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Introduction

Inequalities involving hyperbolic functions are as much important as inequalities involving trigonometric functions. Recently many searchers established hyperbolic inequalities( see e.g. [START_REF] Bagul | On simple Jordan type inequalities[END_REF], [START_REF] Bagul | On exponential bounds of hyperbolic cosine[END_REF], [START_REF] Bagul | Some new simple inequalities involving exponential, trigonometric and hyperbolic functions[END_REF], [START_REF] Bagul | Certain inequalities of Kober and Lazarević type[END_REF], [START_REF] Bhayo | New trigonometric and hyperbolic inequalities[END_REF], [START_REF] Chesneau | A note on some new bounds for trigonometric functions using infinite products[END_REF], [START_REF] Klén | On Jordan type inequalities for hyperbolic functions[END_REF], [START_REF] Neuman | Refinements and generalizations of certain inequalities involving trigonometric and hyperbolic functions[END_REF], [START_REF] Qi | Refinements, Generalizations and Applications of Jordans inequality and related problems[END_REF], [START_REF] Sándor | Sharp Cusa-Huygens and related inequalities[END_REF], [START_REF] Zhu | New inequalities for hyperbolic functions and their applications[END_REF], [START_REF] Zhu | Six new Redheffer-type inequalities for circular and hyperbolic functions[END_REF] and references therein). We start by giving brief summary of already proved results pertaining the main results of this paper.

The inequalities

1 + x 2 6 < sinh x x < 1 + x 2 k 1 ; 0 < x < 1 (1.1)
where k 1 ≈ 5.707724 and

1 + x 2 2 < cosh x < 1 + x 2 k 2 ; 0 < x < 1 (1.2)
where k 2 ≈ 1.841348 are proved in [START_REF] Bagul | On simple Jordan type inequalities[END_REF] and [START_REF] Bagul | Certain inequalities of Kober and Lazarević type[END_REF] respectively. Recently, Christophe Chesneau and Yogesh J. Bagul [START_REF] Chesneau | A note on some new bounds for trigonometric functions using infinite products[END_REF] established the following results:

1 + x 2 π 2 π 2 6 < sinh x x ; x > 0 (1.3) and 1 + 4x 2 π 2 π 2 8 < cosh x; x > 0. (1.4)
Before the establishment of above inequalities, Ling Zhu [START_REF] Zhu | Six new Redheffer-type inequalities for circular and hyperbolic functions[END_REF] in 2008, discovered some inequalities having similarity with these inequalities. Zhu's inequalities are stated as Statement 1. ( [START_REF] Zhu | Six new Redheffer-type inequalities for circular and hyperbolic functions[END_REF]) Let 0 < x < r. Then

r 2 + x 2 r 2 -x 2 α < sinh x x < r 2 + x 2 r 2 -x 2 β (1.5)
holds if and only if α 0 and β

r 2 12 . Statement 2. ( [16]) Let 0 < x < r. Then r 2 + x 2 r 2 -x 2 α < cosh x < r 2 + x 2 r 2 -x 2 β (1.6)
holds if and only if α 0 and β r 2 4 . In this paper, we aim to refine and generalize all the inequalities listed above.

Preliminaries and lemmas

We are familiar with the following power series expansions [9, 1.411

]: sinh x = ∞ n=0 x 2n+1 (2n + 1)! , and cosh x = ∞ n=0 x 2n (2n)! . ( 2.1) 
The series expansions in (2.1) are useful for our main results. We also need the following two known results. 

A 1 (x) = f (x) -f (a) g(x) -g(a) , A 2 (x) = f (x) -f (b) g(x) -g(b) , x ∈ (a, b). (i) A 1 (•) and A 2 (•) are increasing(strictly increasing) on (a, b) if f (•)/g (•) is increasing(strictly increasing) on (a, b). (ii) A 1 (•) and A 2 (•) are decreasing(strictly decreasing) on (a, b) if f (•)/g (•)
is decreasing(strictly decreasing) on (a, b).

The Lemma 1 is known in the literature as l'Hôpital's rule of monotonicity. For Lemma 2 refer [START_REF] Alzer | Monotonicity theorems and inequalities for the complete elliptic integrals[END_REF][START_REF] Heikkala | Generalized elliptic integrals[END_REF].

Lemma 2. ( [1, 10]) Let A(x) = ∞ n=0 a n x n and B(x) = ∞ n=0 b n x n be con- vergent for |x| < R, where a n and b n are real numbers for n = 0, 1, 2, • • • such that b n > 0.
If the sequence a n /b n is strictly increasing(or decreasing), then the function A(x)/B(x) is also strictly increasing(or decreasing) on (0, R).

Lemma 1 and Lemma 2 are proved to be important tools in the field of inequalities.

Main results

The first result of the paper states

Theorem 1. Let a 1 15 . Then the function F (x) = log(sinh x/x) log(1+ax 2 )
is strictly increasing on (0, r) where r ∈ (0, ∞). In particular, with this fixed value of a, the best possible constants α and β such that

(1 + ax 2 ) α < sinh x x < (1 + ax 2 ) β (3.1)
are 1 6a and log(sinh r/r) log(1+ar 2 ) respectively. i.e. α 5 2 and β log(sinh r/r) log(1+r 2 /15) .

Proof. Consider

F (x) = log sinh x x log (1 + ax 2 ) = F 1 (x) F 2 (x)
where

F 1 (x) = log sinh x x and F 2 (x) = log 1 + ax 2 with F 1 (0+) = 0 = f 2 (0). After differentiating F 1 (x) F 2 (x) = 1 2a (1 + ax 2 ) x cosh x -sinh x x 2 sinh x = 1 2a coth x x - 1 x 2 + ax coth x -a = 1 2a F 3 (x). Now F 3 (x)
is increasing if and only if F 3 (x) > 0. Consequently, by using Lemma 1 we can conclude that F (x) will be increasing if

F 3 (x) > 0. This means 2 - x sinh x 2 - x tanh x > ax 2 x sinh x 2 - x tanh x which is equivalent to 2 - x sinh x 2 -x coth x x 2 x sinh x 2 -x coth x < a,
due to well known relation

x sinh x 2 < 1 < x tanh x . Thus F 4 (x) < a,
where

F 4 (x) = 2 - x sinh x 2 -x coth x x 2 x sinh x 2 -x coth x = 2 sinh 2 x -x 2 -x sinh x cosh x x 2 (x 2 -x sinh x cosh x) = 2 cosh 2x -2 -2x 2 -x sinh 2x 2x 4 -x 3 sinh 2x .
Utilizing (2.1) we get

F 4 (x) = ∞ n=0 2 2n+1 (2n)! x 2n -2 -2x 2 -∞ n=0 2 2n+1 (2n+1)! x 2n+2 2x 4 -∞ n=0 2 2n+1 (2n+1)! x 2n+4 = ∞ n=2 2 2n+1 (2n)! x 2n -∞ n=2 2 2n-1 (2n-1)! x 2n -∞ n=3 2 2n-3 (2n-3)! x 2n = ∞ n=3 2 2n-1 (2n-1)! -2 2n+1 (2n)! x 2n ∞ n=3 2 2n-3 (2n-3)! x 2n = ∞ n=0 a n x 2n ∞ n=0 b n x 2n = A(x) B(x) .
Clearly A(x) and B(x) are convergent by ratio test and

a n b n = 4(n -2) n(2n -1)(2n -2) = c n (say).
We claim that c n > c n+1 . For if c n c n+1 , then it implies 2(2n-2)(n+1)(2n+ 1) (n -1)(2n -1)(2n -2), i.e. 4n 

F (x).

Lastly, lim x→0+ F (x) = 1 6a by l'Hôpital's rule and lim x→r-F (x) = log(sinh r/r) log(1+ar 2 ) finish the proof.

We prove our second result without making use of power series expansions in (2.1).

Theorem 2. Let a 1 3 . Then the function G(x) = log(cosh x)) log(1+ax 2 ) is strictly increasing in (0, r) where r ∈ (0, ∞). In particular, the best positive constants γ and δ such that

1 + ax 2 γ < cosh x < 1 + ax 2 δ (3.2)
are 1 2a and log(cosh r) log(1+ar 2 ) . i.e. γ 3 2 and δ log(cosh r)

log(1+r 2 /3) . Proof. Consider G(x) = log(cosh x) log(1 + ax 2 ) = G 1 (x) G 2 (x) where G 1 (x) = log(cosh x) and G 2 (x) = log(1 + ax 2 ) with G 1 (0) = G 2 (0) = 0. Differentiating G 1 (x) G 2 (x) = 1 2a (1 + ax 2 ) sinh x x cosh x = 1 2a G 3 (x)
where

G 3 (x) = (1+ax 2 ) sinh x x cosh x
. Obviously,

G 1 (x) G 2 (x) is increasing if and only if G 3 (x) > 0. By Lemma 1, G(x) will be increasing if G 3 (x) > 0. That means x cosh 2 x-sinh x cosh x-x sinh 2 x > ax 2 -sinh x cosh x + x sinh 2 x -x cosh 2 x . Or x cosh 2 x -sinh x cosh x -x sinh 2 x x 2 -sinh x cosh x + x sinh 2 x -x cosh 2 x = G 4 (x) < a
due to the fact that tanh x < coth x. G 4 (x) can be written as

G 4 (x) = 2x -sinh 2x -x 2 (2x + sinh 2x) = G 5 (x) G 6 (x)
where G 5 (x) = 2x -sinh 2x and G 6 (x) = -2x 3 -x 2 sinh 2x satisfying G 5 (0) = G 6 (0) = 0. Differentiation gives

G 5 (x) G 6 (x) = 2 -2 cosh 2x -6x62 -2x 2 cosh 2x -2x sinh 2x = G 7 (x) G 8 (x) with G 7 (0) = 0 = G 8 (0). Continuing the argument G 7 (x) G 8 (x) = 2 sinh 2x 6x + 2x 2 sinh 2x + 4x cosh 2x + sinh 2x = G 9 (x) G 10 (x) . Further G 9 (x) G 10 (x) = 4 cosh 2x 6 + 12x sinh 2x + 4x 2 cosh 2x + 6 cosh 2x = 4 6 sech 2x + 12x tanh 2x + 4x 2 + 6 = 2 G 11 (x)
Now G 11 (x) = 6 tanh 2x(1 -sech 2x) + 12x sech 2 x + 4x > 0 implies G 11 (x) is strictly increasing on (0, r). By Lemma 1, G 4 (x) is also decreasing on (0, r).

Therefore, sup {G 4 (x) : x ∈ (0, r)} a and lim x→0+ G 4 (x) = 1 3 gives a Finaly, lim x→0+ G(x) = 1 2a and log(cosh r) log(1+ar 2 ) prove the desired result.

Applications

Double inequalities in (1.1) is a particular case of Theorem 1 where a = 1/6 and r = 1. On the similar line inequality (1.3) can be obtained by taking a = 1/π 2 in (3.1). To get the sharpest inequality of this kind we put a = 1/15 in Theorem 1. It is stated as follows:

1 + x 2 15 5 2 < sinh x x < 1 + x 2 15 
β 1 ; x ∈ (0, r) where r ∈ (0, ∞) (4.1) 
and β 1 = log(sinh r/r) log(1+r 2 /15) . Two sided inequality in (4.1) is a refinement and (or) generalization of inequalities in (1.1), (1.3) and (1.5).

On the other hand, inequalities in(1.2) and (1.4) are particular cases of Theorem 2 where a = 1/2(r = 1) and a = 4/π 2 respectively. The sharpest inequality of this kind is obtained by putting a = 1/3 in Theorem 2 as follows:

1 + x 2 3 3 2 < cosh x < 1 + x 2 3 δ 1 ; x ∈ (0, r) where r ∈ (0, ∞) (4.2) 
and δ 1 = log(cosh x) log(1+r 2 /3) . Again two sided inequality in (4.2) is a refinement and (or) generalization of inequalities in (1.2), (1.4) and (1.6).

At the end we state and prove the following proposition: < sinh x x .

Conclusion

We obtained several inequalities involving sinh x/x and cosh x, thus refined some known inequalities in the literature with complete new approach.

Lemma 1 .

 1 ( [2, p. 10]) Let f, g : [a, b] → R be continuous. Moreover, let f, g be differentiable on (a, b) and g (x) = 0, on (a, b). Let,

1 3 .

 13 Now G(x) being increasing in (0, r) for specified values of a we have that lim x→0+ G(x) < G(x) < lim x→r-G(x).

  Proposition 1. Let x > 0. Then by Theorem 1. Hence H(x) is strictly decreasing for x > 0. So lim x→0 H(x) = 1 > H(x) gives the desired inequality.
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	as 1 + x 2 6	2 < 1+ x 2 6 < sinh x x			
	Remark 1. Combining inequality (4.3) with the inequality [14, Thm. 2.3]
				1 + cosh x 2	2 3	<	sinh x x
	we get						
		1 +	x 2 6	<	2 1 + cosh x	2 3
					1 +	x 2 6	<	1 + cosh x 2	2 3	.	(4.3)
		Proof. Set					
					H(x) = 2 1 +	x 2 6	3 2	-cosh x.
		On differentiating				
				H (x) = x 1 +	x 2 6	1 2	-	sinh x x	< 0,