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Control of Stackelberg for coupled parabolic
equations

Moumini KERE * Michelle MERCAN T Gisele MOPHOU #
February 1, 2018

Abstract

We consider the Stackelberg problem for coupled parabolic equations
with a finite number of constraints on one of the states. This notion
assumes that we have two controls to determine. The first control is
supposed to bring the solution of the coupled system subjected to a finite
number of constraints at rest at time zero while the second expresses
that the states do not move too far from given states. The results are
achieved by means of an observability inequality of Carleman adapted to
the constraints.

Key-words : Null-controllability, Coupled system, Carleman inequalities,
observability inequality.

AMS Subject Classification 35K05, 35K15, 35K20, 49J20, 93B05

1 Introduction

Let N € N* and Q be a bounded open subset of RY with boundary I' of class
C2. ForT >0, weset Q=Qx(0,7), Y =Tx(0,7T) and wr = w x (0,7T)
where w is a sub-domain compactly embedded in 2. We consider the following
system:
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6%2

— Ayy + ay1 + by

l+kxo n Q,

—Ayp+ecyp+dyy = 0 in @, (1)
y1=y2 = 0 on X,
U (O) = Y2 (0) = 0 in Q,

where the controls [ and k belong to L?(Q), x., denotes the characteristic func-
tion of the set w and

a,b,c,d € L>(Q), with d > v > 0 in wy. (2)

Under the assumptions on the data, we know that system (1) has an unique solu-
: 2

tion (y1,92) = (y1(l,k),y2(l, k)) € (C([O,T];LQ(Q)) ﬁLQ((O,T);HS(Q))) (See.
[20]). Moreover, if we set ||, b, ¢, d[|7 w () = llallF o () + 10117 (@) + Il Fe (@) +
1d]|7 0 (), there exists a positive constant C' = C' (2, T [|a,b, ¢, d|| = (q)) such

that

Hyl||L2(o,T,Hg(Q)) + ||y2HL2(o,T,Hg(Q)) <C (||l||L2(Q) + ||k||L2(wT)> SNC)

The Stackelberg leadership model is a strategic game in economics in which
two firms compete on the market of the same product. The first to act must
integrate the reaction of the other company in the choices it makes in the amount
of product that it decides to put on the market. Following this notion, we want
to control system (1) by acting with two controls. To this end, we set

Hy = {h € L*(Q) such that 0h € L*(Q)}, (4)

where 6 is positive function precisely defined later on by (14). Then, it easy to
prove that Hy endowed with the norm

[R]1, = (0h,0h)12(q) = /Q |0h|>dx dt, Vh € Hy (5)

is a Hilbert space. We consider the following problems:

Problem 1.1 Given a,c,b,d € L™ (Q) with d > v > 0 in wr and e; € L*(Q),
1 <i< M such that

(€iXw)i<icps are linearly independent. (6)

For any | € Hy, find a control k = k(1) € L? (wr) such that (y1,y2) solution of
(1) satisfies

and

/ngeidxdt =0,1<i<M. (8)



Problem 1.2 Assume that the control k = k(l), solution of Problem 1.1 exists.
Let y = (y1 (1, k(1)), y2(L, k(1)) be the solution of (1) corresponding to k = k(l).
Let also Uyq be a nonempty closed convex subset of Hy and (z}i, 23) € (L2 (Q))2 .
Find | € Uyq such that

J (l) — inf J(I), 9)

1€EUqq

where

1 1 N

TW) = 5 [lys @ kD) = 2l + 5 llve O RD) = 2] 5aq) + 5 1lF, - (10)

If the controls 1 and k exist, then the linear system (1) is controllable in the
sense of Stackelberg. Following this strategy, the control [ is the Leader and &
is the Follower.

Problem 1.2 is a classical optimal control problem [3] whereas Problem 1.1
is a simultaneous controllability problem with state constraints.
There are some works on simultaneous controllability. In [17], D.L. Russell stud-
ied a simultaneous controllability for two wave equations; one with boundary
control of Dirichlet type, the other of Neumann type in order to controlling
the time evolution of electromagnetic fields independent of the axial coordi-
nate. Using the Hilbert Uniqueness Method (HUM) developed by J. L. Lions
in [5], G.O. Antunes et al. in [18] proved under suitable condition on final time
that the boundary simultaneous controllability for a system of equations that
constitutes a model of dynamical elasticity for incompressible materials holds.
Following the same method, B.V. Kapitonov and G.P. Menzala in [19] proved
the exact null simultaneous controllability for Maxwell equations system and
for a wave equation vector with a pressure term. In [21], F. Ammar Khodja
et al. studied the local simultaneous null controllability of a coupled system of
semi-linear heat equations. They showed the existence of simultaneous control
for a linear coupled system which is derived from the initial system. Then, by
a argument of the fixed point, they established the existence of the solution
of local simultaneous null controllability problems for the semi linear coupled
system.
Recently, C. Louis-Rose [15] studied the simultaneous controllability problem
with constraint on the control of a coupled system of linear heat equations that
each had the same control. She initially turned the system into an equivalent
system with the control acting only in a single equation, using a suitable change
of variable. Then she solved the problem of simultaneous controllability of this
new system using a Carleman inequality adapted to the constraint. This re-
sult was generalized to simultaneous null controllability for a coupled system of
reaction-diffusion with a finite number of state constraints by Peng Gao [22].

The notion of controllability in the sense of Stackelberg was initiated by O.
Nakoulima [8]. Actually, the author was interested in the concept of hierarchical
control for a backward heat equation. This concept assumes to have two controls
to determine: one of null controllability type with constraint on the control,
called Follower, and the other of optimal control type, called Leader. The results



were achieved by means of a Carleman inequality adapted to the constraint and
were applied to a problem of discriminating sentinels (see [4] for the notion of
sentinel). In [9, 10], M. Mercan revisited the notion of controllability in the sense
of Stackelberg given by O. Nakoulima [8] by choosing the Follower of minimal
norm. This new notion is then applied by M. Mercan and O. Nakoulima in
[13] on the controllability of a two-stroke problem with constraint on the states.
The results were obtained by means of Carleman inequality adapted to the
constraints. In this paper, motivated by all the above works, we investigate
the controllability in the sense of Stackelberg to a system of coupled parabolic
equations with constraints on one state. The main results is as follows:

Theorem 1.3 Let ) be a bounded open subset of RN with boundary T of class
C? and w be a sub-domain compactly embedded in 2. Let a,c,b,d € L*™ (Q)
with d > v > 0 inwr and e; € L*(Q),1 < i < M be such that (6) holds.
Let also Hy be the Hilbert space defined by (4) and (5). Then there exists a
positive real function 0 (a precise definition of 0 will be given later on) such that
for any function | € Hy, there evists a unique control k = k() € L*(Q) such
that (k(1),y = (y1 (L, k(1)) ,y2 (I, k(1)) is the solution of the null controllability
problem with constraints on the state (1), (7), (8). Moreover,

k= Ppixw = p1Xw — UoXw,
where P is the orthogonal projection operator from L*(wr) into K( a pre-

cise definition of K will be given later on), uop = ug (1) € =K and (p1,p2) =

0
(p1(0), po(1)) satisfis:
0 .
—gptl —Apy+ap1+dpa = 0 in Q,
—% —Apzt+cpat+bpr = 0 in Q,
pP1L=pP2 = 0 on X.

Theorem 1.4 Assume that the hypotheses of Theorem 1.3 holds. Then there
exists (p1,p2) € (C([0,T]; L*()) N L% ((0,T); Hy (Q)))2 such that the mini-
mization problem (9) admits a unique solution [ which is characterized by the
following optimality condition

1 1 - 5
<A1 <9p1 + EF* (ple)) + NI, — l) 20, Vi€ Uaa,
Ho

where F is a linear and continuous application from Hy to L*(Q) precisely
defined later on by (101), F* is the adjoint of F' and (p1,p1) is solution of

0 . .
—itl —Apy+apy +dps = Gi—z) in Q,
7% —Aps+cpay+bpr = Yo — z?l mn  Q,
pr=p2 = 0 on X,
pi(T)=0; po(T) = 0 in



with (§1,92) € (C([0,T); L*(Q)) N L2 ((0,T) ; Hy (Q)))Z, the solution to (1) cor-
responding to the control l.

The paper is organized as follows. Section 2 is devoted to the study of
Problem 1.1. In this section, we prove the equivalence between the null con-
trollability problem with constraints on the state and a null controllability with
constraint on the control. Then, we establish a Carleman inequality adapted to
the constraints and prove Theorem 1.3. We prove Theorem 1.4 in section 3.

2 Study of Problem 1

We first prove that the null controllability with constraint on the state is equiv-
alent to a null controllability with constraint on the control. Then we solve the
equivalent problem using an adapted Carleman inequality and a penalization
method. This allows to prove Theorem 1.3.

2.1 Equivalence between the null controllability with con-
straint on the state and a null controllability with con-
straint on the control.

In this section, we show the equivalence between the null controllability problem
with state constraints and a null controllability problem with constraint on the
control. But before going further, we need some preliminary results.

So, let w’ € w and 1 € C? (ﬁ) a function such that

min{|V¢5/}$)7x€W} >0 (11)

15
ESOOHF,

where v denotes the outward unit to I'. Suppose moreover that v satisfies

min {7 (z),z € Q} > max {i 191 oo () 7ln3} .

Such function ¢ was considered by A. Fursikov and O. Imanuvilov [1]. For all
A>0,7 >0, we set

)
p(x,t) = HT—1) (z,t) € Q, (12)
S
Lee() A (z
o) =72 t(T_t_)ew(), (z,t) €Q (13)
and )
2 (1) = e 2@ (r 1) € Q. (14)



Then % € L°°(Q) because ¢(z,t) > 0 for all (z,t) € Q.

Lemma 2.1 Let 0 be defined by (14) and the functions (e;); ;< € (L? (Q))M
be such that (6) holds. Let a,c,b,d € L (Q) with d > v > 0 in wy. Let also

(pi> ) € (C([0,T); L2(Q)) N L2((0, T); HA()))? be solution of:

Opi .
- i —Api+ap;+dg; = 0 in Q,
— 8(1: —Ag;+cgi+bp;, = e in Q, (15)
pi=¢ = 0 on X,

pi (T) = q; (T) 0 in Q.

o 1 1 1
Then the families (P1Xw, P2Xws - PM Xw) 01d (aplxw, ngXw, s 0PMXw> are
linearly independent.

M
Proof. Let (ai)i:lva € RM be such that k = Zaipi = 0 in wy. Let
i=1

M
z= Zaiqi in wp. From (15) we have

i=1

—%—Ak—i—akz—i—dz =0 in Q,

M
0z .
T —Az+cz+ bk = ;aiei in Q, (16)
k=z = 0 on X,
E(T)y=2(T) = 0 in Q.

As k =0 in wr and d # 0 in wr, equality (16); give us z = 0 in wy. Then,
M

using the fact that £k = z = 0 in wyp in (16)2, we obtain 0 = Zaiei in wr.
i=1

Consequently, assumption (6) allows us to conclude that a; = 0 for all 1 <

1 < M. Analogously, we prove that the family (;pixw)i_l y is linearly

independent. [ ]
We set

K = Span (piXw P2Xw: " 1 PMXw) (17)

Ky = %K . (18)

Lemma 2.2 Let 0 be defined by (14) and (e;), ;<5 € (L? (Q))M such that (6)
holds. Let also (p;,q:) be defined by (15). Set

1
Ag = </ epiijw> . (19)
Q 1<4,5<M



Then, there exists § > 0 such that

(Ao X, X)gar > 0 || X I2as (20)
where
(M M
wr i=1 i=1
and
X = (X1,..., Xp) € RM,
Proof. One proceeds as in [22]. ]

Proposition 2.1 Let 6 be defined by (14) and Hy be defined by (4) and (5).
Let also K and Ky be defined by (17) and (18) respectively. Then the null
controllability problem with constraints on the state (1), (7), (8) is equivalent
to the following null controllability problem with constraint on control: Given
a,c,b,d € L>®(Q) withd > v >0 inwy, l € Hy and ug = ug (1) € Ky, find

v=uv(l) e K+ (21)
such that (y1,y2), solution of
0
éaytl—Ayl+ay1+by2 = I+ Ww—uy)xe inQ,
% A teptdy = 0 in Q, (22)
y1=1y2 = 0 on X,
y1(0)=92(0) = 0 in Q
satisfies
y1 (T) =y2(T) =0 in Q. (23)

Proof. Assume that (y1,y2) is solution of (1), (7), (8). Multiplying (15),
by y1 and (15), by y» and integrating by parts over Q, we get

0
/ Di a9 _ Ay, + ayy | dedt + / dq;y1dxdt = / e;yadxdt,
@ \ot Q Q

0
/ % (y2 — Aya + cy2> dxdt +/ bpiy2dxdt = 0.
Q@ \Oot Q

Adding the resulting identities and using (8) , we obtain that

—/ Ip;dzdt = kp;dxdt. (24)
Q wr

Since the matrix Ay defined by (19) is symmetric positive definite, there exists
a unique ug = ug (1) € Ky such that

/lpidxdt:/ ugpidxdt. (25)
Q wr



Combining (24) and (25) we deduce that

/ uopidxdtz—/ kp;dxdt. (26)

T T

Therefore
/ (ug + k) pidzdt =0, 1<i< M.

T

This means that ug + & = v € K+. It then follows that & = v — ug. Hence,
replacing k by v — ug in (1) we obtain ( 22) .

Conversely, assume that (v, (y1,y2)) is solution of (21),(22) and (23). Mul-
tiplying (15); by y1 and (15)2 by y2 and integrate by parts over @, we get

/ i (8y1 — Ay; + ay1) dadt +/ dgiyrdadt = 0,
@ \ot Q

0
/ 0 9Y2 _ Ayo + cyo | dxdt +/ bpiyodxdt = / e;yadxdt.
o ot Q Q

Adding the resulting identities, we obtain
/ pi (1 + (v —up) Xw) dodt = / yae;dxdt.
Q Q
Since v € K+, we have
/ pi (I — uoxw) dedt = / yae;dadt,
Q

Q

which in view of (25), yields
/ yoe;dadt = 0.
Q

We thus have proved that the pair (k,y) with & = v — up and y = (y1,y2)
satisfies the null controllability problem with state constraints (1), (7), (8). ™

From now on, we use C'(X) to denote a positive constant whose value varies
from a line to another but depends on X.

Proposition 2.2 Let 0 be defined by (14) and | € Hy. Let also p; and ug
be respectively defined by (15) and (25). Then there exists a positive constant

M
C=cC <Q I(a.b,e,d)ll > |ei||2Lz(Q)> such that

i=1

[0uoll 2wy < CllIfla,, (27)
luollz2@wsy < Cllllla,- (28)



Proof. From (25), we have

/ uop; drdt = / Ip;dxdt, 1 <i< M.
wr Q

(29)

1 1
Since ug(l) € Spcm{gplxw, A gpMXW}v there exists o = (ay,...,ap) €

RM such that
Mo
DI
j=1
M
. 1 . .
Thus, replacing ug by Zaj gPiXw in (29), we obtain:
j=1

M
1
/ Zozjépjpi dxdt = /lei dxdt, 1 < i< M.
wT j=1

Consequently,

M 1 M M 1
/WT ;ajgpj (; Oéipi> dxdt = /Q@l <; aiepi> dzdt,

(30)

which in view of the definition of the matrix Ay given by (19) can be rewritten

as

AQ(X,X):/

Q

M
1
01 (Z oziep,) dzdt,
=1

with X = (c;);<;<p- It then follows from Lemma 2.2 and the Cauchy-Schwartz

inequality that

M
1
Slledl® < Wl Y lilll g pill 2 (@)-

i=1

1
Since ] is bounded, we obtain that

M
Sllall* < CONUl ey D lewllpill 22(ey-
i=1

Because p; is solution of (15), we have that for 1 <i < M,

Ipill2@) < C(Q lla,b,¢.d o, T)leill 2 (@)

which combined with (31) and the fact that § > 0 gives

M
HO‘HRM < 6_10(9797 Ha’ b, c7dHoo 7T)||l||H9

i=1

D lleillz -

(31)

(32)



Finally, from (30), we have

M
l6uollz2wry < D laglIpsllc2on)
j=1
M
< 0,0, ]la,b,c.dll  T) Y laslllesll2 ()
j=1
1
M 2
< CQ.0,]la,b,e.d| o, T) el (Z ||ei||2L2(Q)> :
i=1
on the one hand, and on the other hand,
1

1 e )2
Juollzzcar) < €0 labicdl T || Tl (3 sl
o0 =1

1
Hence, using (32) and the fact that — is bounded in L*°(Q), and setting

6
M M
C =00, labe.dl o, T.Y leillrz@) =6 C(Q,0,lla,b,e,dl o T Y lleillZaq):
i=1 i=1
we deduce (27) and (28). ]

Lemma 2.3 Assume that (2) and (6) hold. If (z1,22) satisfies
821

~ Azy+az +dze = 0 in wr,
—% —Azg+czo+bzy = 0 in wp, (33)
Zl‘w S K.

Then z1 and zo are identically zero in wp.
Proof. Since z;, € K, there exists (a;);,.,; € IRM such that 2y, =

M
> a;piXw. In view of (15), this gives
i=1

M
0
—;;—Azl—i—azl—i—dizzlaiqi:()in wr. (34)

Since d # 0 in wr, we deduce from (33); and (34) that
M
29 = Zaiqi n wp.
i=1

10



Then, it follows from (15)2 and (33)2 that

M 0z
Zaiei = —a—; — Azy + cz9g + bz =0 in wr.
i=1

Assumption (6) allows us to conclude that «; = 0,1 < i < M. Hence,
21 = 29 = 0 In wp. ]

To solve Problem (21) — (23) , we need a Carleman inequality adapted to the
constraint on the control.

2.2 Adapted Carleman inequality

In this section we use the global Carleman due to A. Fursikov in [2] (Theorem
7.1 p. 288) to establish an adapted Carleman inequality necessary for resolution
of the null controllability with constraint on the control (21)-(23).

Theorem 2.1 Let ¢, p and ¢ be defined by (11), (12) and (13) respectively.
Then there exist \g = Ao(Q,w') > 0, 10 = 70(Q,w’,T) > 0, and a positive

constant Cy = Co(Q,w') such that, for any X > \o,7 > 79 and s > —3, the
following inequality

/(1 0
o \ A |0t
0z
< hiad
_C()(T/Q‘atﬂ:AZ
(35)

holds for any z satisfying the Dirichlet homogeneous condition and such that the
right-hand side of the identity (35) is finite.

2
1
+ X Az + A72p? V2|2 4+ Mt pt |z|2> p* e 2 dydt

2 T
e 2 dxdt + /\474/ / |2 p?*t3e 20 dudt
0 w’

We adopt the following notations:

W = {(p1,92) € C=(Q) x C* (Q) ;o1 = w2 =0 on X},

LO(IO = ﬁ —A%

%
Lyp = -5 - Ap,

M (p,0) = Lo + ap + do,
N (p,0) = L{o + co + bep.

Proposition 2.3 Let Cy be the constant given by theorem 2.1. Assume that
T? [4Cy
4 \ M
A> X, T>11 8> -3 and r € [0,2[, there exists a positive constant C =

1/3
(2) holds, and that 71 = ) I(a, b, c,al)||ié3 > 1. Then, for any

11



C (T, ||(a,b,c,d)|, ,r V) such that for any ¢ = (¢1,¢p2) € W

1
/Qm(lsoﬂwglz)dwdt < C</ o1 |* e " dadt (36)

wr

+ [ o (M@ 1V @) dot).

Proof. The proof is deduced from Lemma 2.3 and Theorem 2.4 in [15]. W

1
As 72 and e~ are bounded in L>(Q), we get this next observability in-

equality for all p = (p1,p2) € W:

1
/6292<|<P12+<p2|2)dxdt < C/ lo1|? dadt
[ (37)
+ [ (M@ + W (o)) et

where C = C (T, ||(a,b,c,d)| o, ,7,v) > 0.

Remark 1 The latter inequality differs from that of C. Louis-Rose [15] because
we use the fact that e~ is bounded. This let us obtain the following adapted
Carleman inequality without defining e~ as in Proposition 2.6 in [15].

Proposition 2.4 Assume that (2) and (6) hold. Assume also that the hypothe-
ses of Proposition 2.3 hold. Then there exists a positive constant C such that

Jor any ¢ = (p1,02) €W,

1
/(0292 (|<P1|2 + \902|2) dedt < C (/ (1 — P<P1)Xw\2d:vdt (38)

T

+ [ (Mo + IV ()P dect)

Proof. The proof uses a well-known compactness-uniqueness argument and
inequality (37). Indeed, suppose that (38) does not hold. Then, there exists

(en = (¢1n, ¢2n))n€N* C W such that

/Q 9% (Isolnl2 + \<Pzn|2) dwdt = 1, (39a)
/w (10 — Pprn) Xl dudt < % (39b)
/QIM (on)|? dadt < % (39¢)
/Q W (ion) [ dacelt < % (39d)

12



We have

1 1
2 |P<P1an‘2 dxdt / o |(P§01n — Pin + Wln)Xw‘Q dxdt

wT T 02
1 2 1 2
wT wr
1
Since 2 is bounded, it follows from (39b) and (39a) that

1 2
/ 72 |Po1nXw|” dzdt < C.
wr
Because K is finite dimensional, there exists a positive real C’ such that
/ |Po1nxw|? dedt < C'. (40)
wr

As we can write,

1l 22 wr) < llp1n — Pernllzwr) + 1Pe1nllL2wr),

using (40) and (39b), we deduce that the subsequence (1, Xw)nen* is bounded
in L?*(wr). Consequently, we can extract a subsequence of (¢1,),,5-, still de-
noted (¢1n),cnw» Such that

©1n — 1 weakly in L?(wr). (41)
Hence, from the continuity and the compactness of P, we deduce that
Pypi, — Py strongly in L?(wr). (42)
In view of (39b), we have that
(@1n — Pp1,) — 0 strongly in L?(wr). (43)
It then follows from (42) and (43) that
©1n — Py strongly in L?(wr), (44)
which combining with (41) implies
Py = .
This means on the one hand that
p1 €K, (45)
and on the other hand that

©1n — @1 strongly in L*(wr) (46)

13



since (44) holds.
Now, in view of (39a) we have

1
/ Y7 pin| > dzdt <1, i=1,2.
Q

1
0727
L? (1, T — p) x ), Vi > 0. Therefore, there exists (¢1, p2) € [L? (1, T — p) x Q)]2
such that

Using the definition of we deduce that (¢in), , ¢ = 1,2 is bounded in

Vin — @; weakly in L? (u, T — p) x Q), i =1,2.

Consequently,
©in — @i in D'(Q), i=1,2.
This implies that

M (on) = M (@1,92) in D'(Q),

and
N (¢n) = N (@1,92) in D'(Q).

From (39c) and (39d), we have that
M (pn) — 0 strongly in L*(Q) (47)

and
N (¢n) — 0 strongly in L*(Q). (48)

It then follows from the uniqueness of the limit that

M (p1,02) =N (p1,92) =0 in Q. (49)

Using (45), (49) and lemma 2.3, we deduce that ¢1 = o = 0 in wy. Finally,
(46) allows us to conclude that

©1n — 0 strongly in L?(wr). (50)

Since ¢, = (Y1n, P2n) € W, it follows from the observability inequality (37)
that

1
/Qm(|w1n|2+<p2n|2)dxdt < C/ lo1n)? dadt

wT

[ (MG + W (o)) doat.

1
Then, (47), (48) and (50) yield that /Q 7 (|<p1n|2 + |<p2n|2) dxdt — 0 when

n — 4o00. The contradiction occurs thanks to condition (39a). The proof is
complete. ]
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2.3 Solution of the null controllability problem with con-
straint on the control

We proceed in tree steps.

Step 1. We prove there exists a solution (vg,yg = (y19,¥y20)) to the null
controllability problem with constraint on the control.

Consider the following symmetric bilinear form

/ M (e dxdt+/ N (@) N (o) dzdt (51)
+ / (p1 — Py1) (01 — Poy) ddt,

for any ¢ = (¢1,¢2) and o = (01,01) € W.
From (38), B is a scalar product on W. Let

w=w" (52)
be the completion of W under the norm

= VB(p,p) (53)

Then the space W = WB is a Hilbert space.

Let Hy be a Hilbert space defined by (4) and I € Hy. Let also 6 and wug be
respectively defined by (14) and (25). Then, using the estimate of Qug given by
(27), the Carleman estimate (38), the definition of the norm on W given by (53)
and the Cauchy-Schwartz inequality, we prove that the linear form £ defined on
W by

L:(p1,p2) = / (I = uoXw) prdadt (54)
Q

is continuous on W.
Hence, the Riesz representation theorem allows to say that there exists a
unique g = (Y10, v20) € W such that

B(pe, ) =L(p), VoW, (55)

Proposition 2.5 Assume that the hypotheses of Proposition 2.4 holds. Let
wo € W be the unique solution of (55). Set

yie = M(po), (56a)
20 = N(po), (56b)
v = —(p10 — Pyprg)- (56¢)

Then (vg, y10,Y20) is solution of (21) — (23).

15



Moreover,

ool < Cllillm,, (57a)
lellrzigy = Clillla, (57b)
ly20ll 1200y < CllUlla,, (57¢)

loll ey < Clilly, (57d)
M
where C' = C (Q I(a,bye,d)ll s> ||ei|%2(Q)> > 0.
i1
Proof. Since @19 € L?(wr) and vy = — (19 — Pp1g), we have vy € K.

In view of (55),

/ MopgMpdxdt —|—/ NN pdzdt +/ (¢10 — Pp1g) (01 — Pyr) dzdt
Q Q w

T

=/ (I = uoxw) prdzdt, Vo = (p1,92) € W.
Q

Replacing in this latter identity Mg by y19, Nwg by y2¢ and (—¢1 + Pp1) Xw
by vg, we deduce that

0 0
/ Y10 <—<’01 —Ap1 +ap; + d<p2> dzdt + / Y20 <_tp2 — Apa + cpa + b@l) dxdt
0 ot 0 ot

—/ vy prdadt = / (I — upxw) prdzdt, Vo = (p1,2) € W. (58)
wr Q

Taking successively in (58) @3 = 0 and ¢; € D(Q) and then ¢; = 0 and
w2 € D(Q), we successively obtain

0
/ Y10 (_<p1 —Apy + a@l) dxdt +/ bysgprdrdt = / (I + (vo — uo)Xxw) prdxdt,
Q ot Q Q

Vo1 € D(Q)
(59)
and
02 N
vao \ — 5 Ao +cpy | dedt 4 | dyigpedrdt =0, VYo, € D(Q),
Q Q
(60)
which after integration by parts over @ gives,
Byw —
pil o Ayrg + ayig + byag | dwdt =
o) t
/ (I + (vo — uo)Xw) prdadt, Vi1 € D(Q)
Q

and

0
/ P2 (gie — Ayzp + cyog + dy19> dadt =0, Vp; € D(Q) .
Q
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It then follows that

0y10

T Ayig9 + ayio + byse =1 + (vo — uo) Xw in Q (61)
and 9
zie — Ayag + cy29 + dy1p = 0 in Q. (62)
As y19, y10 € L? (Q) , we have 8;;/;9 € H'((0,7); L* (€2)). Thus,
_ 8y19 —1 i
Ayig = o + ay1g + by2g — 1 — (vo — uo) xw € H~' ((0,7); L* (2))

since | + (vg — up) Xw € L? (Q). Consequently,

(10, y20),, € H™((0,7): H-Y2 (D)) x B ((0,7) s H™V/2(T))

and
(aéyie’ 83%9>|E ceH! ((07T) L H 3/ (F))><H‘1 ((O,T) S HY? (F)) (see [6)).

Also, as y19 € L?(Q) ,y20 € L*(Q), we have Ayjg € L? ((O,T);H_2 (Q))
Thus, we have

0 _
g;" = Ayrp — ayro — byo + 1+ (0o — o) xw € L* ((0,T); H2 ().
Consequently,

2

(y10 (0) ,y20 (0)) € (H™! (Q))2 and (y1g (T) ,y20 (T)) € (H1 (). (63)

Multiplying (61) and (62) respectively by ¢ and o € C*> (@) such that
(¢1,92) = (0,0) on 3, then, integrating by parts over @, we obtain

/ (I + (vo — wo)Xw) prdxdt = / byaep1dadt
Q Q
0
+ / Y16 (—901 —Ap1 + ag01> dzdt
0 ot
+ {1 (1), y10 (T)) (), 111 (02)

(¢1(0), 910 (O)>H3(Q),H*1(Q)
¥1
+ <y19’$>H‘1((07T);H‘1/2(F))7H3((07T);H1/2(F))’

Vo1 € C™ (@) such that p1|g =0
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and

0 = /dyw@gdxdt
Q

0o
/ Y26 ( — Apy + cgag> dxdt
o ot

(02 (T) s y20 (1)) 2 (2,11 ()
= (2(0) y20 (0)) 12 (00), 111 ()

+ o+

P2
+ 2o, 5 im0y, 1Y (0,1 2 (1)
Vo € C* (Q) such that o]y =0,

which in view of relations (59) and (60) give

0 = (e1(T),v10 (D)) ma),m-1 ()

= (#1(0), 910 (0) H2(0),5-1(0)
i1 (64)
W10, 5 T (0T (), HY (0T HA2(D))

V1 € C® (@) such that p1|x =0
and
0 = (p2(T),v20 (T)) ). 51 (02)
= (2(0) y20 (0)) 2 (), -1 (02)
+ (Y20 6¢2> 1 - !
"oy (HTH0T)H 1/2()),H§ ((0,7); HY/2(T))»
Yy € C® ( ) such that pa|y, = 0.
)

Choosing successively in (64) and (65) ¢;, such that ¢;(0) = @;(T) =0 in Q,
then ¢;(0) =0 in Q, for i=1,2, we obtain

(65)

y19 =0, y29 =0on X, (66)
Y10 (T) =0, y2(T) =0 in Q (67)
and then
Y1 (0) =0,  y29(0) = in Q. (68)
It then follows from (61), (62), (66)-(68) that (ve,y1s,y2¢) is solution of

problem (21) — (23).

Set © = wo = (¢10, P20) in (55), then using definitions of the bilinear form
B, the linear form £ and the norm on W given respectively by (51), (54) and
(53), we have

losll3 / (- woxe)pro dadt

1

Q
1
16,2 — wox)ll g H9<p19

IN

L2(Q)

IN

)

L*(Q)

1
99019

(162112 g + 180l )
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which in view of (27) and the definition of the norm on Hy gives

1
lalliy < Cltll, || 510 ; (69)
L2(Q)
M
where C' = C <Q, I(a,b,c,d)|| ., Z ei|%2(Q)> .
i=1
In view of (38), it comes that
1
You| < Cligaly (70)
L*(Q)
Combining (69) and (70), we deduce that
lollw < Cllill - (71)

In view of the definition of the norm on W given by (53), we can write

2 2 2
||y19||L2(Q) + ||y20HL2(Q) + ||v‘9||L2(Q) = [leallfy -

Therefore, using (71), we obtain that

2 2 2
ly10ll72(q) + l1v20ll72(q) + vl 20y < 2%, -

from which we deduce (57b), (57¢) and (57d). ]

The adapted observability inequality(38) shows that the choice of the scalar
product on W is not unique. Thus there exists infinitely many controls functions
v such that (21) — (23) hold.

Set

E={ve K= such that (v,y1 (v),y2 (v)) satisfies (21) — (23)} .

Then € is non empty and it is clearly convex and closed in L? (wr). Therefore,
there exists a unique control variable ¥ such that

~112 . 2
1ol oy = min [loll o) - (72)

Particularly, we have
191172 gy < V6l 72 ()

which in view of (57d) implies that
19]] 22 ) < CllU - (73)

In the sequel, we characterize the control © using the penalization method.

Step 2. We prove by means of penalization method that there exists a
unique (7,71, y2) solution to problem of controllability with constraint on the
control (21)-(23).
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So, for ¢ > 0, let us consider the following optimal control problem. If
v e Kt let (y1 = y1(v),y2 = y2(v)) be the solution of (22). We know that

(11 = 11(v), 52 = ya2(v)) € (C([0,T); L2()) N L2((0,T); HE(€)))* and we can
define the functional

1 2 1 2 1 2
Je (v) = 5 olzagor) + % 1 (D)2 + % 1y2(T)[| 720 » (74)

The optimal control problem is then to find u. € K=+ such that

Je (ug) = inf J. (v). 75

(ue) = int J. (v (75)
As K+ is a closed convex of L?(wr), it is classical to show that there exists a

unique solution u. to (75) (see for instance [3], Chapter 5, Section 3). If we write

Ye = (Y1e, Y2 ) the solution to (22), state associated to u., using an adjoint state

2 .
pe = (p1c, p2c) € (C([0, T1; L*(Q)) N L2((0,T); H5(Q)))", the triplet (uc, ye, pe)
is solution of the following first order optimality system:

0 .
gie —Ayie tayie +by2e = I+ (e —u)xw in  Q,
0 .
gif - Ay25 + CY2e + dyle =0 m Q7 (76)
Yie = Y2¢ = 0 on 2,
y1:(0) = y2.(0) = 0 in  Q,
0
- p;& - Apls +apie + dp2s = 0 in Q7
- gie - Aan + cp2e + bpls = 0 in Qv
Ple = P2e = (i on Ev (77)
Ple (T) = %?Jle (T) in Q,
p2:(T) = gy2€ (T) on
and
Ue = (Ppls - pls)XwT S KJ_~ (78)

Multiplying the state equations (76)1 and (76)2 respectively by pi1. and pac
solutions of (77), then integrating by parts over @ and adding the resulting
identities, we obtain

1 1
SO + e (e = [ tovevat [ (e —wopprdat,

T

so that ) 1
g”ylE(T)HQL?(Q) + EHyQE(T)H%Q(Q) + el o) =

/lplsdxdt—i—/ uEPplexwdxdt—/ ugp1ede dt.
Q wr

wT
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Since u, € K=, this gives

2Je(ue) = /lplgd:z:dt—/ ugp1e dx dt.
Q w

T

In view of (78),
Ue = _(I - P)pleXw-

Thus,

1 1
e (D72 0) + Zly2e (D20 + 1T = PlprcllZeor) =

/lplsda;dtf/ ugp1e dz dt.
Q wr

This implies that

1 1
My (D2 0) + 21922 (DIZ2 @) + 1 = P)prclZzon,

(79)
< [z, + 10uoll2(m)] 15016l 12

Because p. = (p1c, p2c) solution to (77) belongs to W, we have from (38)
that

2

1
ngle < Cllpre — Porel2ae,drdt, (30)
L2(Q)

which combining with (79) gives

1 1
g||yle(T)||2L2(Q) + g”y%(T)H%?(Q) + (I = P)prcl 2oy
< C (lellzzy + 100l 2wor) ) I = P)prcllz2ur)-
It then follows from (27) and (28) that

1 1
e (D72 922 (M0 HI T =P)prcllZeor) < Clllla |(T=P)prell 2.

Hence, we deduce that

I = Phorcllizery < Clllla,, (81a)
l1e iy < CVEN,, (81b)
2ol ey < CVEllll, (81c)

laclZar < Clilli, (81d)

where C' > 0 is independent of e. Then from the properties of the system (76)
we get

HysH(Lz((O)T);Hé(Q)))Z < C”l”He (82)
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From (80), (81a), we have on the one hand,

1

5] <citm, (s3)

L2(Q)
1
and on the other hand, because 7 € L>(Q),
1
I

L2(wr)

Therefore, K being a finite dimensional vector subspace of L?(wr), we de-
duce that

1Pprell 2wy < CllE - (84)

Using again (81a) we obtain
P16l L2 oy < CllEI oz, - (85)
From the definition of the norm on W given by (53), we can write

pelliy = llp1e = Pprellie(urys

because (77); and (77)2 hold. Hence, using (81a), we deduce that

lloellw < Cll1| - (86)

Step 3. We pass to the limit in the first order optimality system (76)-(78).
In view of (81) and (82), we can extract subsequences of (v.) and (y.) =

((y12); (y22)) (still denoted (ve) and (y=) = ((y1c), (y2¢)) such that

ue — v weakly in L?(wr), (87)
(y1(T),y2-(T))  —  (0,0) strongly in L*(2) x L?(€), (88)
y1e — w10 weakly in L2 ((O,T) , Hé (Q)) , (89)
Y2e  — Y20 weakly in L ((0,7), H (). (90)
Proceeding as for yg = (y19, y26) at the pages 17 and 18, we prove that (vo, (Y10, ¥y20))
is solution of (21)-( 23).
Actually, (vo,y0) = (0,9) where ¢ is the optimal control solution of (72) and

§ = 4(0) is the solution to (22) corresponding to ¢. Indeed, from the expression
of J. given by (74), we can write

1
) Hus||i2(wT) < Je(ue).
Because (0, ) is solution of (21)-(23), it follows from (75) that

112
Je(ue) < ||U||L2(wT)'

N =
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We then deduce from these two latter inequalities that

1

1,
S ey < Jee) < 5 10022y - (91)

~—

Then, using (87) while passing in the limit in (91), we obtain that

A2
|\U||L2(wT)-

DN | =

1 ..
5 [v0llZ2 ) < liminf J (u) <

Consequently,

1001172 (0py < 18172 (0r)-
As © is solution of (72), we deduce that © = vy. And, since (22) admits a unique
solution, we have yo = ¢§. This means that (0, 3) satisfies

!

?—Aﬁl-ﬂl@lﬁ‘b% = I+ (0 —uw)xw inQ,
F At tdj = 0 in Q, (92)
=9 = 0 on %,
@1(0) = QQ(O) = 0 in Q.
Then from (88), we have that

Now, in view of (83) and (86), we can extract subsequences of (p1.) and
(p2e) (still denoted (p1.) and (p2:)) such that

pie — p1 weakly in D'(Q), (94a)
p2e  — p1 weakly in D'(Q), (94b)
pe — pweakly in W. (94c)

From (94a) and (94b), we have that

_agze — Apie +apy +dpye — —8—ptl — Ap1 +apy +dps  weakly in D'(Q),
—agig — Apye + cpoe +bpre — —% — Apy +cpy+bpr weakly in D'(Q).
It then follows from (77)1, (77)2 and (94c) that p = (p1, p2) € W satisfies
_(97,0; —Api+api+dp2 = 0 inQ,
38/;2 —Apa+cpa+bpr = 0 inQ, (95)
pr=p2 = 0 onZ.

In view of (85), we can write

p1e — p1 weakly in L?(wr).
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As P is a continuous and compact operator, we deduce that
Pp1. — Pp; weakly in Lz(wT).
Consequently,
ue = (P —I)p1exw — (P — I)p1xw weakly in L?(wr).
Thus
o=—(I—P)p1x, € K*. (96)

2.4 Proof of Theorem 1.3

We showed that there exists a unique control © = (P — I)p;xw € K+ such that
(0,9) verifies the null controllability problem with constraint on the control
(21)-(23). Consequently, Proposition 2.1 let us say that the control k = —ug +
(P —1I)p1Xw is solution of the null controllability problem with state constraints
(1), (7), (8). Furthermore, as k = ¥ — ug, using estimates (28) and (73), we
obtain

llz2 or) < Cll s, (07)

3 Study of Problem 2

We need some preliminary results, useful for the proof of Theorem 1.4.

3.1 Preliminary results

Lemma 3.1 Let ug be defined by relation (25). Then ug € Hy and the map Fy
defined by

Fi:Hy — L*wr) (98)
Il - Fl (l) = UO(Z)Xw

is linear and continuous.

Proof. Because ug € Ky C L?(wr), the application F} is well defined. From
relation (25) we have that the application F is linear, and continuous since (28)
holds. [ ]

Lemma 3.2 Let Hy be defined by (4). Then for any ! € Hy, the map

Fy:Hy — L*(wr) (99)
I = F(l)=—(p1— Pp1)Xw

where p = (p1,p2) = (p1 (1), p2 (1)) is solution of (95), is linear and continuous.
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Proof. Let W be the Hilbert space defined by (52). Set
Wo ={p = (¢1,92) € W =V x V such that M (p) =N () = 0}.
Then Wy is a Hilbert space since Wy is a closed subspace of W.

Multiplying the state equations (92); and (92), respectively by ¢1 and ¢o,
integrating them by parts over ) and adding the resulting identities, we obtain

/ o1l + (6(1) — uo(l))yo) dadt = / i (T)pr (T)d
Q Q
4 / 3o(T)a(T)dz,  Y(pr,p2) € W,
Q

which in view of (93) gives

/ ©10(1) dedt = / w1 (uo(D)xw — Ddxdt, V(p1,p2) € Wy. (100)
wT Q

On the other hand, using the fact that ©(l) € K and the definition of the
bilinear form B given by (51), we have

/ pro()dudt = / (Por(l) — pr(0))r dadt

/ (p1 — Pp1)(p1 — Poy) dudt
= B(p,p), Yo = (p1,92) € W.

As the linear form £ defined by (54) is also continuous on Wy, we deduce that
there exists a unique p = (p1, p2) € Wy solution of the variational problem:

B(p,p) = / (I = uoxw)pr ddt, Yo = (¢1,92) € Wy.
Q

Consequently, the map [ — p(l) is linear from Hy into L?(wr) and because
the operator I — P defined from L?(wr) into K+ C L?(wr) is linear, we deduce
that F» is linear. The continuity of Fj is straightforward from estimate (73). m

Remark 2 [t follows from the definitions of the maps Fy and Fy given respec-
tively by (98) and (99) that the map

F:Hy — LZ(UJT)

Lo F (1) = (600) — () Xe, (101)

is linear and continuous.
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3.2 Proof of Theorem 1.4

Let Hy be defined by (4) and (0,9 = (§1,9=2)) be the solution of (92), (93)
and (96)( or equivalently (1), (7) and (8)).
Consider the cost function J defined by

1 1112 1 2 2 N 2
J(l) = 5 Hyl (l) - ZdHLZ(Q) + 5 HyZ (Z) - ZdHL2(Q) + E HlHHg
from which we associate the minimization problem

B0, )

where U, is a non empty closed convex subspace of Hy.

From the properties of the map F' defined in Remark 2, we have that J
is strictly convex, continuous and coercive. Consequently, the optimal control
problem (102) has a unique control [ € U,q. To characterize this optimal control,
we write the Euler-Lagrange conditions:

%J([+>\<fo))‘ >0, VI € Uyg.

After some calculations, we obtain

(31 = 2bon (1 i))m@) +(ta = =hn (1 Z))LQ(Q)

e (103)
N (z,z _ z) >0, VI € Uyg,
Hy

where . R R
w = | — [ and the corresponding state (q1,q2) = (y1 (Z — l) Y2 (Z — l))
satisfy

oq

é?it —Agi+ag +bge = w4 (0(w) —up(w))x, in @,
% —Agtcgatdp = 0 in  Q,  (104)
q1 = Qg2 = on E,
q1 (0) = (2 (0) = 0 in Q.
To interpret (103), we use the adjoint system
0 . .
_gp; —Api+apr+dpy = 1—z) In Q,
—% —Aps+epa+bpr = G2—2z; in Q, (105)
pp=p2 = 0 on X,
p(T) =p2T) = 0 in Q.
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Because (§i — 2}, 92 — 23) € [L? (Q)]2 , system (105) has a unique solution
2
p = (p1,p2) € [C((0,T]; L*(92)) N L*((0,T); Hg ()]
Multiplying ( 105); and ( 105)s respectively by g1 and go, integrating them
by parts over ) and adding the resulting identities, we obtain

. . 0
/ @ (91 — 2q) dwdt +/ 62 (92 — #q) dxd / P <8ql — Agi +aqu + qu> dudt
Q Q Q

t

5]
+/ D2 <q2 —Agz +cq2 + dQ1> dzxdt,
o o

which in view of (104) gives

/ a1 (1 — zé) dxdt —|—/ a2 (92 — zg) drdt = / p1 (w4 (D(w) — up(w))xw) dedt
Q Q Q

= /plwdxdt+/ p1 F (w) dxdt,
Q wr

where F' is the application defined in Remark 2.
Let Hy' be the dual of Hilbert space Hy. Let also A~ be the isometric
isomorphism from Hy' to Hp.

‘We have
1
/plwdxdt = /(p1> (fw) dxdt
Q o \0
()
= -P1,w
9 H6/7H9
1
- (a1 (5) )
0 Ho
and

pi F(w)dzdt = F* (p1 Xw, )wdzdt

5\
S

F* (prxor) w>

Hg' ,Hg

1
AT (QF* (plwa)) w) :
Hy
Hence

_ _ /1 (1
/ @ (91— z3) dIdt+/ @ (95 — 27) dadt = <A ! <9p1> +A7t <9F (plwa)> 7w) .
Q Q Hoy

Il
e NS
SR

(106)
Finally, (103) and (106) give
1 1 ~ A
AT oprt S F" (Pixew,) | + NLI=1) 20, VI €Una.
0 0 H,
|
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