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Abstract  This paper is dedicated to proving the complete integrability of the Benjamin—Ono (BO)
equation on the line when restricted to every N-soliton manifold, denoted by Uy. We construct gener-
alized action—angle coordinates which establish a real analytic symplectomorphism from Uy onto some
open convex subset of R?Y and allow to solve the equation by quadrature for any such initial datum. As
a consequence, Uy is the universal covering of the manifold of N-gap potentials for the BO equation on
the torus as described by Gérard—Kappeler [19]. The global well-posedness of the BO equation in Uy
is given by a polynomial characterization and a spectral characterization of the manifold . Besides
the spectral analysis of the Lax operator of the BO equation and the shift semigroup acting on some
Hardy spaces, the construction of such coordinates also relies on the use of a generating functional, which
encodes the entire BO hierarchy.

Keywords Benjamin—-Ono equation, generalized action—angle coordinates, Lax pair, Hardy space, in-
verse spectral transform, multi-solitons, universal covering manifold

Throughout this paper, the main results of each section are stated at the beginning. Their
proofs are left inside the corresponding subsections.
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1 Introduction
The Benjamin—Ono (BO) equation on the line reads as
Opu = HO*u — 0, (u?), (t,z) €e R x R, (1.1)
where u is real-valued and H = —isign(D) : L%(R) — L?(R) denotes the Hilbert transform, D = —id,,
HF(€) = —isign(€)f(€),  Vf € L*(R). (1.2)

sign(£€) = +1, for all € > 0 and sign(0) = 0, f € L?(R) denotes the Fourier Plancherel transform of
f € L3(R). We adopt the convention LP(R) = LP(R,C). Its R-subspace consisting of all real-valued LP-
functions is specially emphasmed as LP(R,R) th oughout this paper. Equipped with the inner product

(f,9) € L*(R) x L3(R) = [ f(x)g(z)dz € C, L*(R) is a C-Hilbert space.



Derived by Benjamin [4] and Ono [49], this equation describes the evolution of weakly nonlinear internal
long waves in a two-layer fluid. The BO equation is globally well-posed in every Sobolev spaces H*(R,R),
5> 0. (see Tao [63] for s > 1, Burq-Planchon [8] for s > I, Ionescu-Kenig [33], Molinet-Pilod [43] and
Ifrim—Tataru [29] for s > 0, etc.) Recall the scaling and translation invariances of equation (1.1): if
u = u(t, ) is a solution, so is ucy : (t,2) — cu(c?t, c(x — y)). A smooth solution u = u(t,z) is called a
solitary wave of (1.1) if there exists R € C*°(R) solving the following non local elliptic equation

HR +R-R?*=0, R(z)>0 (1.3)

and u(t,z) = Re(x —y — ct), where R.(x) = ¢R(cx), for some ¢ > 0 and y € R. The unique (up to
translation) solution of equation (1.3) is given by the following formula
2

R(z) = 1122

Vo € R, (1.4)
in Benjamin [4] and Amick-Toland [2] for the uniqueness statement. Inspired from the complete classifi-
cation of solitary waves of the BO equation, we introduce the main object of this paper.

Definition 1.1. A function of the form u(x) = Zjvzl Re;(x — x;) is called an N-soliton, for some
positive integer N € Ny := Z[)(0,+00), where ¢; > 0 and z; € R, for every j = 1,2,--- ,N. Let
Un C L?(R,R) denote the subset consisting of all the N-solitons.

In the point of view of topology and differential manifolds, the subset Uy is a simply connected, real
analytic, embedded submanifold of the R-Hilbert space L?(R,R). It has real dimension 2N. The tangent
space to Uy at an arbitrary N-soliton is included in an auxiliary space

T :={h € L*(R, (1 + 2?)dz) : h(R) C R, / h =0}, (1.5)
R

in which a 2-covector w € A?(T*) is well defined by w(hy, hy) = = Ja Md& for every hy,ho € T,

by Hardy’s inequality. We define a translation-invariant 2-form w : u € Uy — w € A*(T*), endowed
with which Uy is a symplectic manifold. The tangent space to Uy at u € Uy is denoted by T, (Un). For
every smooth function f : Uy — R, its Hamiltonian vector field Xy € X(Uy) is given by

Xpiu €Uy 0,Vauf(u) € TulUn),

where V, f(u) denotes the Fréchet derivative of f, i.e. df(u)(h) = (h,Vyuf(u)) 2, for every h € T, (Un).
The Poisson bracket of f and another smooth function g : Uy — R is defined by

{f,9} 1 v eUn = wu(Xf(u), Xy(u)) = (0 Vuf(u), Vug(u)) 2 € R.

Then the BO equation (1.1) in the N-soliton manifold (Uy,w) can be written in Hamiltonian form

1 1
Ou = Xp(u), where E(u) = §<|D\u, u)H,%’H% ~3 /Ru?’. (1.6)
The Cauchy problem of (1.6) is globally well-posed in the manifold Uy (see proposition 4.9). Inspired
from the construction of Birkhoff coordinates of the space-periodic BO equation discovered by Gérard—
Kappeler [19], we want to show the complete integrability of (1.6) in the Liouville sense.

Let Qn := {(r1,72,--- ;7MY e RN :pJ <9It <0, Vj=1,2,---,N — 1} denote the subset of actions
and v = Zjvzl dr? A do? denotes the canonical symplectic form on Qx x RY. The main result of this
paper is stated as follows.



Theorem 1. There exists a real analytic symplectomorphism @ : (Un,w) — (Qn x RN V) such that
N
—1,1 ,.2 N. 1 2 Ny _ 7|2
EO@N(T"T7...’7~ ’a7a7...,0[ )__%221“’” (17)
=

Remark 1.2. A consequence of theorem 1 is that Uy is simply connected. In fact the manifold Un can be
interpreted as the universal covering of the manifold of N-gap potentials for the Benjamin—Ono equation
on the torus as described by Gérard—Kappeler in [19]. We refer to section A for a direct proof of these
topological facts, independently of theorem 1.

Remark 1.3. Then ®n : u € Uy = (I1(u), I(u), -, In(u);y1(uw), yo(u), - ,yn(u) € Qn x RV
introduces the generalized action—angle coordinates of the BO equation in the N -soliton manifold, i.e.

(I, E}Yw) =0,  {ym E}(u) = I’:(T“), Yu € Uy (1.8)

Theorem 1 gives a complete description of the orbit structure of the flow of equation (1.6) up to real
bi-analytic conjugacy. Let u:t € R~ u(t) € Uy denote the solution of equation (1.6), r¥(t) = I} o u(t)
denotes action coordinates and o*(t) = vy, o u(t) denotes the generalized angle coordinates, then we have
k
0)t
) = 0), oF() =k (0)— O k19N (1.9)

™

We refer to definition 5.1 and theorem 5.2 for a precise description of ® .

In order to establish the link between the action—angle coordinates and the translation—scaling parameters
of an N-soliton, we introduce the inverse spectral matrix associated to ®, denoted by

2 I (u) i Lk
M :u € Uy s (Myj(u)i<juen € VN, My (u) = { BOI-LE VI B 7k, (1.10)
’yj(u)—km, if j=k,

where I, v, : U — R is given by remark 1.3. Then Uy has the following polynomial characterization.

Proposition 1.4. A real-valued function v € Uy if and only if there exists a monic polynomial Q,, €
C[X] of degree N, whose roots are contained in the lower half-plane C_ and u = —2Im%. Precisely, Q.
is unique and is the characteristic polynomial of the matriz M (u) € CN*N defined by (1.10).

An N-soliton is expressed by u(x) = Zjvzl Re;(x — x;) if and only if its translation-scaling parameters
{z; — c}li}lngN C C¥ are the roots of the characteristic polynomial Q,(X) = det(X — M (u)), whose
coefficients are expressed in terms of the action-angle coordinates (I;(u),v;(u))i<j<n € Qn x RV,
Proposition 1.4 is restated with more details in proposition 4.1, formula (5.11) and theorem 4.8 which

gives a spectral characterization of Uy. If u:t € R — u(t) € Uy solves the BO equation (1.1), then we
have the following explicit formula

u(t,z) = 21m<(M(u0) — (z+ %‘,U(uo)))il X (up), Y (ug))cw, (t,z) € R x R, (1.11)

where the inner product of CV is (X,Y)en = XY, for every u € Uy, the matrix U(u) € CV*N and
the vectors X (u),Y (u) € CV are defined by

VorX (u)' = (VL) VIR, Vv ()]), I (u)
Var Y ()T = (VI VIR, VI @), '




1.1 Notation

Before outlining the construction of action—angle coordinates, we introduce some notations used in this
paper. The indicator function of a subset A C X is denoted by 14, i.e. 1a(z) = 1if z € A and
14(x) = 0if x € X\ A. Recall that H : L?(R) — L?(R) denotes the Hilbert transform given by (1.2). Set
Id2@(f) = f, for every f € L?(R). Let IT : L?(R) — L?(R) denote the Szegé projector, defined by

L IdL2(R) + ’LH

s =€) =104+ ()f(). VE€R, VfeL’(R). (1.12)

If © is an open subset of C, we denote by Hol(D) all holomorphic functions on O. Let the upper half-
plane and the lower half-plane be denoted by C; = {z € C : Imz > 0} and C_ = {z € C : Imz < 0}
respectively. For every p € (0, 400], we denote by Lﬁ_ to be the Hardy space of holomorphic functions on

C such that L = {g € Hol(C;) : lgllze < 400}, where

%
lolir =sup [ lota+inpas)”. it pe o), (1.13)
y>0 R

and |[g[|= = sup.cc, [9(2)[- A function g € LS is called an inner function if g = 1 on R. When
p = 2, the Paley-Wiener theorem yields the identification between L2 and II[L*(R)]:

Li_ = F L0, +00)] = {f € L*(R) : suppf C [0, +00)} = II(L*(R)),

where F : f € L?(R) — f € L%(R) denotes the Fourier Plancherel transform. Similarly, we set
L? = (Idp2g) — I)(L*(R)). Let the filtered Sobolev spaces be denoted as Hf := L3 (\H*(R) and
H?® = L2 N H*(R), for every s > 0.

The domain of definition of an unbounded operator A on some Hilbert space £ is denoted by D(A) C €.
Given another operator B on D(B) C & such that A(D(A)) € D(B) and B(D(B)) C D(A), their Lie
bracket is an operator defined on D(A) (D(B) C &, which is given by

[A,B] := AB — BA. (1.14)

If the operator A is self-adjoint, let o(A) denote its spectrum, op,(A) denotes the set of its eigenval-
ues and ocont(A) denotes its continuous spectrum. Then ocont(A) |Jopp(A) = o(A) C R. Given two
C-Hilbert spaces &1 and &, let B(E1,E2) denote the C-Banach space of all bounded C-linear transforma-

tions & — &3, equipped with the uniform norm.

Given a smooth manifold M of real dimension N, let C*°(M) denote all smooth functions f : M — R
and the set of all smooth vector fields is denoted by X(M). The tangent (resp. cotangent) space to M at
p € M is denoted by 7,(M) (resp. 7,/(M)). Given k € N, the R-vector space of smooth k-forms on M is

denoted by QF(M). Given a R-vector space V, we denote by A*(V*) the vector space of all k-covectors
on V. Given a smooth covariant tensor field A on M and X € X(M), the Lie derivative of A with respect
to X is denoted by £x (A), which is also a smooth tensor field on M. If N is another smooth manifold,
F: N — M is a smooth map and A is a smooth covariant k-tensor field on M, the pullback of A by F
is denoted by F* A, which is a smooth k-tensor field on N defined by Vp € N, Vj =1,2,--- |k,

(F*A)p(v1, v, -+ k) = Ap(y) (AF(p)(v1), dF(p)(v2), - -+ ,dF(p)(vk)), Vv € Tp(N). (1.15)



Given a positive integer N, let C<y_1[X] denote the C-vector space of all polynomials with complex
coefficients whose degree is no greater than N — 1 and Cy[X] = C<y[X]\C<n_1[X] consists of all
polynomials of degree exactly N. R = [0,400) and R¥ = (0,400). D(z,7) C C denotes the open disc
of radius » > 0, whose center is z € C.

1.2 Organization of this paper

The construction of action—angle coordinates for the BO equation (1.6) mainly relies on the Lax pair
formulation 0;L,, = [By, L], discovered by Nakamura [45] and Bock-Kruskal [6]. Section 2 is dedicated
to the spectral analysis of the Lax operator L, : h € Hi — —i0yh — II(uh) € L2+ given by definition
2.1 for general symbol u € L*(R,R), where II denotes the Szegd projector given in (1.12) and the Hardy
space L? is defined in (1.13). L, is an unbounded self-adjoint operator on L3 that is bounded from
below, it has essential spectrum oess(Ly,) = [0, +00). If 2 — zu(z) € L?(R) in addition, every eigenvalue
is negative and simple, thanks to an identity firstly found by Wu [65]. Then we introduce a generating
function which encodes the entire BO hierarchy,

Ha(u) = ((Ly + N) " Tu, Tu) 2, if \eC\o(—Ly), (1.16)
in definition 2.9. It provides a sequence of conservation laws controlling every Sobolev norms.

In section 3, we study the shift semigroup (5(n)*)y>0 acting on the Hardy space L2, where S(n)f = e, f
and e,(z) = e"”. Then a weak version of Beurling-Lax theorem can be obtained by solving a linear
differential equation with constant coeflicients. Every N-dimensional subspace of Li that is invariant

under its infinitesimal generator G = i% ’7720 2S(n)* is of the form CSNT”X], for some monic polynomial
@ whose roots are contained in the lower half-plane C_.

In section 4, the real analytic structure and symplectic structure of the N-soliton subset Uy are established
at first. Then we continue the spectral analysis of the Lax operator L,, Yu € Uy. L, has N simple
eigenvalues A < Ay < --- < A% < 0 and the Hardy space LZ splits as

Cen-1[X
Li = t%ﬂcont(Lu) @f%p(Lu>7 %ont(Lu) = %C(Lu) = GuLiv %P(Lu) = ST[] (117)

where @), denotes the characteristic polynomial of u given by proposition 1.4 and 0, = % is an inner

function on the upper half-plane C... Proposition 1.4 is proved by identifying M (u) in (1.10) as the matrix
of the restriction G|, (L,) associated to the spectral basis {4, ¢4, -, o} }, where p% € Ker(\} — L)
such that [[¢%]|p2 = 1 and [ upy > 0. The generating function # in (1.16) can be identified as the
Borel-Cauchy transform of the spectral measure of L, associated to the vector ITu, which yields the in-
variance of Uy under the BO flow in H*°(R,R). Hence (1.6) is a globally well-posed Hamiltonian system
on Z/{N-

Section 5 is dedicated to completing the proof of theorem 1. The generalized angle-variables are the real
parts of the diagonal elements of the matrix M (u), i.e. 7; : u € Un + Re(GyY, p¥) 2 € R and the action-

variables are I; : u € Uy + 2mA¥ € R. Thanks to the Lax pair formulation dL(u)(Xs, (u)) = [B), L],
where L : u € Uy — L, € %(H}r, Li) is R-affine and B;) is some skew-adjoint operator on Li, we have
the following formulas of Poisson brackets,

27r{>\j7’7k)} :1j:k7 {7]7’7/6}:0 on Z/[N7 1 S])kSN (118)



which implies that &y : v € Uy +— (I1(u), Ia(u), -+, In(u);y1(u),v2(u), - ,yn(u)) € Oy x RY is a
real analytic immersion. The diffeomorphism property of ®y is given by Hadamard’s global inverse
theorem. The inverse spectral formula Ilu = 8—2“ with Q,(X) = det(X — G|, (L,)), which is re-
stated as formula (5.11), implies the explicit formula (1.11) of all multi-soliton solutions of the BO
equation (1.1) and (5.11) provides an alternative proof of the injectivity of ®x. Finally, we show that
Oy (Uy,w) = (A x RY 1) is a symplectomorphism by restricting the 2-form w — ®% v to a special

Lagrangian submanifold Ay := ﬂ;vzl 7{1(0) C Un.

In appendix A, we establish the simple connectedness of Uy and a covering map from Uy to the manifold
of N-gap potentials from their constructions without using the integrability theorems.

1.3 Related work

The BO equation has been extensively studied for nearly sixty years in the domain of partial differential
equations. We refer to Saut [60] for an excellent account of these results. Besides the global well-posedness
problem, various properties of its multi-soliton solutions has been investigated in details. Matsuno [41]
has found the explicit expression of multi-soliton solutions of (1.1) by following the bilinear method
of Hirota [26]. The multi-phase solutions (periodic multi-solitons) have been constructed by Satsuma—
Ishimori [58] at first. We point out the work of Amick—Toland [2] on the characterization of 1-soliton
solutions which can also be revisited by theorem 1 and proposition 1.4. In Dobrokhotov—Krichever [10],
the multi-phase solutions are constructed by finite zone integration and they have also established an
inversion formula for multi-phase solutions. Compared to their work, we give a geometric description of
the inverse spectral transform by proving the real bi-analyticity and the symplectomorphism property of
the action—angle map. Furthermore, the inverse spectral formula

!/
Hue) — ()
provides a spectral connection between the Lax operator L, and the infinitesimal generator G. The idea
of introducing generating function #H, has also been used for the quantum BO equation in Nazarov—
Sklyanin [46]. Their method has also been developed by Moll [44] for the classical BO equation. The
asymptotic stability of soliton solutions and of solutions starting with sums of widely separated soliton
profiles is obtained by Kenig—Martel [34].

Qu(z) = det(r — Gl (1,)) = det(z — M(u)), Vo € R. (1.19)

Concerning the investigation of integrability for the BO equation on R besides the discovery of Lax pair
formulation, we mention the pioneering work of Ablowitz—Fokas [1], Coifman—Wickerhauser [9], Kaup—
Matsuno [35] and Wu [65, 66] for the inverse scattering transform. In the space-periodic regime, the BO
equation on the torus T admits global Birkhoff coordinates on L2 (T) := {v € L*(T,R) : ;v = 0} in
Gérard—Kappeler [19]. We refer to Gérard—Kappeler—Topalov [20] to see that the Birkhoff coordinates
of the BO equation on the torus can be extended to a larger Sobolev space H; (T) := {v € H*(T,R) :
fTv = 0}, for every —% < s < 0. We point out that both Korteweg—de Vries equation on T (see
Kappeler—Poschel [30]) and the defocusing cubic Schédinger equation on T (see Grébert—Kappeler [24])
admit global Birkhoff coordinates. The theory of finite-dimensional Hamiltonian system is transferred
to the BO, KdV and dNLS equation on T through the submanifolds of corresponding finite-gap poten-
tials, which are introduced to solve the periodic KdV initial problem. We refer to Matveev [42] for details.

Moreover, the cubic Szegd equation both on T (see Gérard—Grellier [15,16, 17, 18]) and on R (see Pocov-
nicu [51,52]) admit global (generalized) action—angle coordinates on all finite-rank generic rational func-



tion manifolds, denoted respectively by M (N )gen and M(N )]gen. Moreover, the cubic Szegé equation
both on T and on R have inverse spectral formulas which permit the Szeg6 flows to be expressed ex-
plicitly in terms of time-variables and initial data without using action—angle coordinates. The shift
semigroup (S(n)*)y>o and its infinitesimal generator G are also used in Pocovnicu [52] to establish the

integrability of the cubic Szeg6 equation on the line.

The BO equation admits an infinite hierarchy of conservation laws controlling every H®-norm (see
Ablowitz—Fokas [1], Coifman—Wickerhauser [9] in the case 2s € N and Talbut [62] in the case —3 < s < 0
and conservation law controlling Besov norms etc.), so does the KAV equation and the NLS equation (see
Killip-Visan—Zhang [37], Koch-Tataru [36], Faddeev—Takhtajan [11], Gérard [14] and Sun [61] etc.)

Throughout this paper, the main results of each section are stated at the beginning. Their
proofs are left inside the corresponding subsections.

2 The Lax operator

This section is dedicated to studying the Lax operator L, in the Lax pair formulation of the BO equation
(1.1), discovered by Nakamura [45] and Bock-Kruskal [6]. Then we describe the location and revisit
the simplicity of eigenvalues of L,. At last, we introduce a generating functional H which encodes the
entire BO hierarchy. The equation 0;u = 9,V H(u) also enjoys a Lax pair structure with the same Lax
operator L.

Definition 2.1. Given u € L?(R,R), its associated Lax operator L, is an unbounded operator on Li_,
given by L, ;=D —T,, where D : h € H}_ — —i0.h € Lﬁ_ and T, denotes the Toeplitz operator of symbol
u, defined by T, : h € HY ~— Il(uh) € L%, where the Szegd projector 11 : L?(R) — L% is given by (1.12).
We set By, := i(Tipj, — T2).

u

Both D and T, are densely defined symmetric operators on L3 and ||T,,(h)||2 < ||ul| 2]k L=, for every
h € H} and u € L?(R,R). Moreover, the Fourier—Plancherel transform implies that D is a self-adjoint
operator on Li, whose domain of definition is H}r

Proposition 2.2. Ifu € L?(R,R), then L, is an unbounded self-adjoint operator on L2 | whose domain
of definition is D(L,) = H}_ Moreover, L, is bounded from below. The essential spectrum of L, is

Oess(Lu) = ess(D) = [0,+00) and its pure point spectrum satisfies opp(Ly,) C [7%2||u||%2,+oo), where

1
C= inffeHi\{O} % denotes the Sobolev constant.
L

Thanks to an identity firstly found by Wu [65] in the negative eigenvalue case, we show the simplicity of
the pure point spectrum opp(Ly,), if u € L2(R, (1 4 2?)dz) is real-valued.

Proposition 2.3. Assume that v € L?*(R;R) and x — zu(z) € L*(R). For every A € R and ¢ €
Ker(A — L), we have up € C*(R) (" H*(R) and the following identity holds,

‘/RW‘QZQW\/RIWIQ- (2.1)

Thus opp(Ly) C (—00,0) and for every A € opp(Ly), we have

Ker(A\ = L.) C {p € Hy : ¢, € C'(Ry)[|H'(Ry) and €= E[2(E) + 0ep(6)] € L*(R4)}. (2.2)



Corollary 2.4. Assume that u € L*(R;R) and z — zu(z) € L*(R). Then every eigenvalue of L, is

C?Jlull?

simple. If u € L>(R) in addition, then opp(Ly) is a finite subset of [-—5-£%,0).

Proof. Fix A € opp(L,,) and set Vy, = Ker(A—L,,), then dimg (V) > 1. We define a linear form A : V), — C
such that

Alp) = /Ruso

Then identity (2.1) yields that Ker(4) = {0}. Thus V = V/Ker(A) = Im(4) — C. So we have
dimc(Vy) = 1. When v € L*(R) in addition, the finiteness of opp(Ly,) [ )(—00,0) is given by Theorem
1.2 of Wu [65]. O

We recall some known results of global well-posedness of the BO equation on the line.

Proposition 2.5. For every s > 0, the Fréchet space C(R, H*(R)) is endowed with the topology of
uniform convergence on every compact subset of R. There exists a unique continuous mapping ug €
H*(R) — u € C(R, H*(R)) such that u solves the BO equation (1.1) with initial datum w(0) = ug.

Proof. See Tao [63], Burq—Planchon [8], Ionescu—Kenig [33], Molinet—Pilod [43], Ifrim—Tataru [29] etc. O
Proposition 2.6. For everyn € N, if ug € H= (R,R), let u:t € R — u(t) € H3 (R, R) solves equation
(1.1) with initial datum u(0) = uo, then C(|luoll ;2 ) := supser lu(t)ll ;2 < +oo.
Proof. See Ablowitz—Fokas [1], Coifman—Wickerhauser [9]. O

When u € H?(R,R), the Toeplitz operators Tip|u and T}, are bounded both on L2+ and on Hi So B, is
a bounded skew-adjoint operator both on L3 and on H.

Proposition 2.7. Letu:t € R~ u(t) € H?(R,R) denote the unique solution of equation (1.1), then
O Luty = [Bu(t)s Luw)) € B(HL, LY), vt € R. (2.3)
Let U :t— U(t) € B(L) := B(L%, L%) denote the unique solution of the following equation
U'(t) = BuyU(2), U(0) = Idg, (2.4)
if u:teR— u(t) € H*(R,R) denote the unique solution of equation (1.1). The system (2.4) is globally
well-posed in ‘B(Li), thanks to proposition 2.6, the following estimate
1Bu(M)llz2 S (Nl + ulfp)lbllz2, VA€ L%, Vue H*(RR).

and a classical Cauchy theorem (see for instance lemma 7.2 of Sun [61]). Since B} = —B,, the operator
U (t) is unitary for every ¢ € R. Thus, the Lax pair formulation (2.3) of the BO equation (1.1) is equivalent
to the unitary equivalence between Ly ;) and Ly ),

Ly = U@ LyoyU(t)* € B(HL, L3). (2.5)

On the one hand, the spectrum of L, is invariant under the BO flow. In particular, we have opp(Ly ) =
opp(Lu(O)). On the other hand, there exists a sequence of conservation laws controlling every Sobolev
norms H%(R), n > 0. Furthermore, the Lax operator in the Lax pair formulation is not unique. If
f € L*(R) and p is a polynomial with complex coeflicients, then

f(Lu(t)) = U(t)f(Lu(O))U(t)* € %(Li)v p(Lu(t)) = U(t)p(Lu(O))U(t)* € %(H—]iy’L%,-)v (26)

where N is the degree of the polynomial p.



Proposition 2.8. Givenn €N, letu:t € R u(t) € H? (R, R) denote the solution of equation (1.1),
we set

En(u) == (Lylu, Iu) ., (2.7)

_n n.,
2 H2

Then E,(u(t)) = En(u(0)), for every t € R. In particular, Ey = E on H2(R,R), where the energy
functional E is given by (1.6).

Definition 2.9. Givenu € L*(R,R) and A\ € C\o(—L,,), the C-linear transformation A+ L., is invertible
in B(HY,L3) and the generating function is defined by Hx(u) = ((Ly + N)"'Hu,Iu) 2. The subset
X = {(\u) € Rx L*R,R) : 4\ > C?||ul|3.} is open in the R-Banach space R x L*(R,R), where

1 2 2
the Sobolev constant is given by C = inffeH}r\{o} % and we have o(L,) C [—C ”ZHLQ ,Fo0) by
L

proposition 2.2.

The map (A, u) € X — Hy(u) = ((Ly + A) " 'u, Hu) 2 € R is real analytic.

Proposition 2.10. Let u:t € R~ u(t) € L*(R,R) denote the solution of the BO equation (1.1) and

2 2
we choose A > %, then Hx(u(t)) = Ha(u(0)), for every t € R.

Given (\,u) € X, there exists a neighbourhood of u in L?*(R,R), denoted by V, such that the restriction
Hy:v € Vy+— Hy(v) € R is real analytic. The Fréchet derivative of H at u is computed as follows,

A (u)(h) = (wx, TIRY 12 4 (wx, TIAY 5 + (Thwx, wa) 2 = (hywx + W + |lwa[?) 2, Vh € L2(R,R).
where wy € H} is given by wy = wy(u) = wy(z,u) = [(Ly + A) 7! o IlJu(z), for every z € R. Then
VuHa(u) = |wx(w)]? + wx(u) + @ (u). (2.8)
Given (A, ug) € X fixed, the pseudo-Hamiltonian equation associated to H) is defined by
Opu = 0,V Ha(u) = 9, (Jwa(uw)]® +wa(u) + Wa(u)), u(0) = ug. (2.9)

There exists an open subset V,,, of L*(R,R) such that v € Vy, + 9, (Jwa(v)|* + wx(v) + wWa(v)) € L7 is
real analytic and ug € V,,. Hence (2.9) admits a local solution by Cauchy-Lipschitz theorem.

Remark 2.11. The word ’pseudo-Hamiltonian’ is used here because no symplectic form has been defined
on L?(R,R) until now. In section 4, we show that 8,V f(u) is ezxactly the Hamiltonian vector field of the
smooth function f:Un — R with respect to the symplectic form w on the N-soliton manifold Uy defined
in (4.2).

Proposition 2.12. Given (A ug) € X fized, there exists € > 0 such that (A, u(t)) € X, for every
t € (—e,¢), where u : t € (—¢,+¢) — u(t) € L2(R,R) denotes the local solution of (2.9) with initial datum
u(0) = ug. We have

OrLy1y = [Bi)L\(t)7Lu(t)]7 where B = i(Ty, (o) Tws (0) + Tuon (o) + Ty (), if (A, 0) € X (2.10)

i.e. (Ly,By) is a Lax pair of equation (2.9).

Remark 2.13. The Toeplitz operators T,
skew-adjoint operator B, if (\,v) € X.

v

A(v) and Tg, ) are bounded both on Lf_ and on H}_, so is the
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For every u € H*(R,R) and € € (0, W), we set He(u) == 1741 (u) and B, = %Bi Recall that
L2 €

E, (u) = (L'Mu,u) 2, we have the following Taylor expansion

M
He(u) = Z(fe)"En(u) — (—e)M{((Ly + 1) 'Mu, L) Tu) 2, VM €N, (2.11)
k=0

Proposition 2.12 then leads to a Lax pair formulation for the equations corresponding to the conservation
laws in the BO hierarchy,

d” ~
atLu == [@ E:OBeﬂuLu]v
where now u evolves according to the pseudo-Hamiltonian flow of E,, = (—1)”5% €=07-l€. In the case

n:1,WehaweE1:EandBu:i B

dele=0""6U"

This section is organized as follows. In subsection 2.1, we recall some basic facts concerning unitarily
equivalent self-adjoint operators on different Hilbert spaces. The subsection 2.2 is dedicated to the proofs
of proposition 2.2 and 2.3. Proposition 2.8 and 2.10 that concern the conservation laws are proved in
subsection 2.3. Proposition 2.7 and proposition 2.12 that indicate the Lax pair structures are proved in
subsection 2.4.

2.1 Unitary equivalence

Generally, if £ and & are two Hilbert spaces, let A be a self-adjoint operator defined on D(A) C &; and
B be a self-adjoint operator defined on D(B) C &. Both A and B have spectral decompositions

&1 = S A) P Al AP Hp(A), &= Hac(B) P A B) P Hp(B).  (212)
If A and B are unitarily equivalent i.e. there exists a unitary operator U : £, — & such that
B =UAU", D(B) =UD(A), (2.13)
then we have the following identification result.

Proposition 2.14. The operators A and B have the same spectrum and U (A) = Hax(B), for every
xx € {ac,sc,pp}. Moreover, for every bounded borel function f : R — C, f(A) is a bounded operator on
&1, f(B) is a bounded operator on E, we have f(B) =Uf(AU*.

Proof. If f is a bounded Borel function, ¥ € &;, consider the spectral measure of A associated to the
vector ¥ € &1, denoted by uﬁ. Similarly, we denote by uﬁw the spectral measure of B associated to the
vector Uy € &. Clearly, we have

supp(p;) C o(A) CR,  supp(ugy,) C o(B) C R.

For every A € C\o(A) = C\o(B), formula (2.13) implies that U(A — A)~1U* = (A — B)~!. So the
Borel-Cauchy transforms of these two spectral measures are the same.

du;ﬁ(&)_ -t I e Ay (9)
[ SEE = (0= e, = (O B U ttue, = [ T

11



Both of these two spectral measures have finite total variations : ,uﬁ(R) = pgw(R) = |l¢l|3,. Since
every finite Borel measure is uniquely determined by its Borel-Cauchy transform (see Theorem 3.21 of
Teschl [64] page 108), we have ,u;j} = ufw. So the restriction U| . (4) : Hx(A) = Hx(B) is a linear
isomorphism, for every xx € {ac,sc, pp}. Finally, we use the definition of the spectral measures to obtain

AV, D), = / F©)du©) = / FO)AUE (€)= (F(BIUG, UD)e,

We may assume that f is real-valued, so that f(.A) is self-adjoint. The polarization identity implies that
(f(A)Y, e, = (f(BUY,UP)e,, for every 1, ¢ € . So we obtain f(B) = Uf(AU* in the case [ is
real-valued bounded Borel function. In the general case, it suffices to use f = Ref + iImf.

O

2.2 Spectral analysis I

In this subsection, we study the essential spectrum and discrete spectrum of the Lax operator L, by
proving proposition 2.2 and 2.3. The spectral analysis of L,, such that u is a multi-soliton in definition
1.1, will be continued in subsection 4.2.

Proof of proposition 2.2. For every h € L%r, let 1P denote the spectral measure of D associated to h, then

2

_ Lot (OIAE)
21

I de.
Y5

+oo 7 2
o = [ foM P e — abie)

Thus we have 0(D) = ess(D) = 0ac(D) = [0, +00). If u € L*(R,R), we claim that P, := T, o (D +1i)~!
is a Hilbert—Schmidt operator on Li.

Recall that R% = (0,400). In fact, let .# : h € L3 — b (R7%) denotes the renormalized Fourier—

Ver
Plancherel transform, then A, :=.% o P, o.% ! is an operator on L?(R* ). Then we have
e (g —n)
U = Ku ) d 9 Ku ) =T v 9 R* .
Aug(€) ; (& mg(n)dn (&m) i) TonER:

Hence its Hilbert—Schmidt norm || Ay |[3s(z2(rs)) < [ K|[2(R2 xr7) < % Since P, is unitarily equiv-

flwll?

alent to A,, we have ||P“||3-£S(Li) = Z)\EU(PU) A2 = Z,\eo(Au) A2 = HAu“a[S(LZ(Rjr)) < “4L2.

Then the symmetric operator T, is relatively compact with respect to D and Weyl’s essential spectrum
theorem (Theorem XIII.14 of Reed—Simon [54]) yields that oess(Ly) = 0ess(D) and L,, is self-adjoint with
D(L,) = D(D) = H}. An alternative proof of the self-adjointness of L, can be given by Kato-Rellich
theorem (Theorem X.12 of Reed-Simon [53]) and the following estimate, for every f € H1,

1

27| fllse < Il < WFleeVA+ 18, FlavVAT <2 (I Flal0lles) ™, A=/ Uslee.

u 2
So I Tu(f)llz2 < Jullp2llf o= < 2100 fllz + S22 £ o

12



Moreover, [(Tuf, ) 2| = | fy ulfl < ullz2l1f12: < Cllulzellf2lIDI¥ £l holds by Soboley embed-
ding || f]|s < C|||D|3 f| 12, for every f € HY. Then L, is bounded from below, precisely

1 C?lull?s IF11?
(Luf, 1o = D fl2s — (Tuf, fyre > — S 0lizlf e

When \ < —

2 2
%, the map L, — A : HL — L2 is injective. Hence oy, (Ly,) C [7%2||uH%2, +o00). O
Before the proof of proposition 2.3, we recall a lemma concerning the regularity of convolutions.

Lemma 2.15. For every p € (1,400) and m,n € N, we have
W™P(R) « W1 (R) = C™H(R) (| Wt (R), (2.14)

For every f € W™P(R) « W51 (R), we have lim| g o0 95 f(2) = 0, for every a =0,1,--- ,m +n.

Proof. In the case m = n = 0, it suffices use Holder’s inequality and the density argument of the Schwartz
class Z(R) ¢ W™P(R). In the case m = 0 and n = 1, recall that a continuous function whose weak-
derivative is continuous is of class C* and (f, ©)om®y,2®) = [ *P(0), we use the density argument of the
test function class Z(R) C LP(R). We conclude by induction on n > 1 and m € N. O

Remark 2.16. Identity (2.1) was firstly found by Wu [65] in the case A < 0. We show that (2.1) still
holds in the case A > 0. Hence the operator L,, has no eigenvalues in [0, +00).

Proof of proposition 2.3. We choose u € L?(R; (1 + z?)dz) such that u(R) C R, A € R and ¢ € L% such
that L,(p) = Ap. Applying the Fourier—Plancherel transform, we obtain

up(§)Lezo = (€ — A)p (&) =: ga(8)- (2.15)

Since @ € H'(R) and ¢ € L?(R), their convolution 4p = 5=a * ¢ € C*(R) () Co(R), where Cy(R) de-
notes the uniform closure of C,(R) with respect to the L>°(R)-norm, by lemma 2.15. Recall R = [0, 4+00).

We claim that
if A<, then ¢ € CY(Ry);
if A>0, then ¢ € C(Ry)NCHRL\{A}).
In fact, if A > 0, we have gx(A) = 0. Otherwise, A would be a singular point of ¢ that prevents ¢ from

being a L? function on Ry, because & — 57% ¢ L*(R,). By using the fact g € C*(Ry) (g is right

differentiable at £ = 0 and the derivative ¢’ is right continuous at £ = 0), we have

_9(© gA<A>%{gg<A>7 it A>0;

=" gh(0t), if A=0;

when £ = X. So ¢ € C(Ry) and limg_, 4 o $(§) = 0. Then we derive formula (2.15) with respect to £ to
get the following

— izt x §(§) = g5(§) = (@p)'(§) = 4(&) + (€= N(@)(€),  VEE[0,4+00)\{A}. (2.16)

Thus we have

d%[(ﬁ = N[2E)P] = [2(&)1* + 2Re[((€ — M)(@)'(§)2(8)] = 2Re[(up)'(§)$(&)] — |2(€) ™. (2.17)
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When A < 0, it suffices to integrate equation (2.17) on [0, +00) and use the Plancherel formula

+oo -
| @@ = 2ri [ sutw)lo(o)Pa.
0 R

We also use the fact (£ — \)|@(€)]? = up(€)p(€) — 0, as € — +oo. Thus,
+o0 d

+oo
A0 = / /€= VIPOPIE = drlm /}R ru() (@) Pdz — / PO = —2nll]2 ).

When A > 0, there may be some problem of derivability of ¢ at £ = A. We replace the integral f0+oc by
two integrals fO/F6 and f;f:, for some € € (0, \). Set

Z(e) :=N@(0)]* = elp(A = e)I* — elp(A + €)|?

+o0 Ate
9Re ( / (@) (€)B(€)de — @)’(f)@(s)df)— /

“+oo Ate

6(6) e + / 6(6)2de

A—e A—e

Thanks to the continuity of ¢ on R, we have A|$(0)|? = lim g+ Z(¢) = —27TH<,0H%2(R).

When A = 0, we use the same idea and integrate (2.17) over interval [e, +00), for some € > 0. Then

—+o0 o —+o0
T (€) == —el(e)|* = 2Re/ (ap) (§)@(€)de —/ |2(&)[*d¢ — 0,
as € — 0. So we always have
=27l F2my = AP(0))%,  if p € Ker(A— Ly). (2.18)

As a consequence L, has only negative eigenvalues, if the real-valued function u € L*(R, (1 + z?)dx).
Finally we use up(0) = —A@(0) to get identity (2.1). If A € opp(Ly) and ¢ € Ker(A — L, )\{0}, we want
to prove that

= (14 1€)Dep(€) € L2(0, +00). (2.19)
In fact, since ¢ € HY < L*°(R) and u € L*(R, (1 + 2?)dz), we have up = % € H*(R). Formula (2.15)
yields that & — (|A] + €)p(€) € L?(R) and we have ¢ € L*(R). The hypothesis u € L?(R, z?dz) implies
that the convolution term zu * ¢ € L?(R). Since A < 0, we obtain (2.19) by using formula (2.16). O

2.3 Conservation laws

Proposition 2.8 and 2.10 are proved in this subsection. We begin with the following proposition.

Proposition 2.17. Ifu:t € R~ u(t) € H*(R,R) denotes the unique solution of the BO equation
(1.1), then we have
OeTTu(t) = By (Tu(t)) + L2, (Mu(t)) € L7 (2.20)

Proof. For every u € H*(R,R) is real-valued, B, is a bounded operator on both L2 and H}, Iu €

D(L,) = Hi. We have a(—¢) = (&), u = IIu + Iu and |D|u = DIlu — DITu. Since DITu € L?, we have
(ITuDIIu) = H(uDITu). Thus the following two formulas hold,

B, (Iu) = i(Tipj, — T;)(Mw) = i(ITu)(DIw) — iIl(uDITu) — i72 (Tw) = Mud,u — M (ud,u) — iT; (M),
iL2(Tlu) = iD*Mu — T, (DIu) — iD o T,,(TTw) + iT2(Tlu) = —i0?Tlu — Ty, (0, 1Tu) — 0, [T, (TTw)] + 4T ().
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Then we add them together to get the following
B, (TTw) + i L2 (TMu) = —id02Tu — 21 [Tud, Mu + Hud, Tu + TTud, Iy

Finally we replace u by u(t), where u : t € R — u(t) € H?(R,R) solves equation (1.1) to obtain (2.20). O

Proof of proposition 2.8. It suffices to prove (2.7) in the case ug € H*®(R,R). Then we use the density
argument and the continuity of the flow map

up € H*(R) = uw e C([-T,T]; H*(R)) with T >0, s>0,

in proposition 2.5. We choose u = u(t) € H*(R,R) = (5, H*(R,R), so the functions LTTu, d;ITu and
O (LN u = [B,, L|Tu are in H*(R,C). Thus -

0t Fpn(u) = 2Re(LI Tu, 0:Tu) 12 + (Oy (L7 )TTu, Tu) 2.
Since B, +iL? is skew-adjoint, we use formula (2.20) to get the following
2Re(L™M Iu, O 1Tu) > = ([L", B, + iL2]Tu, Tlu) > = (L7, B, ], Tu) 2.
Since (L, B,) is also a Lax pair of the Benjamin—Ono equation (1.1), we have
OBy (u) = (([Ly, Bu] + 0¢(Ly,))ITu, 0,u) 2 = 0.

In the case n = 1, we assume that v € H*(R,R). Since v = Iu + ITu, [D|u = DIIu — DITu and
Jr(Iu)? = 0, we have (|D|u, u) 2 = 2(DIlu, Mu) 2 and [, u® =3 [o (Tu+ u)|[Hu? = 3 [, u/Tlul?. In the

general case u € H 3 (R,R), we use the density argument.
O

Proof of proposition 2.10. Tt suffices to prove the case u(0) € H*° (R, R) and we use the density argument.
Let w : ¢t — u(t) € H®(R,R) solve equation (1.1). Since ||u(t)||rz = ||u(0)]/z2 by proposition 2.8 and
4N > C?|u(0)||22, we have (X, u(t)) € X, Oy Ly = [But), Lu) + Al and
O Ha(u) = 2Re((Ly + N) " MIu, 0:I0u) 12 — ((Ly + N) 7 0y Ly (Ly + N) ™ Tlu, TTu) 72 (2.21)
Formula (2.20) yields that
2Re((Ly, + A) "M, 0y 1Tu) 12 = ([(Ly + A) 71, By + i L2 Tu, Ty 12 = ([(Ly + A) 7Y, By)Tu, Tu) 2,

([(Ly + N7, BT, T 2 =(ByITu, (Ly + A) " Tu) 12 + (Ly + A)Bu(Ly + A) " Tu, (L, + X) " Tu)
=((Lu + A) " [Bu, Ly + A(Ly + A) ™ Mu, Tu) 2.

Then (2.21) yields that 9; Hy(u(t)) = 0. In the general case u(t) € L?(R,R), we proceed as in the proof
of proposition 2.8 and use the continuity of the generating functional

Hy:u € {ve L*>(RR): vz < %} — Ha(u) € R.
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2.4 Lax pair formulation

In this subsection, we prove proposition 2.12 and 2.7. The Hankel operators whose symbols are in
L2(R)J L>=(R) will be used to calculate the commutators of Toeplitz operators. We notice that the
Hankel operators are C-anti-linear and the Toeplitz operators are C-linear. For every symbol v €
L*(R)|J L*°(R), we define its associated Hankel operator to be H,(h) = T;v = II(vh), for every h € HZ.
If v € L®(R), then H, : L2 — L% is a bounded operator. If v € L?(R), then H, may be an un-
bounded operator on L whose domain of definition contains H}. For every b € H'(R), we have
1Ty (R) || e + || Hy(R) || 2 S 1|6l g2 || g, for every h € Hi, so both T}, and Hy, are bounded on L% and on

Lemma 2.18. For every v,w € L (1 L*(R) and u € L*(R), we have
[T, Tw) = —H, 0 H,, € B(L?}). (2.22)
If w € HY in addition, then we have T, (w) € L2 and

HTuw =TyoHn, +HyoTlg=T,0H,+ Hp, oIy € %(Hia Li—) (223)

Proof. For every v,w € L2 (JL*°(R) and h € L%, we have wh = II(wh) + II(wh) € L%. Thus,

[Ty, Tw)h = H(vIl(wh) — wll(vh)) = Il(vwh — vll(wh) — viwh) = —1I(vIl(wh)) = —H, o H,(h) € L3.

Given u € L*(R) and w € HY, for every h € H}, we have wh = II(wh) + II(wh) € H'(R) and

H,(h), T(h) € HY. So I (ull(wh)) = I(Il(wh)u) = H,, o Tr(h) € L% and we have
Hr, o (h) = (I (uw)h) = I(uwh) = D(ull(wh) + ull(wh)) = (T, o Hy + Hry o Ti) (h) € L.

Similarly, we have uh = II(uh) 4+ II(uh) € L?*(R) and II(uh) = II(hIlu) = Hp,(h) € L2. Thus,

Hr,(h) = O(wuh) = U(wll(uh) + wll(uh)) = (T, o Hiy + Hy 0 Ty)(h) € Lf_.

O
Lemma 2.19. Given (\,u) € X given in definition 2.9, set wy(u) = (L, + )" o Il(u) € HY, then
D = Tty T () T ) + Toon () + T ()] = Tl (w) 205 () ()] € B, L7)- (2.24)
Proof. We use abbreviation wy := wy(u) € Hy, then wy € HL. If f*,g" € H} and f~, g~ € HL, then
we have [Ty+,Ty+] = [Ty-,T,-] = 0, because for every h € L%, we have
T[T, () = frgth =Ty [Tys ()],  Vhe L2

and Ty [T,- (h)] = I(f~(g~h)) = U(f~g~h) = U(g"I(fh)) = T,- [T}~ (h)]. Since Ilu € L% and
TTu € L%, we use Leibnitz’s rule and formula (2.22) to obtain that

[D - TuyTw,\ + Tw)\] :TDU))\ + TDE,\ - [T’UMT’U))\] - [T’UMTE)\]
:TDU}A + TDEA - [Tﬁua ’UJ)\] - [THuvTﬁ)\] (225)
:TDwA + TDEX - HwAHHu + HHunA-
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Similarly, formula (2.22) implies that

[T’UJTU)ATE)\} :[T’UJTU)X}TEA + TU))\ [TU7TE,\]
=[Tir: T | Tw, + Ty [Tiru, T, (2.26)
—H,, HituTe, — Ty HituHo, -

For every h € H}r, since Wy, Dwy € L2, we have

[Da Tﬁxwa}h :[D’ TEA]wah + T, [D’ wa]h
=Tpw, (T'LUA h) + T, (TDwx h)
=I[Dw\II(wrh) + wA\IL(Dwyh)] = H[(w\Dwy +w\Dwy)h] € L?.

So [D, Tg, Tw,] = Tpjuwyj2 € B(HY, L2 ). We use formula (2.22) and Leibnitz’s Rule to obtain that
[D, T, Tw,] = [D, T, Tw,] = [D, Hy, ] = Tojuy 2 — Hpw, Huy, + Huy How, (2.27)
Recall that wy = (A + L, )~ 'Tlu, then we have
Dwy = Ty (wy) — Awy, + Iu. (2.28)
The formula (2.23) and (2.28) yield that
Hpw, — Tw,Hrw = Hrywy, — AHyw, + Hiw — Ty Hiiw = Hy, Ty — AHy, + Hig (2.29)

and
HDw,\ — HHUT@/\ = HTuwA — )\Huu + Hry — HHuTE,\ = TunA — )\Huu + Hrgy- (230)

We use formulas (2.26), (2.27), (2.29) and (2.30) to get the following formula

[D — Ty, Tw, Tw,]
:TD|w>\\2 - (HDwA - Tw,\HHu)Hw,\ + Hw,\ (HDw,\ - HHUTE)\> (2 31)
=Tojwy |2 — (HuyTuHuw, — AHZ, + HiyHu,) + (Huy,TuHw, — AH2, + Hy, Hity) '
:TD|wx\2 — HHunA + HwAHHu
At last, we combine formulas (2.25) and (2.31) to obtain formula (2.24). O

End of the proof of proposition 2.12. Since L : u € L*(R,R) — L, = D — T, € B(H, L) is R-affine,
for every u € Li, we have

d .
&(L ou)(t) = —To,u(ty = —TTD(wy (u(t))x () +ws (u(t)+Tx (u(t)))-

Thus the Lax equation (2.10) is equivalent to identity (2.24) in lemma 2.19. O

The proof of proposition 2.7 can be found in Gérard—Kappeler [19], Wu [65] etc. In order to make this
paper self contained, we recall it here.
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Proof of proposition 2.7. Since the Lax map L : u € H*(R,R) — D — T, € B(H1,L?) is R-affine,

d
g Leow®) = ~Touw = ~Taozu() -0, (u(t)?)-
It suffices to prove [Buy, Lu| + Thozu—a, (u2) = 0 for every u € H?(R,R).

In fact, u is real-valued, we have 4(—¢) = 4(¢), u = Iu + Hu and |D|u = DIy — DIu. Since both T,
and B, are bounded operators Li — Li and bounded operators H}r — H}F , their Lie Bracket [B,, L]
is given by

[Bu, Lu]f = = IL(f0x|Dlu) + ill[ull(f|D|u) — [Djull(wf)] + [0 ull(wf) + ull(fOyu)]

2.32
= -T(fHO*u) + I, + I, € L2, (2:32)

for every f € H}r, where the terms 7Z; and 7y are given by

Zy :=ill[ull(f[Dlu) — [D|ull(uf)]
=II[fTTud,Mu + fTud,Iu] — Tull( f8,Tu) — I(fTu)0,Ilu + T[T fTw)0,u — Mull(£0,1Tu)],
Ty :=M[0,ull(uf) + ull( fO,u)] = T( fTu)d,1Tu + Tull(f0,u) + T(TTull(f0,11u))
+ 2 fTud, Hu + N[ fTud, Mu + fITud,Mu + ( fTIu)d,Tu].

If hy € H: and hy € L2, then hihy € L?. Since 9,1Tu € L2, we have I[I(fTu)d,Hu] = N[ fTTud,Tu].
Thus

Ty + Ip = 2fTud, Mu + 20 [ flIud, Tu + fIud,u + I(fITu)0,Iu] = [0, (u?)] € H. (2.33)

Formulas (2.32) and (2.33) yield that [By, L,]f = II[f (0, (u?) — HO?u)]. Thus equation (2.3) holds along
the evolution of equation (1.1). O

Remark 2.20. As indicated in Gérard—Kappeler [19], there are many choices of the operator B,. We
can replace B, by any operator of the form B, + P, such that P, is a skew-adjoint operator commuting
with L,. For instance, we set C,, := B, +iL? and we obtain C,, = iD? — 2iDT, + 2iTpmy. So (Ly,Cy)
is also a Laz pair of the BO equation (1.1). The advantage of the operator B, = i(Tpj, — T2) is that
B, : Li — Li is bounded if u is sufficiently reqular. For instance, u € H*(R,R).

3 The action of the shift semigroup

In this section, we introduce the semigroup of shift operators (S(n)*),>0 acting on the Hardy space L%
and classify all finite-dimensional translation-invariant subspaces of Li.

For every n > 0, we define the operator S(n) : L3 — L% such that S(n)f = e, f, where e,(z) = ™. Its
adjoint is given by S(n)* =T._,. We have

S(m)*oLyoS(n) =Ly+nldy,  Vn=0.
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Since ||S(n)*||%(Li) = HS(U)H%(Li) =1, (S(n)*)n>0 is a contraction semi-group. Let —iG be its infinites-
imal generator, i.e. Gf = i3 S(n)*f € L%, Vf € D(G), where

dn n=0+

D(G) :={f € Li : ﬁR+ € H'(0,+00)}, (3.1)

because lim,_q || £=<¥ =020 12(0,400) = 0, where Tp () = th(x—€) and ¢ € H'(0,400). Every function

€
f € D(G) has bounded Holder continuous Fourier transform by Morrey’s inequality and Sobolev extension

operator yields the existence of f(01) := limg o+ f(€). The operator G is densely defined and closed.
The Fourier transform of G f is given by

Gf(§) =idf(&), VfeD(G), VE>0. (3:2)
In accordance with the Hille—Yosida theorem, we have

(—00,0) C p(iG), (G = A)) w2y ATH YA>O. (3.3)

Lemma 3.1. For every b € L*(R) (| L*°(R), we have T,(D(G)) C D(G) and the following identity

(G, Tylp = i@;?:) I1b (3.4)

holds for every ¢ € D(G).
Proof. For every n > 0 and ¢ € D(G), both S(n)* and T} are bounded operators, so we have

§+n
b(Q)p(§+n—¢)d¢, VE>0,

(150 ) (g = 28 b mE) L 5

where 7_,¢(z) = @(x + ), for every x € R. Then we change the variable ( = § +tn, for 0 <t <1,

S(n)*—1d, 2 A 1 [, ~ —
([n*,mso) ©= 57 [ BE+mMAI—0mAC = afe) + (0. V>0 (35)

o [ @((1—t)n)d¢ € C and ¢, € L% such that

where a, = 5

5a(6) = 5 [ Do+ )~ BN = ), Ve >0

Since ¢lr, € H'(0,400), ¢ is bounded and lim, o+ ¢(n) = $(07), Lebesgue’s dominated convergence
theorem yields that lim, o+ a, = @(20:). Since b € L%(R), we have lim._q ||7eb — b]|.> = 0. By using
Cauchy—Schwarz inequality and Fubini’s theorem, we have

1 +ooA . 1 R .
6122 < 16]3 / / B¢ + tn) — b(€)Pdedt = )3 / r—egh — B|22dt — 0,

when 7 — 07, by Lebesgue’s dominated convergence theorem. Thus (3.5) implies that

; , Tl = a,Ib + ¢, — IIb, in L2, when 7 — 0.
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Since ¢ € D(G) and T} is bounded, we have %Tb[(S(n)* - IdLi)cp] — (T,G)p in L%, consequently

)

500 .
%(S(n)* - IdLi)(Tbgp) = (TG + 2 in L3, when 7 — 0T,

2m
So Ty € D(G) and (3.4) holds. O

The following scalar representation theorem of Lax [39] allows to classify all translation-invariant sub-
spaces of the Hardy space Li, which plays the same role as Beurling’s theorem in the case of Hardy space
on the circle (see Theorem 17.21 of Rudin [56]).

Theorem 3.2 (Beurling-Lax). Fvery nonempty closed subspace of Lf_ that is invariant under the
semigroup of shift operators (S(n))n>0 is of the form (9[3H where © is a holomorphic function in the
upper-half plane C; = {z € C: Imz > 0}. We have |0(2)| < 1, for all z € C4 and |0(z)| =1, Vz € R.
Moreover, © is uniquely determined up to multiplication by a complex constant of absolute value 1.

The following lemma classifies all finite-dimensional subspaces that are invariant under the semi-group
(S(n)*)y>0, which is a weak version of theorem 3.2.

Lemma 3.3. Let M be a subspace of Li of finite dimension N = dim¢ M > 1 and G(M) C M. Then
there exists a unique monic polynomial Q € Cn[X] such that Q=*(0) C C_ and M = CevaalX]

C<n_1[X] denotes all the polynomials whose degrees are at most N—1. Q is the characteristic polynomial
of the operator G|y.

Proof. We set M = {f € L*(0,+00) : f € M}, then dimc M = N. Since Gf = 0 f on R\{0}, the
restriction G| is unitarily equivalent to i0¢|,; by the renormalized Fourier-Plancherel transformation.
So the characteristic polynomial @ € Cny[X] of id|; is well defined, let {B;, 85, -, 8, } C C denote the
distinct roots of () and m; denote the multiplicity of Bj, we have Z;-lzl m; = N and

, where

n N—-1
Q(z) =det(z —ide| ) = [[(z = B))™ =2+ Y az", e eC
j=1 k=0

The Cayley-Hamilton theorem implies that Q(i0¢) = 0 on the subspace M. Ifp e McC L? (0, +00), then
1) is a weak-solution of the following differential equation
N-1
iNQ(-D)yp =0+ Y " Nepdfp =0 on (0,400), =0 on (-00,0).  (3.6)
k=0
The differential operator Q(—D) is elliptic is on the open interval (0,400) in the following sense: the
symbol of the principal part of Q(—D), denoted by aq : (z,£) € (0,+00) x R+ (=)™, does not vanish
except for £ = 0. Theorem 8.12 of Rudin [57] yields that ¢ is a smooth function. The solution space

Sol(3.6) = Spanc{fyitosicm, —11<jns  Su(€) = €' g, (3.7)
has complex dimension Z?zl m; = N so we have Sol(3.6) = M C L3 and Imf; = Re(if;) > 0 and
Q~1(0) c C_. At last, we have M = Spanc{f;i}o<i<m,—1.1<j<n = M, where

CJ4,150<I<m;—1,1<5< Q
il
fia(2) Vo e R. (3.8)

- 2m|(—i) (= By
The uniqueness is obtained by identifying all the roots. O
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4 The manifold of multi-solitons

This section is dedicated to a geometric description of the multi-soliton subsets in definition 1.1. We give
at first a polynomial characterization then a spectral characterization for the real analytic symplectic
manifold of N-solitons in order to prove the global well-posedness of the BO equation with N-soliton
solutions (1.6).

Recall that every N-soliton has the form u(x) = Z;\;l R,-1(z—x5) = Zjvzl (1_5% with 2; € R and
J : J J

7; > 0, then we have the following polynomial characterization of the N-solitons.

Proposition 4.1. The N-soliton subset Uy C H*(R,R)( L*(R,z2dz) and Uy U = 0, for every
M # N. Moreover, each of the following three properties implies the others:

(a). uw € Un.
(b). There exists a unique monic polynomial @, € Cy[X] whose roots are contained in the lower half-

plane C_ such that ITu = l%

(c). There exists Q € Cn[X] such that Q~(0) C C_ and Iu = z%

Qu Qu
R. Since P and @), are monic polynomials, we have P = @Q,,. The other assertions are consequences of

u = Ty + Iu. ]

/ , /
Proof. We only prove the uniqueness in (a) = (b). If Ilu = iQu = i%, then we have (i) =0 on

Definition 4.2. For every u € Uy, the unique monic polynomial Q,, € Cy[X] given by proposition 4.1 is
called the characteristic polynomial of u. Its roots are denoted by z; = x; —in; € C_, for 1 < j < N (not
necessarily all distinct). The unordered N -uplet cl(zy,z9,--+ ,2n) € CN /Sy is called the translation—
scaling parameters of u, where CV /Sy denotes the orbit space of the action (A.3) of symmetric group Sy
on CV.

The real analytic structure of Uy is given in the next proposition.

Proposition 4.3. Equipped with the subspace topology of L?>(R,R), the subset Uy is a connected, real
analytic, embedded submanifold of the R-Hilbert space L*(R,R) and dimgUx = 2N. For every u € Uy,
its translation—scaling parameters are denoted by cl(x1 — iy, xa — ine,--- , &N — inn) for some z; € R
and n; > 0, then the tangent space to Uy at u is given by
i u u u 2[(z—=;)>—n3] u an;(z—x; )
Tu(Un) = @(Rfj @jo)v where  f;'(r) = oz 95 (z) = (Rl (4.1)
j=1

Every tangent space T, (Uy) is contained in the auxiliary space 7 defined by (1.5) in which the global
2-covector w € AQ(’T*) is well defined. Recall that the nondegenerate 2-form w on Uy is given by

wu(hl,hg) = w(hl,hg) = i /R hl(g)é_hg(g)df, Vhl, ho € E(UN) (42)

It provides the symplectic structure of the manifold Uy .
Proposition 4.4. The nondegenerate real analytic 2-form w is closed on Uy. Endowed with the sym-

plectic form w, the real analytic manifold (Un,w) is a symplectic manifold.
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For every smooth real-valued function f : Uy — R, let Xy € X(Uy) denote its Hamiltonian vector field,
defined as follows: for every u € Uy and h € T, (Un),

_ _ i [t h(f)— _
A0 = (. Vf)se = 5 [ “EET VTS = el X ).
Then we have
X¢(u) = 0,Vuf(u) € Tu(Un), Yu € Un. (4.3)

Remark 4.5. There are several ways to prove the simple connectedness of Uy . Firstly, it is irrelevant
to the proof of proposition 5.16. In subsection 5.4, we show that the real analytic manifold Uy is diffeo-
morphic to some open convex subset of R*N, hence Uy is homotopy equivalent to a one-point space. On
the other hand, the simple connectedness of the Kihler manifold IL(Uy) can be directly obtained from its
construction (see proposition A.5).

Then, we return back to spectral analysis in order to establish a spectral characterization of the manifold
Uy . For every monic polynomial @ € Cy[X] with roots in C_, we set © = Q¢ := % € Hol(C,.), where

N-1 N-1
ajaz’ + v, if Qx) = ajx! + N
Jj=0 j=0
Then © is an inner function on the upper half-plane C, because [©] <1 on C; and |©| =1 on R. Recall
the shift operator S(n) : L3 — L% defined in section 3, we have S(n)[©h] = ©[S(n)h], for every h € L3

$0 ©L2 is a closed subspace of L3 that is invariant by the semigroup (S(1))y>0 (see also the Beurling- Lax
theorem 3.2 of the complete clas31ﬁcat10n of the translation-invariant subspaces of the Hardy space L2 1)
We define K¢ to be the orthogonal complement of @Li, thus

I3 =0l @ Ke, S()'(Ke)C Ko and G(D(G)(|Ke) C Ke. (4.4)

where the infinitesimal generator G is defined in (3.2). Recall that the C-vector space C<y_1[X] consists

Cen-1[X]
Q

of all polynomials with complex coefficients of degree at most N — 1. So is an N-dimensional

. 2
subspace of L+ .

The Lax map L : u € L*(R,R) — L, =D — T, € B(H}, L?) is R-affine. Defined on D(L,,) = H}, the
unbounded self-adjoint operator L, has the following spectral decomposition

L.) P #e(Lu) P (L (4.5)

The following proposition gives an identification of these subspaces in the spectral decomposition (4.5).

Proposition 4.6. If u € Uy, then L, has exactly N simple negative eigenvalues. Let Q., denote the

characteristic polynomial of the N-soliton u given in definition 4.2 and O, = Og, = 8“ denote the
associated inner function. Then we have the following identification,

_ CenaalX]

%c( ) © L?i-a %C(Lu) = {0}7 %P(Lu) = K®u = Q (4-6)

22



For every u € Uy, we have the following spectral decomposition of L,:
0(Lu) = 0ac(Lu) | Jose(Lu) | Jopp(Lu),  where  oac(Lu) = [0,+00),  0e(Lu) =0 (4.7)

and opp(Ly) = {A}, A, -+, A%} consists of all eigenvalues of L,. Proposition 2.2 yields that L, is

1
bounded from below and —%zHuH%g <A <o < AR <0, where C' = infe g (0 % denotes the

Sobolev constant. Hence the min-max principle (Theorem XIII.1 of Reed—Simon [54]) yields that

Ne= swp I(FL,), I(FL,)=if{(Lhh)e:he HL(\FY Rl =1} (48)

n
dim¢ F=n—1

where, the above supremum, F' describes all subspaces of Li of complex dimension n, 1 <n < N. When
n > N+ 1, Supgim, pn I(F, Ly) = inf 0ess(Ly) = 0. Proposition 2.3 and corollary 2.4 yield that there
exist eigenfunctions ¢; : u € Un > ¢} € H4,(Ly,) such that

Ker(\} — L,) = Cyp¥, ¢l =1, (f,u)pz = /Rugo? = /27 A}, (4.9)

for every j =1,2,--- ,N. Then {¢}, 04, -, 9%} is an orthonormal basis of the subspace %, (L,). We
have the following result.

Proposition 4.7. For every j =1,2,---, N, the j th eigenvalue \; : v € Un — A € R 1is real analytic.

We refer to proposition 4.14 and formula (4.4) to see that the subspace J%,,(L,) C D(G) is invariant by
G. The matrix representation of G| (r,) With respect to the orthonormal basis {p, @5, -, px} is
given in proposition 5.4. Then the following theorem gives the spectral characterization for N-solitons.

Theorem 4.8. A functionu € Uy if and only if u € L*(R, (14+x2)dz) is real-valued, dim¢ #4p(Ly) = N
and Iu € H,,(Ly,). Moreover, we have the following inversion formula

L det(z — Gl 1))

Hu(x) =1 , Vr e R. 4.10
( ) det(l‘*G‘%p(LH)) ( )

Then @, in definition 4.2 is the characteristic polynomial of G \,%app( L.)- The translation-scaling parame-
ters of u can be identified as the spectrum of G |% »(L,)- Finally the invariance of Uy under the BO flow
is obtained by its spectral characterization, so we have the global well-posedness of the BO equation in
the N-soliton manifold (1.6).

Proposition 4.9. If uy € Uy, we denote by u : t € R — u(t) € H®(R,R) the solution of the BO
equation (1.1) with initial datum u(0) = ug. Then u(t) € Uy, for every t € R.

This section is organized as follows. The real analytic structure and the symplectic structure are given
in subsection 4.1. Then the spectral decomposition of the Lax operator L, and the real analyticity of its
eigenvalues are given in subsection 4.2, for every u € Uy. The characterization theorem 4.8 is proved in
subsection 4.3. Finally, we show the stability of Uy under the BO flow in subsection 4.4.
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4.1 Differential structure

The construction of real analytic structure and symplectic structure of Uy is divided into three steps.
Firstly, we describe the complex structure of II(Uy). Then the Hermitian metric §) for the complex
manifold TI(Uy) is introduced in (4.15) and we establish a real analytic diffeomorphism between Uy and
II(Un). The third step is to prove dw = 0 on Uy. Since w = —II*(Im#), (II(Ux ), $) is a Kéhler manifold.

Step I. The Viete map V : (31, Ba,- -, Bn) € CN = (ag, a1, ,an_1) € CV is defined as follows

N N—-1
[[&x-8)=> ax®+Xx". (4.11)
j=1 k=0

Both addition and multiplication of two complex numbers are open continuous maps C? — C, the Viete
map V : CV¥ — CV is an open quotient map. So V(C¥) is an open connected subset of CV (see also
proposition A.5). With the subspace topology and the Hermitian form $en (X,Y) = (X, Y)env = XTY,
the subset (V(CY), Hcn) is a connected Kithler manifold of complex dimension N.

Lemma 4.10. Equipped with the subspace topology of L%, the subset II(Uy) is a connected topological
manifold of complexr dimension N and it has a unique complex analytic structure making it into an
embedded submanifold of the C-Hilbert space L2+, For every u € Uy, its translation—scaling parameters
are denoted by cl(xy — iny,xa —in2,--- ,on — inn), for some x; € R and n; > 0, then the tangent space
to I(UN) at Tu is given by

w 1

Proof. We define I'y : a = (ag, a1, ,an—1) € V(CY) s u = z e II(Uy) C L2+ such that
QIX)=) apXF+ XV,

The surjectivity of I'y is given by the definition of Uy. Since the monic polynomial @ is uniquely
determined by u € Uy, the map I'y is injective. For every h = (hg, hy,--- ,hy_1) € CV, we have
) H/ _ /H
dln(ag,ay, - ,an—_1)h = z%, where H(X)= Y h.X*.
If dT'y(ag, a1, - ,an—1)h = 0, then (%)’ = 0. Since degH < deg@ — 1, we have H = 0. Thus
I'y:V(CY)— Li is a complex analytic immersion. We claim that I'y is a topological embedding.
)l

In fact we set a(™ S (n) 1) € V(CY) such that

2

0:Qn _, 0:Q
Qn Q

in L?,_, as n — 400, where @, (z) = a(")xj +2¥, vzeR.

J

Il
o

Since a(™ € V(CY), we have a{” = Q,,(0) # 0. For every = € R, we have

Qn () — ex 6an(y) ex ‘ 6yQ(y) Q(l‘)
2.0) ~ P Q. W el o) Q)

dy) = as n — 4oo. (4.13)
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Every coefficient of Q" converges to the corresponding coefficient of Q@) Gince Q.,., Q) are monic, we
y 2.0 & Q)

have lim, 1 s Qn(O) = W and lim,_, 1. a(™ = a. Then F&l I(UN) C L2 — V(C¥) is continuous.

Since 'y is a complex analytic embedding, with the subspace topology of Lf_, there exists a unique
complex analytic structure making II(Ux) = I'yoV(CY) into an embedded complex analytic submanifold

of L2. The map I'y : V(CY) — I(Uy) is biholomorphic. Set u(z) = Z;V 1 (If% for some

z; = z;(u) € R and n; = n;(u) > 0. Then every h € T, (II(Uy)) is identified as the ve10c1ty of the
smooth curve c¢: t € (—1,1) — II(Uy) such that ¢(0) = ITu at ¢t = 0. If we choose

N .
Z where z;(t) € R, n;(t) >0.

N’ iz’(0
h(z) = 0, _ye(t EZ@F4:+$3 (4.14)

We have h}f = I1f}* = —illg} and (h})"(£) = —271gsole” @i (WHni(WIE For every h € T, (II(Un)), we
have & — £ 1h(€) € L2(R) (see also Hardy’s inequality (4.18)). O

Step IL. Given u € Uy, the Hermitian metric H,, is defined as follows

T 1y (€)ha(€)

e de Ve € Ty () (4.15)

Artu(hi, ho) = /
0

The sesquilinear form iy, is positive definite because O, (h, h) = f0+oo %%Fdﬁ > 0, if h # 0. Hence
the smooth symmetric covariant 2-tensor field Ref) is positive definite on II(Uy ), so (II{Ux),ReH) is a
Riemannian manifold of real dimension 2/V.

We consider the R-linear isomorphism between the Hilbert spaces
II:ue L(R,R)—Iue L3, f €L 2Ref € L*(R,R).

Then ITo 2Re = Idz2 and 2Re oIl = Id 2pp) and [|uflz> = V2||Tul|z2. Then Uy = 2Re o M(Uy) is a
real analytic manifold of real dimension 2N. Furthermore we have f;' = 2Reh}, gi = 2iReh} and

2Re : T, (MU )) = Talthy) (4.16)
is an R-linear isomorphism. Since §) is Hermitian, the 2-form w = —IT*(Im$)) is nondegenerate on Uy .
Step IIL. We set € := L*(R,R)( L*(R, 2*dz), & :={u € £ : [ u = c}, for every ¢ € R. Then

Un C Earn, TuUn) CT =&, Yueln.

The nondegenerate 2-form w can be extended to a 2-covector of the subspace 7. Recall that

(hl, hg) 27:” / hl(f)ghz(f)df, Vhi,he € T. (417)
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If h € T, then we have 7(0) = 0 and h € H'(R). Hence the Hardy’s inequality (see Brezis [7], Bahouri-
Chemin—Danchin [3] etc.) yields that

h(€)? , h
ML e < aochiz: — ¢ » "9 ¢ 12(w) (1.18)
r 1€l 3
so the 2-covector w € A%(T*) is well defined and wy,(h1, ha) = w(hy,hy). For every smooth vector field
X € X(Un), let X 1w € Q' (Uy) denote the interior multiplication by X, i.e. (X_w)(Y) = w(X,Y), for
every Y € X(Uy). We shall prove that dw = 0 on Uy by using Cartan’s formula:

Lxw = XJ(dw) + d(XJW). (4.19)

Proof of proposition 4.4. For any smooth vector field X € X(Uy), let ¢ denote the smooth maximal flow
of X. If ¢ is sufficiently close to 0, then ¢; : u € Uy — ¢(t,u) € Uy is a local diffeomorphism by the
fundamental theorem on flows (see Theorem 9.12 of Lee [40]). For every u € Uy, hi,ha € Tyu(Un), we
compute the Lie derivative of w with respect to X,

()l hs) =t 202 QO 0) =T o)

= hm w (d¢t(u>h1 _ hl , d¢t(u)h2) + hm w <h1, 7d¢t(U)h2 _ h2> .
t—0 t t—0 t

Since lim;_,q w = dX(u)h; € T.(Un), for every j = 1,2, we have
(,,iﬂxw)u(hl, hg) = w(dX(u)hl, hg) + w(hl, dX(u)hg) = (hlw(X, hg)) (’U,) — (hzw(X, hl)) (u)

We choose (V, %) a smooth local chart for Uy such that u € V and the tangent vector hj has the
coordinate expression hy = ngl hl(f)% W for some hg) eR, 7 =1,2--- 2N and k = 1,2. The

tangent vector hy can be identified as some locally constant vector field Y), € X(Uy) defined by

67;(2/{]\1), Yk:uH(Yk)u:hk, k=1,2.

2N ) 9
. 1% E J
Yk Ve =1 hk 8:5]’ ‘v

Then the vector field [Y7, Y5] vanishes in the open subset V. The exterior derivative of the 1-form 8 = X iw
is computed as dB(Y1, Y2) = Vi (3(¥2)) — Ya (3(V1)) + B([Y3, Ya]). Thus
d(XJw)u(hl, hg) = hlwu(Xu, hg) - hgwu(Xu, hl) + wu(Xu, [Yl, Yg]u) == (ﬁxw)u(hl, hg)

Then Cartan’s formula (4.19) yields that X s(dw) = 0. Since X € X(Uy) is arbitrary, we have dw = 0.
As a consequence, the real analytic 2-form w : u € Uy — w € A*(T*) is a symplectic form. O

Since Im$) = (—2Re)*w, where —2Re : II(Un) — Uy is a real analytic diffeomorphism, the associated
2-form Im$) is closed. So (II(Uy ), $) is a Kéhler manifold. The simple connectedness of II(Uy) is proved
in subsection A.1.
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4.2 Spectral analysis 11

We continue to study the spectrum of the Lax operator L, introduced in definition 2.1. The general cases
u € L*(R,R) and u € L?(R, (1 + 2%)dx) have been studied in subsection 2.2. We restrict our study to
the case u € Uy in this subsection. Let Q@ = @,, denote the characteristic polynomial of v and © := Q,
Ko = (@Li)L. Since L,, is an unbounded self-adjoint operator of Li, we have the following

Li*@IP @K@* ac @%c @%p

We shall at first identify those subspaces by proving proposition 4.6 and formula (4.7). Then we turn to
study the real analyticity of each eigenvalue A; : u € Uy — A} € R.

Proof of proposition 4.6. The first step is to prove Kg = CSNTM. In fact, for every h € Li and
f= g € CSN#M, for some P € C<y_1[X], we have
P(x)O(x)h P(x)h P
o= [ —x(“’”)dx - [Py (Lo
Q(z) r Q) Q
Since Q(z) = H;V:l(x — «a;) with Im(a;) > 0, the meromorphic function % has poles in C, so % € L%

Thus (f,Oh)r: = (£

Cen_1[X
LRz = 0. Thus =228 © (013)* = Ke.

Conversely, if f € Kg, then (07! f,h)r2 = (f,Oh)2 = 0, for every h € L. Thus g := %f cL?. It
suffices to prove that P := Qf = Qg € C[X]. In fact,

Qf=Q(id)f  and  supp(f) C [0, +00) = supp(Qf) C [0, +00).
Similarly, supp((Qg)") C (—o00,0]. Thus supp(P ) C {0} and P is a polynomial. Since f = 5 E L?(R),
we have degP < N — 1. So Kg C CSNTI[X].
The second step is to prove L,(©L3) C ©L2. Precisely, we have

L,(®h)=©Dh,  VhelL3. (4.20)

; Cen1[X] 2 _Q De _ DQ _DQ _,Q _
Since =557= C L3, O = g and 758 = T8 — G* =iG —i

Qi

= ITu + Hu = u on R, we have

Lu((%h):(DfTu)(@h):@Dthh(D@fz 0+i2 ) @Dh+h@(—7i%+%’):@Dh.

Recall that L, = L, so we have L,(Kg) C Kg. Since dimc Ko = N, corollary 2.4 yields that the

Hermitian matrix L, g, has exactly N distinct eigenvalues. Hence Ko C J,(Ly).

On the other hand, we set Ug : L2 — ©L? such that Ugh = ©h. Thus ||U@H‘B(L3_,®L3_) =1 and
Ug'=Us:9g€OLY » O 'ge L7

So Ue : L% — ©L2 is a unitary operator. Ug(H}) = O©H = Hi (1©LA. Formula (4.20) yields that

UéLu|eLiUe =D, Us[D(D)] = @Hi = H-1+ ﬂ oL} = D(Lu\GLi)-
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For every bounded Borel function f : R — C, we have f(L,)Uo = Ueof(D) by proposition 2.14. We
denote by py = ui“ the spectral measure of L, associated to ¢ € Li, then Vh € Li, we have

1t .
/Rf(é“)dueh(f) = (f(Lu)Ueh, Ueh)r2 = (€ f(D)h, Oh) 12 = (f(D)h, h)r2 = o F©[n(E)]2de.
0
So duen(é) = de. The spectral measure ugp is absolutely continuous with respect to the

Lebesgue measure on R. Thus ©L2 C i (Ly) C Hont(Ly) = (Hp(Ly))- C OLZ and (4.6) is
obtained. We have supp(uen) C [0,+00), for every h € L%. V¢ > 0, there exists h € L? such that

h(€) # 0. So we have Tess(Ly) = Ocont (Lu) = 0ac(Ly) = [0, +00). O
Before proving the real analyticity of each eigenvalue, we show its continuity at first.

Lemma 4.11. For every j = 1,2,--- N, the j th eigenvalue \; : uw € Un = Ay € R is Lipschitz
continuous on every compact subset of Un .

Proof. For every f € H'(R), the Sobolev embedding || f||+ < C|||D|3 f| 1> yields that Vu,v € Uy,

|<Luh, hypz — (Lvh,h>L2| < lu —ol|z2||hl3: < Cllu — v||L2|||D\%h\|Lth||L2, Vh € Hi (4.21)
Given j =1,2,--- , N and a subspace F C Li with complex dimension j — 1, we choose
J J
he FL(\@Ker(\; — L) C HY,  |hll2 =1,  h=Y_ hp}.
k=1 k=1

Then (L,h,h)p2 = Zi:l |hi 2 < AY <0, because A\j; < Aj,;. We have the following estimate

IDI2AZ2 = (Dh,h) gz = (Luhs h) 2 + (uh, hype < XF + [full 2 [B) 30 < Cllullzz|DI2 kg2 |17 2. (4.22)

So estimates (4.21) and (4.22) yield that (L,h, h)r> < XY + C?|lul|z2|lu — v|| 2. Since F' is arbitrary, the
max-—min formula (4.8) implies that

A = X1 < CP(llullpe + ol ) llw = vl o

Every compact subset K C Uy is bounded in L*(R,R). Hence u € K A} € Ris Lipschitz continuous.
O

Proof of proposition 4.7. For every u € Uy, the Lax operator L, has N negative simple eigenvalues,
denoted by A} < Ay <--- <A} < 0. Let P, denotes the Riesz projector of the eigenvalue A% and

D(z,e)={neC:|n—z<e}, €(z,¢)=0D(z,e)={neC:|n—z|=¢}, Vz€C, €e>0.

Then there exists €9 > 0 such that the family of closed discs {D(XY, €0)}1<j<n U{D(0,€0)} is mutually
disjoint and for every j,k =1,2---, N and any closed path I'} (piecewise C! closed curve) in D(AY, €0)
with respect to which the eigenvalue A} has winding number 1, we have

. 1 . . . .
Pj = (C- L7, PLoPL=Pi,  Plgl = Ll (4.23)

J
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by Theorem XIL5 of Reed—Simon [54]. We choose I'} to be the counterclockwise-oriented circle €' ()Y, ¢)
in (4.23) for some € € (0, €p). We claim that ImPJ, = Ker(\% — L,,) = Cyp¥.

It suffices to show that /|, (r,) = 0. In fact the operator P/, = gxu(Ly) is self-adjoint by Theorem
VIIL.6 of Reed—Simon [55], where the real-valued bounded Borel function gy : R — R is given by

1 _
ga(x) = — (C—z)td¢ = 1t (), a.e. on R,
211 € (\e)

for every A € R. Since P, (., (Lu)) C CoY C (L), we have P (Ao (Lu)) C Hac(Lu). Let py = ,ui'“
denote the spectral measure of L,, associated to the function ¢ € 5;.(L, ), whose support is included in
[0,4+00) by formula (4.7), we have

+oo
(Piap, )12 = (€ — L) ™", ) 2d¢ = —— / ( f (C— §>1d<> dpy(€) = 0.
0 ‘5()\}‘,5)

21 (g()\;’e) 21
Set ¢ = Pitp € Hic(Ly), then |92, = (P44h,9) 2 = 0. So the claim is obtained.

For every fixed j = 1,2, N, we have A} = Tr(L, oP?). Since every eigenvalue Ay : v € Uy — A} € R is
continuous, there exists an open subset V C Uy containing u such that sup,cy, sup; <<y [A} — A < 2.

We set e = 20 then A€ D()\;-L,e)\ﬁ(/\z,eo), for every v € V and k # j. For example, in the
next picture, the dashed circles denote respectively ¢'(A}, e0) and €' (A}, €o); the smaller circles denote
respectively €(\},€) and € (A}, €) with j < k. The segments inside small circles denote the possible

positions of A7 and Aj.

- =~ ~ - ~ ~
- ~ - ~
4 N s N
- N 4 N
4 \ / \
4 \ 4 \
/ \ / \
/ \ / \
! \ { \
I !
\ \
! | ! | 9
l 1 l i
\ I \ I
\ / \ /
\ / \ /
\ / \ /
\ / \ /
\ 7 \ 7
AN 7/ N 7
N . N -
~ - ~ P
~ - N -

Then o(Ly) (N D(A},€0) = {A7} and € (A}, €) is a closed path in D(AY, €g) with respect to which A} has
winding number 1. Thus,
1

P = 5 ((—Ly)7'd¢, A =Tr(L,oP)), YveW. (4.24)
T Je (A€

Since v € V + L, € B(HY,L%) is R-affine and i : A € By(H,L2) — A™! € B(L2, H}) is complex

analytic, where B5(HY,L%) C B(HL,L?) denotes the open subset of all bijective bounded C-linear
transformations Hi — L2, we have the real analyticity of the following map

(¢,v) € <D(A;, ieo)\ﬁ(xy, ;eo)) x Vs ((—L,)"' € B(LA, HY). (4.25)
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Hence the maps P/ : v € V — P € B(L2,HL) and \; : v € V = Tr(L, o PJ) € R are both real analytic
by composing (4.24) and (4.25).
O

Recall that #,,(L,) = CSNQ;MX], where @, denotes the characteristic polynomial of u € Uy whose zeros

u

are contained in C_, so J4,,(L,) C D(G) is given by (3.7). We have the following consequence.
Corollary 4.12. For every j =1,2,--- N, the map U; : u € Uny (Ggoé-ﬂcp}‘)Lz € C is real analytic.

Proof. For every u,v € Uy, we have IP’{,QO}‘ = (4,0;‘, gp}’ﬁz ¢4 Since the Riesz projector Plively—Ple
B(L3, H} ) is real analytic in the proof of proposition 4.7 and [|[P/,¢%|| > = 1, there exists a neighbourhood
of u, denoted by V, such that |[P)¢¥||r> > & for every v € V and P/ : v € V = P € B(L3, H) can be
expressed by power series. Then

Pl G o PI(p%),Pi (o
SO;) - ij ’ 6]‘ (U) _ < u(f] ) v2<<pg )>L2 .
<80j ) ¢j>L2 ||P1)<%07;)||L2
Hence the restriction U; : v € V — ||]P’2)(g0;‘)||222 (GoPi(p¥),Pi(¢Y)) > € C is real analytic. O

4.3 Characterization theorem

The characterization theorem 4.8 is proved in this subsection. The direct sense is given by proposition
4.1 and proposition 4.6. Before proving the converse sense of theorem 4.8, we need the following lemmas
to prove the invariance of %, (L,) under G, if u € L*(R, (1 4+ 2?)dz) is real-valued, Ilu € J%,,(L,,) and
dime¢ #,,(Ly,) = N > 1. The following lemma gives another version of formula of commutators (see also
lemma 3.1).

Lemma 4.13. For u € L*(R, (1 + 2?)dz), ¢ € Ker(A — L,) for some X\ € opp(Ly,), then we have
o, Tup, Ly € D(G) and

i9(0)

50+
7 WO (4.26)
2w

T,]p =
G, Tu]e o

[Gv Lu]@ =ip—

where ©® = 0, = % with Q, the characteristic polynomial of w.

u

Proof. In proposition 2.3, we have shown that up € H'(R), so (Typ)" = uplr, € H'(0,+00) and
Tup € D(G). We recall the regularity of eigenfunctions (2.2)

Ker(A—L,) C {p € HL : ¢, € C'(R)[(VH'(Ry) and & — €[p(6) + 0ep(€)] € L*(Ry)}. (4.27)

So Gy € HY = D(L,) = D(T,). Moreover, we have ¢ is right-continuous at £ = 0% and $ € C*(0, +00).
The weak-derivative of ¢ is denoted by Gg’g&, dp denotes the Dirac measure with support {0}, then

) d

+(]1€<;“7+¢(0+)50, Og(tx p) = O (x @) = 4 ' (4.28)

by lemma 2.15. Since ¢ = 1p- ¢ a.e. in R and @ € HY(R), we have 1 x @(5) =4 * [1R*+C/¥<\p](§), for
every € > 0 and (G, TuJo) (€) = 5206 % 9)(€) — 3t % [1ay L I(€) = 5= $(07)(€). Together with
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(5.9), the first formula of (4.26) is obtained. Since L, = D — T,,, we claim that Dy € D(G). In fact,
e (D) (&) = P(&) + D p(€), VE > 0. Thus (4.27) implies that Dy € H'(0, +00). Then

(IG. DJ)" (&) = ik (62)(€) — € - i0ep(€) = (&), V&> 0. (4.29)
So we have [0,,G] = Idy> . The second formula of (4.26) holds. O

Proposition 4.14. Ifu € L*(R, (1 +2?)dx) is real-valued, dime #p(Ly,) = N > 1 and Hu € 7#,,(Ly,),
then we have ,,(L,) C D(G) and G(p(Ly)) C Hopp(Ly,).

Proof. There exists an orthonormal basis of .5,,(L,), denoted by {91, %2, -+ ,1¥n}, such that
Luﬁ}j = )\j’(/)j, where Upp(Lu) = {)\1,)\2, oo ,)\N} - (*O0,0), )‘j < )\j+1.

Since (4.27) implies that J%,,(L,) € G (HL)ND(G), formula (4.26) gives that
(0t .
fi = [Lu, Gl; = —i; + #Hu € Hpp(Ly,), Vji=1,2,---,N.

So we have (fj, ;)2 = (GVj, Lyv;) 12 — (GLu¥j,) 12 = M(GYj,v0;5) 12 — (GYj,9;) 12) = 0.

For every j = 1,2,--- ,N, we set g; := Zlgng,k;éj <f)]\k1/fif2 . Since f; = Zlgng,k#j(fj’wk>L2wk7
we have (L, — A;)g; = fj = (Ly, — Aj)Gv;. Then G¢; — g; € Ker(L,, — ;) = C¢; and

G € gj + Copj C Hp(Lu).-
We conclude by J4,,(L,,) = Spanc{t1, ¥2,--- ,¥n}. (see also formulas (4.4) and (4.6)) O

Now, we perform the proof of converse sense of theorem 4.8 give the explicit formula of Q.

End of the proof of theorem 4.8. <=: Proposition 4.14 yields that G(¢,(L.)) C #4p(Ly). Let Q denote
Can—1[X]

the characteristic polynomial of the operator G|, (r,), then we have J4,,(L.) = =5 by lemma
3.3. So Ilu = %, for some Py € C[X] such that deg Py < N — 1. It remains to show that Py = i@Q’. Since
Hp(Ly,) is invariant under L,,, for every P € C<n_1[X], we have

P P DP P,P

Lu(g) = (D =Ty —Tr)(55) = 5 — 1K @Q)+ (iQ' 632‘PO)P . C<NQ1[X].

Partial-fraction decomposition implies that H(%Og) € CSNC?[X]. So (iQ/Z?P‘))P € C<y_1[X] for every

P € C<n-1[X]. Choose P = 1, since deg(iQ’ — Py) < N — 1, we have Py = iQ’, so u € Uy. Since
Q € Cy[X] is monic and Q~1(0) C C_, we have Q,(z) = Q(x) = det(z — Gl (L)) O
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4.4 The stability under the Benjamin—Ono flow

Finally we prove proposition 4.9 in this subsection. Two lemmas will be proved at first in order to obtain
the invariance of the property = — zu(z) € L?(R) under the BO flow.

Lemma 4.15. Ifuy € H*(R,R) (N L*(R, 2%dx), let u = u(t,x) solves the BO equation (1.1) with initial
datum u(0) = ug, then u(t) € L*(R,z2dz), for every t € R.

Remark 4.16. This result can be strengthened by replacing the assumption ug € H*(R,R) by a weaker
assumption ug € H%+(R,R) = US>% H*(R,R), because one can construct the conservation law of BO

equation controlling the H®-norm for every s > f% by using the method of perturbation of determinants.

We refer to Talbut [62] to see details and Killip—Visan—Zhang [37] for the KdV and the NLS cases (see
also Koch—Tataru [36]). It suffices to use lemma 4.15 to prove proposition 4.9.

Before proving lemma 4.15, we need some commutator estimates used in Gérard-Lenzmann—Pocovnicu—
Raphaél [21], we recall it here.

Lemma 4.17. For a general locally Lipschitz function x : R — R such that 0,x, 02x, 92x € L*(R), then
we have the following commutator estimates

1
IID] Xgllzz + 1102 X9l 22 S U0ex| 102X 21) 2 (|9l 22, Vg € E*(R),
1 1
11D1[0z; Xlgllzz < (10Xt 102X 21) 2 (10291l L2 + (10X L 102X 1) 2 lgll2, Vg € H'(R).

Proof. We use [|¢] = |n|| < |€ — n] to estimate the Fourier modes of [|D], x]g.

(4.30)

2] (IDL o) ©)] < | [le1 = nllie(e ~ mlgtmldn < | 1€ = nlle(e ~ mllatmldn = 8] = 41(©).
nER neRr

Then Young’s convolution inequality yields that ||[|D], x]gllrz < ||8/,;(| *|glllLe < ||8/J;(HL1 llgll 2. In order
1 1

to estimate H@HD, we divide the integral as two parts. Wet set Ry = [|0,x|| .2 [|02x] 31, so

9 v Iy 55% > 8§X 1 . 1
102Xt < |0 x|z~ / d¢ +/ %dg < 0l Ry + WO2XlEs g 1931
€I<R e>ry €] Ri

Similarly, we have [|[0s, Ygllzz < 110axlzlgllze < (102Xl 103x]|£1)%. Thus (4.30) is obtained.

27r‘ (ID[0, x]9)" (€)

<& 1€ = nl[X(€ = mIlg(m)|dn
neRrR

< / 1€ — 02| IR(€ = n)l1§(n)|dn + / 1€ — nlIR(€ —n)[nlla(n)|dn
neRr neRr
=102x| * 13(€) + |8 x| * 1D2g](€)

S0 we have |ID][0k Xl > S 1162 % [glllz2 + 12x1 %[99l > S 1921z gz + 18X 21| 2. Then

we use the same idea to estimate [|02x]11, we set R := [|0xx| . |02x|| ;1. Thus,
roN o x|~ x|z 1
08 < 1ol [ e [ 1 ae o, g MR — o,z
€1<Re g>re € >
Finally, we add them together to get the second estimate in (4.30). O
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Now we prove the invariance of the property z + zu(z) € L*(R) is invariant under the BO flow.

Proof of lemma 4.15. We choose a cut-off function x € C°(R) such that x decreases in [0, +00), x is
even and
0<x<1, xX=1 on [-1,1], supp(x) C [-2,2]. (4.31)

If ugp € H2(R) (N L*(R, z2dz), we claim that there exists a constant C = C(||u(0)||z1) such that

I(R,#) = /RXQ(%)|x|2|u(t,x)|2dx < celf\(/R|x\2|u(o,x)|2dx+ 1), WeR, VR>1,  (4.32)
if u solves the BO equation d,u = HO?u — 0, (u?) = |D|0,u — 2udyu.
In fact, we define p(z) := xx(x). For every R > 0, we set pr(z) := Rp(E) = x(%). Thus

0eI(R,t) = 2Re(pgdu(t), u(t)) 12 = 2Re(pR|D]0zu(t) — 2pFu(t)dzu(t), u(t)) 12 = Ji(u(t)) + Ja(u(?)),

where for every u € H?(R), we define

Ji(u) = —ARe(pRudeu, u) 2 = |J1(u)] < 4l|0sullL llprullZ: < llullm2lprullis (4.33)
and
J2(u) = 2Re<p%’,|D|8®u7u>L2 = <[p%27 |D|827]u7u>L27
because |D|d, = —(|D|d,)* is an unbounded skew-adjoint operator on L?(R), whose domain of definition

is H2(R), u — pru is a bounded self-adjoint operator on H*(R), for every s > 0. Since

(0%, IDI0:] = prlpr, |DI0:] + [pr. [DI0:]pr.  [pr.|DI3:] = [pr.|DId:]" = [pr, [DJ0; + [Dl[pr, 9],
we have
J2(uw) =(prlpr; [D|0:]u + [pr, [DI0:]pru, u) 12
=2Re([pRr, |D|0:|u, pru) 2 (4.34)
=2Re([pr, [Dl|0zu, pru) 2 + 2Re(|D[pr, O2]u, pru) L2
Since [0.prllz = RIOwplss, 10%xllr = R-10upllze and [0%xlls = R=30.p]11, the commutator
estimates (4.30) yield that if u € H?(R), then
| 72(uw)| <2||prullZ2 + llor, DI10sulZ: + [IDlpr, 8:]ullZ
Slorullzs + 100zl 2 102pr 1 L 102ull 22 + [102prll L 1020 Lt lullZ
Slorullzs + 100pl 2 102p] 1 10zull7 + B2 [10zpl L1 10201 L1 [[ull2

Slprullzz + lull

(4.35)

for every R > 1. Proposition 2.6 and 2.8 yield that there exists a conservation law of (1.1) controlling
H?2-norm of the solution. Let u : t € R +— u(t) € H%(R) denote the solution of the BO equation (1.1).
Then sup,eg [[u(t)l|z2 Sjjuol,,» 1+ Since I(R,t) = lpru(t)||? 2, estimates (4.33) and (4.35) imply that

for some constant C = C(||ugl||g2). Thus (4.32) is obtained by Gronwall’s inequality. Let R — 400, we
conclude by using Lebesgue’s monotone convergence theorem. O
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Since the generating function A € C\o(—L,,) — Hx(u) € C is the Borel-Cauchy transform of the spectral
measure of L,, the invariance of the N—soliton manifold Uy under BO flow is obtained by using the
inverse spectral transform.

End of the proof of proposition 4.9. If ug € Uy C H*®(R,R) () L*(R, 2%dz), let u = u(t,z) be the unique
solution of the BO equation (1.1) with initial datum u(0) = ug, then u(t) € H*(R,R) () L?(R, x?dx) by
proposition 2.5 and lemma 4.15. Recall the generating function Hy : u € L?(R,R) — R defined as

dmu(f) Ly

M (1) = (A + L)~ T, T 2 = /

R

where [LL“ denotes the spectral measure of L, associated to the function ¢ € Lf_. So the holomorphic

function A € C\o(—L,) — Hu is the Borel-Cauchy transform of the positive Borel measure m,. We

recall that the total variation m,(R) = [/Iul|?, is a conservation law of the BO equation (1.1) by

proposition 2.8 and formula (2.20). Every finite Borel measure is uniquely determined by its Borel-

Cauchy transform (see Theorem 3.21 of Teschl [64] page 108), precisely for every a < b real numbers, we
use Stieltjes inversion formula to obtain that

b
%mu((a, b)) + %mu([a, b)) = ! lim ImH e (u)de.

T e—=0t+ J,

For every ¢t € R, proposition 2.10 yields that Hy[u(t)] = Ha[u(0)], VA € C\opp(Ly0)) = C\opp(Luw))-

Since u(0) € Uy, we have IT[u(0)] € J#,(Ly0)) by proposition 4.6 and there exist c1,co,--- ,cn € Ry
such that
L L al
u(t u (0
#n[qi()t)] = My () = My(0) = “n[qi(z))] = Z Cj‘&;fw%
j=1

The spectral measure uﬁz[flit()t)] is purely point, so IT[u(t)] € (L)) for every t € R. The Lax pair struc-
ture yields the unitary equivalence between L.,y and Ly gy. So dime (L)) = dime 7, (Lyy) = N
is given by proposition 2.14. We conclude by theorem 4.8. O

5 The generalized action—angle coordinates

In this section, we construct the (generalized) action—angle coordinates ® in theorem 1 of the BO equa-
tion (1.6) with solutions in the real analytic symplectic manifold (Uy,w) of real dimension 2N given in
proposition 4.3. The goal of this section is to establish the diffeomorphism property and the symplecto-
morphism property of ®y.

Recall that the BO equation with N-soliton solutions is identified as a globally well-posed Hamiltonian
system reading as
Owu(t) = Xg(u(t)), u(t) € Un, (5.1)

whose energy functional E(u) = (L,Iu, Tu)z2 is well defined on Uy and the Hamiltonian vector field
Xg:u €Uy — Xp(u) = 0,(|D|u—u?) € T, (Ux) coincides with the definition (4.3). The Poisson bracket
of two smooth functions f,g: Uy — R is given by

{f.9} - ueln — wu(Xf(u), Xg(u) = (0:Vuf(u), Vug(u)) 2 € R. (5.2)
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Given u € Uy, proposition 4.6 yields that there exist A} < Ay < -+ <A <0 and ¢} € Ker(\} — Ly,) C
D(G) such that ||} z2 =1 and (u, p¥)r2 = |/27[AY[, thanks to the spectral analysis in subsection 4.2.

Definition 5.1. For every j =1,2,--- N, the map I; : w € Uy > 2w} € R is called the j th action.
The map v; : u € Uy = Re(Gy}, %) 12 € R is called the j th (generalized) angle.

Set Qn == {(r}, 72, PNy e RN 17l <92 < ... <NV <0} c RV, the canonical symplectic form on
RV = {(r1, 72, ;rN;at,a? - aN) 1 vri of € R} is given by v = Z;\Ll dri A do?. Endowed with
the subspace topology and the embedded real analytic structure of R?V, the submanifold (Qx x RV, v)
is a symplectic manifold of real dimension 2N. The action—angle map is defined by

Oy :iueclUn — (Il(u)a IQ(“)? T ,IN(U>;’)/1(U),’Y2(U)7 T 77N(u)) € Oy x RN (53)
Theorem 1 is restated here.

Theorem 5.2. The map ®n has following properties:

(a). The map ®n : Un — Qn x RN is a real analytic diffeomorphism.
(b). The pullback of v by Py is w, i.e. Pyv =w.
(c). We have Eo ®y': (r',r2,--- . rVial,a?, - V) € Qn xRN - Zjvzl |r7|? € (—o0,0).

Remark 5.3. The real analyticity of ®n : Un — QO xRN s given by proposition 4.7 and corollary 4.12.
The symplectomorphism property (b) is equivalent to the following Poisson bracket characterization (see
proposition 5.24)

{Ij7Ik}:07 {Ij’fyk}:]'j:]ﬁ {7j7fyk}:0 on uNa vjak:]-a?a 7N' (54)
The family (X1, X1y, Xin; Xy Xogs -+ 5 Xy ) 38 linearly independent in X(Uy) and we have

0

0
ﬁ’qm(u)’ ‘

d(I)N(U) . Xlk(u) — ch)N(u) : X’Yk(u) = _% .

(u)

The assertion (c) is obtained by a direct calculus: Tlu = Eé\f:l(ﬂu, @) 2y, formula (4.9) yields that

N w_ L)
E(u) = (Ly(Ilu Z|HU7<P] 2N = 27

Jj=1

Thus theorem 5.2 introduces (generalized) action—angle coordinates of the BO equation (5.1) in the sense
of (1.8), i.e. {1, E}(u) =0 and {v;, E}(u) = 2)\}, for every u € Uy

This section is organized as follows. The matrix associated to G| Ao (Ly,) 18 expressed in terms of actions
and angles in subsection 5.1. Then the injectivity of @ is given by inversion formulas in subsection 5.2.
In subsection 5.3, the Poisson brackets of actions and angles are used to show the local diffeomorphism
property of ®x. The surjectivity of @y is obtained by Hadamard’s global inverse theorem in subsection
5.4. Finally, we use subsection 5.5 and subsection 5.6 to prove that ®y : (Uy,w) — (O x RY v)
preserves the symplectic structure.
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5.1 The associated matrix

We continue to study the infinitesimal generator G defined in (3.2) when restricted to the invariant sub-
space 5, (Ly,) with complex dimension N. Let M (u) = (My;(u))1<k,j<n denote the matrix associated
to the operator G|y (r,) With respect to the basis {p¥,¢3, -, X }. Then we state a general linear
algebra lemma that describes the location of eigenvalues of the matrix M (u).

Proposition 5.4. For every u € Uy, the coefficients of matriz M(u) = (My;(u))i<k,j<n are given by
N L S Y
M) = (Gt = { TV T IR (5.5
’yj(u)fﬁ;,‘, if j=k.
Proof. Since L, is a self-adjoint operator on L% and #,(L,) C D(G), we have
(N = Xp) My (u) = (GLupY, i) 12 — (GeY, Lupi) L2 = ([G, Lul@} s o) L2

Since formulas (2.15) and (4.9) imply that —)\}‘@(0) = u/go\?(O) = \/2m[A}|, we use (4.26) to obtain

“ “ _— T —~ w T — — Y
(AF = M) Mo () = (i} = 5= @3 (07T, ) 2 = — 5= @3 (07 )up(0) = iy [ [35.

In the case k = j, we use Plancherel formula and integration by parts to calculate

400

~ p— . ~ p— +Oo ~ p—
(G f.9)12 = (£, Cg) i = — 5 f(é)agé(f)dﬁzz;[f(0+)§(0+)+ / 8sf(§)é(£)d§]

0

Thus we have (G*f,g)r2 = (Gf,g)r2 + if(O"’)E(O"’), for every f,g € #,(Ly). Then

1 e EOR
ImdMji(u) = o5 (G @i ne = (GUej o) = == =~
J

We conclude by 7;(u) = ReU;(u) = (G, ¢}f) > defined in corollary 4.12. O

Then we state a linear algebra lemma that describe the location of spectrum of all matrices of the form
defined as (5.5).

Lemma 5.5. For every N € N, we choose N negative numbers A\ < Ag < -+ < Ay <0 and N real
numbers y1,7%2, -+ ,yn € R. The matric M = (Mg;)i<kj<n € CN*N s defined as

N S I T
My = =NV 7 Js (5.6)

’}/j — 72‘;]“, 1f k = ]
Then ImM = % is negative semi-definite and opp(M) C C_. Furthermore, the map

(A, A2, L AN, Y2, IN) = M= (Migj)1<k <N

defined as (5.6) is real analytic on Qn x RV,
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Proof. The vector Vy € RY is defined as V|l := ((2IM)72, (2[A2]) "2, -+, (2]An])"2). So we have

M = (——L =V, VI
" ( 2\/mk|>1<,€,j<N A
Recall that (X,Y)en := X7 -V, thus (ImM)X, X)en = —[(X, Va)en|? < 0. So ImM is a negative

semi-definite matrix. If 4 € opp(M) and V € Ker(pu — M)\{0}, it suffices to show that Imyu < 0.
— [V, Vaden |2 = (ImM)V, V)en = Imp||[V |2,  where [[V|Zx = (V,V)en > 0. (5.7)

So we have Imy < 0. Assume that g € R, then formula (5.7) yields that V' L V). Moreover, we have

(M = M*V = =2i{V,V\)en Vs = 0. We set D* € CV*N to be the diagonal matrix whose diagonal
A1
A
elements are A\, Ag,-- -, Ay, L.e. D* = ’ . . Then we have the following formula

.
[M, D =i(Iy + 2D W\ V). (5.8)
So [M, DAV =iV by (5.8). Recall that M*V = MV = uV. Finally,
iV~ = (M, DXV, View = (M = m)DV, Vex = (D V,(M* = p)V)ew =0
contradicts the fact that V' # 0. Consequently, we have y € C_. O
Corollary 5.6. For every u € Uy, let M(u) = (My;(u))1<k j<n € CN*N denote the matriz defined by
formula (5.5), then ImM (u) = W is negative semi-definite and opp(M(u)) C C_.

Remark 5.7. The fact opp(M(u)) C C_ can also be given by using the inversion formula (4.10) and
proposition 4.1. The characteristic polynomial Q,(x) = det(x — M (u)) has zeros in C_.

5.2 Inverse spectral formulas

The injectivity of ®y is proved in this subsection by using inverse spectral formulas. The following
lemma describes the relation between the Fourier transform of an eigenfunction ¢ € 4%,,(L,) and the

inner function associated to u defined by 6, = % with Q,(z) = det(z — M (u)).

Lemma 5.8. For every monic polynomial Q € Cy[X] such that Q~1(0) c C_, the associated inner

function is defined by © = % The following identity holds for every ¢ € CSNTI[X],

P(§) = (S(€)"w, 1 = O) 2. (5.9)
In particular, $(07) = (p,1 — O) 2.

Proof. Since ¢ = g, for some P € C<y_1[X] and Q~1(0) C C_, recall that Q(z) = H;.Lzl(:v—zj)mi with
Imz; <0, 21,29, , 2y are all distinct and 377, m; = N. Formulas (3.7) and (3.8) imply that

I
5l = i — 2

= f;:(6) = e 1 (€).
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Since ¢ € Spanc{fji}i1<j<m, ,1<j<n, partial-fractional decomposition implies that ¢ € C'(R%), and the

right limit @(0") = limg_, o+ ¢(&) exists. Recall that © = %7 so we have Oy = %% =L € L?. Since
O(x)=1+2i N, oy O(Z%), when © — 400, we have 1 — © € L2. Then

j:l T—zj

¢(&) = /Rw(y)(l —O(y))e ey = (9, S(E)(1 — O)) 12 = (S(€)*p,1 = O)2,  VE=0.

Proposition 5.9. For every u € Uy, we set QU,G Cn|[X] to be the characteristic polynomial of u and
we define the associated inner function as ©, = % Then the following inversion formula holds,

1

" 2mi

f(2) (G—2)'f,1- 0,12,  f€Hp(Ly), VzeCs. (5.10)

Proof. If f € #,(Ly,) = CSNQ;:[X], then formula (5.9) yields that

FO) = (S f,1—Ou)pz = (e f,1— Oy) 2.

Since ImG = Ggf* is a negative semi-definite operator on .4, (L,,) by proposition 5.4 and lemma 5.5,

the operator Re(i(z — G))|,,(L,) = (ImG — Im2)| () is negative definite, for every z € C,. So

—+o00
£(2) i/o (@O £ 1 - 0 2dE = —— (G — 2)" 1 — O)p2.

“or 2mi
O
Recall that (Iu, ¢}) 2 = \/W and (1 —©,p%) 12 = ‘?\ﬁ, for every j =1,2,--- /N, by (2.15) and
(4.9). Since ITu € Hol({z € C : Imz > —¢}), for some € > 0, we have the following inversion formula
Mu(z) = 535 ((G — 2) 'Mu, 1 — O) g2 = —i((M(u) — 2) ' X (u),Y (u))e~,  VreR, (5.11)

where the two vectors X (u),Y (u) € RY are defined as

X" = (sl DD YT = (A (52)

and M(u) is the N x N matrix of the infinitesimal generator G associated to the orthonormal basis
{p¥, oY, -+, %}, defined in (5.4). A consequence of the inverse spectral formula (5.11) is the explicit
formula of the BO flow with N-soliton solutions as described by formula (1.11).

Corollary 5.10. The map ®x : Uy — Qn x RY is injective.

Proof. 1f @y (u) = ®n(v) for some u,v € Uy, then \¥ = A} and v;(u) = 7;(v), for every j. So

Then the inversion formula (5.11) gives that ITu = ITv. Thus, v = 2Rellu = 2Rellv = v. O

At last we show the equivalence between the inversion formulas (4.10) and (5.11).
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Revisiting formula (4.10). For every k,j =1,2,--- N, let K};(z) denote the (N —1) x (N — 1) subma-
trix obtained by deleting the k th column and j th row of the matrix M (u) — x, for every z € R. So the
inversion formula (5.11) and the Cramer’s rule imply that

()R det(Kp(x)) [Ap XL, det(Kl(2)) + R

iMu(z) = ) ko , (5.13)
<hTen det(M(u) — x) A det(M(u) — x)
where R := Z1gk¢jg1\r(_1)k+j det(Ky;(z)) i—? The coefficients of the matrix M (u) — x satisfies that

(M () = ) = Mj(u) = 575z i—k if 1<j#k<N,

by formula (5.5). Using expansion by minors, we have

N N
iR= Y (=)= X (M(u) — 2)x; det (K () = O A= > AY)det(M(u) — z) = 0.
=1

1<k,j<N k=1 J

Finally, let Q denote the characteristic polynomial of the operator G|, SO

pP(Ly)?

N
Q(z) = det(z — Glug,(r,)) = det(z = M(w)),  Q'(x) = (-1)V Zdet(K}‘j(l’))-

5.3 Poisson brackets

In this subsection, the Poisson bracket defined in (5.2) is generalized in order to obtain the first two
formulas of (5.4). It can be defined between a smooth function from Uy to an arbitrary Banach space
and another smooth function from Uy to R.

The N-soliton subset (Uy,w) is a real analytic symplectic manifold of real dimension 2N, where

wu(hl,hz) = 227_(_‘/]Rh1(£)§h2(§)df, Vhy, hy € E(UN), Yu € Uy.

For every smooth function f : Uy — R, its Hamiltonian vector field X; € X(Uy) is given by (4.3). Recall
that X¢(u) = 0,V f(u) and df(u)(h) = w(h, Xs(u)), Vh € T,(Un). For any Banach space £ and any
smooth map F : u € Uy — F(u) € &€, we define the Poisson bracket of f and F' as follows

{f,F}:ucly — {f, F}(u) :=dF(u)(X;(u)) € Tpw(E) = €. (5.14)
If £ = R, then the definition in formula (5.14) coincide with (5.2) and we recall it here,

{/, F}(u) = dF(u)(X(u)) = wu(Xf(u), Xr(w). (5.15)
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For every A € C\o(—L,), the generating function Hy(u) = ((L, + A)~'u, ITu) > is well defined. Since
N
ITu = Zj:1<Hua <,0}L>L2<,0;-L, we have

N 2 N
|(Tu, %) 2| 2wy
=S e = . 1
) TN SO+ N (5.16)

The analytical continuation allow to extend the generating function A — 7 (u) to the domain C\opp(—Ly,),
and it has simple poles at every A = —A¥. Proposition 2.2 yields that —%2Hu||2L2 <AP <o <A <0,

1
where C' = inffeHi\{o} % denotes the Sobolev constant. So we introduce

Y={(\u) eRxUy : 4\ > C?|luf7=} = X[ (R x Uy), (5.17)

where X is given by definition 2.9. Then the subset ) is open in R x Uy and the map H : (A\,u) € Y —

— Zf;l ii—i\ﬁ € R is real analytic by proposition 4.7. Recall that the Fréchet derivative (2.8) is given by
J

d’HA(U)(h) = <w>\,Hh>L2 + <'LU>\,Hh>L2 + <Tth,wA>Lz = <h, Wy + Wy + |w)\|2>L2, Vh € E(UN)
where wy € H} is given by wx = wy(u) = wy(z,u) = [(Ly + A) "' o H]u(z), for every z € R. Thus
X, (1) = 0,V Ha(u) = 0y (Jwa(u)]? + wx (u) + W (u)), V(A u) € ). (5.18)

by (4.3). The Lax map L : u € Uy — L, =D — T, € B(H, L%) is R-affine, hence real analytic. The
following proposition restates the Lax pair structure of the Hamiltonian equation associated to H,. Even
though the stability of Uy under the Hamiltonian flow of ) remains as an open problem, the Poisson
bracket defined in (5.14) provides an algebraic method to obtain the first two formulas of (5.4).

Proposition 5.11. Given (A\,u) € Y defined by (5.17), we have {Hx, L}(u) = [BY, L,] and

A

m, (5.19)

{Ha, A w) =0, {Ha, 7} (u) = Re([G, Bylel, o4) 2 = —

fo'r every j =1,2,--- , N, where B;\L = Z(ka(u)Tﬁk(u) + /Tw)\(u) + Tﬁk(u))
Proof. Since L :u € L*(R,R) — L, =D — T, € B(H;,L3), for every u € L2, we have
dL(u)(h) = =Tp, Vh e L3.

If (\,u) € Y, then the C-linear transformation L, + A € B(HL, L?) is bijective. So formula (5.18)
yields that {Hx, L}(u) = dL(u)(X2, (1) = —=TD(jwy (u)|24wx (u)+wx(w))- Lhen identity (2.24) yields the
Lax equation for the Hamiltonian flow of the generating function Hj, i.e.

{Hx, L}(u) = [BY, L] € B(H, LY). (5.20)
Consider the map Ly, : u € Uy — Ly} = Njp¥ € H}_, for every (\,u) € Y, we have
{Hx, LY ()@} + Lo ({Has 051 (w) = N{Hx, o5 Hu) + {Ha, A Hu)e)
with {Hx, ¢;}(u) € HL and {Hx, A;}(u) € R. Then (5.20) yields that

O = L) (Bie} = (M, 051 (w) = (M A Hu)gf
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Since ¢} € Ker(\} — L,) and [|¢%[|z2 = 1 by the definition in (4.9), we have
{Ha, A} (W) = (A = La) (Biwf — {Ha, @i} (), 05) 12 = 0.
Let Ny : ¢ € L? — |¢||3., then we have N3 0 ¢; =1 on Uy. Then we have
= d(N2 0 9;)(u) = 2Re(py, {Hx, Aj}(u) L2 (5.21)

So there exists € R such that B{}g@}‘ — {Hx, i} (u) = iry} because Ker(A\} — L,) = Cy} by corollary
2.4 and formula (5.21). Recall that B, is skew-adjoint and v; = Re(GyY, %) L2, we have

{Hx, 7} (w) = Re ((G{Hx, 0; }(u), %) 2 + (Gl . {Hn, 0} () 12) = Re([G, By}, o) 12

Furthermore, for every (A, u) € ), formula (3.4) implies that [G, T%, ()] = 0 and

(G, BAf = (G, Ty ) (T ) () + f) = =5=[@x(w) ))N(0F) + f(0F)]wa(u), VfeD(@). (522)
Since ( (u)p?) (07) = (9, wr(w)) 2 = (A+ A", 91, and (u, 9%}, = —ALGH(OV), we replace f
by ¢ in formula (5.22) to obtain the following

(6. Bl etes = i L L i =~ VO €Y
A C L IR VIR WIS VR C L N P W U A '
O
Remark 5.12. Recall that H. = %H; and Be,u = %BE for every (e=t,u) € Y. In general, the identity
{Epn. v} (u) =Re([G, 5| _ Beulel 042, 1<j<N
holds for every conservation law E,, = (—1)" (‘f; 5:07_26 in the BO hierarchy.

Corollary 5.13. For every j,k=1,2,--- , N, we have
21{ N, vk Hu) = 1=, { A A Huw) =0, Yu € Uy . (5.23)

c? IIuH

Proof. Given u € Uy, for every A > ——L2 then (\,u) € Y, then (5.16) and (5.19) imply that

A Moo e}
B _ ) _ _ k> ks T 5\Y)
7()\+)\;)2 {Hx,vjHu) =27 E {)\+)\u7% 27\ E )\+)\u ,

and 0 = {Hx, Aj}(u) = 2w Zivzl %ﬁg)@, for every j = 1,2,--- ,N. The uniqueness of analytic

continuation yields that the following formula holds for every z € C\R,

N
Z{Ak»% (u ), Z{Ab)\} —o.

(z—l—)\u B (z+Ap)? — (z+Ap)?
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Recall that the actions [; : u € Uy + 27} and the generalized angles v; : u € Uy — Re(Ggo;-*, cp}‘)Lz are
both real analytic functions by proposition 4.7 and corollary 4.12.

Proposition 5.14. For every u € Uy, the family of differentials
{d1(u),dz(u), - - dIy(uw); dyi (u), dya(u), - - - dyn(w)}

is linearly independent in the cotangent space T.F(Un).

Proof. For every ay,as, -+ ,an,b1,ba, - ,by € R such that
N
> a;dl(u) + bidy;(u) | (h) =0, Vhe Tu(Un). (5.24)
j=1

Formula of Poisson brackets (5.23) yields that for every j, k =1,2,--- N, we have

Al (u)(Xr, (W) = {Ik, [;}(u) = 0, dy;(u)(X1, (w) = {75} (u) = Lj=k

We replace h by Xr, (u) in (5.24) to obtain that by =0, Vk =1,2,--- ,N. Then set h = X, (u)

N N
—ak = Zaj{%mlj}(u) = Zajdlj(u) (X%(u)) =0, Vk=1,2,---,N.

j=1
O

As a consequence, ®xn : Uy — Qn x RY is a local diffeomorphism. Moreover, since all the actions
(I;)1<j<n are in evolution by (5.23) and the differentials (df;(u))i1<j<n are linearly independent for
every u € Uy, for every r = (r', 7%, rN) € Qu, the level set

N
L, = ﬂfj_l(rj), where = (r!, 7%, ... )
j=1

is a smooth Lagrangian submanifold of Un and L, is invariant under the Hamiltonian flow of I;, for every
j =1,2,--- /N, by the Liouville-Arnold theorem (see Theorem 5.5.21 of Katok—Hasselblatt [32], see
also Fiorani-Giachetta—Sardanashvily [12] and Fiorani-Sardanashvily [13] for the non-compact invariant
manifold case).

5.4 The diffeomorphism property

This subsection is dedicated to proving the real bi-analyticity of ®x : Uy — Qn x RN, It remains to
show the surjectivity. Its proof is based on Hadamard’s global inverse theorem 5.18.

Lemma 5.15. The map ® : Un — Qn x RY is proper.

Proof. If K is compact in Qx x RY, we choose u,, € @1_\,1 (K), so

Dy (un) = (2mAT™, 205" -+ 20AN 5 71 (Un ), Y2 (Un), - -+ YN (un)) € K, Vn € N.
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We assume that there exists (27A1,2mAg, -+, 27AN; V1,72, -+, yv) € K such that A¥" — A; and
vj(un) — v; up to a subsequence. So (M (uy))nen converges to some matrix M € CN*N whose co-

efficients are defined as follows
i 12k ; :
Mk:j = )‘ki)‘j ﬁ, lf k # Js

% = e it k=

Lemma 5.5 yields that op, (M) C C_. We set Q(x) := det(x — M) and u = z% - z% € Uy. The Viete
map V is defined in (4.11) and V(C¥) is open in C. Then there exists

a(n) = (a((Jn)7agn)7 e 7a§\7)71)7 a= (a07a17 e 7aN71) € V((Cy)

such that Q,(z) = det(x — M (u,)) = Z?’:—Ol agn)xj + 2V and Q(x) = Zévz_ol ajzd + 2. We have

lim Q,(z)=Q(z), VteR = lim a™ =a

n—-+oo n—-+oo
The continuity of the map I'y : a = (ag,a1,--- ,any—_1) € V(CV) = Tlu = z% € L2+ yields that

i=* =Ty(a"™) > Ty(a) =i— =Tu in L7, as n — 4oo.

~Qn Q

Since Uy inherits the subspace topology of L?(R,R), we have (u,)n,eny converges to u in Uy. The
continuity of the map @y shows that ®x(u) = (271,27 A2, -+, 27 AN; Y1, 72, -, YN) € K.

1w,

O

Proposition 5.16. The map Oy : Uy — Qn x RY is bijective and both @ and its inverse <I>j\,1 are
real analytic.

Proof. The analyticity of ® 5 is given by proposition 4.7 and corollary 4.12. The injectivity is given by
corollary 5.10. Proposition 5.14 yields that ®y : Uy — Qn x RY is a local diffeomorphism by inverse
function theorem for manifolds. So @y is an open map. Since every proper continuous map to locally
compact space is closed, ® is also a closed map by lemma 5.15. Since the target space Qy x RV is
connected, we have & (Un) = Qn X RY and &y : Uy — Qn x RY is a real analytic diffeomorphism.

O

Remark 5.17. We establish the relation between ®n : Uy — Qn x RY and Ty : V(CV) — (Uy)
introduced in proposition 4.10. We set M : Qn x RN — CN*N o be the matriz-valued real analytic
function M(m1,n2,- -+ ,qN; 01,602, ,0N8) = (Muj)1<kj<n with coefficients defined as

27 Nk : .
Mkj: =5\ 15’ if k#J,

0; + :TT;, if k=j.
Then, we set C: M € CN*N s (ag,a1,-++ ,an_1) € CN such that
N-1
Q(z) := Z a;x! + N = det(z — M). (5.25)

0

<
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Since (—1)"Ja; = Te(A"7 M) is the sum of all principle minors of M of size (N — j) x (N — j), for
every j = 1,2,--- , N, the map C is real analytic on CN*N and C o M(Qy x RY) € V(CY) by lemma
5.5, where V denotes the Viéte map defined as (4.11). In lemma 4.10, we have shown that the map
Iy :a=(ag,a1, - ,any—_1) € V(CY) = Hu = z% € II(Uy) is biholomorphic, where the polynomial Q
is defined as (5.25). We conclude by the following identity

' =2ReolyoCoM (5.26)

The smooth manifolds II(Uy) and V(CY) are both diffeomorphic to the convex open subset Qn x RY,
so they are simply connected (see also proposition A.5). At last, we recall Hadamard’s global inverse
theorem.

Theorem 5.18. Suppose X and Y are connected smooth manifolds, then every proper local diffeo-
morphism F : X — Y is surjective. If Y is simply connected in addition, then every proper local
diffeomorphism F : X =Y is a diffeomorphism.

Proof. For the surjectivity, see Nijenhuis—Richardson [47] and the proof of proposition 5.16. If the target
space is simply connected, see Gordon [23] for the injectivity. O

Remark 5.19. Since the target space Qn x RN is convex, there is another way to show the injectivity
of ®n without using the inversion formulas in subsection 5.2. It suffices to use the simple connectedness
of Qn x RY and Hadamard’s global inverse theorem 5.18.

5.5 A Lagrangian submanifold

In general, the symplectomorphism property of ®y is equivalent to its Poisson bracket characterization
(5.4), which will be proved in proposition 5.24. The first two formulas of (5.4) given in corollary 5.13,
lead us to focusing on the study of a special Lagrangian submanifold of Uy, denoted by

Ay :={ueln:vju)=0, Vj=1,2,--- N}, (5.27)

where the generalized angles v; : u € Uy +— Re(GyY, ¢}f) 2 are defined in (5.1). A characterization
lemma of Ay is given at first.

Lemma 5.20. For every u € Uy, then each of the following four properties implies the others:

. For every x € R, we have Tu(z) = Hu(—x).
). u is an even function R — R.
d). The Fourier transform i is real-valued.

N 2n;

j=1 $2+7IJ2-7’ for

Then every element u € Ay has translation-scaling parameter in (iR)Y /Sy i.e. u(z) =

some 7; > 0.

Proof. (a) = (b): If u € Ay, then the matrix M (u) defined in (5.5) is an N x N matrix with purely
imaginary coefficients. Recall the definition of X (u),Y (u) € RY in (5.12):

X()" = (IS D Y@ = I g,
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The inversion formula (5.11) yields that
Tu(z) = i(M(u) — 2) 7' X (u), Y (u))ey = —i{(M(u) +2) 7' X (w),Y (u))en = Tu(—a).
(b) = (c) is given by the formula u = Hu + u. (¢) = (d) is given by u(z) = u(z) = u(—2).

(d) = (a): Choose A € opp(Ly,) = {AY, Ay, -+, A%} and ¢ € Ker(A — L,,). Since both u and its Fourier
transform @ are real-valued, we have [<¢)v]/\(£) = ¢(€), where (%)Y (x) := p(—x), Vx,& € R. Thus,
(

T.(®)") = (Tup)” = (@)" € Ker(A — Ly).

We choose the orthonormal basis {¢¥, %, , -, ¢%} in H4p(L,,) as in formula (4.9). Proposition 2.4
yields that dimc Ker(A — L,,) = 1. For every j = 1,2,--- | N, there exists §; € R such that

@) = P} <= @M E) =P (¢))(©). Ve

So we set ¢¥ = exp(i%)go}‘, then its Fourier transform (¢%)" is a real-valued function. Recall the

definition of G in (3.2) and ~; in (5.5), then we have

1
vj(u) = Re(Gw, ¢ ) L2®) = Re(GoY, %) L2m) = —*Im@g[((b“) 1, (05)") £2(0,400) = 0.

by using Plancherel formula.

Lemma 5.21. The level set Ay is a real analytic Lagrangian submanifold of (U, w).

Proof. The map 7 : u € Un — (1(u),y2(u), - ,7n(u)) € RN is a real analytic submersion by proposi—
tion 5.14. So the level set Ay is a properly embedded real analytic submanifold of Uy and dlmR Ay =

The classification of the tangent space T, (Uy) is given by formula (4.1). If u(z) = Z;V 1 z2+n2’ for some

n; > 0, every tangent vector h € Ay is an even function by lemma 5.20. So h is real valued and we have
T 2[ 7]
An)=EPRfY,  where fi(z) = T”] (5.28)

We have (f#)"(¢) = —2n|¢|e="1¢l. Then by definition of w, we have

wu(hy, ha) = — /dezi/ﬂglmdgem, Vhi, hy € Tu(An). (5.29)

on 13 27 13
Since the symplectic form w is real-valued, we have wy(h1,hs) = 0, for every hy,he € T, (Ax). Since
dimg(Ay) =N = %dimR Uy, Ay is a Lagrangian submanifold of Uy . O
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5.6 The symplectomorphism property
Finally, we prove the assertion (b) in theorem 5.2, i.e. the map ®n : (Uy,w) — (Qn x RNV v) is

symplectic, where w(hq, ho) := i fR %d{, for every hy, ho € T,,(Uy) and

N
Oy x RY = {(r1, 72, »Niat a?, - a™) e Rt <2 <o <V <0}, V:Zdrj/\daj.
=1

We set Uy = <I>]_Vl cQn xRN = Uy, let Uyw denote the pullback of the symplectic form w by ¥y, i.e.

for every p = (r',72,--- rV;al,a2,--- o) € Qn x RV, set u = ¥ (p) € Uy,

(Paw), (V1,V2) = wu(d¥ N (p)(V1), d¥ N (p)(V2)), (5.30)
for every Vi, Vs € T,(Qn x RY). The goal is to prove that

vi=Uyw—v=0. (5.31)
; d ) d | ..o ) ) ;
Recall that the coordinate vectors W’p’ WL)’ e ’W|pv FaT |y W|p’ e ’&TNL) form a basis for the

tangent space T,(Qx x RY). We have the following lemma.
Lemma 5.22. For every u € Uy, set p= ®n(u) € Qn x RN, Then we have

0

A (1) (X, () = 5o

Vk=1,2,---,N. (5.32)

’
p

Proof. Fix u € Uy and p = @y (u), for every h € T, (Uy), we have d®y (u)(h) € T,(2nx x RY). For every

smooth function f:p = (r',r2,--- ,7V;al,a?,--- ,aN) € Qy x RN — f(p) € R, then
= of of
(@) (1) f = o)) = Y- (a5 | +am D] ). 6
j=1

For every k = 1,2,---, N, we replace h by Xy, (u), where Xy, denotes the Hamiltonian vector field of
the k th action I defined in (5.1), thus the Poisson bracket formulas (5.23) yield that

o], =2 (@3] + e 2] ) = @)

i=1 60&7 D
O

Lemma 5.23. For every 1 < j < k < N, there exists a smooth function cji, € C®(Qn X RN) such that

, de
p= Y cpdrd Adrt ;{-j —0, Vjkl=1,2---,N, (5.34)
1<j<k<N p
for every p= (r*, 7%, rN;al 0, oY) € Qn x RY.
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Proof. The proof is divided into three steps. The first step is to prove that for every p € Qn x RV and
every V € T,(Qny x RY),
0

PG| V) =0 V=12 N, (5.35)
In fact, let u = Un(p) €Uy and p = (71,72, -+ rN:al a?,--- [ a®), so rl =7l(p) = [; 0 Un(p). Then
" 0 o)
(Wil V) =@ () (] ) AW (R (V) = 0, (X, (), A (p)(V)
Oa p foJe P

by (5.32). Thus (¥yw)p (52

al

) V) = —dl;(u)(d¥ N (p)(V)) = =d(I; o Un)(p)(V). On the other hand,

0

Vp(w

N
=S ndad) (5] V) = —ar )

J=1

Thus (5.35) is obtained by ¥ = ¥{w — v.
Since 7 is a smooth 2-form on Qx x RY, we have

U= Z (ajrdad A da® +bjpdr? A da® + cjpdr? A drF),
1<j<k<N
for some smooth functions ajx, bjk, cjr € C(Qn x RY), 1 < j < k < N. The second step is to prove
that aji, = bjr, = 0 on Qn x RY, for every 1 < j < k < N. In fact, we have dr’ /\drk(% ,V)=0,
P
dri A dozk(i V)= —1pdri(p)(V) and daof /\dozk(i
ol - dad |y

Then, let [ € {2,--- , N} be fixed, for every 1 < j < k < N, we have

V) = 1;da”(p)(V) = Limide? (p)(V).

)
p

S andaf@)(V)— Y (apde? (p)(V) + budr? (p)(V) = 7y(

1<I<k<N 1<j<I<N

1o}

and 525
P

p

Then we replace V' by %
i=12-- -1

respectively in formula (5.36), then a;; = b; = 0, for every

It remains to show that cj depends on r! 72, - .V, for every 1 < j < k < N. The symplectic form w
is closed by proposition 4.4 and v = dx is exact, where xk = Zjvzl rido?. So

dv = d(¥iw) — dv = Ui (dw) = 0.
The exterior derhvative of ¥ = Zlﬁj <k<N cjkdrj A drF is computed as following
"= i (Mdo‘l ndri pdr® 4+ 258 4y 5 4 /\drk> .
1<j<k<N I=1 da! Ol

Since the family {dr? A dr* Adal}i<jcr<ni<i<n U{dr? A dr® A dr'}i<j<k<i<n is linearly independent
in Q*(Uy), we have ey 0,forevery 1 <j<k<Nandl=1,2,--- N. O

oal
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Since the 2-form 7 is independent of al,a?,--- o, it suffices to consider points p = (r,a) € Qn x RY

with o = 0. We shall prove that & = 0 by introducing the following Lagrangian submanifold of Qx x R,
Qn x {Opn} = {(r1, 7%, 7M:0,0,--- ,0) e RV .l <12 <o < ¥V < 0},

End of the proof of formula (5.31). The submersion level set theorem implies that Qx x {Og~ } is a prop-
erly embedded N-dimensional submanifold of Qy x RY. We have Qn x {Og~n} = @5 (Ay), where Ay is
the Lagrangian submanifold of (Un,w) defined by (5.27). For every ¢ € Qn x{0pn~ }, set v = Un(q) € An,
we claim at first that N
0
To(Qy x {Opn}) = PR~ | = dPy(0)(To(An)).- (5.37)

87’J q

j=

In fact, every tangent vector V € T,(Qn x {Ogpn~}) is the velocity at ¢ = 0 of some smooth curve
E:te(—1,1) = &) = (&1(2), &), - ,EN(E);0,0,---,0) € Qn x {Og~n} such that £(0) = g, i.e.

, Ve C®(Qy x RY). (5.38)

q

_d N
Vf—atﬂ(fo&)—;&j(m@

So the first equality of (5.37) is obtained. Then we set n(t) = ¥y o £(t), Vt € (—1,1). For every
g € C>®(Uy), we replace f by go U € C®(Qy x RY) in (5.38) to obtain that

AV 5 (g)(V)g = Vi(goTy) =

Tl len = 7' (0)g.

t=0

Since 7 is a smooth curve in the Lagrangian section Ay such that n(0) = v, we have d¥ n(¢)(V) = 7'(0) €
To(An). So formula (5.37) holds. Since v = Ejvzl dri Ada?, the submanifold Qpy x {Ogn~ } is Lagrangian.

For every p = (r!,r2,--- ;7N;al,a?, .-+ o) € Qn x RN and every V1,V € T,(Qn x RY), where

N
_ (m) 0 (m) O (m) 1 (m) _
Vm—z<aj %‘p—i—b] Wp)’ a; 7bj eR, m=1,2,

Jj=1

we choose g = (r!,72,--- ,rV;0,0,---,0) € Qn x {Ogn } and Wy, W € T,(Qn x {Ogn~ }), where
N

& o

W= 2

Jj=1

m=1,2.

)

p7
We set v = ¥y (g) € Ay. We have proved that ¢;i(p) = ¢jr(q), then (5.34) yields that

Vi, Vo)=Y aalen(p) = 7(Wi, Wa) = wo (AW (0)(Wh), AWy (v) (Wa)),
1<j<k<N

because v,(Wy,Ws3) = 0. The identification (5.37) yields that h,, := d¥y(v)(W,,) € T,(An), for
m = 1,2. Consequently, we have 7,(V1, V2) = wy,(h1, ha) = 0. O

Formula (5.31) is equivalent to ®%v = w, so ®x : Uy, w) — (Qn x RY ) is a symplectomorphism.
Finally, we recall a basic property in symplectic geometry: the three formulas in (5.4) are equivalent to
the symplectomorphism property of ® .
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Proposition 5.24. If &y : (Un,w) — (A x RN, v) is a diffeomorphism,
i)N(’U,) = (jl(u)va(u)v e ,fN('U/), '?1(@6),'?2(”)7 T ,’?N(U)), Vu € UN7

for some smooth functions I:jfyj on Uy, then each of the following three properties implies the others:

(a). Dy : Un,w) = (Av xRN, v) is a symplectomorphism, i.e. oy v =w.
(b). For every j,k=1,2,--- N, we have {I;,I;;} = {7;,%%} = 0 and {I;, %} = 1j= on Un.
(c). For every k=1,2,--- N, we have
Ay (u) (X7, (u)) = i‘ A () (X, (1) = — -2 Yu el
N Tk 0k Ey ()] N 7 Ok lay () N

Proof. (a) = (b). For any smooth function f : Qy x RY — R, its Hamiltonian vector field is given by

of

P 3oﬂ

0
g7, PEQNx RY. (5.39)

p

N
X0 =Y L0
J=1

oo

If &% v = w, then X oy (W) = dU N (p) o X¢(p), if p = ®n(u), where ¥y = &', The Poisson bracket of
two smooth functions f, g on Qy x RY is given by

(01 0) = (X0)| =G0 X%,0) =Y 2 0) L) - 2L 22 w).  (5.40)

P
Then {fotiN,go éN} ={f,g}" o ®x on Uy. It suffices to choose f,9¢€ {fj o @N,ﬁj ) @N}lngN.

(b) = (c). We do the same calculus as in lemma 5.22 to obtain that

0 0

Qo () (X, () = 2 o
N(u)( Ik(u)) aak (EN(U) 87«k i)N(u)

, dOn(u) (X5, (u) = . Yu€lUy. (5.41)

(c) = (a). Formula (5.41) implies that {X7 , X ,---, X ; X5,,X5,, -+, X5, } forms a basis in X(Un).
Since the 2-covectors (é*j\, V). and w, coincide at every couple of elements of this basis, they are the same,

so O v = w. O

A Appendices

We establish several topological properties of the N-soliton manifold Uy without using the action—angle
map @y : Uy — Qn x RN, The Viete map V : (1,82, ,8n) € CN = (ag,a1, -+ ,an_1) € CV is
defined by

N N-—1
[[x=8)=> ax®+x". (A1)
j=1 k=0

Proposition A.l. Endowed with the Hermitian form $ introduced in (4.15), (II(Uy),$) is a simply
connected Kdhler manifold which is biholomorphically equivalent to V(CYN).
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Proposition A.2. The N-soliton manifold Uy is a universal covering manifold of the following N -gap
potential manifold for the BO equation on the torus T := R/27Z as described by Gérard—Kappeler [19],
. ()
T _ — 2 . . i
Uy={v=h+heL*(T,R): h.yGTeryD(ew)

where CL[X] consists of all monic polynomial Q € C[X] of degree N, whose roots are contained in the
annulus o == {z € C: |z| > 1}. The fundamental group of Uy is (Z,+).

eC, 0eCHX], (A.2)

Remark A.3. The real analytic symplectic manifold Uy, is mapped real bi-analytically onto CN~1 x C*
by the restriction of the Birkhoff map constructed in Gérard—Kappeler [19]. The union of all finite gap
potentials | J o Uy is dense in L2(T) = {v € L*(T,R) : [pv = 0}. However Jy, Un is not dense in
L3(R, (14 22)dz). We refer to Coifman—Wickerhauser [9] to see solutions with sufficiently small initial
data and the case of non-existence of rapidly decreasing solitons.

The simple connectedness of Uy is proved in subsection A.1. Then we establish a real analytic covering
map Uy — Uy in subsection A.2.

A.1 The simple connectedness of Uy

Thanks to the biholomorphical equivalence between the Kihler manifolds II(Z/y) and V(CY) established
in lemma 4.10, it suffices to prove the simple connectedness of the subset V(C¥), where V denotes the
Viete map defined by (A.1). Since every fiber of the Viete map is invariant under the permutation of
components, we introduce the following group action. Equipped with the discrete topology, the symmetric
group Sy acts continuously on cN by permuting the components of every vector:

o: (507517"' 7BN71) E(CN = (ﬁd(o)vﬁa(l)a"' uﬂa(N—l)) E(CNv voeSN (AS)

A subset A C CV is said to be stable under Sy if |, g, 0(A) = A. We recall the basic property of the
Viete map V and the action of symmetric group Sy .

Lemma A.4. The Viéte map V : CN — CV is a both open and closed quotient map. For every
A C CN, A is stable under Sy if and only if A is saturated with respect to 'V, the quotient space A/Sy
is homeomorphic to V(A).

We set A :={(B,8,-++,8) € CN : V3 € C}. The goal of this subsection is to prove the following result.

Proposition A.5. For every open simply connected subset A C CV, if A is stable under the symmetric
group Sy and A(A # 0, then V(A) is an open simply connected subset of CN.

Proof. Let A C CN be a nonempty open simply connected subset that is stable by Sy. The subset

B :=V(A) is open, connected and locally simply connected, then it admits a universal covering space E

and a covering map 7w : F — B. The triple (F,w, B) is identified as a fiber bundle over B whose model

fiber F is discrete. The target is to show that F has cardinality 1.

Let (Z,q, B) denote the fiber product (Husemoéller [28]) of bundles (A, V, B) and (E,, B), defined by
P =AxpE:={(B,e) e AxE:w(e)=V(p)}, q:(B,e) e P —V(B)=m(e) € B. (A.4)

The total space £ is equipped with the subspace topology of the product space A x E and projections
onto the first factor and onto the second factor are denoted respectively by

p:(B,e) e P BeA, W:(B,e)e X~ eeE. (A.5)

Both p and W are continuous functions on & and the following diagram commutes.
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We claim two properties concerning the projections p and W.

i. W: % — F is an open quotient map and p: & — A is a covering map whose model fiber is F.
1i. Equipped with the discrete topology, the symmetric group Sy acts continuously on & by permuting
components of the first factor

T:(B,e) e P (o(B),e) € P2, Vo € Sy,

where o € GLy(C) is defined by (A.3). Hence the quotient map W : &2 — E is closed.

Thanks to the simple connectedness of the base space A, the covering space & is the disjoint union
of its connected components (@ )rcr and the restriction of the covering map ple, : @ — A is a
homeomorphism. Since & is locally path-connected, every component 7 is both open and closed, then
W/, : @ — E an open closed quotient map. So is the lift gx := W]y, o (pleg, )"t : A — E. Note
that mo g, = V and Sy stabilizes every element of A. We choose € A A and b := V(). Since the
fiber V=1(b) = {B} is a singleton, so is the fiber 771(b). Hence |F| = 1 and the universal covering map
p: E — B is a homeomorphism. So B is simply connected. O

Remark A.6. Let F' be a closed submanifold of a smooth connected manifold M without boundary of
finite dimension. If dimgp M —dimg F' > 3, then the inclusion map i : M\F — M induces an isomorphism
between the fundamental groups i, : T (M\F,z) — w1 (M, x), for every x € M\F (see Théoréme 2.3 in
P.146 of Godbillon [22]). Note that the closed submanifold A C CN has real dimension 2. When N > 3,
the condition A A # 0 cannot be deduced by the other three conditions in the hypothesis of proposition
A.5: A is open, simply connected and stable by Sy .

As a consequence, V(C") is open and simply connected because CV is an open convex subset of CV
which is stable under the symmetric group Sy and AN CY = {(z,z,---,2) € CV : Imz < 0}. Together
with lemma 4.10, we finish the proof of proposition A.1.

A.2 Covering manifold
The Szegé projector on L%(T,C) is given by ITwv(z) = ano vpe™® for every v € L*(T,C) such

that v(z) = Y, .5 vne™™ with v, = 5 o

5= Jo v(z)e~™*dxr. Equipped with the subspace topology of
T (L3(T,C)) and the Hermitian form

1 2m

9T (v1,v2) = <D_1HTU1,HTU2>L2(T) = D%y ()T vy (z)der,

2 Jo

the subset II"(Uy) is a Kéhler manifold, which is mapped biholomorphically onto V(&™) with &/ =
C\D(0,1) = {z € C: |z| > 1} in Gérard—Kappeler [19].

Proposition A.7. There exists a covering map w: V(CY) —= V(& N).
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Remark A.8. Consider the cubic Szegd equation on the torus (see Gérard—Grellier [15,16,17,18])
i0pw” =TI (Jw" w”), (t,x) e R x T, (A.6)
and the cubic Szegé equation on the line (see Pocovnicu [51,52]), we set TI® :=1I in (1.12),
i0pw™ = T (|w™ 2w™), (t,z) e R x R. (A7)

The manifold of N-solitons for the cubic Szegd equation on the line is not simply connected. Let M(N)®

denote all rational functions of the form w® : x € R ggi; € C where P € C<y_1[X] and Q € Cy[X]

is a monic polynomial such that Q=*(0) C C_ and P,Q have no common factors. Then M(N)¥ is a
Kdihler manifold of complex dimension 2N. So is the subset M(N)T consisting of all rational functions
of the form wT : z € T — % € C where P € C<ny_1[X] and Q € Cy[X] is a monic polynomial such
that Q=1(0) C & and P,Q have no common factors. Both of them have rank characterization of Hankel
operators by Kronecker-type theorem (see Lemma 8.12 in Chapter 1 of Peller [50], p. 54). So the manifold
M(N)E (resp. M(N)T) is invariant under the flow of equation (A.7) (resp. of equation (A.6)) and the
(generalized) action—angle coordinates of equation (A.7) (resp. of equation (A.6)) are defined in some
open dense subset of M(N)® (resp. of M(N)T). Moreover, if N > 2 then M(N)® is simply connected
by proposition A.5 and remark A.6. There exists a holomorphic covering map M(N)® — M(N)T by
following the construction in proposition A.7. The manifold of N-solitons for the cubic Szegd equation

on the line is an open dense subset of M(N)E
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