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A Generalised Serre-Green-Naghdi equations for variable
rectangular open channel hydraulics and its finite volume
approximation

Mohamed Ali Debyaoui and Mehmet Ersoy

Abstract We present a new non-linear dispersive shallow water model which enters in the framework
of section-averaged models. These new equations are derived up to the second order of the shallow wa-
ter approximation starting from the three-dimensional incompressible and irrotational Euler system. The
derivation is carried out in the case of non uniform rectangular section and it generalises the well-known
one-dimensional Serre-Green-Naghdi (SGN) equations on uneven bottom. The obtained model is fully
consistent with the Euler system. We propose a well-balanced finite volume approximation and we present
some numerical results to show the influence of the section variation.
Keywords.Open channel flow, Euler equations, Asymptotic approximation, Serre-Green-Naghdi equations,
Free surface shallow water equations, Non-hydrostatic pressure, Dispersive model, Finite volume

1 Introduction

In environmental modelling of free surface flows, whenever the aspect-ratio of the domain is small enough,
the shallow water approximation is introduced to obtain reduced model for which the computational cost is
lower than the one implied by the numerical solution of the full three dimensional free surface equations.
One of the most widely used models to describe the channel and river motion of watercourses is the section-
averaged free surface model [8, 2, 9] which is a generalisation of the well-known Saint-Venant system
(introduced by Adhémar Jean Claude Barré de Saint-Venant in the 19th Century [6]):




∂t A + ∂xQ = 0 ,

∂tQ + ∂x

(
Q2

A
+ I1(x, A)

)
= I2(x, A) .

(1)

In these equations, A = σh is the wet area of fluid cross-section, Q is the water discharge, I1(x, A) = A2

2F2
rσ

is the hydrostatic pressure where Fr is the Froude’s number and I2(x, A) = σ′(x)
σ (x)

A2

2Fr
2σ(x)

−
A

Fr
2 d ′(x) is

the hydrostatic pressure source term which takes in account of the variation of the channel width σ and the
bottom d. The model (1) reduces to the well-known one-dimensional Saint-Venant equations for uniform
rectangular section, i.e. ifσ is constant. The free surface model is the first order shallowwater approximation

Mohamed Ali Debyaoui
Université de Toulon, IMATH EA 2134, 83957 La Garde, France, e-mail: Mohamed-Ali-Debyaoui@etud.univ-tln.fr

Mehmet Ersoy
Université de Toulon, IMATH EA 2134, 83957 La Garde, France e-mail: Mehmet.Ersoy@univ-tln.fr

1



2 Mohamed Ali Debyaoui and Mehmet Ersoy

of the section-averaged Navier-Stokes or Euler equations under suitable assumptions on the horizontal and
the vertical scales (see, e.g., [12, 8, 11, 2, 9] and the reference therein).

As it is well-known, the solutions of these equations are usually suitable to approximate breaking waves
with turbulent rollers for large transitions of the Froude’s number. However, for small or moderate transitions,
the solutions of these equations are not able to catch undular bores induced by a non hydrostatic pressure
distribution [18]. Up to our knowledge, the first section-averaged dispersive shallowwater equations for quite
general assumptions on the geometry of the channel was proposed in [7], thus allowing for the application
of the resulting equations to natural rivers with arbitrarily shaped cross sections. This model reads




∂t A + ∂xQ = 0

∂tQ + ∂x

(
Q2

A
+ I1(x, A) + µ2DI1(x, A,Q)

)
= I2(x, A) + µ2DI2(x, A,Q) +O(µ22)

where DI1 and DI2 are the non-hydrostatic counterpart of the hydrostatic pressure and the hydrostatic
pressure source term. The case of non uniform rectangular section can be regarded as the natural extension
of the usual one dimensional Serre-Green-Naghdi (SGN) equations over uneven bottom [13, 19, 5].

In this work, we focus only in the case of a rectangular variable section. We first present the geometrical
set-up in Sect. 2. Then we give the outline of the asymptotic derivation, and in particular, we show that the
section-averaged model is fully consistent with the Euler system in Sect. 3. Finally, in Sect. 4, we construct
a first order well-balanced finite volume approximation and we present some numerical test cases.

2 The three-dimensional Incompressible Euler equations

2.1 Settings

We consider the motion of an incompressible and irrotational fluid with constant density ρ0 > 0 in a three
dimensional domain (see Fig. 1)

Ω(t) =
{
(x, y, z) ∈ R3; x ∈ [0, Lc ], α(x) ≤ y − ϕ(x) ≤ β(x), d(x) ≤ z ≤ η(t, x, y)

}

where ϕ describes the transversal variation of the channel with respect to the main channel direction, α and
β are the transversal limit of the channel, Lc its length, d is the bottom, η is the free surface and h = η − d is
the water height. The boundary of the domain Ω(t) is defined by ∂Ω(t) and is decomposed into four parts:
the free surface Γfs(t), the wet boundary Γwb(t), the inflow boundary Γi(t) and the ouflow boundary Γo(t).
The wet boundary can be decomposed itself in three parts: the bottom Γb(t), the left lateral boundary Γlb(t)
and the right one Γrb(t).

Fig. 1 Geometric set-up
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The governing equations for themotion of the fluid are the incompressible and irrotational Euler equations
in Ω(t), for all t ∈ (0,T], which can be written as follows:

div [u] = 0 ,
∂

∂t
(u) + div [u ⊗ u] + ∇

p
ρ0
− F = 0

(2)

where u = (u, v,w)T is the velocity field, F = (0, 0,−g)T is the gravity acceleration and p is the pressure.
These equations are completed by the irrotational equation:

curl [u] = 0 . (3)

The system is closed by suitable boundary conditions. We denote by nfs the outward normal to the free
surface which depends on time:

nfs =
1√

1 + (∂xη)2 +
(
∂yη

)2 (
−∂xη, −∂yη, 1

)T
,

and by nwb the outward normal to wet boundary:

nwb =




1√
1 + (∂xd)2

(∂xd, 0, −1)T if nwb = nb

1√
1 + (∂xα)2

(∂xα, −1, 0)T if nwb = nlb

1√
1 + (∂x β)2

(∂x β, 1, 0)T if nwb = nrb

At the free surface, we prescribe a kinematic boundary condition

∂tη + u∂xη + v∂yη = w on Γfs(t) (4)

completed with the dynamical condition which takes into account the atmospheric stress

p = pa on Γfs(t) . (5)

In the sequel, without loss of generality, we set pa = 0.
At the wet boundary, we prescribe a no-penetration condition:

u∂xd − w = 0 on Γb(t) ,
u∂xα − v = 0 on Γlb(t) ,
u∂x β + v = 0 on Γrb(t) .

(6)

2.2 Dimensionless Euler equations

Let us consider the following scales involved in the wave motion: L a wave-length in the longitudinal
direction, H2 a characteristic water depth, H1 a characteristic scale of the channel width and h1 a wave-
length in the transversal direction. We then define the classical dispersive parameter µ2 (see e.g. [14])

µ2 =
H2
2

L2
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and µ1 =
h2
1

L2 where µ1 is also a dispersive parameter but in the transversal direction.
In the following, we consider the asymptotic regime:

h1 < H1 = H2 � L

such that the following inequality holds
µ1 < µ22 .

Under these assumptions, we get the following ordering:

µ21 <
µ21
µ2

< min *
,

µ21

µ22
, µ1µ2+

-
< max *

,

µ21

µ22
, µ1µ2+

-
< µ1 < min

(
µ1
µ2
, µ22

)
< max

(
µ1
µ2
, µ22

)
< µ2 � 1 .

We also introduce (U,V =
√
µ1U,W =

√
µ2U)T the scale of fluid velocity. The time scale is T =

L
U
. Let us

define P =
p
ρ0

and choose the pressure scale to be P = U2.

This allows us to introduce the dimensionless quantities of time t̃, space ( x̃, ỹ, z̃), pressure P̃, depth d̃,
water elevation η̃ and velocity field (ũ, ṽ, w̃), via the following scaling relation

x̃ =
x
L
, ỹ =

y

h1
, z̃ =

z
H2
, t̃ =

t
T
, P̃ =

P
P
, ϕ̃ =

ϕ

h1
, ũ =

u
U
, d̃ =

d
H2
, ṽ =

v

V
, η̃ =

η

H2
, w̃ =

w

W
. (7)

Finally, we define the non-dimensional Froude’s number by Fr =
U
√
gH2

.

For the sake of clarity and simplicity dropping ·̃, using the dimensionless variables (7), and reordering
the terms with respect to the powers of µ1 and µ2, the dimensionless incompressible Euler system (2) reads
as follows:

∂xu + ∂yv + ∂zw = 0 , (8)
∂tu + u∂xu + v∂yu + w∂zu + ∂xP = 0 , (9)

µ1
(
∂tv + u∂xv + v∂yv + w∂zv

)
+ ∂yP = 0 , (10)

µ2
(
∂tw + u∂xw + v∂yw + w∂zw

)
+ ∂zP = −

1
Fr

2 . (11)

Under this scaling, the boundary conditions (4)-(5) and (6) remain unchanged and the dimensionless
irrotational equation (3) becomes

∂yu = µ1∂xv, µ1∂zv = µ2∂yw, ∂zu = µ2∂xw . (12)

Thanks to the ordering µ1 < µ2 and the structure of Eqs. (12), it is natural to compute the asymptotic
expansion of u in two steps first with respect to y, then with respect to z. It can be achieved by first
width-averaging the Euler system (8)–(11), then by depth-averaging the resulting equations. For the sake of
completeness, skipping the technical details, we present the outline of the derivation. Interested readers can
found the details in [7].
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3 Derivation of the section-averaged model

3.1 Width-averaged equations

By integrating for s ∈ [α(x), y], the first two equations of the irrotational equations (12) and the divergence
equation (8), keeping in mind the boundary conditions (4)-(5) and (6), we get the following asymptotic
expansions:

u(t, x, y, z) = uα (t, x, z) −
µ1
2
∂xdivx,z

[
wα (t, x, z)(y − α(x))2

]
+O *

,

µ21
µ2

+
-
, (13)

v(t, x, y, z) = −divx,z
[
wα (t, x, z)(y − α(x))

]
+O

(
µ1
µ2

)
(14)

and

w(t, x, y, z) = wα (t, x, z) −
µ1
2µ2

∂zdivx,z
[
wα (t, x, z)(y − α(x))2

]
+O *

,

µ21

µ22

+
-

(15)

where Xα (t, x, z) := X (t, x, α(x), z).
For a given function (t, x, y, z) 7→ X (t, x, y, z), we define its width-average by

〈X〉(t, x, z) :=
1

σ(x)

∫ β (x)

α(x)
X (t, x, y, z) dy

where σ(x) = β(x) − α(x) is the width of the channel.
Integrating Eqs. (8)–(11) for y ∈ [α(x), β(x)], using Leibniz integral rule, keeping in mind the boundary

conditions (4)-(5) and (6), using the asymptotic expansions (13)–(15), we obtain the width-averaged Euler
system:

divx,z [σwα] = O
(
µ1
µ2

)
,

∂

∂t
(σuα ) + divx,z [σuαwα] +

∂

∂x
(σPα )+ = Pα

∂σ

∂x
+O

(
µ1
µ2

)
,

µ2

(
∂

∂t
(σwα ) + divx,z [σwαwα]

)
+

∂

∂z
(σPα ) = −

σ

Fr
2 + Pα

∂σ

∂z
+O(µ1)

(16)

where Pα (t, x, z) + O(µ1) = P(t, x, y, z) thanks to Eq. (10). The motion of the fluid is now in a two-
dimensional domain:

〈Ω〉(t) =
{
(x, z) ∈ R; d(x) ≤ z ≤ η∗(t, x)

}
.

The irrotational condition (12) reduces to

∂uα
∂z
= µ2

∂wα
∂x
+O(µ1) (17)

and the boundary conditions to

∂η∗

∂t
+ uα

∂η∗

∂x
= wα +O

(
µ1
µ2

)
and Pα = O(µ1) on 〈Γfs〉(t) , (18)

uα∂xd = wα +O
(
µ1
µ2

)
on 〈Γb〉(t) (19)

where 〈Γfs〉(t) is the free-surface boundary and 〈Γb〉(t) the bottom boundary of the width-averaged fluid
domain 〈Ω〉(t).
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The function η∗ in the above expression depends only in t and x. Indeed, integrating Eq. (11) for
s ∈ [z, η(t, x, y)], using the previous asymptotic expansions, and noting

D
Dt

w = ∂tw+u∂xw+v∂yw+w∂zw,
we can write

Pα (t, x, z) =
η(t, x, y) − z

Fr
2 + µ2

∫ η(t,x,y)

z

D
Dt

wα (t, x, s) ds +O(µ1) .

Thus, taking the y-derivative of the above expression provides

0 = ∂yη
(
1

F2
r

+ µ2
D
Dt

wα |z=η

)
+O(µ1) = −∂yη ∂zP|z=η +O(µ1)

Consequently, since ∂zP|z=η , 0, we get ∂yη = O(µ1). This is the so-called flat free surface approximation.
Therefore, one can write

η(t, x, y) = η∗(t, x) +O(µ1) (20)

where the * is dropped in the following.

3.2 Depth-averaged equations

Integrating Eq. (17) together with the divergence equation (16) for s ∈ [d(x), z], keeping in mind Eqs.
(18)-(19), we obtain

uα (t, x, z) = ud (t, x) − µ2

∫ z

d(x)
∂xS(ud, x, s) ds +O(µ22)

and

wα (t, x, z) = −
1

σ(x)
∂

∂x
(ud (t, x)S(x, z)) +O(µ2)

where S(u, x, z) =
1

σ(x)
∂

∂x
(uS(x, z)), S(x, z) = σ(x)(z − d(x)) and Xd (t, x) = Xα (t, x, d(x)).

Thanks to the flat free surface approximation (20), one can write the section-average of the velocity u as
follows:

u =
1
A

∫ η(t,x)

d(x)

∫ β (x)

α(x)
u(t, x, y, z) dy dz

where A =
∫ η(t,x)
d(x)

∫ β (x)
α(x) dy dz = σ(x)h(t, x) is the wet area, σ = β − α is the width of the channel and

h = η − d is the water height.
Thus, since u(t, x, y, z) = uα (t, x, z) +O(µ1) = ud (t, x) − µ2

∫ z

d(x) ∂xS(ud, x, s) ds +O(µ22), we deduce
the following asymptotic expansion of u:

u = u(t, x) + µ2B0(u, x, z) +O(µ22) (21)

where

B0(u, x, z) =
1

A(t, x)

∫ η(t,x)

d(x)

(
σ(x)

∫ z

d(x)
∂xS(u, x, s) ds

)
dz −

∫ z

d(x)
∂xS(u, x, s) ds .

Similarly, we get for w:

w(t, x, y, z) = −S(u, x, z) +O
(
µ1
µ2

)
. (22)
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Using the asymptotic expansion of u (21) and w (22) , we obtain the asymptotic expansion of the pressure
P at order O(µ22)

P(t, x, y, z) = Pα (t, x, z) +O(µ1) = Ph(t, x, z) + µ2Pnh(t, x, z) +O(µ22)

where
Ph(t, x, z) =

(η(t, x) − z)
Fr

2

is the usual hydrostatic pressure and

Pnh(t, x, z) =
∫ η(t,x)
z

1
2σ(x)2

∂z
( (
σ(x)S(u, x, s)

)2 )
ds

−
∫ η(t,x)
z

∂tS(u, x, s) + u (t,x)
σ (x) ∂x

(
σ(x)S(u, x, s)

)
ds

is the non-hydrostatic part of the pressure.

3.3 Section-averaged model

To end the asymptotic derivation, we integrate vertically the set of equations (16) between d and η and drop
all terms of order lower than µ2. We get the generalised Serre-Green-Naghdi equations for non uniform
rectangular section:




∂t A + ∂xQ = 0

∂tQ + ∂x

(
Q2

A
+ I1(x, A) + µ2DI1(x, A,Q)

)
= I2(x, A) + µ2DI2 +O(µ22)

(23)

where A = σh is the wet area, Q is the water discharge, I1(x, A) = A2

2F2
rσ (x)

is the hydrostatic pressure,

I2(x, A) = σ′(x)
σ (x)

A2

2Fr
2σ(x)

−
A

Fr
2 d ′(x) is the hydrostatic pressure source term, DI1 =

∫ η(t,x)
d(x) Pnh(t, x, z)σ(x) dz

is the non hydrostatic pressure and DI2 =
∫ η(t,x)
d(x) Pnh(t, x, z)σ′(x) dz −σ(x)Pnh(t, x, d(x))d ′(x) is the non

hydrostatic pressure source term.
Moreover, Eqs. (23) are by construction asymptotically consistent with the Euler system (8)–(11). We

have the following result:

Theorem 1 System (23) admits a total energy

E = A
u2

2
+ A

η

F2
r

− I1 +
µ2
2

∫
Ω

S2(u, x, z) dydz (24)

which satisfies the following energy equation

∂t E + ∂x ((E + I1 + µ2DI1)u) = 0 . (25)

Moreover, the quantity E is consistent with the total energy E = u2+µ1v
2+µ2w

2

2 + z
F2
r
of the Euler equation

(8)–(11), in the sense that

∂t

∫
Ω

E dydz + ∂x

∫
Ω

(E + P)u dydz = ∂t E + ∂x ((E + I1 + µ2DI1)u) +O(µ22) .

Remark 1 This is a positive feature of the approximate model (23), which provides the richness of content for
this model and can be used in estimation of the accuracy of numerical algorithms.Moreover, it is well-known
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that the energy conservation law plays a fundamental role in justification of the theory of shallow water
equations.

Remark 2 As a direct consequence of (24) and (25), we are able to recover the energy conservation law of
the usual models in the case of σ ≡ 1, i.e. A = h:

• if µ2 = 0, we recover the classical total energy of the Saint-Venant system, namely

E =
hu2

2
+

h(h + 2d)
2F2

r

.

• if µ2 , 0, we recover the classical total energy of the Serre-Green-Naghdi system (see for instance [10]),
namely

E =
hu2

2
+

h(h + 2d)
2F2

r

+ µ2

(
h3

6
(∂xu)2 − d ′

h2

2
∂xu +

(d ′)2

2

)
.

4 A well-balanced finite volume approximation

The main drawback of Eqs. (23) is that it has third order terms in space which may lead to instabilities at
the numerical level. Therefore, we first propose a more stable formulation of Eqs. (23) before to present its
numerical approximation.

Skipping the technical details, one can show that System (23) can be written:{
∂t A + ∂x (Au) = 0(
Id − µ2L[A, d, σ]

) (
∂t (Au) + ∂x

(
Au2

))
+ ∂x I1(x, A) + µ2AQ[A, d, σ](u) = I2(x, A) +O(µ22) (26)

where Id stands for the identity operator, L is a linear operator

L[A, d, σ](u) = 1
A

[
∂x

(
T [A, d, σ] (u, σ)

)
− T [A, d, σ] (u, ∂xσ)

]

+ 1
Aσ(x)d ′(x) T [A, d, σ, z = d(x)] (u)

and Q is a quadratic operator

Q[A, d, σ](u) = 1
A

[
∂x

(
G[A, d, σ] (u, σ)

)
− G[A, d, σ] (u, ∂xσ)

]

+ 1
Aσ(x)d ′(x) G[A, d, σ, z = d(x)] (u)

with T , G are given by

T [A, d, σ, z](u) = ∂x (u)
∫ η

z

S(x, s)
σ(x)

ds + u
∫ η

z

1
σ(x)

∂xS(x, s) ds ,

and

G[A, d, σ, z](u) =
∫ η

z
2 (∂xu)2 S (x,s)

σ (x) +
u2

σ (x)

(
∂xS (x,s)∂xσ (x)

σ (x) − ∂x∂xS(x, s)
)
+ ∂x

(
u2

2

)
S (x,s)∂xσ (x)

σ (x)2 ds

with
X[A, d, σ](u, ψ) =

∫ η

d(x)
ψX[A, d, σ, z](u) dz .

In particular, one can explicitly compute those operators:

• if σ ∈ R+∗ and d ∈ R are constant then we recover the standard one dimensional SGN equations (see for
instance [15, 16, 17]) over flat bottom with
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L[A, d, σ](u) = L0[A, σ](u) =
1
σh

∂x

(
σh3

3
∂xu

)
and

Q[A, d, σ](u) = Q0[A, σ](u) =
1
σh

∂x

(
2
3
σh3 (∂xu)2

)
.

• if σ ∈ R+∗ is constant and d = d(x) then we recover the standard one dimensional SGN equations (see
for instance [15, 16, 17]) over uneven bottom with

L[A, d, σ](u) = L1[A, d, σ](u) = L0[A, σ](u) −
1
σh

∂x

(
σh2

2
ud ′(x)

)
+

h
2
∂xud ′(x) − u

(
d ′(x)

)2
and

Q[A, d, σ](u) = Q1[A, d](u) = Q0[A, σ](u) +
1
σh

∂x

(
σ

h2

2
u2d ′′(x)

)
+ h (∂xu)2 d ′(x) + u2d ′(x) d ′′(x) .

• if σ = σ(x) and d = d(x) then we get the generalised one dimensional SGN equations for non uniform
rectangular channel over uneven bottom with

L[A, d, σ](u) = L1[A, d, σ](u) +
1
σh

∂x

(
σ′(x)

h3

3
u
)
−
σ′(x)
σ

(
∂xu

h2

3
+ u

h2

3
σ′(x)
σ
− u

h
2

d ′(x)
)

and

Q[A, d, σ](u) = Q1[A, d, σ](u) + 1
σh ∂x

(
(σ′(x))2 u2

σ
h3

3

)
+ 1
σh ∂x

(
d ′(x)σ′(x)u2 h2

2

)
− 1
σh ∂x

(
σ′(x)u2 h3

3

)
+ ∂x

(
∂x

(
u2

2

)
σ′(x) h

3

3

)
− 1
σhσ

′(x)R[A, d, σ](u)

with

R[A, d, σ](u) = (∂xu)2 h3

3 + u2
(
σ′(x)
σ

)2 h3

3 + u2
(
σ′(x)
σ

)
d ′(x) h

2

2 − u2
(
σ′′(x)
σ

)2 h3

3 + u2d ′′(x) h
2

2
+∂x

(
u2

2

)
σ′(x)
σ

h3

3 − u2d ′(x)σ
′(x)
σ

h2

2 − u2σ′(x) (d ′(x))2 h + u2σ′′(x)d ′(x) h
2

2
−∂x

(
u2

2

)
σ′(x)d ′(x) h

2

2 .

It is known that third order derivatives involved in the initial model (23) may create high frequencies
instabilities, but the presence of the

(
Id − µ2L[A, d, σ]

)−1 in the second equation of (26) stabilises the
equations with respect to these perturbations. Therefore, in the following, we construct a numerical scheme
for Eqs. (26) instead of Eqs. (23).

4.1 Numerical method

This section is devoted to the numerical method to solve the reformulated dispersive model (26). It is rather
natural to split the hyperbolic part to the dispersive one as done by several authors (see for instance [5, 4, 3]).

Let N ∈ N∗. Let us consider the following uniform mesh on [0, Lc ]. Cells are denoted for every
i ∈ [0, N + 1], by mi = (xi−1/2, xi+1/2) with xi =

xi−1/2+xi+1/2
2 the cell center and δx = xi+1/2 − xi−1/2 the

space mesh. The interfaces x1/2 = 0 and x = xN+1/2 denote the upstream and the downstream ends. We also
consider a time discretisation tn defined by tn+1 = tn + δtn where the time step δtn is computed through a
CFL condition related to the hyperbolic part.

Let us first highlight that the still water steady state for Eqs. (26) is independent of µ2. Indeed, one has
∀µ2 > 0, the still water steady state equation reads
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u = 0,
A
σ
+ d = h0

for some positive h0. As a consequence, the construction of a well-balanced scheme can be easily achieved
considering only the hyperbolic part of Eqs. (26), for instance, by the use of the hydrostatic reconstruction
(see for instance [1]).

Let us define di+1/2 = max(di, di+1) where di =
1
δx

∫
mi

d(x)dx, σi+1/2 = max(σi, σi+1) where σi =
1
δx

∫
mi
σ(x)dx and let us define the reconstructed states

A−i+1/2 = σi+1/2

(
Ai

σi
+ di − di+1/2

)
, A+i+1/2 = σi+1/2

(
Ai+1
σi+1

+ di+1 − di+1/2

)
with

U−i+1/2 = (A−i+1/2, A−i+1/2ui ), U+i+1/2 = (A+i+1/2, A+i+1/2ui+1)

where Ui = (Ai, Aiui )T ≈ 1
δx

∫
mi

(A, Au)T dx.
Let us introduce the flux

F1(U) = Q, F2(U) = Q2/A and F3(x,U) = I1(x, A) + µ2G[A, d, σ] (u, σ)

and
S(x,U) = I2 + µ2G[A, d, σ] (u, ∂xσ) − µ2σ(x)d ′(x) G[A, d, σ, z = d(x)] (u) .

Then, one can write System (26) as follows:

∂t A + ∂xF1(U) = 0(
Id − µ2L[A, d, σ]

)
(∂tQ + ∂xF2(U)) + ∂xF3(x,U) −S(x,U) = 0

With these settings, we define the following numerical scheme:

An+1
i = An

i −
δtn
δx

(
F1

(
U−,n
i+1/2,U

+,n
i+1/2

)
− F1

(
U−,n
i−1/2,U

+,n
i−1/2

))
Q∗i = Qn

i −
δtn
δx

(
F2

(
U−,n
i+1/2,U

+,n
i+1/2

)
− F2

(
U−,n
i−1/2,U

+,n
i−1/2

))
Qn+1

i = Q∗i −
δtn
δx (Y n )i

where
AnY n =

(
F3

(
xi+1/2,U

−,n
i+1/2,U

+,n
i+1/2

)
− F3

(
xi−1/2,U

−,n
i−1/2,U

+,n
i−1/2

)
+ µ2N

n
i

)
1≤i≤N

.

The matrix An is the cell-centered approximation of the linear operator
(
Id − µ2L[A, d, σ]

)
and N n

i is the
cell-centered approximation of −G[A, d, σ] (u, ∂xσ) + σ(x)d ′(x) G[A, d, σ, z = d(x)] (u).

The numerical fluxes are defined by

F1
(
U−,n
i+1/2,U

+,n
i+1/2

)
=

F1
(
U−,n

i+1/2

)
+F1

(
U+,n

i+1/2

)
2 − sn

i+1/2(A+,n
i+1/2 − A−,n

i+1/2)

F2
(
U−,n
i+1/2,U

+,n
i+1/2

)
=

F2
(
U−,n

i+1/2

)
+F2

(
U+,n

i+1/2

)
2 − sn

i+1/2(Q+,n
i+1/2 −Q−,n

i+1/2)

F3
(
xi+1/2,U

−,n
i+1/2,U

+,n
i+1/2

)
=

F3
(
xi+1/2,U

−,n
i+1/2

)
+F3

(
xi+1/2,U

+,n
i+1/2

)
2 +

(
An
i
2

2σiF
2
r
−

A−,n
i+1/2

2

2σi+1/2F
2
r

)
F3

(
xi+1/2,U

−,n
i+1/2,U

+,n
i+1/2

)
=

F3
(
xi+1/2,U

−,n
i+1/2

)
+F3

(
xi+1/2,U

+,n
i+1/2

)
2 +

(
An
i+1

2

2σi+1F
2
r
−

A+,n
i+1/2

2

2σi+1/2F
2
r

)
such that whenever µ2 = 0, we recover the classical numerical scheme1 for the hyperbolic part

1 For the sake of simplicity and clarity, we have presented the finite volume method using the Rusanov solver but the method
is not limited to this one.
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Un+1
i = Un

i −
δtn
δx

(
F (xi+1/2,U

−,n
i+1/2,U

+,n
i+1/2) − F (xi−1/2,U

−,n
i−1/2,U

+,n
i−1/2)

)
with F (x,U,V ) = (F1(U,V ), F2(U,V ) + F3(x,U,V )). In these expressions,

si+1/2 = max
j=1,2

���λ j (xi+1/2,U
−,n
i+1/2)��� ,

���λ j (xi+1/2,U
+,n
i+1/2)���

where λ j (x,U) = Q/A+(−1) j
√

A
σ (x)F2

r
, j = 1, 2 are the eigenvalues of the Jacobianmatrix of (F1, F2+F3)T .

The numerical scheme is consistent and stable under the CFL condition

max
1≤i≤N

(���λ1(xi,Un
i )��� ,

���λ2(xi,Un
i )���

) δtn
δx
≤ 1 .

4.2 Propagation of a solitary wave

In this section, we test the accuracy of the method and we show numerically the influence of the section
variation in the case of the propagation of a solitary wave. For this purpose, we consider the exact solitary
wave solutions of the Green-Naghdi equations in the one-dimensional setting over a flat bottom (see [16]),
given in variables with dimensions, by

η(t, x) = asech2(k (x − ct)), u(t, x) = c
(

η(t, x)
η(t, x) + z0

)
with k =

√
3a

2z0
√

z0 + a
and c =

√
g(z0 + a) (27)

where z0 is the depth of the fluid and a is the relative amplitude.

Accuracy

The propagation of the solitary wave (27) is initially centered at x0 = 10 m with a relative amplitude a = 0.2
m over a constant water depth z0 = 1 m. The computational domain is Lc = 100 m and it is discretized with
N cells. The single solitary wave propagates from left to right. In this test, since the solitary wave is initially
far from boundaries, the boundary conditions do not affect the computation, thus we choose to impose free
boundary conditions at the downstream and upstream ends. The exact solution is computed in a channel of
width σ = 1.

In what follows, we quantify the numerical accuracy of our numerical scheme by computing the numerical
solution for this particular test case for an increasing number of cells N over a duration T = 20 s. Starting
with N = 100 number of cells, we successively multiply the number of cells by two. For all n, we compare,
in Fig. 2, Mn := max0≤i≤N+2(hn

i ) of our numerical solution provided by Eqs. (26) with the exact one
M (tn ) := max h(tn, x)x∈[0,Lc ] = 2.2 given by (27). One can easily remark that the first order discretisation
is not accurate for long time simulation due to the numerical dissipation. However, to limit the numerical
dissipation of the first order numerical scheme, one can either limit the simulation time or consider a very
large number of cells. However, it is better to increase the order of the numerical scheme but this is left to a
future work. Therefore, in what follows, we consider a shorter simulation time and a large number of cells,
just to illustrate the influence of the variation of the channel.
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Fig. 2 Mn := max0≤i≤N+2(hn
i )

Influence of the section variation:

We consider again the propagation of a solitary wave initially centered at x0 = 10 m of relative amplitude
a = 0.2 m, over a constant water depth z0 = 1 m onto a computational domain of Lc = 50 m and discretized
with N = 5000 cells. Initially starting with (η(0, x), u(0, x)) (see Eqs. (27)), we compute the numerical
simulation for the channels defined by

σ(x; ε) = β(x; ε) − α(x; ε) with β =
1
2
−
ε

2
exp

(
−ε2

(
x − L/2)2

))
and α = −β

with ε = 0, ε = 0.1, ε = 0.2, ε = 0.3 and ε = 0.4. The obtained results are presented in Fig. 3. In Fig.3(a),
for each geometry, we show the evolution of the maximum of the water level Mn := max0≤i≤N+2(hn

i ). As
expected, since the first part for x ≤ 25 is linearly converging, the water level increases while for x > 25,
the channel is linearly diverging and therefore, the amplitude of the water level decreases. Moreover, in all
numerical simulations, the mass is conserved. Indeed, for each value of ε, we have displayed in Fig. 3(b),
the ratio of mn

m0 where mn := 1
N+2

∑N+1
i=0 An

i is the mass of water at time tn . The ratio mn

m0 is almost equal to
1, up to the order of accuracy of the numerical scheme.
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Fig. 3 Influence of σ

5 Conclusions and perspectives

We have presented the derivation of a new dispersive model for open channel with non uniform rectangular
section. This model generalises the usual Serre-Green-Naghdi equation. We have presented its numerical
finite volume approximation for which we have proposed two simple test cases. In a forthcoming paper, we
will focus in the case of arbitrary channel section and we will propose high order numerical scheme.
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