0) dx.
Using (40) and (36), and that IIp s, € [0,1] converges to Sy (pc) a.e. in (0,7") x § (this follows from (33)), it holds
that

T
T11 — 7J\ f d_hnSgL(ﬁC)dlal(t) dth
0 JQ

Using (40), that ng[%‘péo converges in L2(2) to ¢° and that II% S% (Pp p§) € [0,1] converges a.e. in Q to S2 (pg),
we deduce that

T2 — *J ¢° S, (p5)0(0) d
Writing T3 = T31 + T32 with

T . .
T = [ [ dpouh, 55115, Po,030'0) o
0 T
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2 = [ 1ol (I, 57 1o, 7)) (11h, Po,)0(0) do ()

we obtain, using similar arguments and (39), that

T —
zgl—»-J‘ j 3753 (4pe)r8 () do(x)dt,
0 I

and
z@ﬁ—L@$M@mew@»

Using that 0 < n%(l’[%ps%) < N max; the continuity of 77, the convergence of I sy, a.e. in (0,T) x Q to S (pe),
(34) and (40), it holds that

T
- J J T (S (Pe)) Ky VB - 0V dxdt.
0 Jo
The convergence

Ty _’J f N7 (S7(vpe)) =5 VD™ - V41 do(x)dt

is established using 0 < n?(Héps?) < N maxo the continuity ofin?, the convergence of H{)ps? a.e. in (0,7) x T to
S}’-‘(’yﬁc), combined with the weak convergence of djc/fpu Véppa to djc/QVTvﬁo‘ in L2((0,T)xT')4~1, the strong convergence
of d;/’zpu to J}/Z in L*((0,T) x T') for all 2 < s < $ (resulting from (32)), and the strong convergence (40) of V{)pap to
OV v in L*(0,T; L"(T")) with r > 8.

The convergence

T T
Ts — J J hey, 01 dxdt + J J h§ 0(yi) do(x)dt
0 Ja o Jr

is readily obtained from (40). The following convergences of Tg, T7, T
Ts — J f C(W)w — bpE div(w)w ) dxdt,
T — f J 15]]? [wlw do(x)dt
o Jr

T
T8—>J ff-wwdxdt
o Jo

classically result from the strong convergences (41) combined with the weak convergences (35).

Using the above limits in Ty + 75 + T3 + Ty = T and Tg + T7 = Ty concludes the proof that p*, a € {nw,w}, and @
satisfy the variational formulation (6)—(7). O

5 Two-dimensional numerical example

The objective of this section is to numerically investigate the convergence of the discrete solutions on a simple geomet-
rical configuration based on a cross-shaped fracture network. We refer to [14] for the presentation of a more advanced
application to the desaturation by suction at the interface between a ventilation tunnel and a Callovo-Oxfordian
argilite fractured storage rock.

5.1 Setting

Let us consider the system (3)—(4) in the square domain Q = (0, L)?, with L = 100m, lying in the zy-plane and
containing a cross-shaped fracture network I" made up of four fractures (cf. Figure 3), each of length , aligned with

the coordinate axes and intersecting at the center of the domain (é 5 L. More precisely, the fracture network is defined

as follows: T’ = U?:l T;, where I'y = (%L, %) X {%}7 Ty = (%, %L) {2 3Ty = {5} (g ,5), and 'y = {5} (2 , 8L)
The data set employed is inspired by [59, Section 5.1.2]. The matrix and fracture network have the following mobility

laws: (572
nm(s ) = ) Ny (S ) =—5, QE {W,HW}, (42)




<

T, I,

I's
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u=0on (0,7) x 0Q

Figure 3: Computational domain.

where 1V = 1073 Pa-s and g™ = 1.851-107° Pa-s are the dynamic viscosities of the wetting and non-wetting phases,
respectively. Notice that 7y, and % do not satisfy the assumptions of our analysis, as they are not bounded below by a
strictly positive number; these choices are however physically relevant, and as the test shows, do not seem to impair the
convergence of the numerical scheme. A non-degenerate regularization of these mobilities is also investigated below.
The function yielding the saturation in both rock types in terms of the capillary pressure is provided by Corey’s law:

s =SV (pe) = max(l — exp(—éc ),O), rt € {m, f},

Tt

with R, = 10*Pa and Ry = 10Pa. The matrix is homogeneous and isotropic, i.e. K,, = A,,I, characterized by a
permeability A, = 3-107!% m?, an initial porosity ¢?, = 0.2, effective Lamé parameters A\ = 833 MPa, p = 1250 MPa,
effective (drained) bulk modulus! Ky, = A+ © = 2083 MPa, and solid grain bulk modulus Ky = 11244 MPa. From these,
one can infer the values of the Biot coefficient b = 1 — % ~ (.81, and of the Biot modulus M = bfgo ~ 18.4 GPa.
Since we consider a horizontal domain with no gravity effect, we set f = 0 in 2 and no gravity term gppears in the
Darcy laws as in (3). The domain is assumed to be clamped all over its boundary, i.e. u = 0 on (0,7 x 09; for the
flows, we impose a wetting saturation s}, = 1 on the north side of the boundary (0,T") x ((0, L) x {L}), whereas the
remaining part of the boundary is considered as impervious (q% -n = 0, € {nw,w}). The system is subject to the
initial conditions pi¥ = p§ = 10° Pa, which in turn results in an initial saturation sont = 0, 1t € {m, f}. The final
time is set to T = 1000 days = 8.64-10" s. The system is excited by the following source term, representing injection

of non-wetting fluid at the center of the fracture network:

0% Vor
L 9(x) do(x) T/

R (t,x) = (t,x) e (0,T) x T,

where Vpor = {(, 99, (x) dx is the initial porous volume and g(x) = e=Blx—x0)/LI” o = (£,£), with 8 = 1000 and ||
the Euclidean norm. The remaining source terms A} and hy,, a € {w,nw}, are all set to zero.

As mentioned in the introduction, the GDM framework covers many possible schemes for both the flow and mechanical
components of the model. For the flow, one would typically consider finite volume methods (or mixed finite elements),
such as the low-order two- and multi-point flux approximations or hybrid mimetic mixed schemes [30, Chapters 12,
13]; even though high-order finite volume methods such as the hybrid high-order scheme [27] or non-conforming virtual
elements [8] also fit into the GDM [26], their usage in the current context seem less justified given the expected low
regularity of the solution. Given that our simulations are done on triangular meshes, we opted to discretise the flow
part using the cheap and robust Two-Point Flux Approximation (TPFA). For the elasticity equation in (3), standard
conforming finite element methods in standard displacement formulation as well as other more advanced techniques
(such as stabilised nodal strain formulation or Hu-Washizu-based formulations) are known to fit in the GDM [32].
Our choice was on the second order P finite element in displacement formulation in the matrix [23, 45|, adding
supplementary unknowns on the fracture faces to account for the discontinuities. It provides a better accuracy than
P, finite element especially on the normal stresses at fracture tips and intersections.

The adaptation of the TPFA discretization to the hybrid-dimensional two-phase Darcy flow model follows [2] using
mf-linear m-upwind model for matrix-fracture interactions. However, unlike 2], we consider here a centered approx-
imation of the mobilities, and the scheme used in the test can therefore be written as a gradient scheme (8a)—(8b).

n general, Kq, = A + 2u/d, where d € {2, 3} is the space dimension.
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Figure 4: Example of admissible triangular mesh with three fracture edges in bold. The dot lines joining each cell
center to the center of each of its edges are assumed orthogonal to the edge. The discrete unknowns are presented
for the two-phase flow and the mechanics. Note that the discontinuities of the saturations and of the displacement
are captured at matrix fracture interfaces. The matrix and fracture saturations sy, s§ at matrix-—fracture interfaces

are computed using a single primary unknown parametrizing the capillary pressure graphs (cf. [2]). Note also that
additional nodal unknowns are defined at intersections of at least three fractures.

The discrete unknowns for the phase pressures, the phase saturations and for the displacement field are shown in Fig-
ure 4. The computational domain  is decomposed using admissible triangular meshes for the TPFA scheme (cf. [34,
Section 3.1.2] and the example Figure 4). Let n € N* denote the time step index. The time stepping is adaptive,
defined as

St = min{gét"_%,Atmax},

where 6tz = 0.025 days is the initial time step, At™** = 5 days is the maximal time step (except for the finest mesh
for which it is set to At™®* = 2 days), and ¢ = 1.1. At each time step, the flow unknowns are computed by a
Newton-Raphson algorithm. At each Newton-Raphson iteration, the Jacobian matrix is computed analytically and
the linear system is solved using a GMRes iterative solver. The time step is reduced by a factor 2 whenever the
Newton-Raphson algorithm does not converge within 50 iterations, with the stopping criteria defined by the relative
residual norm lower than 1075 or a maximum normalized variation of the primary unknowns lower than 10=%. On the
other hand, given the matrix and fracture equivalent pressures pZ and pf , the displacement field u is computed using
the direct solver MA48 (see [33]). Following [11, 23, 45, 51, 53, 40], the coupling between the two-phase Darcy flow
and the mechanical deformation is solved by means of a fized-point algorithm. This algorithm computes the matrix
porosity and the fracture aperture, using discrete versions of the coupling laws (4), at each time step and fixed-point
iteration. The algorithm is summarized in the following scheme, where k denotes the current fixed-point iteration and
n the current time step.
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Iterative coupling algorithm

At each time step n, for k = 1,..., until convergence, solve the following Darcy and mechanical subproblems:

(i) Compute p&™", s2™F o e {w,nw}, rt € {m, f}, solving the Darcy flow model using d}l’k*1 in the fracture

conductivity and the following porosity and fracture aperture in the accumulation term:

_ _ . _ _ 1 _
(b:zn,k _ ¢:Ln 1 _ Cr,m( gb,n,k _pfl,n,k 1) + bdlv(u"’k 1_ u” 1) + M(pﬁ,n,k _pﬁ,n 1),

d?’k _ d?71 _ Cr,f(p}];%‘,n,k _ pJE;ﬁn,lc—l) _ [[un,k—l _ un—lﬂ.

E.n,k .k

(i) Compute the displacement field u™* using the equivalent pressures pZ™* and p? computed at step (i).

Initialization
For given n > 1, set
E.n,0 E,n—1 E,n—1,0 E,n—2
Prg — Prt _ Prg — Dr¢ t
_ 1 - _ 3 , T € {m7 f}7
0t 2 ot 2
un,O _ un—l un—l _ un—2
6tn—z stz

For n =1, set

1 0

E,—1 E.,0
Prg =Drt > rtE{m,f},
u - =u.

\.

Here, C, ,, and C, ; are positive relaxation parameters mimicking the rock compressibility (see e.g. [11, 23, 45, 51, 53,

40]). For our numerical simulations, we choose C;,, = Q:ﬂ’;)\ (cf. [63]), and Cy ¢ = JfCT,m with Jf = 10"3m. The

convergence of this fixed-point algorithm is achieved if the relative norm of the displacement field increment between
two successive iterations is lower than 107°.

5.2 Numerical convergence

To verify the convergence of the method, we take into account six refined admissible triangular grids with N = Ny,
4Ny, 16Ny, 64Ny, 256Ny, 1024 Ny cells, Ny = 224. All the numerical experiments of this subsection consider the
centered approximation of the degenerate mobilities (42). The non-degenerate regularization consisting in replacing
the mobilities with

pong (s”) + €

p*(1+€)

has also been investigated, and found to exhibit significant differences, compared to the degenerate case, mainly on
the matrix saturations and only for ¢ > 1073; the differences are small for ¢ = 10~ and not observable for ¢ < 107°.

(for rt € {m, f} and « € {w,nw})

Figure 7 shows the convergence of the displacement field and gas saturation profiles along the line y = 55 m, intersecting
the vertical fracture, computed at the final time for the first five grids. In addition, we consider a reference solution
(denoted with the subscript ref) computed on the finest (sixth) grid, made up by 1024Ny = 229376 cells, and used
to showcase the time histories of the solution as well as to compute the time histories of the relative errors for each
grid. Figure 6 shows the variation with respect to the curvilinear abscissa (z or y, depending on the orientation) of
the initial and final apertures for the fractures in the cross-shaped network, based on the reference solution. Note
that the non-symmetry of the y plot results from the output boundary condition on the north-side. At time ¢ = 0,
the widths of both x- and y-oriented fractures coincide. Figure 5 displays the final non-wetting matrix pressure and
saturation computed on the fifth grid; as expected, the non-wetting fluid accumulates at the tips, flows through the
fracture network and is attracted towards the upper open boundary. Figure 8 showcases the time histories of the
average of some relevant physical quantities computed based on the reference solution (the average of a is denoted by
a*). In particular, we notice the increase in width for the fracture network as a result of the gas injection, followed by
a decrease after attaining a maximum due to an increasing gas matrix mobility in the neighborhood of the fractures.
The same remark holds for the equivalent pressure pZ. The mean saturation in the matrix, as expected, grows linearly
with time until the gas front reaches the upper boundary. To illustrate the spatial convergence of the scheme, Figure
7 plots on 4 meshes the cuts at y = 55 m of both components of the displacement field and of the matrix non-wetting
saturation. The non-monotone profile of the saturation cut results from the fronts propagating from the different tips
of the fractures. Figure 9 shows the convergence of the errors

(SOT (a3 () - a:ef<t>>2dt> :

§o az(t)2dt
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NbCells | Nat | Nnewton | NGMRes | NFixedPoint | CPU ()
Ny 246 11902 81037 11163 23
4Ny 246 4685 47352 4234 35
16Ny 246 4626 53870 4138 130
64N 246 4713 65293 4063 500
256 Ny 246 4951 88106 4062 2600
1024Ny | 537 5788 125495 4147 14500

Table 1: Performance of the method with the centered scheme in terms of the number of mesh elements, the number
of successful time steps, the total number of Newton-Raphson iterations, the total number of GMRes iterations, the
total number of fixed-point iterations, and the CPU time.

P (Pa)
2.9e+05

[ 260000
- 240000

— 220000
— 200000
— 180000
— 160000

140000
120000
1.0e+05

(a) P (T 2,y) (®) s (Ts2,9)

U m
1 (m) s (m)

.6e-04
0.0003 8.7e-04
0.0002 [ 0.0007
0.0006

—0.0001
-0
—-0.0001

l -0.0002
-3.6e-04

— 0.0005
— 0.0004
- 0.0003
- 0.0002

0.0001
0
-1.3e-04

(c) ui(T;m,y) (d) u2(T;z,y)

Figure 5: Final non-wetting matrix pressure and saturation (a)-(b), and final (c)-(d) displacement field on the fifth
mesh of size 57344 cells.

as a function of the mesh step for the first five meshes and a = dy, s}, pE . Computations are carried out, again,
using averaged quantities (aj denotes the spatial average of quantity a computed using N triangular elements). A
similar convergence rate is observed for all quantities. Finally, we give an insight into the performance of our method

in Table 1, where

e NbCells is the number of cells of the mesh,

Na¢ is the number of successful time steps,

e Nnewton 1S the total number of Newton-Raphson iterations,
e NanRes is the total number of GMRes iterations,

® NrixedPoint 1S the total number of fixed point iterations,

e CPU (s) is the CPU time of the simulation in seconds.

The iterative coupling algorithm exhibits good robustness with respect to the mesh size, and has a linear convergence
behaviour as proved in [40] in the linear case. As expected for incompressible fluids in fractured porous media [40],
the convergence rate is however very sensitive to small initial time steps. This issue is shown in [13] to be efficiently
solved by using a Newton Krylov acceleration of the fixed-point algorithm.
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Figure 6: Initial and final widths of the z- and y-oriented fractures vs. corresponding curvilinear abscissae, computed
using the finest grid (reference solution). The initial width for both the 2- and y-oriented fractures is the same.

NbCells NAt NNcwton NGMRCS NFixchoint CPU (S)
256 Ny 246 4809 82085 4054 2250
1024Ny | 537 5486 114763 4136 13600

Table 2: Performance of the method with the upwind scheme in terms of the number of mesh elements, the number
of successful time steps, the total number of Newton-Raphson iterations, the total number of GMRes iterations, the
total number of fixed-point iterations, and the CPU time.

5.3 Comparison between the upwind and centered schemes

In this subsection, the solutions obtained by the upwind approximation of the mobilities [2] are compared to the
solutions obtained in the previous subsection based on the centered approximation. Small differences can be noticed
on the upper part of the matrix saturation at final time in Figures 10 and 11 due to the larger numerical diffusion of
the upwind scheme. They clearly reduce with the mesh refinement as can be observed from the comparison between
the line cut plots in these figures. The cuts at y = 80 m in the right Figure 12 for the fifth and sixth meshes confirm
that, compared to the upwind scheme, the centered scheme converges more quickly with the mesh refinement. This
is also checked on the left Figure 12 which exhibits the convergence of the error for the average quantities d%, sh¥*
and pZ* with respect to the reference mesh solutions. It shows that the upwind scheme is slightly more accurate on
the two coarsest meshes but that the centered scheme has a better convergence rate. It has been checked that the
displacement field and fracture aperture for both schemes exhibit very little differences on the finest meshes. Table
2 shows the numerical performances of the upwind scheme. Comparing with the results obtained for the centered
scheme (Table 1), the upwind scheme offers a slighly more efficient nonlinear convergence. It was also checked that the
upwind scheme can accommodate larger time steps with successful nonlinear convergence than the centered scheme.

We note that a GDM discretisation of (3)—(4) with upwind approximation of the mobilities as in [2]| for the TPFA
scheme requires a scheme-dependent definition of the Darcy fluxes, and hence loses the generality of the GDM. Once
such definition is provided, the convergence analysis would entail a specific treatment which needs to be investigated
due to the nonlinearity introduced by the upwinding; however, this analysis could benefit from the tools developed
here, such as the relative compactness results.

6 Conclusions

We developed, in the framework of the gradient discretization method, the numerical analysis of a two-phase flow
model in deformable and fractured porous media. The model considers a linear elastic mechanical model with open
fractures coupled with an hybrid-dimensional two-phase Darcy flow assuming continuity of each phase pressure across
the fractures. The model accounts for a general network of planar fractures including immersed, non-immersed
fractures and fracture intersections, and considers different rock types in the matrix and fracture network domains.

It is assumed, for the convergence analysis, that the porosity remains bounded below by a strictly positive constant,
and that the fracture aperture remains larger than a fixed non-negative continuous function vanishing only at the tips
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Figure 7: Convergence of the profiles of the displacement field components (m) u; (a), uz (b), and gas saturation
sMW (¢) at the final time, along the line y = 55m intersecting the vertical fracture, for four grids, with N triangular

elements, and Ny = 224.
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Figure 10: On the fifth mesh with 256Ny cells, final non-wetting phase matrix saturations for the centered scheme
(top left) and upwind scheme (top right), and line cuts of both solutions at y = 55 m and y = 80 m (bottom).
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Figure 11: On the finest mesh with 1024 Ny cells, final non-wetting phase matrix saturations for the centered scheme
(top left) and upwind scheme (top right), and line cuts of both solutions at y = 55 m and y = 80 m (bottom).

28



-5 centered 6" mesh
-5 upwind 6" mesh
-3 centered 5" mesh

-5" upwind 5" mesh

0.1
dy centered —+—
SPV centered —x—
pE centered
0.01 dy upwind - -& -
% S upwind - -m -
d pE upwind
E P
S 0.0011 (h/L): —e—
g
=
0.0001
1e-05
0.0025 0.005 0.01 0.02
h/L

Figure 12: (Top): on the fifth (256Ng cells) and sixth (1024 Ny cells) meshes, cuts at y = 80 m of the non-wetting
phase matrix saturations for both the centered and upwind schemes. (Bottom): for both the centered and upwind
schemes, relative L? norm of the error as a function of the mesh step computed on the first five meshes for the time

histories of the mean quantities d*%, s®V* and pZ* with respect to the corresponding reference time histories.
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of the fracture network. These assumptions stem from the limitations of the continuous model itself. In addition, the
mobility functions are assumed to be bounded below by strictly positive constants. However, unlike previous works,
the fracture conductivity df’c /12 was not frozen and the complete non-linear coupling between the flow and mechanics
equations was considered.

Assuming that the gradient discretization meet generic coercivity, consistency, limit-conformity and compactness
properties, we proved the weak convergence of the phase pressures and displacement field to a weak continuous
solution, as well as the strong convergence of the fracture aperture and of the matrix and fracture saturations.
Numerical experiments carried out for a cross-shaped fracture network immersed in a two-dimensional porous medium
and using a TPFA finite volume scheme for the flow combined with a Py finite element method for the mechanics,
confirmed the numerical convergence of the scheme.

A Appendix

A.1 Appendix 1

Proposition A.1. Let X < R? be bounded, § > 0 and let (Afn)
Let R? : L2(R?) — L?(X) be such that, for any v e L*(R%),

meMs be a covering of X in disjoint cubes of length §.

(R™v)

= 6% ngn v(x) dx VYm e Ms,

Then, we have
|R% — V]2 (x) < 2¢/2 SFP [v(- + 2) = v]L2(x)-

z|<é

Proof. The proof can be found in [29, p. 756]. Note that the assumption, in this reference, that v is zero outside X is
actually not useful. O

Lemma A.2. Let X < R? be bounded, and U be an open subset of RY such that {x € R? : dist(x, X) < do} < U for
a given &g > 0, where the distance is considered for the supremum norm in R%. Let (W) ey be a bounded sequence in
L®(0,T; L?(U)) that converges uniformly in time and weakly in L*(U) to w e L*(0,T; L?(U)). Let p € [1, +o0] and
let us define

T(6) = sup
k

sup (-, + 2) = wi ()2
|z|<é

Iflims_,o T(8) = 0, then the sequence (wy),oy converges to w in LP(0,T; L*(X)).

LP(0,T)

Proof. For 0 < § < g, let (A‘S ) meMs be a covering of X in disjoint cubes of length § and let R® be the corresponding
L? projection operator as defined in Proposition A.1. We write

wy —w = (wy — ROwy) + (ROwy, — ROw) + (Row — w)
and we establish the convergence to 0 of each bracketed term in the right-hand side. First, in view of Proposition A.1

|we(t,) — ROwg(t, )\|L2(X)<SUP |w(t, -+ 2) —wi(t, )| 2(x)

lz|<é

implying that
|we — ROwi| 1o (o.1:22(x)) < T(0).
Setting vy = wy, — Rowg, k € N, we have, if p = 0, |vg(t, )] z2(x) < T(6) for a.e. t € (0,T). Since Id — R? : L*(X) —
L?(X) is linear, the weak convergence of wy(t, -) 1mphes that vk(t, D —v(t, ) = w(t, ) — ROw(t,-) weakly in L?(X),
and thus that
fw(t,) = Bhw(t, )| ax) < Hminf Jog(t, ) 2 x) < T(9).

For p < o0, we have, using the above weak convergence of (vk(t,))ken and Fatou’s lemma,

T T T
) 1 et < [ it o)t < i [ o)t < 7).

Hence, for any p,
lw — ROw| oo, 7522(x)) < T(6).
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Finally,

1
Rowy, — ROw = Z aim(t)]lA;s”ﬁX, with al, (t) = ﬁj (wi(t,x) — w(t, x))dx,
AS,

meMsg

Since the covering (A‘fn) is finite and since, for all m € My, the term aim (t) converges uniformly in time to zero,

meMsg
it results that (R°wj;, — R°w) converges as k — + to zero in L*((0,T) x X).

Gathering the estimates, we have that
Hwk — /LUHL;D(07T;L2(X)) < QT((S) + HR‘ka - R[stLp(O7T;L2(X)).

Passing to the superior limit as & — 400, we deduce that limsup,_, | [|wr — w|rr0,7;02(x)) < 27(6) which yields,
letting § — 0, lim SUPk s +00 [wy — wHLp(O’T;LQ(X)) =0. L]

A.2 Appendix 2

Lemma A.3. Let (D.)en be a sequence of GDs assumed to satisfy the coercivity and limit-conformity properties. Let
(u')ien be a sequence of vectors with u' € X2, such that there exist C independent of | € N with |[u'|p, < C. Then,
there exists u € Uy such that, up to a subsequence, the following weak limits hold:

HDLul —u in L2(Q),

p () = (@)  in L9, Su(R)),
divp: (u!) — div(w) in L*(€),
[u']p: — [a] in L3(T).

Proof. By assumption the sequence (| pt|z2(q,s,(®)))ien is bounded which implies, from the coercivity property,
that the sequences (HH'ijulHL2(Q))lGN and (H[[ul]]pfj |£2(r))ien are also bounded. Hence there exist u € L?2(Q)?, ~ €
L?(Q,84(R)) and g € L*(T) such that, up to a subsequence, one has

Mpu' —a i I2(Q)7,
Dl (ul) —  in LQ(Q7SCI(R))7
[wlp, —~7 i LA(D)

Passing to the limit in the definition of the limit-conformity yields, for any € CZ(Q\T, Sy(R)),

J-Q( : T+ @ div( ))dX_J-F( n*)-n*g do(x) = 0.

Selecting first ~ with a compact support in Q\I', and then a generic , it results that @ € Uy with ~ = (@) and
g = [u]. Since divp: (u') = Trace( pi (u')), it also holds that divp: (u') — div(n) in L?(€).
O
Let us fix p* € Vp, a € {nw,w}, f € L?()?, and define
ph= D, P*S%(Pc) —Um(p.) and pf= > Ap*SF(ype) — Ur(vpe).
ae{nw,w} ae{nw,w}
with p. = p™¥ — pV. We consider the solution @1 € Uy of the following variational formulation
L( @: (¥)—b pﬁdiv(v))dx + JF ¥ [v]do(x) = L f.vdx, VveU,. (43)
Let us take p® € D, o € {nw, w}, p. = p"¥ — p" and
po= >, PSpe) —Un(pe) and pf= > p*SF(pe) — Us(pe).
ac{nw,w} ae{nw,w}
We consider the following gradient scheme for (43): Find u e X%u such that, for all v € X%u,
f (‘o p.(v) b (ngppg)divDu(v))dx+J (11, p?)[Vlp,do(x) = J £-Tlp,v dx. (44)
Q r Q

The Lax-Milgram theorem ensures that the exact solution 1 and approximate solution u exist and are unique. The
following proposition provides an error estimate.
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Proposition A.4. Let u € Uy be the solution of (43) and ue X3P, the solution of the gradient scheme (44). Then,
there exists a hidden constant depending only on the coercivity constant Cp, and on the physical data such that the
following error estimate holds

| p.() = (@)]r2(0,5.m)) + [TIp,u —a|z2(0) + [[u]p, — [a]L2(r) )
45
< Sp, (W) +Wp, ( (@) = bppD) + by, — 1B pllL2o) + [PF — H{app?HL?(r)-

As a consequence, if (D.)ien is a sequence of coercive, consistent and limit-conforming GDs, if u' is the solution of
(44) for Dy = DL, if (D})ien is a sequence of GDs and p™' € X3, , 1 € N, are such that 1L, pE't — pk in L*(Q) and
P

u’ Déﬂ
Hﬁipf’l — p? m LQ(F), then, as | — +o0,

Dﬁ(ul) — (@) in L*(9,S4(R)),

HDLul 1 in LZ(Q)d’ (46)
[wlpy, — [6)  in L3(D).

Proof. We note that even though Wp,, was considered, in the definition of limit-conformity of a sequence of GDs, only
on CP (NI, Sq(R)), it can be defined on

Haiy r (O3 Sa(R)) = { € L*(84(R)) = div( )|gs € L*(Q°)4, B € E,

*nt+ "n"=0onT,( "n*)xn* =0onT},
where (%) ez are the connected components of Q\T'. Setting = (@) —bpEI € Haiy r(Q\[; S4(R)) as an argument
of Wp,, and using div. = —f, we obtain that for all ve X3,

UQ(( (@) = pu(W): D, (V) ~ b(BE — TH,pE)divo, (v)) )dx + f (f —1p, pf)[Vlp,do(x)
r
< [vlp Wo, ( (W) = bpiI).
Setting v = Pp, u — u, where Pp_u realizes the minimum in Sp, (1), we infer
| Pp,0 —u|p, < Sp, () + Wn,( (0) = bpil) + |ph — 15, phi | 120 + [PF — T pF [12(r)-

Combined with the definition of Cp,, the estimates above establish (45).

Under the assumptions in the second part of the proposition, the hidden constant in (45) is independent of [, the
last two terms in the left-hand side of this estimate converge to 0 as [ — +00, as well as Spi (u) by definition of
the consistency of the sequence of GDs. When its argument is in the vector space C*(Q\T, S4(R)), Wp () also
converges to 0 by definition of limit-conformity; since this space is dense in Hgiy 1 (Q\I; Sa(R)), the arguments in [30,
Lemma 2.17] show that this convergence also holds for the argument = (i) —bpEL Estimate (45) therefore yields
the convergences (46). O
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