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Abstract. Automata networks are mappings of the form f : QZ
→ QZ ,

where Q is a finite alphabet and Z is a set of entities; they generalise Cel-
lular Automata and Boolean networks. An update schedule dictates when
each entity updates its state according to its local function fi : Q

Z
→ Q.

One major question is to study the behaviour of a given automata net-
works under different update schedules. In this paper, we study automata
networks that are invariant under many different update schedules. This
gives rise to two definitions, locally commutative and globally commu-
tative networks. We investigate the relation between commutativity and
different forms of locality of update functions; one main conclusion is that
globally commutative networks have strong dynamical properties, while
locally commutative networks are much less constrained. We also give a
complete classification of all globally commutative Boolean networks.

Keywords: Automata networks, Boolean networks, commutativity, up-
date schedules.

1 Introduction

Automata networks are mappings of the form f : QZ → QZ , where Q is a
finite alphabet and Z is a set of entities; they generalise Cellular Automata and
Boolean networks. An update schedule dictates when each entity updates its
state according to its local function fi : Q

Z → Q.
One major question is to study the behaviour of a given automata network

under different update schedules. A lot is known about the relation between
synchronous and asynchronous dynamics of finite or infinite interaction networks
(see [3, 4] and references therein). In particular, there is a stream of work that
focuses on networks with the most “asynchronous power,” i.e. networks which
can asynchronously simulate a large amount of parallel dynamics [2, 1].

In this paper, we study automata networks that are “robust to asynchronic-
ity,” i.e. invariant under many different update schedules. This gives rise to two
definitions, locally commutative and globally commutative networks. A network
is globally commutative if applying f in parallel is equivalent to updating differ-
ent parts of Z sequentially, for any possible ordered partition of Z. A network is
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locally commutative if applying f in parallel is equivalent to updating different
elements of Z sequentially, for any possible ordered partition of Z into singletons.
(Formal definitions will be given in Section 2.)

In this paper, we investigate the relation between commutativity (defined in
section 2) and different forms of locality of update functions, namely: finiteness
properties of the influences of some nodes on some other ones (section 3), dy-
namical locality (section 4), and idempotence (section 5) ; one main conclusion
is that globally commutative networks have strong dynamical properties, while
locally commutative networks are much less constrained. We also determine the
transition graphs of all globally commutative Boolean networks (section 6).

2 Commutativity properties

Let Q be a finite alphabet of size q ≥ 2, and let Z be a countable set. We refer
to any element x ∈ QZ as a configuration. An automata network, or simply
network, is any mapping f : QZ → QZ .

We denote the set of all subsets of Z as P(Z) and the set of all finite subsets
of Z as FP(Z). For all j ∈ N, we denote [j] = {1, . . . , j}. For any x ∈ QZ and any
s ∈ P(Z), we will use the shorthand notation xs = (xi : i ∈ s) and x = (xs, xZ\s)
(the ordering of the elements of s will be immaterial). We will extend these
notations to networks as well, i.e. f = (fi : i ∈ Z) and fs = (fi : i ∈ s). For any
a ∈ Q and s ∈ P(Z), we denote the configuration x ∈ Qs with xi = a for all
i ∈ s as as (we shall commonly use examples such as 0Z and 1Z). If Q = {0, 1}
and Z = N, then the density of x ∈ {0, 1}N is

δ(x) := lim sup
n→∞

wH(x1, . . . , xn)

n
,

where the Hamming weight wH(x1, . . . , xn) is the number of nonzero elements
of (x1, . . . , xn).

For any s ∈ P(Z), the update of s according to f is f (s) : QZ → QZ such that
f (s)(x) = (fs(x), xZ\s). We denote f (s1,...,sk) = f (sk) ◦ · · · ◦ f (s1) for any finite
sequence s1, . . . , sk ∈ P(Z). We consider the following commutativity properties.

(C1) f (i,j) = f (j,i) for all i, j ∈ Z.
(C2) f (b,c) = f (c,b) for all b, c ∈ FP(Z).
(C3) f (s,t) = f (t,s) for all s, t ∈ P(Z).

We say that a network satisfying (C1) is locally commutative, while a
network satisfying (C3) is globally commutative. We remark that if f is
locally (respectively, globally) commutative, then f (s) is locally (respectively,
globally) commutative for any s ∈ P(Z).

Throughout this paper, we use notation (X) =⇒ (Y) to mean that if a
network satisfies Property (X), then it satisfies Property (Y) as well. We use
shorthand notation such as (X) =⇒ (Y) =⇒ (Z) with the obvious meaning,
and we use the notation (X) 6=⇒ (Y) to mean that there exists a network
satisfying (X) but not (Y). For instance, we have (C3) =⇒ (C2) =⇒ (C1).
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The commutativity properties above have alternative definitions. An enu-
meration of Z is an ordered partition of Z, i.e. a sequence Y = (yτ : τ ∈ N),
where

⋃

τ∈N
yτ = Z and yτ ∩ yσ = ∅ for all τ 6= σ. If each yτ is either a singleton

or the empty set, then Y is a sequential enumeration; if each yτ is finite, then Y
is a finite-block enumeration. For any enumeration Y and any t ∈ N, we denote
Yt = (y1, . . . , yt). We then define fY : QZ → QZ by fY

yτ
:= fYτ

yτ
for all τ ∈ N.

Since all the yτ are disjoint, we see that fYt
yτ

= fYτ
yτ

= fY
yτ

for any t ≥ τ . We then
consider the following alternative commutativity properties.

(C1a) f I = fJ for any two sequential enumerations I and J of Z.
(C2a) fB = fC for any two finite-block enumerations B and C of Z.
(C3a) fS = fT for any two enumerations S and T of Z.

We also consider the following alternative properties, which at first sight are
stronger than those listed just above.

(C1b) f = f I for any sequential enumeration I of Z.
(C2b) f = fB for any finite-block enumeration B of Z.
(C3b) f = fS for any enumeration S of Z.

We prove that in fact, those three versions are equivalent. This helps us show
that (C1) and (C2) are also equivalent.

Theorem 1. Commutativity properties are related as follows:

(C1) ⇐⇒ (C1a) ⇐⇒ (C1b). (1)

(C2) ⇐⇒ (C2a) ⇐⇒ (C2b). (2)

(C3) ⇐⇒ (C3a) ⇐⇒ (C3b). (3)

(C1) ⇐⇒ (C2) 6=⇒ (C3). (4)

Proof. (1)-(3). We only prove the equivalence (3) for (C3); the other equiva-
lences are similarly proved. Firstly, (C3b) =⇒ (C3a). Secondly, if f satisfies
(C3a), then

f
(s,t)
t = f

(s,t,Z\(s∪t))
t = f

(t,s,Z\(s∪t))
t = f

(t,s)
t ,

and by symmetry f
(s,t)
s = f

(t,s)
s , thus f (s,t) = f (t,s) and f satisfies (C3). Thirdly,

if f (s,t) = f (t,s) for all s, t, then let S = (sτ : τ ∈ N); we have

fS
sτ

= fSτ
sτ

= f (sτ ,s1,...,sτ−1)
sτ

= fsτ

for any τ and hence fS = f .
(4). We first prove (C1) =⇒ (C2). If f satisfies (C1), then for any finite

subsets b = {b1, . . . , bk} and c = {c1, . . . , cl}, the equivalence in (1) yields

f (b,c) = f (b1,...,bk,c1,...,cl) = f (c1,...,cl,b1,...,bk) = f (c,b).

We now prove (C1) 6=⇒ (C3) by exhibiting a network satisfying (C1) but
not (C3). Let Q = {0, 1} and Z = N, then let f(x) = 1Z if δ(x) ≤ 1/2 and
f(x) = 0Z otherwise. Since δ(f (i)(x)) = δ(x) for any i ∈ Z, we easily obtain that
f (i) and f (j) commute. On the other hand, let x = 0Z and s a set of density 1/3

(e.g. all multiples of 3). Then f
(s,Z\s)
s (x) = 1s while f

(Z\s,s)
s (x) = 0s. ⊓⊔



4 Commutative automata networks

3 Commutativity and finiteness properties

The example of a network f that satisfies (C1) but not (C3) used the fact that
f , though it depended on all the variables xi “globally”, did not depend on each
xi “individually”: changing only the value of any xi could not change the value
of fj(x). We thus consider various finiteness properties for the local functions.

For any φ : QZ → Q and any ordered pair (x, y) ∈ QZ ×QZ , we say u ⊆ Z
is an influence of φ for (x, y) if

φ(xZ\u, yu) = φ(y), and φ(xZ\t, yt) 6= φ(y) ∀t ⊂ u.

Lemma 1. Let φ : QZ → Q and x, y ∈ QZ .

(1) If there exists v ∈ FP(Z) such that φ(xZ\v , yv) = φ(y), then there exists a
finite influence of φ for (x, y).

Let u ⊆ Z be an influence of φ for (x, y).

(2) u ⊆ ∆(x, y) := {i ∈ Z : xi 6= yi}.
(3) u = ∅ if and only if φ(x) = φ(y).
(4) For any t ⊆ u, there exists z ∈ QZ such that t is an influence of φ for (z, y).

We then consider three finiteness properties for a function φ : QZ → Q.

(F1) For any x, y ∈ QZ , there exists an influence of φ for (x, y).
(F2) For any x, y ∈ QZ , there exists a finite influence of φ for (x, y).
(F3) There exists b ∈ FP(Z) such that for any x, y ∈ QZ , there exists an influence

of φ for (x, y) contained in b.

By extension, we say a network f : QZ → QZ satisfies (F1) ((F2), (F3),
respectively) if for all i ∈ Z, fi satisfies (F1) ((F2), (F3), respectively). Clearly,
(F3) =⇒ (F2) =⇒ (F1).

In order to emphasize the role of different commutativity properties, we in-
troduce the following notation for our results: (C) ⊢ (Y) =⇒ (Z) means that
the implication (Y) =⇒ (Z) holds when we restrict ourselves to networks with
Property (C). This notation will be combined with the other ones introduced so
far.

Theorem 2. The commutativity and finiteness properties are related as follows.

(C3) ⊢ (F1) 6=⇒ (F2). (5)

(C3) ⊢ (F2) 6=⇒ (F3). (6)

(C1) ⊢ (F1) 6=⇒ (C3). (7)

(C1) ⊢ (F2) =⇒ (C3). (8)

Proof. For the first two items, we only need to exhibit counterexamples for
Q = {0, 1} and Z = N of the form f1(x) = φ(x) and fi(x) = xi for all i ≥ 2,
which always verify (C3).
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(5). Let φ(x) =
∧

i∈N
xi. We verify that φ satisfies (F1) but does not satisfy

(F2). Indeed, if x 6= 1N, say x = (0s, 1t) and y = 1N, then s is an influence for
(x, y) and any i ∈ s is an influence for (y, x).

(6). For any nonzero x ∈ {0, 1}N, let a(x) = min{j : xj = 1}, and let

φ(x) =

{

0 if x = 0N,

xa(x)+1 otherwise.

We verify that φ satisfies (F2); we shall use Lemma 1(1) repeatedly. If y 6= 0N,
then for any x, φ(xN\[a(y)+1], y[a(y)+1]) = φ(y). If y = 0N, then for any x 6= 0N,
φ(xN\{a(x)+1}, y{a(x)+1}) = φ(y). So φ satisfies (F2) but the case y = 0N shows
that it does not satisfy (F3).

(7). Let Q = {0, 1}, Z = N, and for all i ∈ N,

fi(x) = xi ∨
∨

k>i

¬xk.

In other words, fi(x) = xi if xk = 1 for all k > i and fi(x) = 1 whenever there
exists k > i with xk = 0. It is clear that f satisfies (F1). We now prove that
f satisfies (C1). Let i, j ∈ N be distinct and x ∈ {0, 1}N. Clearly, if i > j,
then fi(x) = fi(f

(j)(x)), so suppose i < j. If there exists k > j with xk = 0,
then fi(x) = fi(f

(j)(x)) = 1; otherwise, f (j)(x) = x and fi(x) = fi(f
(j)(x)) and

we are done. We finally prove that f does not satisfy (C3). Let x = 0N, then
f1(x) = 1, while f1(f

(N\1)(x)) = f1(0, 1N\1) = 0.

(8). We first show that (C3) is equivalent to: f (σ,τ) = f (τ,σ) for all σ, τ ∈
P(Z) with σ ∩ τ = ∅. Indeed, in the latter case, for any s, t ∈ P(Z), we have
f (s∩t,s\t) = f (s\t,s∩t) = f (s) and symmetrically for f (t) so that

f (s,t) = f (s∩t,s\t,t\s,s∩t) = f (s∩t,t\s,s\t,s∩t) = f (t,s).

Now, suppose f satisfies (F2) and (C1), but not (C3). Then there exist

s, t and x for which s ∩ t = ∅ and f
(s,t)
t (x) 6= f

(t,s)
t (x) = ft(x). In particular,

there exists i ∈ t such that fi(f
(s)(x)) 6= fi(x). Denoting y = f (s)(x), there

exists a finite influence b ⊆ ∆(x, y) ⊆ s such that f (b)(x) = (xZ\b, yb) verifies

fi(f
(b)(x)) = fi(y) 6= fi(x). This implies f (i,b) 6= f (b,i), which is the desired

contradiction. ⊓⊔

4 Commutativity and dynamical locality

Let X be a set, and α : X → X . A cycle of α is a finite sequence x1, . . . , xl ∈ X
such that α(xi) = xi+1 for 1 ≤ i ≤ l − 1 and α(xl) = x1. The integer l is the
length of the cycle; the period of α is the least common multiple of all the cycle
lengths of α. (If α has no cycles, or if it has cycles of unbounded lengths, then
its period is infinite.) The transient length of x is the smallest k ≥ 0, such that
αk(x) belongs to a cycle of α. The transient length of α is the maximum over
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all transient lengths. (Again, if α has no cycles, or if α has unbounded transient
lengths, then the transient length is infinite.)

Here is an example of α where every trajectory leads to a cycle, but α has
infinite period and infinite transient length. Let X = N, then for any prime
number p, let

α(pi) =

{

pi+1 if 0 ≤ i ≤ 2p− 2,

pp if i = 2p− 1,

and α(n) = n for any other n ∈ N. Then the trajectory of the prime number p
has transient length p and period p.

We note that for any m > n ≥ 0, αm = αn if and only if α has transient
length ≤ n and period dividing m−n. In particular, any α : Q → Q has transient
length at most q − 1 and period at most q. Thus, for πq := lcm(1, 2, . . . , q), any
α : Q → Q satisfies

απq+q−1 = αq−1. (9)

Moreover, this is the minimum equation satisfied by all α : Q → Q, in the sense
that any equation of the form αm = αn for m > n ≥ 0 must have m ≥ πq+ q−1
and n ≥ q − 1. We then consider the dynamical property

(D) f has transient length at most q−1 and period at most q, i.e. fπq+q−1 = f q−1.

We shall refer to Property (D) as being dynamically local, as it implies that
f behaves like a function Q → Q. We naturally also consider its analogues for
updates.

(D1) f (i) is dynamically local for all i ∈ Z.
(D2) f (b) is dynamically local for all b ∈ FP(Z).
(D3) f (s) is dynamically local for all s ∈ P(Z).

Property (D1) is actually trivial, as it is satisfied by any network. Indeed,
f (i) can be decomposed into a family of mappings from Q to itself (one for each
value of xZ\i): for any a ∈ QZ\i, let ga : Q → Q be ga(xi) := fi(xi, a), then

f (i)m(xi, a) = ((ga)m (xi), a)

for all m ≥ 1, thus f (i) verifies Equation (9).

Theorem 3. Commutativity and dynamical locality are related as follows.

(C3) =⇒ (D3). (10)

(C1) =⇒ (D2). (11)

(C1) 6=⇒ (D). (12)

(C1) ⊢ (D) 6=⇒ (D3). (13)

If f : QZ → QZ is dynamically local, then the following are equivalent: f is
bijective; f is injective; f is surjective; fπq = id. We thus consider the property

(B) f is bijective.
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Again, we consider its counterparts for updates.

(B1) f (i) is bijective for all i ∈ Z.

(B2) f (b) is bijective for all b ∈ FP(Z).

(B3) f (s) is bijective for all s ∈ P(Z).

By using dynamical locality and similar arguments to those used in the proof
of Theorem 3, we obtain that all versions of bijection are equivalent for globally
commutative networks; however, locally commutative networks are not so well
behaved.

Theorem 4. Bijection properties and commutativity properties are related as
follows.

(C3) ⊢ (B) ⇐⇒ (B1) ⇐⇒ (B2) ⇐⇒ (B3). (14)

(C1) ⊢ (B3) =⇒ (B) =⇒ (B1) ⇐⇒ (B2). (15)

(C1) ⊢ (B) ∧ (D3) 6=⇒ (B3). (16)

(C1) ⊢ (B1) ∧ (D3) 6=⇒ (B). (17)

5 Commutativity and idempotence

Let us now strengthen the commutativity properties as follows.

(IC1) f (i,j) = f ({i,j}) for all i, j ∈ Z.

(IC2) f (b,c) = f (b∪c) for all b, c ∈ FP(Z).

(IC3) f (s,t) = f (s∪t) for all s, t ∈ P(Z).

Intuitively, (IC1) means that updating i and j in series is equivalent to updating
them in parallel; (IC2) and (IC3) then extend this property to updates of finite
blocks and to any updates, respectively. This is closely related to idempotence:

(I) f2 = f .

Dynamically, idempotence means that QZ is partitioned into gardens of Eden of
f (configurations y such that f−1(y) = ∅) and fixed points of f (configurations
z such that f(z) = z). Again, we consider the counterparts of idempotence to
updates.

(I1) f (i)2 = f (i) for all i ∈ Z.

(I2) f (b)2 = f (b) for all b ∈ FP(Z).

(I3) f (s)2 = f (s) for all s ∈ P(Z).

For globally commutative networks, all four notions of idempotence are equiv-
alent. This is far to be the case for locally commutative networks instead.
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Theorem 5. Idempotence properties and commutativity properties are related
as follows.

(C3) ⊢ (I) ⇐⇒ (I1) ⇐⇒ (I3) ⇐⇒ (IC3). (18)

(C1) ⊢ (I1) ⇐⇒ (IC1) ⇐⇒ (I2) ⇐⇒ (IC2). (19)

(C1) ⊢ (I1) 6=⇒ (D). (20)

(C1) ⊢ (I) ∧ (D3) 6=⇒ (I1). (21)

(C1) ⊢ (I1) ∧ (I) 6=⇒ (D3). (22)

(C1) ⊢ (I1) ∧ (D3) 6=⇒ (I). (23)

(C1) ⊢ (I3) 6=⇒ (C3). (24)

Proof. (18). Clearly, (IC3) =⇒ (C3) ∧ (I3). We first prove that (C3) ∧
(I3) =⇒ (IC3). For any s, t ∈ P(Z), let u = s ∩ t, then we have

f (s,t) = f (s\t,u,u,t\s) = f (s\t,u,t\s) = f (s∪t).

We now prove that (C3) ∧ (I) =⇒ (I3): for any s ∈ P(Z), we have

f (s)2

s = f (s,s,Z\s,Z\s)
s = f2

s = fs,

and hence f (s)2 = f (s). We finally prove that (C3) ∧ (I1) =⇒ (I3): for any

s ∈ P(Z) and any i ∈ s, we have f
(s)2

i = f
(i)2(s\i)2

i = f
(i)2

i = f
(i)
i = fi, and hence

f (s)2 = f (s).
(19). Clearly, (IC2) =⇒ (IC1) =⇒ (C1) ∧ (I1) on the one hand and

(IC2) =⇒ (C2) ∧ (I2) on the other. We now prove (C1) ∧ (I1) =⇒ (IC2).
Let f satisfy (C1) ∧ (I1), and let b, c ∈ FP(Z). We denote b \ c = {b1, . . . , bk},
c \ b = {c1, . . . , cl} and b ∩ c = {d1, . . . dm}. Then, by (C2b),

f (b,c) = f (b1,...,bk,d1,...,dm,c1...,cl,d1,...,dm)

= f (b1,...,bk,c1...,cl,d1,d1,...,dm,dm)

= f (b1,...,bk,c1...,cl,d1,...,dm)

= f (b∪c).

For the remaining claims, we let Q = {0, 1} and Z = N.
(20). Split Z into parts {Zω : ω ∈ N} of densities 2−ω, and for any ω ∈ N, let

fZω
(x) =

{

1Zω
if δ(x) ≥ 1− 21−ω,

0Zω
otherwise.

It is easy to verify that f satisfies (C1) and (I1). However, the initial configu-
ration x = 0Z has an infinite trajectory, hence f does not satisfy (D).

(21). Let

f1(x) =

{

¬x1 if δ(x) = 0,

x1 otherwise.
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and fi(x) = 1 for all i ≥ 2. It is easy to verify that f satisfies (C1), (I), and

(D3). However, f (1)(0N) = (1, 0N\1) and f (1)2(0N) = 0N, hence f does not satisfy
(I1).

(22). Split Z as above, and this time fZ1
= 0Z1

and for any ω ≥ 2,

fZω
(x) =

{

1Zω
if δ(x) > 1− 21−ω,

xZω
otherwise.

Again, it is easy to verify that f satisfies (C1) and (I1). Moreover, δ(f(x)) ≤ 1/2
for any x ∈ QZ , hence f(x) is fixed, thus f satisfies (I). On the other hand, if
s = Z \ Z1, then f (s) has infinite trajectory for x such that xZ1

= 1Z1
and

δ(xZω
) = 2−ω−1 for all ω ≥ 2.

(23). Let

f(x) =











1N if δ(x) = 0,

0N if δ(x) = 1,

x otherwise.

Then it is clear that f satisfies (C1), (I1) and (D3); on the other hand, f(0N) =
1N and f2(0N) = 0N, hence f is not idempotent.

(24). Let

f1(x) =

{

x1 if δ(x) = 1,

0 otherwise.

fi(x) = 1 ∀i ≥ 2.

Then it is easy to verify that f satisfies (C1) and (I3), but not (C3). ⊓⊔

6 Globally commutative Boolean networks

There are a plethora of globally commutative networks over non-Boolean alpha-
bets. For instance, for q = 4, consider the following construction. Let f be a
Boolean network, and view Q = {0, 1}2 = {a = (a1, a2) : a1, a2 ∈ {0, 1}}, then
the quaternary network g given by g(x1, x2) = (f(x2), x2) satisfies (C3). This
can be easily generalised for any q ≥ 4. For q = 3, let f be any Boolean network
such that fi does not depend on xi for any i. Then let g be the ternary network
defined by

gi(x) =

{

2 if xi = 2

fi(x̂) otherwise,

where x̂i = ⌊xi/2⌋ for all i. Then it is easy to check that g satisfies (C3).
However, we can classify globally commutative Boolean networks (i.e. networks
with Q = {0, 1} and that satisfy (C3)). Before we give our classification, we
need the following concepts and notation. First, for any x ∈ {0, 1}Z and any
s ⊆ Z, we denote xs = (¬xs, xZ\s).
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The transition graph of f is the directed graph Γ (f) with vertex set {0, 1}Z

and an arc for every pair (x, f (s)(x)) for any x ∈ {0, 1}Z and s ∈ P(Z). We
remark that Γ (f) completely determines f .

A subcube of {0, 1}Z is any set of the form X[s, α] := {x ∈ {0, 1}Z, xs = α}
for some s ⊆ Z and α ∈ {0, 1}s. A family of subcubes X = {Xω : ω ∈ Ω} is
called an arrangement if Xω ∩ Xξ 6= ∅ for all ω, ξ ∈ Ω and Xω 6⊆ Xξ for all
ω 6= ξ.

000

001

010

011

100

101

110

111

(a) X1
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(b) X2
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(c) X3
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(d) X4

Fig. 1: Arrangements

We denote the content of X by X̂ :=
⋃

ω∈Ω Xω.

Lemma 2. Let X = {Xω : ω ∈ Ω} be an arrangment, then Y :=
⋂

ω∈Ω Xω is a
non-empty subcube.

Proof. Denote Xω := X[sω, αω] for all ω ∈ Ω. Then for any ω, ξ, we have

αω
sω∩sξ

= αξ

sω∩sξ
, therefore we can define σ =

⋃

ω∈Ω sω and α ∈ {0, 1}σ with
αsω = αω

sω for all ω ∈ Ω. Then it is easy to verify that Y = X[σ, α]. ⊓⊔

For any C ⊆ {0, 1}Z, we classify any i ∈ Z as follows.

– If xi = yi for any x, y ∈ C, then i is an external dimension of C. Otherwise,
i is an internal dimension of C.

– If for any x ∈ C, xi ∈ C, then i is a free dimension of C.
– If i is an internal, non-free dimension of C, then i is a tight dimension of

C. If i is a tight dimension, then there exists z /∈ C such that zi ∈ C; such
z is called an i-border of C.

If X = {Xω = X[sω, αω ] : ω ∈ Ω} is an arrangement, then (following the
notation used in the proof of Lemma 2) the dimensions of X̂ are as follows.
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– Let τ :=
⋂

ω∈Ω sω, then τ is the set of external dimensions of X̂. The smallest

cube containing X̂ is K(X̂) := X[τ, ατ ].
– σ :=

⋃

ω∈Ω sω and Z \ σ is the set of free dimensions of X̂. The intersection
subcube of X is Y :=

⋂

ω∈Ω Xω = X[σ, α].

– The other dimensions in σ \ τ are the tight dimensions of X̂.

For instance, let Z = [3] and consider the following arrangements:

X1 = {(x1, x3) = (0, 0)} ∪ {(x2, x3) = (0, 0)}

X2 = {x3 = 0} ∪ {(x1, x2) = (1, 1)}

X3 = {x3 = 0} ∪ {x1 = 1}

X4 = {x3 = 0} ∪ {x1 = 1} ∪ {x2 = 1}.

They are displayed in Figure 1. The dimensions of the different arrangements
are classified as follows: for X1, 1 and 2 are tight and 3 is external; for X2, all
are tight; for X3, 1 and 3 are tight and 2 is free; for X3, all are tight.

Let C ⊆ {0, 1}Z and f : {0, 1}Z → {0, 1}Z. For any i ∈ Z, we say fi is
trivial on C if fi(x) = xi for all x ∈ C. We say fi is uniform on C if for any
x, y ∈ C, xi = yi =⇒ fi(x) = fi(y). We say f is uniform nontrivial on C if
fi is nontrivial and uniform on C for all i.

We can then define a class of globally commutative Boolean networks by
their transition graphs. Let X be an arrangement. Outside of X̂, f is trivial:
f(x) = x if x /∈ X̂ . In X̂ , f satisfies the following:

1. fi(x) = αi for every tight dimension i of X̂,
2. fj is uniform nontrivial for any free dimension j of X̂,

3. fk is trivial on any external dimension k of X̂ .

Any such network is referred to as an arrangement network.
For instance, the arrangement X3 on Figure 1 has three arrangement net-

works, one for each choice of the uniform nontrivial f2 on X̂3. One such network,
with f2(x) = ¬x2, is displayed in Figure 2.
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Fig. 2: Arrangement network for X̂3

We can combine families of globally commutative networks as follows. For
any f , a singleton {x} is a connected component of Γ (f) if and only if x is an
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unreachable fixed point of f : f (s)(y) = x ⇐⇒ y = x for all s ∈ P(X). Let
U(f) be the set of unreachable fixed points of f and R(f) = {0, 1}Z \ U(f). If
{fa : a ∈ A} is a family of networks with R(fa) ∩ R(fa′

) = ∅ for all a, a′ ∈ A
(or equivalently, x ∈ U(fa) or x ∈ U(fa′

) for any x ∈ {0, 1}Z), we define their
union as

F (x) :=
⋃

a∈A

fa(x) =

{

fa(x) if x ∈ R(fa)

x otherwise.

It is easy to see that in an arrangement network f for X , if x ∈ Xω for some
ω ∈ Ω, then so does f (s)(x) for any s. Therefore, the connected components of
Γ (f) are precisely X̂ and all singletons {{y} : y /∈ X̂}. It follows that if fa is an
arrangement network for Xa, then the union

⋃

a∈A fa is well defined if and only

if X̂a ∩ X̂a′ = ∅ for all a, a′ ∈ A.
It is then clear that f is a union of arrangement networks if and only if, for

every connected component C of Γ (f), the following holds:

1. C is the content of an arrangement,
2. f is uniform nontrivial on C,
3. fi = cst = ¬zi for any tight dimension i and any i-border z of C.

Theorem 6. A Boolean network is globally commutative if and only if it is a
union of arrangement networks.

If X is an arrangement containing at least two subcubes, then X has a tight
variable, and hence no network for that arrangement is bijective. Conversely,
if {X} is an arrangement containing only one subcube, then there is only one
bijective arrangement network for X , i.e. f(x) = ¬x if x ∈ X and f(x) = x
otherwise, which we shall refer to as the negation on X . We obtain the following
classification of globally commutative, bijective Boolean networks.

Corollary 1. Let f be a globally commutative, bijective Boolean network. Then
f is a union of negations on subcubes.

Therefore, the number A(n) of globally commutative, bijective Boolean net-
works is equal to the number of partitions of the cube {0, 1}n into subcubes. This,
in turn, is equal to the number of minimally unsatisfiable cnfs on n variables.
The first few values of A(n) are given in OEIS A018926.
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A Proof of Lemma 1

Proof. (1). Consider the family of sets w ⊆ Z such that φ(xZ\w , yw) = φ(y).
This family contains a finite set (i.e. v), thus it contains a set u of minimum
cardinality; it is clear that u is then an influence for (x, y).

(2). If u 6⊆ ∆(x, y), then t := u ∩ ∆(x, y) satisfies t ⊂ u and φ(xZ\t, yt) =
φ(xZ\u, yu) = φ(y), which is the desired contradiction.

(3). If u = ∅, then φ(x) = φ(xZ\u, yu) = φ(y). Conversely, if φ(x) = φ(y),
then φ(xZ\∅, y∅) = φ(y) and there is no t ⊂ ∅, thus the empty set is an influence
of φ for (x, y).

(4). Let v = u\t and z := (xZ\v, yv), then (xZ\u, yu) = (zZ\t, yt), from which
we easily obtain that t is an influence of φ for (z, y). ⊓⊔

B Proof of Theorem 3

Proof. (10). If f is globally commutative, then so is f (s) for any s; therefore, we
only need to prove that (C3) =⇒ (D). Now, let f satisfy (C3), i ∈ Z, then
for any m ≥ 1,

fm
i =

(

f (i,Z\i)m
)

i
=

(

f (i)m(Z\i)m
)

i
= f

(i)m

i .

Thus,

f
πq+q−1
i = f

(i)πq+q−1

i = f
(i)q−1

i = f q−1
i .

Since this holds for any i, we obtain fπq+q−1 = f q−1.
(11). Let f satisfy (C1) and let b = {b1, . . . , bk} ∈ FP(Z). Then for m =

πq + q − 1 and n = q − 1, we have

f (b)m = f (b1,...,bk)
m

= f ((b1)
m,...,(bk)

m) = f ((b1)
n,...,(bk)

n) = f (b1,...,bk)
n

= f (b)n .

We delay the proofs of (12) and (13) until Theorem 5, where we prove
stronger statements. ⊓⊔

C Proof of Theorem 4

Proof. (14). We only need to prove (C3) ⊢ (B1) =⇒ (B) =⇒ (B3). We first
prove (C3) ⊢ (B1) =⇒ (B). In that case, we have for all i ∈ Z,

f
πq

i = f
(i)πq (Z\i)πq

i = f
(Z\i)πq

i = idi,

and hence fπq = id. We now prove (C3) ⊢ (B) =⇒ (B3). In that case, we
have for all s ∈ P(Z),

f (s)πq

s = f (s)πq (Z\s)πq

s = fπq
s = ids,

and hence f (s)πq

= id.
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(15). We first prove (C1) ⊢ (B1) =⇒ (B2). If f satisfies (C1) and (B1),
then for any b = {b1, . . . , bk} ∈ FP(Z),

f (b)πq

= f (b1)
πq ,...,(bk)

πq

= id.

We now prove (C1) ⊢ (B) =⇒ (B1). Suppose f satisfies (C1) but not (B1),
then let f (i) be non-injective and x, y ∈ QZ such that f (i)(x) = f (i)(y). Then
for any j ∈ Z,

fj(x) = fj(f
(i)(x)) = fj(f

(i)(y)) = fj(y),

and hence f(x) = f(y). Thus f is not bijective.
(16). Let Q = {0, 1}, Z = N and

f(x) =

{

¬x if δ(x) = 0 or δ(x) = 1,

x otherwise.

It is easy to verify that f satisfies (C1), (B) and (D3). However, let s ⊆ Z such
that y = (1s, 0Z\s) has density 1/2, then f (s)(0N) = y = f (s)(y) and hence f (s)

is not bijective.
(17). Let Q = {0, 1}, Z = N and

f(x) =

{

¬x if δ(x) = 0,

x otherwise.

It is easy to verify that f satisfies (C1), (B1) and (D3), but f(0N) = 1N = f(1N)
and hence f is not bijective. ⊓⊔

D Proof of Theorem 6

Lemma 3. Any union of arrangement networks satisfies (C3).

Proof. The proof is the conjunction of the following two claims.

Claim 1 Any arrangement network is globally commutative.

Proof. Let f be an arrangement network for X and s′, t′ ∈ P(Z). If x /∈ X̂, then
x is fixed, and hence f (s′,t′)(x) = f (t′,s′)(x) = x. Therefore, let us assume x ∈ X̂.
We have fσ = cst = ασ, thus we consider s = (Z \ σ) ∩ s′ and t = (Z \ σ) ∩ t′.
Because f is uniform, we can express

fs∩t(x) = λ(xs∩t), fs\t(x) = µ(xs\t), ft\s(x) = ν(xt\s),

for λ : {0, 1}s∩t → {0, 1}s∩t, µ : {0, 1}s\t → {0, 1}s\t, and ν : {0, 1}t\s →
{0, 1}t\s. We obtain

f (s,t)(x) = (ασ, λ
2(xs∩t), µ(xs\t), ν(xt\s), x(Z\σ)\(s∪t)) = f (t,s)(x).⊓⊔
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Claim 2 If {fa : a ∈ A} is a family of globally commutative networks with
R(fa) ∩R(fa′

) = ∅ for all a, a′ ∈ A, then their union is also globally commuta-
tive.

Proof. Let F =
⋃

a f
a, x ∈ {0, 1}Z and s, t ∈ P(Z). If x belongs to R(fa), then

so do F (s)(x) and F (t)(x), and hence F (s,t)(x) = (fa)(s,t)(x) = (fa)(t,s)(x) =
F (t,s)(x). If x does not belong to any R(fa), then by definition x ∈ U(F ) and
F (s,t)(x) = F (t,s)(x) = x. ⊓⊔

⊓⊔

Lemma 4. If f is globally commutative, then it is a union of arrangement net-
works.

Proof. In the sequel, f satisfies (C3) and C is a connected component of Γ (f).

Claim 3 If fw(x) = y for some finite word w = (w1, . . . , wk) with wi ∈ P(Z),
then f (∆(x,y))(x) = y.

Proof. Let ∆ := ∆(x, y). Suppose f (∆)(x) 6= y, then there exists i ∈ ∆ such
that fi(x) = xi or in other words, f (i)(x) = x. But then, for any word w =
(w1, . . . , wk) where i appears exactly l times, we have

f
(w1,...,wk)
i (x) = f

(i)l(w1\i,...,wk\i)
i (x) = f

(w1\i,...,wk\i)
i (x) = xi,

and hence fw(x) 6= y. ⊓⊔

Claim 4 If x, y ∈ C, then there exist s, s′ ∈ P(Z) such that f (s)(x) = f (s′)(y).

Proof. Since x and y belong to the same component, there exists a sequence of
configurations x = x0, x1, . . . , xk = y ∈ {0, 1}Z and a corresponding sequence of

subsets s0, . . . , sk−1 ∈ P(Z) such that either f (si)(xi) = xi+1 or vice versa, in

alternation. Suppose k is minimal. If k = 1, then f (s0)(x) = f (∅)(y) = y, and we

are done. If k = 2, then either f (s0)(x) = x1 = f (s1)(y), or x = f (s0)(x1) and

y = f (s1)(x1) in which case f (s1)(x) = f (s0)(y). Now suppose k ≥ 3. Without

loss of generality, we have f (s0)(x) = x1 = f (s1)(x2) and f (s2)(x2) = x3. But

then f (s0,s2)(x) = f (s1,s2)(x2) = f (s2)(x3) =: x̃; denoting ∆ := ∆(x, x̃), Claim
3 shows that f (∆)(x) = x̃. Thus, the sequence x, x̃, x3, . . . , xk contradicts the
minimality of k. ⊓⊔

Claim 5 f is uniform nontrivial on C.

Proof. Firstly, let e be an external dimension of C, then C ⊆ {xe = a} for some
a ∈ {0, 1} and hence fe = cst = a. Secondly, let i be an internal dimension of
C. Then fi is nontrivial on C for any i, for otherwise C could be split into two
components, one for each value of the coordinate i. Let x ∈ C with fi(x) 6= xi,
and suppose y ∈ C has xi = yi. By Claim 4, there exist s, s′ ∈ P(Z) such that
f (s)(x) = f (s′)(y), and since xi = yi we can suppose that i 6∈ s ∪ s′. Then

fi(y) = f
(i,s′)
i (y) = f

(s′,i)
i (y) = f

(s,i)
i (x) = f

(i,s)
i (x) = fi(x),

thus fi is uniform. ⊓⊔
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Claim 6 On C, fi = cst = ¬zi for any tight dimension and any i-border z of
C.

Proof. Suppose fi(x) = zi for some x ∈ C with xi 6= zi. Let y = zi ∈ C, we then
have fi(y) = fi(x) = zi and hence z ∈ C. Thus, fi(x) = ¬zi for all x ∈ C with
xi = ¬zi. Now, if fi(x) = zi for some xi = zi, then fi is trivial, which contradicts
Claim 5. ⊓⊔

Claim 7 C is the content of an arrangement.

Proof. Suppose C is not the content of an arrangement. Consider the decompo-
sition of C into maximal subcubes C =

⋃

ω∈Ω Xω, then there exist X0, X1 and
i ∈ Z such that X0 ⊆ H0 := {x : xi = 0} and X1 ⊆ H1 := {x : xi = 1}. We also

consider the two subcubes Y0 = X0∪{xi : x ∈ X0} and Y1 = X1∪{xi : x ∈ X1}.
We note that i is an internal dimension of C. If i is a free dimension of C, then
Y0 ⊆ C, which contradicts the maximality of X0. If i is a tight dimension of C,
then by Claim 6, fi is constant on C. If fi = 1, then f (i)(x) = xi for any x ∈ X0,
and again Y0 ⊆ C; if fi = 0 we similarly obtain Y1 ⊆ C. ⊓⊔

Then Claims 5, 6 and 7 conclude the proof. ⊓⊔


