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Abstract

‘We consider a two-phase Darcy flow in a fractured porous medium consisting in a matrix flow
coupled with a tangential flow in the fractures, described as a network of planar surfaces.
This flow model is also coupled with the mechanical deformation of the matrix assuming that
the fractures are open and filled by the fluids, as well as small deformations and a linear
elastic constitutive law. The model is discretized using the gradient discretization method
[20], which covers a large class of conforming and non conforming schemes. This framework
allows for a generic convergence analysis of the coupled model using a combination of discrete
functional tools. Here, we describe the model together with its numerical discretization, and
we prove a convergence result. This is, to our knowledge, the first convergence result for
this type of models taking into account two-phase flows and the non-linear poromechanical
coupling. Previous related works consider a linear approximation obtained for a single phase
flow by freezing the fracture conductivity [29, 30]. Numerical tests employing the Two-Point
Flux Approximation (TPFA) finite volume scheme for the flows and P finite elements for
the mechanical deformation are also provided to illustrate the behavior of the solution to the
model.

MSC2010: 65M12, 76505, 74B10

Keywords: poromechanics, discrete fracture matrix models, two-phase Darcy flows, Gradient
Discretization, convergence analysis

1 Introduction

Many real-life applications in geosciences involve processes like multi-phase flow and hydrome-
chanical coupling in heterogeneous porous media. Such mathematical models are coupled systems
of partial differential equations, including non-linear and degenerate parabolic ones. Besides the
inherent difficulties posed by such equations, further complexities stem from the heterogeneity
of the medium and the presence of discontinuities like fractures. This has a strong impact on
the complexity of the models, challenging their mathematical and numerical analysis and the
development of efficient simulation tools.

This work focuses on the so called hybrid-dimensional matrix fracture models obtained by aver-
aging both the unknowns and the equations in the fracture width and by imposing appropriate
transmission conditions at both sides of the matrix fracture interfaces. Given the high geometrical
complexity of real-life fracture networks, the main advantages of these hybrid-dimensional com-
pared with full-dimensional models are to facilitate the mesh generation and the discretization of
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the model, and to reduce the computational cost of the resulting schemes. This type of hybrid-
dimensional models has been the object of intensive researches over the last 15 years due to the
ubiquity of fractures in geology and their considerable impact on the flow and transport of mass
and energy in porous media, and on the mechanical behavior of the rocks. For the derivation and
analysis of such models, let us refer to [4, 25, 36, 39, 6, 11, 13, 43] for single-phase Darcy flows,
[10, 45, 42, 32, 12, 21, 14, 2] for two-phase Darcy flows, and [41, 37, 34, 29, 30, 26, 35, 27, 48] for
poroelastic models.

In this work we consider the two-phase Darcy flow in a network of fractures represented as (d —1)-
dimensional planar surfaces coupled with the surrounding d-dimensional matrix. The fractures are
assumed to be open and fully filled by the phases. Both phase pressures are assumed continuous at
matrix fracture interfaces. This is a classical assumption for open fractures given the low pressure
drop in the width of the fractures [10, 45, 42, 12]. For single-phase flows, the Poiseuille law is
classically 3}1sed to model the tangential velocity along the fractures, leading to a conductivity
equal to %, where dy is the fracture aperture [29, 30]. Following [41], the extension to two-
phase flow is based on the generalized Darcy laws using relative permeabilities combined with a
capillary pressure law relating both phase pressures and accounting for surface tension effects in
the fractures. This hybrid-dimensional two-phase Darcy flow model is coupled with the matrix
mechanical deformation assuming a linear poroelastic behavior [41, 37, 34]. The extension of the
single-phase poromechanical coupling [29, 30, 26, 35, 48] to two-phase Darcy flows is based on the
so-called equivalent pressure used both in the matrix for the effective stress and at both sides of
the fractures as boundary condition for the mechanics. It is defined as a convex combination of
the phase pressures with many different choices proposed in the litterature [44]. Our choice of the
equivalent pressure follows the pioneer monograph by Coussy [15] using the capillary energy which,
as already noticed in [37, 34], plays a key role to obtain energy estimates for the coupled system.
From the open fracture assumption, the fracture mechanical behavior reduces to the continuity of
the normal stresses at both sides of the fracture matching with the fracture equivalent pressure
times the unit normal vector.

In this work, the hybrid-dimensional coupled model is discretized using the gradient discretization
method [20]. This framework is based on abstract vector spaces of discrete unknowns combined
with reconstruction operators. The gradient scheme is then obtained by substitution of the con-
tinuous operators by their discrete counterparts in the weak formulation of the coupled model.
The main asset of this framework is to allow a generic convergence analysis based on general prop-
erties of the reconstruction operators that hold for a large class of conforming and non conforming
discretizations. The two main ingredients to discretize the coupled model are the discretizations
of the hybrid-dimensional two-phase Darcy flow and the discretization of the mechanics. Let us
briefly mention, in both cases, a few families of discretizations typically satisfying the gradient
discretization properties. For the discretization of the Darcy flow, the gradient discretization
framework typically covers the case of cell-centered finite volume schemes with Two-Point Flux
Approximation on strongly admissible meshes [36, 6, 2], or some symmetric Multi-Point Flux Ap-
proximations [47, 46, 3] on tetrahedral or hexahedral meshes. It also accounts for the families
of Mixed Hybrid Mimetic and Mixed or Mixed Hybrid Finite Element discretizations such as in
[4, 39, 11, 13, 7]. The case of vertex-based discretizations such as Control Volume Finite Element
approaches (i.e. conforming finite element with mass lumping) [10, 45, 42] or the Vertex Approxi-
mate Gradient scheme [11, 13, 12, 21, 14] is also accounted for. For the discretization of the elastic
mechanical model, the gradient discretization framework covers conforming finite element methods
such as in [29], the Crouzeix-Raviart discretization [31, 18], the Hybrid High Order discretization
[17], and the Virtual Element Method [8].

The main objective of this work is to introduce the gradient discretization for the hybrid-dimensional
coupled model and to prove the convergence of the discrete solution to a weak solution of the
model. Without taking account of the poromechanical coupling, such a convergence result has
been obtained in [6, 4, 39, 11, 13| for hybrid-dimensional single-phase Darcy flow models, and in



[12, 21] for hybrid-dimensional two-phase Darcy flow models. The well-posedness and convergence
analysis of single-phase poromechanical models is studied in [29, 30]. Nevertheless those analyses
con51der a linear approximation of the coupled model obtained by freezing the fracture conduc-

t1v1ty 75, hence not taking into account the non-linear coupling between the fracture aperture
and the Darcy flow. In this work, we are able to prove the convergence to a weak solution for
the non-linear coupled model and two-phase flows based on the following main assumptions. It
is assumed that the matrix porosity remains bounded from below and above by strictly positive
constants, that the fracture aperture remains larger than a fixed aperture vanishing only at the
tips, and that the mobility functions are bounded from below by strictly positive constants. The
assumptions on the porosity and fracture aperture cannot be avoided since the continuous model
does not ensure these properties, which are needed to ensure its well-posedness. The assumption
on the mobilities are classical to carry out the stability and convergence analysis of two-phase
Darcy flows with heterogeneous rock types (see [24, 12, 21]). This is, to our knowledge, the first
convergence result for this type of hybrid-dimensional model taking into account the non-linear
poromechanical coupling.

The rest of the article is organized as follows. Section 2 introduces the continuous hybrid-
dimensional coupled model. Section 3 describes the gradient discretization method for the coupled
model including the definition of the reconstruction operators, the discrete variational formulation
and the properties of the gradient discretization needed for the subsequent convergence analy-
sis. Section 4 proceeds with the convergence analysis. The a priori estimates are established in
Subsection 4.1, the compactness properties in Subsection 4.2 and the convergence to a weak so-
lution is proved in Subsection 4.3. In Section 5, numerical experiments based on the Two-Point
Flux Approximation finite volume scheme for the flows and second-order finite elements for the
mechanical deformation are carried out for a cross-shaped fracture network in a two dimensional
porous medium, and illustrate the numerical convergence of the solution. Appendices A.1 and A.2
state some technical results used in the convergence analysis.

2 Continuous model

We consider a bounded polytopal domain € of R4, d € {2,3}, partitioned into a fracture domain
I" and a matrix domain Q\I'. The network of fractures is defined by

r-Jr
el

where each fracture I'; < €2, ¢ € I is a planar polygonal simply connected open domain. With-
out restriction of generality, we will assume that the fractures may intersect exclusively at their
boundaries (see Figure 1), that is for any ¢,j € I,¢ # j one has I'; nT'; = &, but not necessarily
T; n I‘ = .

M

I3
Q /

P

Figure 1: Example of a 2D domain §2 with 3 intersecting fractures I';, i = 1,2, 3.



Figure 2: Example of a 2D domain
with its fracture network I', the unit
normal vectors nT to I, the phase pres-
sures p® in the matrix and yp® in the
fracture network, the displacement vec-
tor field u, the matrix Darcy velocities
q%, and the fracture tangential Darcy
velocities qf integrated along the frac-
ture width.

The two sides of a given fracture of I' are denoted by =+ in the matrix domain, with unit normal
vectors nT oriented outward of the sides +. We denote by «y the trace operator on I' for functions
in H1(2), by vsq the trace operator for the same functions on 09, and by [-] the normal trace

jump operator on I' for functions in Hg;, (Q2\I'), defined by
[a] =a* -n* +a~ -n~ for all ue Hyiy(Q\D).

We denote by V., the tangential gradient and by div, the tangential divergence on the fracture
network I'. The symmetric gradient operator is defined such that (v) = (Vv +!(Vv)) for a

given vector field v e H'(Q\I')<.

Let us fix a continuous function dy : I' — (0, +00) with zero limits at 0T'\(I' n 02) (i.e. the tips
of T') and strictly positive limits at o' n dQ. The fracture aperture, denoted by d; and such that
d; = —[u] for a displacement field t € H'(Q\I')¢ will be assumed to satisfy the following open
fracture condition

df(x) = do(x) for a.e. x € .

Let us introduce some relevant function spaces:
U = {ve (H(Q\)? | veav = 0} (1)
for the displacement vector, and
Vo = {v e HY(Q) | 0 e H (D)} @)

for each phase pressure, where the space H (}0 (T') is made of functions vr in L?(T"), such that
df)/ *V,ur is in L2(I')?~!, and whose traces are continuous at fracture intersections oI'; N ar;,
(i,j) € I x I (i # j) and vanish on the boundary ¢T' n 0€Q.

The matrix and fracture rock types are denoted by the indices rt = m and rt = f, respectively,
and the non-wetting and wetting phases by the superscripts @ = nw and a = w, respectively.

The PDEs model reads: find the phase pressures p®, a € {nw,w}, and the displacement vector
field @, such that p, = ™ — p“ and, for a € {nw, w},

01 (dmSe(Pe)) + div (q,) = hi, on (0,T) x O\T,
A, = — N (S (Pe) ) K VD on (0,7) x I,
o (drS3 (1)) + divr(ag) — [ag] = h§  on (0,7) x T, o
qf = —n?(S?(Wﬁc))(%@)Vwﬁ“ on (0,T) x T,
—div( (@) — b ﬁﬁﬂ) —f on (0,T) x O\T
(@) =21 (@) + X div(a) I on (0,T) x T,




with 1
Otm = b divoya + Métﬁfl on (0,T) x Q\T,
( (@) —bpEDhn* = —pFn*  on (0,7) x T, (4)
dy = —[u] on (0,7) x T,
and the initial conditions - ~
P*li=0 =Dy, Pmli=0 = dp,
Here, the equivalent pressures p~ and ;5]]23 are defined, following [15], by

ph= D P Snpe) —Un(e), D7 = > 40* SF(vpe) — Us(vpe),

ae{nw,w} ae{nw,w}

where

Pe

Une(p) = f ¢ (S (q)dg (5)

0

is the capillary energy density function for each rock type rt € {m, f}. As already noticed in
[37, 34], this is a key choice to obtain the energy estimates that are the starting point for the
convergence analysis.

We make the following main assumptions on the data:

(H1) For each phase o € {nw, w} and rock type rt € {m, f}, the mobility function n% is continuous,
non-decreasing, and there exist 0 < 7 i, < M max < +0 such that 97 | < ni(s) <
for all s € [0,1].

a
nrt,max

(H2) For each rock type rt € {m, f}, the non-wetting phase saturation function SJ}" is a non-
decreasing Lipschitz continuous function with values in [0, 1], and S}y = 1 — SE".

(H3) b e [0,1] is the Biot coefficient, M > 0 is the Biot modulus, and A > 0, 1 > 0 are the Lamé
coefficients. These coeflicients are assumed to be constant for simplicity.

(H4) The initial matrix porosity satisfies ¢2, € L®(Q) and there exist 0 < ¢2, <1

such that ¢9, . < ¢9,(x) < @9, pay for ae. x € Q.

m,min < ¢)m max

(H5) The initial fracture aperture d} satisfies d$(x) > do(x) for a.e. x € T,

(H6) The initial pressures are such that p§ € Vo n L*(Q) and vp§ € L*(T), a € {nw, w}.
(H7) The source terms satisfy f € L*(Q)%, hg, € L*((0,T) x Q), and h$ € L*((0,T) x I).
(H8)

H8) The matrix permeability tensor K,, is symmetric and uniformly elliptic on €.

Definition 2.1 (Weak solution of the model). A weak solution of the model is given by p* €
L?(0,T;Vy), a € {nw,w}, and @ € L*(0,T;Uy), such that, for any a € {nw, w}, J;/QV;@O‘ €
L2((0,T)xT))4! and, for all * € CZ([0,T) x ) and all smooth functions v : [0, 7] x (Q\') — R?
vanishing on 02 and admitting finite limits on each side of T,

T
|| | (Foustmone + (s @K, v - Vo )axdr
73

d
f J def(Wpc)at’w +77f(Sf(vpc))12VTvp -V, y@® )da(x)dt )
- | e 0.9ax— | B0k 0.)d0()

:J thﬁl’o‘dxdzH—J thmpo‘ do(x)dt,
0o Ja



LT L( (@: (v)-b ﬁ,’idiv(v))dxdt + L TL 7 [v] do(x)dt

T
=f Jf-dedt,
0 Q

o = w ew T . < C 1 _ _ < _
with p. = p™ — p%, dy = —[1], ¢m — ¢2, = b div(a — ") + M(pﬁ — pEoy, d?c = —[u°], where
0 is the solution of (7) without the time integral and using the initial equivalent pressures pZ°

(7)

and ﬁf’o obtained from the initial pressures p§ and vp§, o € {nw, w}.

Remark 2.2 (Regularity of the fracture aperture). Notice that, by the Sobolev-trace embeddings
[1, Theorem 4.12|, w € L*(0,T; Uy) implies that d = —[a] € L*(0,7; L*(T")). All the integrals
above are thus well-defined.

3 The gradient discretization method

The gradient discretization (GD) for the Darcy continuous pressure model, introduced in [11], is
defined by a finite-dimensional vector space of discrete unknowns X%P and

e two discrete gradient linear operators on the matrix and fracture domains

B, Xp, — L)Y, VL Xy — LP(ID)

e two function reconstruction linear operators on the matrix and fracture domains
. Y0 .0
g X§ — L*(Q), T} : X§ — L*(I),

which are piecewise constant [20, Definition 2.12].

A consequence of the piecewise-constant property is the following: there is a basis (e;);es of X%p
such that, if v =3}, _,
by applying g component-wise, then H%pg(v) = g(H%pv) for rt € {m, f}. Note that the basis

v;e; and if, for a mapping ¢ : R — R, we define g(v) = >._; g(vi)e; € X%p

(e;)ier is usually canonical and chosen in the design of X%p. The vector space X%p is endowed
with
3,
lolp, = IV, vlz2(@) + ldd" Vi vlza),

assumed to define a norm on X%p.

The gradient discretization for the mechanics is defined by a finite-dimensional vector space of
discrete unknowns X%U and

e a symmetric gradient linear operator p, : X§, — L*(Q,S4(R)),
e a displacement function reconstruction linear operator Ilp, : X3, — L*(Q)4,
e anormal jump function reconstruction linear operator [Jp, : X§ — L*(I),

where S4(R) is the vector space of real symmetric matrices of size d. Let us define the divergence
operator divp, (-) = Trace( p,(-)), the stress tensor operator

Du (V) = ZILL Du (V) + /\diV'Du (V)H,

and the fracture width d;p, = —[u]p,. It is assumed that

VD, = [ pu(V)lz2(0.5.R) (8)



is a norm on X .
u

A spatial GD can be extended into a space-time GD by complementing it with
e a discretization 0 = tg < t; < --- <ty =T of the time interval [0, T7];
e interpolators I'p, : Vy — %p and I : L?(Q) — X%p of initial conditions.

Forn € {0,..., N}, we denote by Sthts = tnt1—tn the time steps, and by At = max,,—o, . N Stnts
the maximum time step.

The spatial operators are extended into space-time operators as follows. Let x represent either p
oru. If w= (w,))_, € (X%X)NH, and Vp_ is a spatial GDM operator, its space-time extension
is defined by

Up w(0,) = ¥p wo and, Vn € {0,...,N — 1}, Vt € (ty,tn11], ¥p w(t,-) = ¥p wyy1.

For convenience, the same notation is kept for the spatial and space-time operators. Moreover, we
define the discrete time derivative as follows: for f : [0,7] — L'(Q) piecewise constant on the time

discretization, with f,, = fi¢,_ .., and fo = f(0), we set d;f(t) = %ftﬁ" for all t € (tn,tni1]s
—15tn it
nef{0,...,N —1}.

Notice that the space of piecewise constant X%X—valued functions f on the time discretization
together with the initial value fo = f(0) can be identified with (X%X)N“. The same definition
of discrete derivative can thus be given for an element w € (X3 )¥*'. Namely, s,w € (X3 )V is
defined by setting, for any n € {0,...,N —1} and t € (tn, tny1], Sew(t) = (Gpw)pyq = 2=, If

1
s5t" T2

Up, (t,-) is a space-time GDM operator, by linearity the following commutativity property holds:
Up, drw(t, ) = ds(Up w(t,-)).

The gradient scheme for (3) consists in writing the weak formulation (6)—(7) with continuous spaces
and operators substituted by their discrete counterparts, after a formal integration by part: find
p* e (X%p)N“7 o€ {nw,w}, and ue (X )N*! such that for all o> € (X%F)N‘H, ve (X )N*!

and « € {nw, w},

T
+f f 6 (dg,p, 11, 55 )11, o do(x)dt
r

T 3 (9a)
[ g s Tz, v, o
o Jr P 12 P P
T T
- f J h,(’;LH%”bp@adxdt—&—f J h;n{jpwda(x)dt,
0 JQ 0o Jr
T
f J (pu(w) s pu(v) = b IIB D div, (v))dxdt
0 JQ (gb)

T T
+J f 11}, p? [Vlp,do(x)dt :f J £ Ilp, v dxdt,
o Jr 7 o Ja



with the closure equations

nw W

Y, S, m(De), S?ZS?(pC),

-
ph= >, Psh—Un(p), pf= D>, p*s§f—Uspe),

ae{nw,w} ae{nw,w}

1 60— I8 &0, = b divp, (u— ) + L II7 (pE — pEO), (9c)

DPe =D

dvau = 7[[uHDu’

Du (V) =21 p, (V) + )\diVDu (V)]I

The initial conditions are given by p§ = Ip,p§ (o € {nw,w}), ¢% = Igpg_ﬁo, and the initial
displacement u® is the solution of (9b) with the equivalent pressures obtained from the initial

pressures (pf)ae{nw,w}-

3.1 Properties of gradient discretizations

Let (D;)leN and (D{I)ZGN be sequences of GDs. We state here the assumptions on these sequences
which ensure that the solutions to the corresponding schemes converge. Most of these assumptions
are adaptation of classical GDM assumptions [20], except for the chain-rule, product rule and cut-
off properties used in Subsection 4.2 to obtain compactness properties; we note that all these
assumptions hold for standard discretizations used in porous media flows.

Following [11], the spatial GD of the Darcy flow D,, = (X%p, D, V%p, Iy H%p) is assumed to
satisfy the following coercivity, consistency, limit-conformity and compactness properties.
Coercivity of D). Let Cp, > 0 be defined by

105, vl 2 (@) + 1T, vl 2y

Cp. = max . 10
P2 okvexy, [ollo, (10)

Then, a sequence of spatial GDs (D]l[,)lgN is said to be coercive if there exists C,, > 0 such that
CDILU < C) forall [ € N.

Consistency of D,. Let r > 8 be given, and for all we Vy and v € X%p let us define

Sp, (w,v) = ||V$pv — Vw2 + HV%pv — Veyw| oy

(11)

+ [T, 0 = w| z2(0) + [T, 0 = yw|Lr(r),

and Sp, (w) = minvex%p Sp, (w,v). Then, a sequence of spatial GDs (D} )ey is said to be consis-

tent if for all w € Vi one has lim;_, ; o SD;J (w) = 0. Moreover, if (ng)leN is a sequence of space-time
GDs, then it is said to be consistent if the underlying sequence of spatial GDs is consistent as
above, and if, for any ¢ € Vj and ¢ € L?(f2), as | — +0,

A -0, I I = ¢l 2 () + ||H7f;1zDIDg,<P — @llzz2ry = 0 and Tz I7 ) — ¢l 2(q) — 0. (12)

Remark 3.1 (Consistency). In [11], the consistency is only considered for r = 2. We have here
to adopt a slightly stronger assumption to deal with the coupling and non-linearity involving
the fracture aperture dy. Note that, under standard mesh regularity assumptions, this stronger
consistency property is still satisfied for all classical GDs.



Limit-conformity of D,. For all (q,,,qy) € C*(Q\IN¢ x C®(I')4 ! and v e X%p, let us define

Wo, (dm,ay,v) = J (qm -Vp v+ 15 v div(qm))dx
Q

+ | (ar- b0+ 1h 0 (@iv, (ay) = D) dot), Y

1% v
and Wp, (Qm,qy) = max [Wp, (m 4y, V)| . Then, a sequence of spatial GDs (Dé)leN is said to
04veXy |v]|p,

be limit-conforming if for all (qum, qy) € C*(Q\L)?x CL(T)4~! one has lim;_, ; o Wt (am,ay) = 0.
Here C*(T')4~! denotes the space of functions whose restriction to each I'; is in C®(T';)4~! tangent

to I';, compactly supported away from the tips, and satisfying normal flux conservation at fracture
intersections not located at the boundary 2.

(Local) compactness of D,,. A sequence of spatial GDs (Dé)leN is said to be locally compact if

for all sequences (v')jene (X%l

P p— —

and Ky < I, such that K is disjoint from the intersections (I'; nT';);+;, the sequences (I}, v')en
P

)ien such that sup;y [v! |lp; < 400 and all compact sets Ky, < €

and (H{), v!)en are relatively compact in L?(K,,) and L?(K ), respectively.
p

Remark 3.2 (Local compactness through estimates of space translates). For K,,, Ky as above, set

LB v(- + &) — IR vl L2 (k) + Dier ”Héz v(-+m) — H{)z v|z2(k; ATy
Tpr k., k,(§m) = max - - . . ;
i veXy, (0} [vlpy

where ¢ € RY, 1 = (1;)ier with 7; tangent to I';; for ¢ and 7 small enough, this expression is well
defined since K, and K are compact in € and T, respectively. Following [20, Lemma 2.21|, An
equivalent formulation of the local compactness property is: for all K,,, K¢ as above,

Jm sup Ty e, i, (€51) = 0.

Remark 3.3 (Usual compactness property for GDs). The standard compactness property for GD
is not local but global, that is, on the entire domain not any of its compact subsets (see, e.g., |20,
Definition 2.8] and also below for D,,). Two reasons pushed us to consider here the weaker notion
of local compactness: firstly, for standard GDs, the global compactness does not seem obvious to
establish (or even true) in the fractures, because of the weight d in the norm ||-|p,, which prevents
us from estimating the translates of the reconstructed function by the gradient near the fracture
tips; secondly, we will only prove compactness on saturations, which are uniformly bounded by 1
and for which local and global compactness are therefore equivalent.

In the following, for brevity we refer to the local compactness of (D;) 1en simply as the compactness
of this sequence of GDs.

Chain rule estimate on (Dé)leN: for any Lipschitz-continuous function F' : R — R, there is
Cr > 0 such that, for allle N, v € X%l ,
p

IV F(0)l22 ) < Cr[ Vvl 2@

Product rule estimate on (Dé)leN: there exists Cp such that, for any [ € N and any u!, v € XODL ,
P
it holds
V5, (') |12y < Cr (Ju' e IVB, 120 + 10! VB, w20 )

where |w|y = max;es |w;| whenever w = Y, ; w;e; with (e;);er the canonical basis of X%l )
p



Cut-off property of (Dé)leN: for any compact set K < Q\I', there exists Cx = 0 and (') €
(XODL )ien such that (|9« )en is bounded and, for [ large enough:

Myt =000 Q; THe=1on K; |V Y2 < Ck
Hél (v'4!) =0 and V{)l (v'ph) =0 for all v’ € X2,

Coercivity of (D!))en. Let Cp, > 0 be defined by

IIp v + ||[v
S L A TR |4 TRy "
0£vexy, Ivlop,

Then, the sequence of spatial GDs (D)) ien is said to be coercive if there exists Cy, > 0 such that
Cp, < CyforallleN.

Consistency of (D.);cn. For all w € Uy, it holds lim;_, , o Spi (w) = 0 where

Spy(w) = min || oy (v) = (W)lrze.sum) + MoV = Wiz + [VIog = Wy |- (15)

veXx?o .
DLI

Limit-conformity of (D,)een. Let CF(Q\T', S4(R)) denote the vector space of smooth functions

tO\I' — S4(R) admitting finite limits on each side of ', and such that *(x)n™ + ~(x)n~ =0
and ( T(x)n")xn* =0 for a.e. x e I'. Forall e CF(Q\T,Sq(R)), it holds lim;, y oo Wpi () =0
where

Wi () = !

max ——— [J ( :op (V) + Tl v - div( ))dx - J ( o) -nt[v]p da(x)] .
" 03"5\16)(%{l ||VH’D€‘ 0 u u r u
Compactness of (D,)en. For any sequence (v!)iene (X2, )ien such that supjey [v!|pr < +o0,
the sequences (Ilp: v!)ien and ([v']pi )ien are relatively compact in L?(2)¢ and in L*(T') for all
s < 4, respectively.

Remark 3.4 (Compactness through estimates of space translates). Similarly to Remark 3.2 (see
also [20, Lemma 2.21]), the compactness of (DL )y is equivalent to

lim supTp ((§,m) =0 Vs <4,
E&n—0jeN W

where

HHDQV(' +&) — HD{,V”L?(Q) + Dier H [[VlﬂDf,(' +mi) — [[Vl]]Df, Ls(Ty)
TDL s(ga 77) = max )
w vexy, \{o} Ivlp,

with £ € R4, 1 = (1;)ier with n; tangent to I';, and the functions extended by 0 outside their
respective domain € or I'.

4 Convergence analysis

The main result of this work is the following convergence theorem.

Theorem 4.1. Let (Di))leN, (D) ien, {(tﬁl)ﬁio}leN, be sequences of space time GDs assumed to
satisfy the coercivity, consistency, limit-conformity and compactness properties. Let 0 < ¢ min <
Gm.max < +00 and assume that, for each | € N, the gradient scheme (92)—(9b) has a solution

P e (X2, VL e {nw,w), ule (X2, YN such that
r u
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(i) dgp(t,x) = do(x) for a.e. (t,x) € (0,7) x T
(1) Om.min < Opt(t,X) < O max for a.e. (t,x) € (0,T) x Q.

Then, there exist p* € L2(0,T;Vy), a € {nw,w}, and u e L®(0,T;Uy) satisfying the weak formu-
lation (6)—(7) such that for a € {nw,w} and up to a subsequence

Iz, pl — p* weakly in L2(0,T; L*()),
H{)épl — yp“ weakly in L2(0,T; L*(T)),

Ipu! — 0 weakly-* in L (0, T; L?(2)9),
dpt — Om weakly-* in L®(0,T; L2(£2)),

dy . — dy in L(0,T; LP(T)) for 2 < p < 4,

I, S5, (pL) — Siu(pe) —in L?(0, T3 L*()),
I}, S5 (k) — S§(vpe) in L?(0,T; L2(T)),

_ _ 1 ,
where ¢, = @0, + b div(d — 1_10) + M(;ﬁﬁ —ﬁ,En’O), dy = —[ua], and p. = p™ — pv.

We first present in Subsections 4.1 and 4.2 a sequence of intermediate results that will be useful
for the proof of Theorem 4.1 detailed in Subsection 4.3.

4.1 Energy estimates

Using the phase pressures and velocity (time derivative of the displacement field) as test functions,
the following a priori estimates can be inferred.

Lemma 4.2 (A priori estimates). Let p®, u be a solution to problem (9) such that
(1) dfp,(t,x) = do(x) for a.e. (t,x)e (0,T) x T,
(11) ¢p(t,X) = Gm.min for a.e. (t,x) € (0,T) x Q, where ¢y min > 0 s a constant.

Under hypotheses (H1)—(HS8), there exists a real number C' > 0 depending on the data, the coercivity
constants Cp,, Cp,,, and ¢m min, such that the following estimates hold:

3/

IVD, p* |20, 1)x0) < C, ldsp, Vo, p"|L2(0,m)xT) < C,
U (I pe)| Lo (0,101 (02)) < C, Hdon(Hé Pe)| Lo 0,301 (r)) < C, (16)
HHDppmHLw o,1;02(Q) < C, | Do (W)lLe0,7:02(0,8.R)) < C,
ld¢ Dl (0.1:4(r)) < C.

Proof. For a piecewise constant function v on [0,7] with v(t) = vp4q for all t € (¢,,tn41], n €
{0,..., N — 1}, and the initial value v(0) = vy, we define the piecewise constant function ¢ such
that 0(t) = v, for all t € (t,,t,+1]- We notice the following expression for the discrete derivative
of the product of two such functions:

Ot (uv) () = a(t)orv(t) + v(t)dpu(t). (17)

11



n (9a), upon choosing ¢* = p® we obtain Ty + Ty + T3 + Ty = T5 + Tj, with

T T
7= || o) x| a0, VE - VB

Ty —J J (5,5 deu sf)Hé ptdo(x)dt, Ty —J- f }" H 0‘ fD“Vf a.Vépp“da(x)dt,

T5=J Jh% B, p*dxdt, T6=f Jh?ﬂ%ppadd(x)dt.
0 JQ 0 Jr
(18)

First, we focus on the matrix and fracture accumulation terms 737 and T3, respectively. Using (17)
and the piecewise constant function reconstruction property of H%p, rt € {m, f}, we can write

51 (op S ( “1; Pe)) = o Se (15 pc> + S0 (T3, pc>5t¢p,
81(dg.p, ST pe)) = dy,00SF (T, pe) + SFAT pe)didy p,-

Summing on « € {w,nw}, we obtain

Z(Tl +T3) = f f (bDHm P~ 01Sey, (H% pe)dxdt —I—J J S ( Hg pC)Hm p* 0 ppdxdt

+ J J sz,Dunéppa 5tS?(H£ppc)da(x)dt + J f S?(Héppc)ﬂfpppa 5tdf7puda(x)dt).
o Jr o Jr

Now, for rt € {m, f},

Z H%ppa 055t (H%pPC) = H%ppc 0S5y (H%pPC) = 04U (H%pPC)- (19)
Indeed for n € {0,.. — 1}, by the definition (5) of the capillary energy U, and letting

T = HrD De,j, We have

c,

rt

7rc,"n,+1
Temt1 (S (e gn) = SR (7)) = Ut (M8 40) — Une(el) + J (S (q) — S (mern))dg

"an
= Ul‘t (Trg,cn-i—l) - Urt (ﬂ-:'fn)v

where the last inequality holds since S}V is a non-decreasing function. Replacing p. , and pen41
by H%ppc,n and H%ppc_,nﬂ, respectively, in the above estimate and dividing by 515”*%, we get (19).
Thus, we obtain

DT+ Ty) J fqbp(st m (T pc)dxdt—l—J fdfpu(sth( 5 pe)do(x)dt

[e3

+Z( f f S (5, pe) 1T p™dydpdxdt + J f S9 (115, pe)IT), paatdmuda(x)dt).
o Jo Jo o Jr P ’

Applying again (17), we have

Gp0Un (I3, pe) = 64(¢pUnm (1B, pe)) — Upn (I3, pe)St ¢,
ds.p,6:U; (T, pe) = 6¢(ds,p,Us (T, pe)) — Us (1T, pe)dedy,p, -

12



In the light of the closure equations (9c¢), this allows us to infer that

STy +Ty) J J(st U (1T pc))dxdt+f Jat 4y 0, Up (T po))dor(x)dt

[e3

1 2
+J f 5, (Hg pﬁ) dxdt + f f BIIZ pE divp, (:u)dxdt (20)
0 Ja2M v 0 Jo ?

T
— J J Hépp? [0+u] p,do(x)dt
o Jr

’U2
’U(St’U = (St (2> (21)

for v piecewise constant on [0,7]. Then, taking into account assumptions (H1)-(HS8) and (i) in
the lemma, there exists a real number C' > 0 depending only on the data such that

Z(T2+T4 f f Z|VD p |2dxdt+f IE\W V1, p®*do(x )dt). (22)

where we have used the fact that

On the other hand, upon choosing v = d,u in (9b), we get T7 + Tg + Ty = Tho, with
r T
Tr = f J p.(0): p,(Su)dxdt, Tg= —J J bIIE pk divp, (5:u)dxdt
0 Jo o Jo

T T
Tg = f J H%pp? ﬂdtuﬂpuda(x)dt, T10 = f
o Jr

0

(23)
f f - Ip, (6ru)dxdt.

Using (21), we see that

T > JOT JQ (575(% p,(u): p, (u))dxdt, (24)

so that, all in all, taking into account that >, (T1 +To+T3+Ty)+T7+Ts+Ty = > (T5+Ts) +Tio
and inequalities (20)—(22)—(24), we obtain the following estimate for the solutions of (9): there is
a real number C' > 0 depending on the data such that

T T
|| sitentn oo axat + || 6d;0,U5(1h, o) do

1
(5 e w5 ) axar
+ v p¥2 dxdt + J fds/Z v p¥2 do(x)dt
%“fo J;Z| 57"l g 0 rl o, "I doGx)dt (25)
T T
C (f f £ 0 llp,udxdt + ) f f h,II5 p* dxdt
o Jo =~ Jo Jo

T
+ EJ Jh;ﬂ{)ppa da(x)dt>.
o Jo Jr

Now, we have

T
f f f-o00lp,udxdt = J f - (Op,u(T)—f Ip,u(0))dx
0 Ja Q

< Cp, HfHLZ(Q)(H Du(u)(T)”L2(Q,Sd(R)) + [ p,(u)(0) HLQ(Q,Sd(R)))v

13



LTL heTI p dxdt+f Jhanggp do(x )dt)

Cp, Y (1% 20,1y <) + [1hF 1220,y x0) IV, 2™ 220,722 () + dep véppa”L"’(O,T;LQ(F)))a

[e3

e’
<

where we have used the coercivity properties of the two gradient discretizations along with the
Cauchy-Schwarz inequality and dy < dfp,. Using Young’s inequality in the last two estimates
as well as hypotheses (H1)-(HS8) and (ii) in the lemma, it is then possible to infer from (25) the
existence of a real number C' > 0 depending on the data and on ¢, min such that

U (8, pe) (D) 2 ) + IdoUf (T8, pe) (T 2y + (T, pE) (T) 3
m o 3/ a
1 oDl @samn + DIV sz + 147, 95,0 00000

< C(If3: Q>+Z(Hh B2 0myxm) + 1032014, ) )

The above inequality, along with the fact that T' can be replaced by any t € (0, T] in the left-hand
side, yields the a priori estimates (16) on p®, p., p£ and u. The estimate on dy p, follows from
its definition and from the definition (14) of Cp,,. O

4.2 Compactness properties
4.2.1 Estimates on time translates

Proposition 4.3. Let D, Dy, (tn)ﬁfzo be given space time GDs and ¢y min > 0. It is assumed that
the gradient scheme (9a)—(9b) has a solution p* € (X%p)N“, a € {nw,w}, ue (X3 )N such
that ¢p(t,X) = Gm.min for a.e. (t,x) € (0,T) xQ and dy p, (t,x) = do(x) for a.e. (t,x) € (0,T)xT.
Let 7,7 € (0,T) and let n; be such that t € (t,,,tn,+1]. For any ¢ € XD , there exist 5(] oontl
nef{0,...,N —1}, rt € {m, f}, j € {1,2}, a € {nw, w} such that we have the following estimate

)

[[6pT3, 50,1(r) = [6pT05, 55,]("), 118, )10

+ (g0 T, s71(7) = [y, 0,11, $51(7) T @raqr|

1
S 0 ok (D ol + €019 ol
n=nr+1

+ fr(r%)’a’n+l\|ngp<ﬂ||w(ﬂ) + ff g, SDHL2(F))

with
N-1
n+i (7),a,n+1 2 1
th 2<§rt” ) <1 forrte {m, f}, je{1,2},
n=0
and
a,n n n 3
gg),amﬂ IV pn+1||L2(Q) and 5;1)’ - ||(d D, )3/2Vf pn+1HL2(F) Hd D, ”L/i (r)’
1 T tnt1
g2)an+l _ H i J he (t,-)dt gRhentl - H ; f h§(t,)dt)
5tnts Uy, L2(®) otz LA

Above, the hidden constants in the estimates are independent of  and depend only on the coercivity
constants Cp,, Cp, of the spatial GDs and on the physical data.
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Proof. For any ¢ € X%p, writing the difference of piecewise-constant functions at times 7 and 7/
as the sum of their jumps between these two times, one has

[6pT1, 55.1(7) — 60118, 551(7), B, @) r2(oy
+{[dg.p, 1T, s71(7) = [dy,p, 1T s§1(7), 1T, @) ra(r)

s
1
< 3 o

Gl dpI1R, 59](tn+1), 1B, @120y + Oeldy.p 15 5] (bn 1), 1T ©dra(m)|-

n=n,;+1
(27)
From the gradient scheme discrete variational equation (9a), we deduce that
(GODTIR, 53,1 (b)) T, D20 + (ildg 0,1 571(tns), T @)eary
S IVB,prsiliz) IVB,elz@ + 1d55.,) "V, prsilizmy 1d75,) "V, @liz)
1 bnt1
— he (¢, -)dt I’y
+ H St Ln m(t) L2(9) M5, ¢l L2 @) o8)
L (" e a !
— (¢, -)dt II 2
s | mear] b el

S EDMNTE o2y + €8 HIVE @lisry

a,n m 2),a,n+1
+ et p,¢lr2(a) +§](c)a *

|\H{>p¢|\L2(r),
where the term H(d;}JrDlu):;/ QV{)png r2(r) has been estimated using the generalized Hélder inequality

with exponents (8,8/3), which satisfy £ + 2 = . Hence the result follows from (27), (28), the a
priori estimates of Lemma 4.2, and from the assumptions h%, € L?((0,T) x Q), h$ e L?((0,T) x
). O

Remark 4.4. Summing the estimate (26) on o € {nw, w} we obtain the following time translate
estimates on ¢p and df p,:

6n(7) = 6n(7), T8, @) 12(0) + Ay (7) = dr.ou (7)1 e

n.,rs

S X X w (DB el + IV, elsar )

ae{nw,w} n=n-+1

2),a,n+1 m 2),a,n+1
+ € ol 2oy + €7, ol ) -

4.2.2 Compactness properties of H%p s

Proposition 4.5. Let (D))en, (DY)en, {(tﬁl)ﬁio}leN be sequences of space time GDs assumed to

satisfy the coercivity and compactness properties, and such that lim;_, o, At' = 0. Let @m,min > 0

and assume that, for each | € N, the gradient scheme (9a)—(9b) has a solution pf € (X3, )Nl“,
p

a € {nw,w}, u' € (X2, WL such that ¢pi(t,x) = Gmmin for a.e. (£,x) € (0,T) x Q and

dy pi (t,%) = do(x) for a.e. (t,x) € (0,T)xT". Then, the sequence (H%psf;;l)leN, with s&! = S2 (pL),

is relatively compact in L*((0,T) x ).

Proof. Let K be a fixed compact set of Q\I' and let us consider cut-off functions 1! as defined in

the cut-off property of the sequence of spatial GDs ('Di;)lew The superscript [ € N will be dropped
in the proof, and assumed to be large enough. All hidden constants in the following estimates are
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independent of I. Using that ¢p (¢, x) (;Sm min for a.e. (¢,x) € (0,T) x Q, the properties of the
cut-off functions, and noting that I’} = Sp (I3, pl) € [0, 1], we obtain

T
f T 52+ 7,) — TR 2|2 et

T—1 2
<T+J J 77[] ¢D %(‘FT,)_H%LPS%) dth:T-i-Tl-f—TQ,

where

T—1
T, = f (S0 52 1(t + 7) — [GpTIE 51(0), T ¢ (1)) pae |,

0

T—1
L= [ [l )= om0 0B, X O)aco |
0
with (2 (t) = (s%(t +7) — s,";L(t))l/J and x% (t) = ¢2(¢t) s&,(t + 7). From the cut-off property it
results that H{)pg;;g =0 and Vép ¢% = 0. Then, in view of the estimates (26), we have

T—7 "(t+7)
T s f Do ot (e TE GOl + €2 B Gl ey ) dt
0 n=n¢+1

T—7 "(t+7)
n 1 a,n o,
S| X s (e €@ 4 VG0 + B, GO dt.

0 n=ns+1

From Proposition 4.3, we have
2 5tttz < 1),a n+1)2+ (Eg),a,nJrl)Q) <1.

Using the a priori estimates of Lemma 4.2, h%, € L?((0,T) x ), the Lipschitz property of S2, the
chain rule and product rule estimates on the sequence of GDs (D )ien, and the cut-off property,
we obtain that -

| (93,6800 + 103, 0l )t < 1.
We deduce from [5, Lemma 4.1] that 77 < 7 + At with a hidden constant depending on K but
independent of I. Similarly, using the time translate estimate (29), one shows that To < 7 + At,
which provides the time translates estimates on II7; s7, in L2(0,T; L*(K)).

The space translates estimates for I sy, in L?(0,T; L?(K)) derive from the a priori estimates of
Lemma 4.2, the Lipschitz properties of S5, and from the compactness property of the sequence of
spatial GDs (D} )ien (cf. Remark 3.2). Combined with the time translate estimates, the Fréchet—
Kolmogorov theorem implies that IIp s7, is relatively compact in L?(0,T; L?(K)) for any compact
set K of Q\I'. Since II7 s7, € [0,1], it results that II7 s7, is relatively compact in L2((0,T) x
Q). O

4.2.3 Uniform-in-time L?-weak convergence of ¢DH7" 50 and ¢p

Proposition 4.6. Let (Dé,)leN, (D) ien, {(tﬁl)ﬁio}lgN be sequences of space time GDs assumed
to satisfy the coercivity and consistency properties. Let 0 < ¢mmin < @momax < +0 and assume

that, for each | € N, the gradient scheme (9a)—(9b) has a solution p{* € (X, WL e {nw, w),
Fe (X2, YN such that
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(i) dgp(t,x) = do(x) for a.e. (t,x) € (0,T) x T,
(1) Om.min < Opt(t,X) < O max for a.e. (t,x) € (0,T) x Q.
Then, up to a subsequence, the sequences (¢pi)ien and (¢DzH$ps%l)l€N, with %' = S2(pl),

converge uniformly in time weakly in L?(Q).

Proof. Let K be a fixed compact set of Q\I" and let 1! be cut-off functions for this compact set,
as defined in the cut-off property of (D;)leN. The superscript [ € N will be dropped when not
required for the clarity of the proof.

For w e Vy we let Pp,w € X%p be the element that realises the minimum in Sp,(w), so that

|V, Pp,w = V| 120 + |V, Pp,w — Voyw| L)

+ |13, Pp,w — w20 + [T, Pp,w — yw|L-r) = Sp, (w). (30

Let € C(2) and set ¢ = Pp,@. It results from the cut-off property that H{)p () = 0 and

V%p (1)) = 0. Using the GD consistency property of (D},);en and (30), we see that V5 (We)lz@)
and HH%LP (¥9)] L2 () are bounded by constants depending on K and @ but independent of /. Then,
from Proposition 4.3, we have with hidden constants independent of [ but possibly depending on
K and @, that

13, v ([op115, 55,1(7) — [6p115,551(7) ) 15, @)r20)|

= [((onT1g, s5.0(r) — (0118, s2.1(+'). TIB, (V) 12(0)|

- n 1 a,n m a,n m
< Y o (DO VE W)l + €2, (b6) ey

n=nr+1
1 1
( > : (1,an+1)? @.ane1)2) ) i )
< Z stttz ((gm ,o,n ) + (fm ,a,n ) ) Stnta2
n=n,+1 n=n,+1

< ‘T—T’|% + At2.

Using that ¢DH7BP 55 < @m,max, and that ngz/} is uniformly bounded, one has

13, v ([opl1g,53,1(r) — [6p115, 531(7)) . Prae| < |7 =71 + At +wp,,  (31)

with wp, = [ — IIp ¢[r2(a) a consistency error term such that lim;, 4o wpr = 0. It follows
from the discontinuous Ascoli-Arzela theorem [20, Theorem C.11] that (up to a subsequence) the

sequence (II5 ¥)ép(Ilp s7,) = ¢pllp (sp,1) converges uniformly in time weakly in L2(Q).

Let us now take w € CP(Q\I') and let K be the support of w. For [ large enough, by definition of

¢! we have (ppiIIg, s0) |k = ppiIIg, (lsSt). Hence,

(pp T 5L w)r2() converges uniformly with respect to ¢ € [0, T]. (32)

Since (¢pi 117, 5%1) ey is uniformly bounded (it takes values in [y, min, ®m.max]), the density of
P

CZ(OQ\I') in L?(€2) shows that the convergence (32) is valid for any w € L?(f2), which concludes
the proof that the sequence ¢pi 117, 5% converges uniformly in time, weakly in L?(9).

We deduce that the sequence ¢pp1 = > . (nw,w} o 117, 52! also converges uniformly in time, weakly
’ P
in L?(Q). O
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4.2.4 Uniform-in-time L?-weak convergence of df7'DuH£p s;‘é and d¢ p,

Proposition 4.7. Let (D))en, (Dh)en; {(tfl)ﬁio}leN be sequences of space time GDs assumed
to satisfy the coercivity and consistency properties. Let 0 < ¢m min < @m,max < +00 and assume

that, for each | € N, the gradient scheme (9a)—~(9b) has a solution pf* € (X3, )Nl“, a € {nw,w},
ul e (X%L)Nl+1 such that '

(i) dgp(t,x) = do(x) for a.e. (t,x) € (0,T) x T,

(11) Gm.min < ¢pi (t,X) < Py max for a.e. (t,x) € (0,T) x Q.
Then, the sequences (dgpt)ien and (de'D‘lJH;Zf)pS?’l)leN7 with s‘}“l = S¢(pL) converge, up to a sub-

sequence, uniformly in time weakly in L*(T).

Proof. Let K be a fixed compact set of Q\I' and let us consider cut-off functions ¢! as defined
in the cut-off property of (Dé)leN. In the following, the superscript [ € N is dropped when not
required for the clarity of the proof, and the hidden constants are independent of . Let g € C(Q)
and set ¢ = Pp @, with Pp_ characterised by (30). From Proposition 4.3 we have

‘<[df,pun{>psjz](7) — [dyp,IT s§1(+"), 1T @Lzm)
< [([op113,55.1(7) = (60118, 551(7) ) . 1B, @)1z

+ max (I8 @l2(), IVh, @l oy, B, @lracoy, 1T, @lrar))

X ( % St ((gr(rlb),a,nﬂ)z N (5;1),a,n+1)2 N (&(3)’&)7”1)2 N (5;2)7%”“)2))

n=n,+1

><< % 5t"+5>2

n=n,+1

1
2

< (Ir =713 + atd) + [(([opT03,551(7) — [6011, 551(7)) | T8, @)r2o) -
Using Proposition 4.6, ¢p < ¢ max and ng 5% €[0,1], we have

((lop113,52,1(r) = [op115, s51(")) 115, @) 20|
< Ommax|® = T8, @l 20 + (60T, 53,1() — 6011, 551 (7)), Pra(oy
and
KLy, p,11h, 551(7) = [d7, 0,10, 551(7), & = T, @>r2r)| < lg.pu o072y I8 = T @l 2qry-

Using the a priori estimates of Lemma 4.2, and Proposition 4.6 stating the uniform-in-time

L?(Q)-weak convergence of ngDH%psf‘n (which implies the equi-continuity of the functions 7 —

(¢plp, sm](7), 8)r2(0)), we deduce that
Kyt 551(7) = [d7, 0,10, s51(), @y | < wllr = 7)) + At + =,

with limpow(h) = 0 and wp, = [@ —IIp ¢|r2) + [ — Hép(pHLz(p) a consistency error term
such that lim;_, 4 o wpt = 0. It follows from the discontinuous Ascoli-Arzela theorem [20, Theorem
C.11] that (up to a subsequence) the sequence d f,DuH{)p s¢ converges uniformly in time weakly in

L?(T"). Summing over a € {nw,w}, we also deduce the uniform-in-time L?(T")-weak convergence
Ofdﬁpu. O
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4.2.5 Strong convergence of dsp,, dﬁpuﬂéps?, and H%ps?‘

Proposition 4.8. Let (D))en, (DY)en, {(tfl)nNio}leN be sequences of space time GDs assumed to
satisfy the coercivity, consistency and compactness properties. Let 0 < ¢y min < Pmomax < +0

and assume that, for each | € N, the gradient scheme (9a)-(9b) has a solution p} € (X3, )Nl“,
ae {nw,w}, u' e (X%L)NLJr1 such that '

(i) dgp(t,x) = do(x) for a.e. (t,x) € (0,T) x T,

(11) Gm.min < ¢pi (t,X) < Py max for a.e. (t,x) € (0,T) x Q.
Then, the sequence (dg pt )ien converges up to a subsequence in L*(0,T5 LP(L')) for all 2 < p <

4, and the sequences (df}DLHrfDPS?’l)leN and (H%ps?’l)leN, with s?’l = S¢(pl) converge, up to a
subsequence, in L*(0,T; L*(T)).

Proof. By the characterization in Remark 3.4 of the compactness of (DL, );eny and the estimate on
p,(u) in Lemma 4.2, we have, for all i € I, all n; tangent to I';, a.e. t € (0,T) and all s < 4,

de,'Dfl (ta -+ 771) - dﬂD{‘ (t7 ) L*(T;) < TDL,S(Ov 77)” Du (u)(t7 ')‘|L2(Q,Sd(R)) < TD{US(Oa 77)7

where n = (0,...,0,7;,0,...,0) and dspi has been extended by 0 in the hyperplane spanned

by I';. Together with the uniform-in-time L?(I")-weak convergence of d #,pi. from Proposition 4.7,
this shows that we can apply Lemma A.2 to dy p: with p = +00 and get the convergence of this

sequence in L®(0,7T; L?(T)). Since, from the a priori estimates of Lemma 4.2, this sequence df pt
is bounded in L*(0,T; L*(T)), it follows that it converges in L*(0,T; L4(T)) for all 2 < g < 4.

For any compact set Ky < I' that is disjoint from the intersections (I'; n T'j);+;, using that
H{) s¢ € [0,1], that [dgp,(t,)|L1(r) is uniformly bounded in ¢, and the Lipschitz properties of

S¢, 1t follows that, for all 4 € I and n; tangent to I'; small enough,
I[ds. DT s§1(t,- +mi) = (A sF1(E )25, ar)
< |dgpu(t,-+mi) —dpp,(t )| L2k, mry)

+ |05, G (¢, - +m) = T, 83 () Lagacs mr g, pa (8 ) | Lo, mr)

S dypu (b +m) = dpoy (6 ) L2 mry + [T 8§t - +m) =T, s§(t, )HLz(Kfmr )
S dppu (- +m) = dp oy (6 ) L2, mrp + [T pelt, - +mi) — T, pe(t, )HLz (K Ts)-

From the compactness properties of (D )ien and (D})ien (see Remarks 3.2 and 3.4) it results that

3| sup Mo 1, 5516, -+ m) = [0, s71C, ez, ar

iel [n:|<8

< T, O (| pu@lmorasn + Y, UV plioaawy + IVE P |20rizx))

ae{nw,w}

L4(0,T)

with lims_o Tk, (6) = 0. From the a priori estimates of Lemma 4.2, and the uniform-in-time L*(I')-
weak convergence of dy p,s§ of Proposition 4.7, it follows from Lemma A.2 that the sequence

df)puﬂép 5% converges up to a subsequence in LY0,T; L*(Ky)).

From the assumption dy p, (t,x) > do(x), the sequence ds p, is bounded from below by a strictly

positive constant on K ;. Writing that H{jps‘}“ =7 1D (d f,DuH{)p s¢), it follows that the sequence
H{)p 5% converges in L*(0,T; L?(Ky)). Since this is true for any Ky compact in T' that does not
touch the fractures intersections, and since H{)p s§ € [0,1], we deduce that the sequence H{)p s§

converges in L*(0, T; L*(T)). O
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4.3 Convergence to a weak solution

Proof of Theorem 4.1. The superscript [ will be dropped in the proof, and all convergences are up
to appropriate subsequences. From Lemma 4.2 and Proposition 4.8, there exist dy € L*(0,T; LA(T))
and 8¢ € L((0,T") x I') such that

dsp, — dy in L*(0,T; LP(T)), 2 < p < 4,
33
I, S%(p) — 58 in LA(0, T3 L3(T)). (3
From Proposition 4.5, there exists 52, € L*((0,T) x Q) such that
m Qo e : 2 . T2
Iy, S5 (pe) — 55, in L2(0,T; L*(Q2)). (34)

The identification of the limit [11, Lemma 5.5], resulting from the limit-conformity property,
can easily be adapted to our definition of Vj, with weight dg/ > and the use in the definition
of limit-conformity of fracture flux functions that are compactly supported away from the tips.
Using this lemma and the a priori estimates of Lemma 4.2, we obtain p® € L2(0,7;V,) and
g} e L*(0,T; L?(T")4=1), such that the following weak limits hold

g p* — p° in L*(0,T; L*(92)),

I, p — p° in L2(0, T; L2(T)),

Vg p* — Vp* in L2(0,T; L*()7), (35)
dy* Vi, p* = di*Vep®  in L2(0,T; LX),

d3/2 v;; P — g} in L2(0, T; L3(T')4-1).

Let ¢ € C%((0,T) x I')4~! whose support is contained in (0,7") x K, with K compact set not
containing the tips of I'. We have

T T
J J dj”/,QDuv{)ppa < do(x)dt — J J g?‘ - do(x)dt.
0 T 0 r

On the other hand, it results from (35) and the fact that dy is bounded away from 0 on K
(because dy is continuous and does not vanish outside the tips of I') that V%pp" — V,vp% in

L?(0,T; L?(K)%"1). Combined with the convergence djc/z)ucp — (dy)"2¢ in L®(0,T; L3(I)4 1)
given by (33), we infer that

des/z Vép ¢ do(x dt—»J J- (dy) )2V A - @ do(x)dt.

This shows that g = (dy)”*Vvp™ on (0,T) x T

Combining the strong convergence of II'; S5 (p) = Sy, (I pe) (resp. of H];p S¢(pe) = S¢ (HJ,;]DpC))7
the weak convergence of TI'? b, Pe (resp. Hpopc), and the monotonicity of S% (resp. Sjoc‘)7 it results
from the Minty trick (see e.g. [24, Lemma 2.6]) that s, = S7,(pc) (vesp. 5§ = S§(ypc)) with
Pe =p™ —p*.

From the a priori estimates of Lemma 4.2 and the limit-conformity property of the sequence of
GDs (DL)en (see Lemma A.3), there exists i € L*(0,T; Ug), such that

p,u—1u in L*(0,T; LQ(Q)d) weak *,

p,(u) — (1) in L®(0,7T; L?(22,S4(R))) Weak *, (36)
divp,u — div(a) in L®(0,T; L?(Q2)) weak *,
d¢p, = —[u]p, — —[a] in L*®(0,T;L*(I")) weak *,
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from which we deduce that d; = —[@] and that p, (u) converges to (@) in L®(0, T; L*(Q, Sa(R)))
weak *.

From the a priori estimates and the closure equations (9c), there exist ¢,, € L*(0,T; L*(Q) and
pE € L*(0,T; L*(9) such that

op — ém in L®(0,T; L?(Q2)) weak *, 57
Iy, pE —pE in L®(0,T; L*(Q)) weak *. (37)
Since 0 < = {0 a(S%¥) (q)dq < 2|p| for rt € {m, f}, it results from the a priori estimates of

Lemma 4.2 that there exist pf e L*0,T; L3 (")), Uy € L*(0,T; L*(T")) and U,, € L*(0,T; L*(2))
such that
n, p¥ — pf in L2(0, T; LA(T)),
1}, Us(pe) = Uy in L*(0,T; L*(T'))
II pUm(pc) — U, in L%(0,T;L?(%)).
For rt € {uw,w}, it is shown in [21] that Uy (p) = Bn(Si¥(p)) where s € [0,1] — Bi(s) €
(—00, +0] is a convex lower semi-continuous function with finite limits at s = 0 and s = 1 (note
that By is therefore continuous with values in (—o0, +00], the infinite value being only possible at
the endpoints). Since Il s;" converges strongly in L2((0,T) x Q) to S2¥(p,.), it converges a.e.
in (0,7) x Q. It results that B (II5 sm'’) converges a.e. in (0,T) x  to By, (53" (Pe)), and hence
that Up, = B (S5 (Pe)) = Um(pe). Similarly, Uy = By (S} (vp.)) = Uy (vpe). We deduce that

o=, P"Su(P)—Un(pe) and pf = > 4p"SF(ype) — Ur(vpe)-

ae{nw,w} ae{nw,w}

(38)

)

Using the estimate

|Urt(p2) - Urt(pl)‘ =

P2
J Q(Sﬁw)/(Q)dQI < [p2 — il + [p2SEY (p2) — PSS (p1)],

p1

the Lipschitz property of SEY, p§ € Vo n L®(Q), 7D € L*(T'), a € {nw, w}, and the consistency
of the sequence of GDs (Dé))leN; we deduce that

115, pﬁio — P’ in L2(Q),

H;;p —p;" in LA(ID). (39)
Then, from Proposition A.4 it holds that
divp, (u’) — div(a®) in L3(Q), (40)

[u’]p, — [0°] = —Jg in L2(I).
It results from (39) and (40) that

B 1
= @2, + b div(a — a’) + M(ﬁE — pEoy.

Let us now prove that the functions p*, o € {nw,w}, and u satisfy the variational formulation
(6)—(7) by passing to the limit in the gradient scheme (9).

For § € CX([0,T)) and ¢ € CF () let us set, with Pp characterised by (30),
p=(p" ..., ¢") e (Xp,)N with o' = 0(t;—1)(Pp, ).
From the consistency properties of (D )leN with given r > 8, we deduce that

% Pp,yy — 1 in L2(Q), H{DPPDP¢ — -~ in LA(T),
I3 o —60¢  in LP(0,T;L%(Q), T, ¢ — 6y in L®(0,T; L4(T)), (41)
B — 0V in LF(0,T; L3(Q)Y), V] @ — 0V in L2(0,T; L7(D)*Y).
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Setting

=
Il
°

(& ((ﬁpﬂgps%)ﬂ%pgo dxdt
N (U5 sm)Kn VD p® - VI ¢ dxdt

Oy (dﬁpu Hép s‘f") H{)p p do(x)dt

e B
I I
hh

3

dip
n?(l‘[{)ps?) f1’2“ V{)ppa ~V{7p4p dxdt

T T
=J f R TIE dxdt+f f eI, ¢ do(x)dt,
o Ja i o Jr v

the gradient scheme variational formulation (9a) states that

Il
5
S~

T,
15

T+ T+ T35+ Ty =1Ts.

For w € C*([0,T)) and a smooth function w : Q\I' — R? vanishing on 02 and admitting finite
limits on each side of T', let us set

v=(vh...,vM)e (X%U)N with v = w(t;_1)(Pp,w)

where Pp, w realises the minimum in the definition (15) of Sp,(w). From the consistency prop-
erties of (D!,)ien, we deduce that

IIp, v — wy in L*(0,T; L*()%),
p, (V) = w (W) in L®(0,T; L*(9, S4(R))), (42)
[vlp, — w[w] in L*(0,T; L3(T)).
Setting

T, = LT JQ( P (W) p,(v) = BT, pE)divp, (v) ) dxdt,
T, = LT JF(H{D pF)[Vlp,do(x)dt,

T
Tg = f f f- HDuV dxdt.
0 JQ

the gradient scheme variational formulation (9b) states that
Te + 17 =Tg.

Using a discrete integration by part [20, Section D.1.7], we have T} = Ty + Ti2 with

T

T
- f f o (I 5%)(I2 Pp, )0 (1) dxdt,
0 Q
Tis = — L<H&I$;é0><H$,,sz<PDpp3>><H$pPDm>e<o> dx.

Using (41) and (37), and that II7 s7, € [0, 1] converges to S5, (pc) a.e. in (0,7) x € (this follows
from (34)), it holds that
T
T = | | GnSumoue (o) axdt
0o Jo
Using (41), that IT5 I35 #° converges in L2(Q) to ¢° and that g Sp.(Pp,py) € [0,1] converges
a.e. in 2 to S%(p§), we deduce that

Ty — - f S o 0) d
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Writing T3 = T31 + T39 with

T

T :‘f f dy.p, (11, 5§) (15, Pp, )0 (t) do(x)dt,
0 I

Tio = [ 1o, 01, 57 1o, 5)(115, Po, )00) do),

we obtain, using similar arguments and (40), that

T —
Ty — — j f 0753 (vpeyy (1) do(x)dt
0 T

and
T — = | &S305109(0) dox).
Using that 0 < %(Hm Sp) < M maxs the continuity of 77, the convergence of 15 sy, ae. in

(0,T) x Q to S%(pe), (35) and (41), it holds that

T
7= [ [ s v 0ve axai
o Ja
The convergence )
Ty HJ f??f Sf Vbe)) ==V 0% - Voye®do(x)dt

is established using 0 < n?(H{)psﬁé) < 1 maxo the continuity of 7§, the convergence of Hép s} a.e.
in (0,7) x T to S?(’yﬁc) combined with the weak convergence of d?fDuVQPpO‘ to J;/ZVTfyﬁa in
L2((0,T) x I)41 the strong convergence of d/ to (Z:;/Q in L*((0,7) x T') for all 2 < s <

8

3

(resulting from (33)), and the strong convergence (41) of Vépcp to OV vt in L*(0,T; L™(T")) with
T > 8.

The convergence
T T
T5 — J J he 0 dxdt +J J h§ 0(yi) do(x)dt
0 JQ o Jr
is readily obtained from (41). The following convergences of Tg, T7, Tg
Ts —>f J C(wW)w — bpZ div(w)w ) dxdt,
T, —>J‘ f ﬁ? [W]w do(x)dt
0o Jr

T
Tg—»f ff~wwdxdt
0o Jao

classically result from the strong convergences (42) combined with the weak convergences (36).

Using the above limits in 17 + T» + T35 + T4 = T5 and T + 17 = Ty concludes the proof that p<,
a € {nw, w}, and @ satisfy the variational formulation (6)—(7). O

5 Two-dimensional numerical example

In order to test the convergence and the performance of the numerical approach, we consider
the following example. We solve problem (3) in the square 2 = (0, L)? lying in the xy-plane,
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with L = 100 m, containing a cross-shaped fracture network I' made up of four fractures, each

one of length % intersecting at (%, %) and aligned with the coordinate axes: I' = U?:l T;, where
Ty= (8L, )% {5}, T2 = (5, §L)x {5}, Ts = {§)x (L. §), and Ty = {§}x (%, §L) (cf. Figure 3).

We select as primary unknowns for the fluid flows the non-wetting pressure and saturation in the
matrix and fracture network, so that the complete list of unknowns is (piv, sV, P, s, u). The
matrix and fracture network have the following mobility laws: 1% (s%) = (5;32, ny(s®) = Z—Z,
a € {w,nw}, where p" = 1073 Pa-s and g™ = 1.851-107° Pa-s are the dynamic viscosities of the
wetting and non-wetting phases, respectively. Notice that 7y, and n% do not satisfy the assumptions
of our analysis, as they are not bounded below by a strictly positive number; these choices are
however physically relevant, and as the test shows, do not seem to impair the convergence of the

numerical scheme. The saturation—capillary pressure relation is Corey’s law:

st =S (pe) = max(1 — e_pc/R”,O), rt € {m, f},

with R,,, = 10*Pa and Ry = 10Pa. The matrix is homogeneous and isotropic, i.e. K;, = A,,L
characterized by a permeability A,, = 3:107m?, an initial porosity ¢!, = 0.2, effective Lamé
parameters A = 833MPa, u = 1250 MPa, effective (drained) bulk modulus® Kq, = A + p =
2083 MPa, and solid grain bulk modulus K = 11244 MPa. From these, one can infer the values
of the Biot coefficient b = 1 — II((—" ~ (.81, and of the Biot modulus M = b—KTOm ~ 18.4 GPa

(notice that the fluid compressibility is neglected for both phases). The densities of the fluids
are p¥ = 1000kg/m? and p"V = 800kg/m>. Since we consider a horizontal domain, the effects
of gravity do not appear here (f = 0 in §2). The domain is assumed to be clamped all over its
boundary, i.e. u =0 on (0,7) x d2; for the flows, we impose a wetting saturation s¥%, = 1 on the
upper side of the boundary (0,7") x ((0, L) x {L}), whereas the remaining part of the boundary is
considered as impervious (q%,-n = 0, « € {nw, w}). The system is subject to the initial conditions
pav = py = 105 Pa, which in turn results in an initial saturation soay = 0, 1t € {m, f}. The final
time is set to 7' = 1000days = 8.64:10”s. The system is excited by the following source term,
representing injection of non-wetting fluid at the center of the fracture network:

g (X) Vpor
jmwwa“
N

R (8, %) = (t,x) € (0,T) x T,

where Vo, = f ¢2 (x) dx is the initial porous volume and g(x) = e Flx0)/LI* 5, — (L Ly,

2
with 8 = 1000 and || the Euclidean norm. The remaining source terms h} and hy,, a € {w,nw},
are all set to zero.

The flow part of (3) is discretized in space by a Two-Point Flux Approximation (TPFA) finite
volume scheme using m f-linear m-upwind model for matrix-fracture interactions (cf. [2]). The
mechanical part of the system (3) is discretized using the second-order finite elements (P2) for
the displacement field in the matrix (see e.g. [16, 33]), adding supplementary unknowns on the
fracture faces to account for the discontinuities. The computational domain €2 is decomposed using
admissible triangular meshes for the TPFA scheme (cf. [23, Section 3.1.2]). Let n € N* denote the
time step index. The time stepping is adaptive, defined as

St"TE = min{pdt" ", Agmax),

where t2 is the initial time step and p = 1.1. At each time step, the flow unknowns are computed
by a Newton-Raphson algorithm. At each Newton-Raphson iteration, the Jacobian matrix is
computed analytically and the linear system is solved using a GMRes iterative solver. The time
step is reduced by a factor 2 whenever the Newton-Raphson algorithm does not converge within
50 iterations, with the stopping criteria defined by the relative residual norm lower than 1075 or

n general, Kq, = A + 2u/d, where d € {2, 3} is the space dimension.
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a maximum normalized variation of the primary unknowns lower than 10~%. On the other hand,
given the matrix and fracture equivalent pressures pZ and p? , the displacement field u is computed
using the direct solver MA48 (see [22]). Following [9, 16, 33, 38, 40, 28], the coupling between
the two-phase Darcy flow and the mechanical deformation is solved by means of a fized-point
algorithm. This algorithm computes the matrix porosity and the fracture aperture, using discrete
versions of the coupling laws (4), at each time step and fixed-point iteration. The algorithm is
summarized in the following scheme, where k& denotes the current fixed-point iteration and n the
current time step.

Iterative coupling algorithm
At each time step n, for k = 1,..., until convergence, solve the following Darcy and
mechanical subproblems:

(i) Compute p&™F s@™F o e {w,nw}, rt € {m, f}, solving the Darcy flow model using

d?’k ~!in the fracture conductivity and the following porosity and fracture aperture in
the accumulation term:
. 1
(b?n’k o ¢Z71 _ Cr,m( ﬁ,n,k . pTF:‘L,n,kfl) + bdlv(un,kfl o unfl) + M(pi,n,k _prEn,nfl)’
dpt —dy™t = Crp(py ™ —pf ™) + [t —ut

(ii) Compute the displacement field u™* using the equivalent pressures pZm™* and p?’n’k

computed at step (i).

Initialization

For given n > 1 and k =1, set

pE,n,O _ pE,n—l pE,n—l,O _ pE,n—2
- 1rt e 3rt 9 rte{maf}v
otz otz
un,O _ un—l un—l _ un—2
1 = 3 )
5tz otz

For n =1, set

-1 0

B,— E,
prt7 ! :prt07 rte{maf}7
u =u .

Here, C. , and C, ; are positive relaxation parameters mimicking the rock compressibility (see
e.g. [9, 16, 33, 38, 40, 28]). For our numerical simulations, we choose C, ,,, = 165° (cf. [40]), and

~ ~ 2042
Crf=dsC ., withdy = 1073 m.

To verify the convergence of the method, we take into account six sequentially refined admissible
triangular nested grids. In particular, we consider a reference solution (pj" cts Si'vefs P rets Sfrefs Uref)
computed on the finest (sixth) grid, made up by 229376 cells, and used to showcase the time his-
tories of the solution as well as to compute the time histories of the relative errors for each grid.
Figure 4 shows the variation with respect to the curvilinear abscissa (z or y, depending on the ori-
entation) of the initial and final apertures for the fractures in the cross-shaped network, based on
the reference solution. At time ¢ = 0, the widths of both the x- and y-oriented fractures coincide.
Figure 5 displays the final non-wetting matrix pressure and saturations computed on the finest
grid, as well as the initial and final displacement field; as expected, the non-wetting phase flows
through the fracture network tips and is attracted towards the upper side of the domain, where
the wetting saturation is maximal (s}, = 1); also, the intensity of the final displacement field turns
out to be one order of magnitude larger than the initial one. Figure 6 showcases the time histories
of the average of some relevant physical quantities computed based on the reference solution (the
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Figure 3: Computational domain.

average of a is denoted by a*). In particular, we notice the increase in width for the fracture
network as a result of the gas injection, followed by a decrease after attaining a maximum due to
an increasing gas matrix mobility in the neighborhood of the fractures. The mean saturation in
the fracture network, as expected, grows linearly with time until the gas front reaches the upper
boundary. Finally, the variation of the mean matrix porosity over time is almost negligible (on the
order of 107%). Figure 7 shows the time histories of the relative errors with respect to the averaged
physical quantities given by the reference solution. Computations are carried out, again, using
averaged quantities (a}, denotes the average of quantity a computed using N triangular elements).
As the number N of elements increases, the relative errors decrease, which shows the convergence
of the method. Finally, we give an insight into the performance of our method in Table 1, where

e NbCells is the number of cells of the mesh,

Na¢ is the number of successful time steps,
® Nyewton 18 the total number of Newton-Raphson iterations,
e NaMRes i the total number of GMRes iterations,

® NFEixedPoint 1S the total number of fixed point iterations.

NbCells Na¢ NNewton NGMRes NFixedPoint
224 153 3298 13716 2351
896 153 1857 9751 1308
3584 153 1839 10792 1312

14336 153 1976 14062 1324
57344 153 2247 20330 1322
229376 | 153 2772 34799 1329

Table 1: Performance of the method in terms of the number of mesh elements, the number of
successful time steps, the total number of Newton-Raphson iterations, the total number of GMRes
iterations, and the total number of fixed-point iterations.
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Fracture width vs. z or y at times t =0 and t =T

1.1.1073
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Fracture curvilinear abscissa x or y (m)

Figure 4: Initial and final widths of the x- and y-oriented fractures vs. corresponding curvilinear
abscissae, computed using the finest grid (reference solution). The initial width for both the a-
and y-oriented fractures is the same.

6 Conclusions

We developed, in the framework of the gradient discretization method, the numerical analysis
of a two-phase flow model in deformable and fractured porous media. The model considers a
linear elastic mechanical model with open fractures coupled with an hybrid-dimensional two-phase
Darcy flow with continuous phase pressures at matrix fracture interfaces. The model accounts for
a general network of planar fractures including immersed, non-immersed fractures and fracture
intersections, and considers different rock types in the matrix and fracture network domains.

It is assumed, for the convergence analysis, that the porosity remains bounded from below and
above by strictly positive constants and that the fracture aperture remains larger than a fixed non-
negative continuous function vanishing only at the tips of the fracture network. In addition, the
mobility functions are assumed to be bounded from below by strictly positive constants. However,
unlike previous works, the fracture conductivity d‘jz /12 was not frozen and the complete non-linear
coupling between the flow and mechanics equations was considered.

Assuming that the gradient discretization meet generic coercivity, consistency, limit-conformity
and compactness properties, we proved the weak convergence of the phase pressures and displace-
ment field to a weak continuous solution, as well as the strong convergence of the fracture aperture
and of the matrix and fracture saturations. Numerical experiments carried out for a cross-shaped
fracture network immersed in a two-dimensional porous medium and using a TPFA finite volume
scheme for the flow combined with a Py finite element method for the mechanics, confirmed the
numerical convergence of the scheme.
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(a* denotes the mean of a).
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A Appendix

A.1 Appendix 1

Proposition A.1. Let X < R% be bounded, § > 0 and let (Afn)meM(; be a covering of X in
disjoint cubes of length §. Let R® : L?(R%) — L?(X) be such that, for any v e L*(R?),

1
(R°v) las ~x = J v(x) dx Vm e Ms,
g 8

57 AVYl
Then, we have
|R%v — V]l p2(x) < 242 sup [o(- + 2) = v]L2(x)-

lzl<

Proof. The proof can be found in [19, p. 756]. Note that the assumption, in this reference, that
v is zero outside X is actually not useful. O

Lemma A.2. Let X c R% be bounded, and U be an open subset of R? such that {x e RY .
dist(x, X) < dp} < U for a given dy > 0, where the distance is considered for the supremum norm
in R%. Let (wy),cy be a bounded sequence in L*(0,T; L*(U)) that converges uniformly in time
and weakly in L*(U) to w e L*(0,T; L*(U)). Let p € [1, +o0] and let us define

7(5) =

sup [lwy (-, -+ 2) = wi ()| L2 (x)
|z|<o

k Lr(0,T)

If lims_,o T(8) = 0, then the sequence (wy),oy converges to w in LP(0,T; L*(X)).

Proof. For 0 < < g, let (Afn)meM(; be a covering of X in disjoint cubes of length 6 and let R’

be the corresponding L? projection operator as defined in Proposition A.1. We write
wy —w = (wy — ROwy) + (ROwy, — ROw) + (Row — w)

and we establish the convergence to 0 of each bracketed term in the right-hand side. First, in view
of Proposition A.1

Jwr(t, ) = Rowi(t, )] z2(x) N‘S?pal\wk(tw+2) wi(t, )] 2 (x)
<

implying that
lwk — ROwi| o (0,7522(x)) S T(6).

Setting vy = wy, — Rowy, k € N, we have, if p = o0, ||vk( z2x) < T(6) for a.e. t € (0,T). Using
the weak convergence v (t,-) — v(t,-) == w(t,-) — Row(t,-) in L?*(X), this provides

Jw(t, ) = Rhw(t, )| 2cx) < U inf Jog (£, )2 x) < T(9).

For p < o0, we have, using the above weak convergence of (vg(t,-))ken and Fatou’s lemma,
T T T
[ 1t e = [ i o e )y < nind [ 00 g £ 7°6)

Hence, for any p,
|w — ROw| oo, 7522(x)) < T(6).

Finally,

R5wk — Row = Z a’im(t)]]'AénmX7 with aim(t) = %J (wi(t,x) — w(t,x))dx,
AS

meMsg m
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)

o m(t) converge

Since the covering (A?)) is finite and since, for all m € M;, the term a

m(EMg
uniformly in time to zero, it results that (R%wy — R%w) converges as k — +00 to zero in L*((0,T) x

X).
Gathering the estimates, we have that
|we = wlLeo,r5020x)) < 27(8) + [ ROwi — ROw|1o(o,r502(x))-

Passing to the superior limit as k — o0, we deduce that limsupy,_, , o, [wr —w| e (0,7;22(x)) < 27T°(9)
which yields, letting 0 — 0, limsupy,_, , o, |wx — wl|zr(0,7;22(x)) = 0.

A.2 Appendix 2

Lemma A.3. Let (D.)ien be a sequence of GDs assumed to satisfy the coercivity and limit-
conformity properties. Let (u')en be a sequence of vectors with u' € X%l such that there exist C
independent of | € N with |[u!|p, < C. Then, there exists u € Uq such that, up to a subsequence,
the following weak limits hold:

HDLul —u in L?(Q)?,
ij(ul) — (1) in Lz(std(R))ﬂ

divp: (u') — div(u) in L2(5),
[wlm, —[a]  inL3(D).

Proof. By assumption the sequence (|| pi [L2(0,s,(®)))ien is bounded which implies, from the co-
ercivity property, that the sequences (||Ip: u'||12(q))ien and ([[u']ps || 22(r))ien are also bounded.
Hence there exist @ € L?(Q)%, ~ e L2(Q2,S4(R)) and g € L?(T') such that, up to a subsequence, one
has Opu —1a  in L2(Q),

o (u) =7 in L2(Q S4(R)),

[l —g in Z2(D).

Passing to the limit in the definition of the limit-conformity yields, for any € CZ(Q\T, S4(R)),
f ( 7+ div( ))dx—f( n*)-n*g do(x) = 0.
Q r
Selecting first  with a compact support in Q\I', and then a generic , it results that u € Uy with
~ = (@) and g = [u]. Since diVDL(ul) = Trace( py, (u')), it also holds that divpe, (u!) — div(a)
in L?(Q).
O

Let us fix p® € Vp, a € {nw,w}, f € L?(2)%, and define

Ph= ). P"S%(Pc) —Un(pe) and pf= >, Ap*SF(vpe) — Us(7Pe)-

ae{nw,w} ae{nw,w}

with p, = p™¥ — pV. We consider the solution @1 € Uy of the following variational formulation
J ( @): (¥)— bpﬁdiv(v))dx+J ¥ [v]do(x) :f f.vdx, VveU,  (43)
Q r Q

Let us take p* € D,, o € {nw, w}, p. = p"¥ — p" and

Pr= ), PSnpe) = Unlpe) and pf= > p*SFpe) = Ur(pe).

ae{nw,w} ae{nw,w}
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We consider the following gradient scheme for (43): Find u e X9, such that, for all v e X3, ,

JQ( 0, (W) i p,(v) = b (I, pE)divp, (v) ) dx + J (115, p?)[vlp,do(x) = sz.l_[puv dx. (44)

The Lax Milgram theorem ensures that the exact solution u and approximate solution u exist and
are unique. The following proposition provides an error estimate.

Proposition A.4. Let u € Uy be the solution of (43) and u € XODu the solution of the gradient
scheme (44). Then, there exists a hidden constant depending only on the coercivity constant Cp,
and on the physical data such that the following error estimate holds

| p.(w) = (@)]20,.8,®) + TIp,u—10|r20) + [[u]p, — [a]|z2r) )
45
< Sp, (@) + Wp, ( (@) = bpiD) + B, — TF pl |2 o) + 57 — H{) pFllze @y

As a consequence, if (D.)ien s a sequence of coercive, consistent and limit-conforming GDs, if u'
is the solution of (44) for Dy = D!, if (Dé)leN is a sequence of GDs and p™' e X%, ,leN, are

u’

such that H’”I pEl — pE in L2(Q) and H;;L p? — pf in L*(T), then, as | — 0,
py(u') = (@) in L*(2,S4(R)),
HDLul -1 in L2(Q)4, (46)
[[ul]]pfl — [a] in L*(T).
Proof. We note that even though Wp, was considered, in the definition of limit-conformity of a
sequence of GDs, only on C”(Q\F,Sd(R)), it can be defined on
Haiy r (3 Sa(R)) = { € L*(S4(R)) = div( )|gs € L*(Q°)%, B e E,
*nt+ "n"=0onT,( "n*)xn* =0onT},

where (96)5.55 are the connected components of Q\I'. Setting = (a)— prH € Haiy r (O Sa(R))
as an argument of Wp, and using div = —f, we obtain that for all v e X2 D,

[ (C@= o) s o) -8~ 15, s )aive, () -+ [ (9 - 116, o)V o
< [vlpWo, ( (@) = bpD).
Setting v = Pp_ u — u, where Pp_u realises the minimum in Sp, (@), we infer
|Pp, & — ulp, < 8p, () + Wo,( (@) = bpsD) + |5, — 5 pp | 2(0) + [6F — 115, pF |2(r).
Combined with the definition of Cp,, the estimates above establish (45).

Under the assumptions in the second part of the proposition, the hidden constant in (45) is
independent of [, the last two terms in the left-hand side of this estimate converge to 0 as [ — o0,
as well as Spi (u) by definition of the consistency of the sequence of GDs. When its argument is
in the vector space C° (T, Sa(R)), Wpr () also converges to 0 by definition of limit-conformity;
since this space is dense in Hgiy r(Q\; Sq(R)), the arguments in [20, Lemma 2.17] show that this
convergence also holds for the argument = (a) — bpZl. Estimate (45) therefore yields the
convergences (46). O
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