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We consider a controlled fractional diffusion wave equation involving Riemann-Liouville fractional derivative or order α ∈ (1, 2). First we prove by means of eigenfunction expansions the existence of solutions to such equations. Then we show that we can approach the fractional integral of order 2 -α of the state at final time by a desired state by acting on the control.

Using the first order Euler-Lagrange optimality, we obtain the characterization of the optimal control.

Introduction

Let n ∈ N * and Ω be a bounded open subset of R n with boundary ∂Ω of class C 2 . For the time T > 0, we set Q = Ω×]0, T [ and Σ = ∂Ω×]0, T [, and we consider the following fractional diffusion wave equation:

(1)

           D α
RL y(x, t) -∆y(x, t) = v(x, t) (x, t) ∈ Q y(σ, t) = 0 (σ, t) ∈ Σ I 2-α y(x, 0 + ) = y 0

x ∈ Ω d dt I 2-α y(x, 0 + ) = y 1

x ∈ Ω where 1 < α < 2, y 0 ∈ H 2 (Ω)∩H 1 0 (Ω), y 1 ∈ L 2 (Ω) and v ∈ L 2 (Q). I 2-α y(x, 0 + ) = lim t→0 I 2-α y(x, t) and d dt I 2-α y(x, 0 + ) = lim t→0 d dt I 2-α y(x, t) where the fractional integral I α of order α and the fractional derivative D α RL of order α are to be understood in the Riemann-Liouville sense.

There are many works on fractional diffusion wave equation. For instance, Mainardi et al. [START_REF] Mainardi | Some basic problem in continuum and statistical mechanics[END_REF][START_REF] Mainardi | The wright functions as solutions of time-fractional diffusion equation[END_REF] generalized the diffusion equation by replacing the first time derivative with a fractional derivative of order α. These authors proved that the process changes from slow diffusion to classical diffusion, then to diffusion-wave and finally to classical wave when α increases from 0 to 2. The fundamental solutions of the Cauchy problems associated to these generalized diffusion equation (0 < α < 2) are studied in [START_REF] Mainardi | The wright functions as solutions of time-fractional diffusion equation[END_REF][START_REF] Mainardi | Probability distributions generated by fractional diffusion equations[END_REF]. By means of Fourier-Laplace transforms, the authors expressed these solutions in term of Wright-type functions that can be interpreted as spatial probability density functions evolving in time with similarity properties. Agrawal [START_REF]Solution for a fractional diffusion-wave equation defined in a bounded domain[END_REF] studied the solutions for a fractional diffusion-wave equation defined in a bounded domain when the fractional time derivative is described in the Caputo sense. Using Laplace transform and finite sine transform technique, the author obtained the general solution in terms of Mittag-Leffler functions. Note also that the formulation of Mainardi et al. is extended to a fractional wave equation that contains a fourth order space derivative term by Agrawal [START_REF]A general solution for the fourth-order fractional diffusion-wave equation[END_REF]. In [START_REF] Sakamoto | Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems[END_REF], Yamamoto et al. studied by means of eigenfunctions the initial value/boundary value problems for fractional diffusion equation and apply the results to some inverse problems. We also refer to [START_REF] Mainardi | Model of diffusion waves in viscoelasticity based on fractal calculus[END_REF][START_REF] Wyss | The fractional diffusion equation[END_REF][START_REF] Metzler | Boundary value problems for fractional diffusion equations[END_REF][START_REF] Tadjeran | A second-order accurate numerical approximation for the fractional diffusion equation[END_REF][START_REF] Lucho | Some uniqueness and existence results for the initial-boundary value problems for a generalized time-fractional difusion equation[END_REF][START_REF] Baeumer | Inhomgeneous fractional diffusion equations[END_REF][START_REF] Mophou | Initial value/boundary value problem for composite fractional relaxation equation[END_REF] and the reference therein for more literature on fractional diffusion equations. Optimal control of fractional diffusion equations has also been studied by several authors. In [START_REF]Formulation of Euler-Lagrange equations for fractional variational problems[END_REF], Agrawal considered two problems, the simplest fractional variation problem and fractional variational problem of Lagrange. For both problems, the author developed the Euler-Lagrange type necessary conditions which must be satisfied for the given functional to be extremum. In [START_REF]Fractional variational calculus and the transversality conditions[END_REF], the Euler-Lagrange equations and the transversality conditions for fractional variational problems is presented by the same author when the fractional derivatives are defined in sense of Riemann-Liouville and Caputo. Frederico Gastao et al. [START_REF] Frederico Gastao | Fractional optimal control in the sense of caputo and the fractional Noether's Theorem[END_REF] used Agrawal's Euler-Lagrange equation and the Lagrange multiplier technique to obtain a Noether-like theorem for the fractional optimal control problem in the sense of Caputo. In [START_REF] Özdemir | Fractional optimal control problem of a distributed system in cylindrical coordinates[END_REF] Özdemir et al. investigated the fractional optimal control problem of a distributed system in cylindrical coordinates whose dynamics are defined in the Riemann-Liouville sense. The authors used the method of separation of variables to find the solution of the problem and the eigenfunctions to eliminate the terms containing space parameters in the one hand and, on the other hand to define the problem in terms of a set generalized state and controls variables. Following the same technique, Karadeniz [START_REF] Özdenir | Fractional optimal control problem of an axis-symetric diffusion-wave propogation[END_REF] et al. presented the formulation of an axis-symmetric fractional optimal control problem when the dynamic constraints of the system are given by a fractional diffusion-wave equation and the performance index is described with a state and a control function.

In [START_REF] Agrawal | Fractional optimal control problems with several state and control variables[END_REF], Baleanu et al. gave formulation for a fractional optimal control problems when the dimensions of the state and control variables are different from each other. In [START_REF] Jeličić | Optimality conditions and a solution scheme for fractional optimal control problems[END_REF], Jeličić et al. proposed necessary conditions for optimality in optimal control problems with dynamics by differential equations of fractional order. In Mophou [START_REF] Mophou | Optimal control of fractional diffusion equation[END_REF] applied the classical control theory to a fractional diffusion equation involving Riemann-Liouville fractional derivative in a bounded domain. The author showed that the considered optimal control problem has a unique solution. In [START_REF] Dorville | Optimal control of a nonhomogeneous Dirichlet boundary fractional diffusion equation[END_REF], Dorville et al. showed that existence and uniqueness of a boundary the following boundary fractional optimal control when the dynamic constraints is described by a fractional diffusion equation involving Riemann-Liouville fractional derivative. We also refer to [START_REF]Fractional Optimal Control of a Distributed System Using Eigenfunctions[END_REF][START_REF] Biswas | Free final time fractional optimal control problems[END_REF][START_REF] Rapaić | Optimal control of a class of fractional heat diffusion systems[END_REF][START_REF] Guo | The Necessary Conditions of Fractional Optimal Control in the Sense of Caputo[END_REF][START_REF] Mophou | Optimal control of a fractional diffusion equation with state constraints[END_REF] and references therein for more literature on optimal control of fractional evolution equations.

In this paper, we are concerned with the following optimal control problem: find the control u ∈ U ad such that

J(u) = inf v∈U ad 1 2 ∥I 2-α y(v, T ) -z d ∥ 2 L 2 (Ω) + N 2 ∥v∥ 2 L 2 (Q)
where N > 0, z d ∈ L 2 (Ω), I 2-α is the Riemann-Liouville fractional integral of order 2 -α, 0 < α < 2 and U ad is a closed convex subset of L 2 (Q). To solve this problem, we first prove by means of eigenfunction expansions that the controlled system (1) has a solution. Then we show that the optimal control problem has also a unique solution that we characterize by means of first order Euler-Lagrange optimality condition and adjoint state which dynamic is described by the right Caputo fractional derivative of order α. The rest of this paper is organized as follows. Section 2 is devoted to some definitions and preliminary results. In Section 3, we prove the existence and uniqueness of the solution of (1) using the eigenfunction expansion . In section 4, we show that the considered optimal control problem holds and give the optimality systems that characterize the optimal control.

Preliminaries

Definition 2.1. [START_REF] Oldham | The Fractional Calculus[END_REF] Let f : R + → R be a continuous function on R + , and α > 0. Then the expression

I α f (t) = 1 Γ(α) ∫ t 0 (t -s) α-1 f (s)ds, t > 0
is called the Riemann-Liouville integral of order α of the function f .

Definition 2.2. [27]

Let f : R + → R. The left Riemann-Liouville fractional derivative of order α ∈ (1, 2) of f is defined by

D α RL f (t) = 1 Γ(2 -α) . d 2 dt 2 ∫ t 0 (t -s) 1-α f (s)ds, t > 0,
provided that the integral exists.

Definition 2.3. [2] Let f : R + → R. The left Caputo fractional derivative of order α ∈ (1, 2) of f is defined by (2) D α C f (t) = 1 Γ(2 -α) ∫ t 0 (t -s) 1-α f ′′ (s)ds, t > 0,
provided that the integral exists. Definition 2.4. [START_REF] Podlubny | Fractional Differential Equations[END_REF]27,[START_REF] Kilbas | Theory and Applications of Fractional Differential Equations[END_REF] Let f : R + → R, 1 < α < 2. The right Caputo fractional derivative of order α of f is defined by

(3) D α C f (t) = 1 Γ(2 -α) ∫ T t (s -t) 1-α f ′′ (s)ds, 0 < t < T,
provided that the integral exists. Lemma 2.5. [START_REF] Podlubny | Fractional Differential Equations[END_REF]27,[START_REF] Kilbas | Theory and Applications of Fractional Differential Equations[END_REF] Let T > 0, v ∈ C 2 ([0, T ]) and α ∈ (1; 2), m ∈ N. Then for t ∈ [0, T ], we have the following properties:

D α RL v(t) = d 2 dt 2 I 2-α v(t) (4a) D α RL I p αv(t) = v(t); (4b) D p C I α v(t) = v(t); (4c) I α D p C u(t) = u(t) -u(0) -tu ′ (0); (4d) I α D α RL u(t) = u(t) - t α-1 Γ(α) (I 2-α u) ′ (0) - t α-2 Γ(α -1) I 2-α u(0). ( 4e 
)
Definition 2.6. [START_REF] Podlubny | Fractional Differential Equations[END_REF] For t ∈ R + , α > 0 and β > 0 we denote by,

(5) E α,β (t) = ∞ ∑ k=0 t k Γ(αk + β) ,
the two-parameters Mittag-Leffler function and we set

E α,1 (t) = E α (t).
Lemma 2.7. [START_REF] Podlubny | Fractional Differential Equations[END_REF] For a positive integer n, λ > 0 and α > 0, we have,

(6) d n dt n E α (-λt α ) = -λt α-n E α,α-n+1 (-λt α ), t > 0. and (7) d dt (tE α,2 (-λt α )) = E α (-λt α ), t > 0. Theorem 2.8. [1] If α < 2, β is an arbitrary real number, µ is such that πα 2 < µ < min{π, πα}
and C is a real constant, then

(8) |E α,β (z)| ≤ C 1 + |z| , (µ ≤ |arg(z)| ≤ π), |z| ≥ 0.
One can prove as in [START_REF] Mophou | Optimal control of fractional diffusion equation[END_REF] the following result obtained by a simple integration by part.

Lemma 2.9. For any φ ∈ C ∞ (Q), we have

(9) ∫ T 0 ∫ Ω (D α RL y(x, t) -∆y(x, t))φ(x, t)dxdt = ∫ Ω φ(x, T ) d dt (I 2-α y(x, T ))dx - ∫ Ω φ(x, 0) d dt (I 2-α y(x, 0 + ))dx- ∫ Ω I 2-α y(x, T )φ ′ (x, T )dx + ∫ Ω I 2-α y(x, 0)φ ′ (x, 0)dx+ ∫ T 0 ∫ ∂Ω y(σ, s) ∂φ ∂ν (σ, s)dσdt - ∫ T 0 ∫ ∂Ω ∂y ∂ν (σ, s)φ(σ, s)dσdt+ ∫ Ω ∫ T 0 y(x, t)(D α C φ(x, t) -∆φ(x, t))dxdt.
From Lemma 2.9 we have the following result:

Corollary 2.10. Let D(0, T ) be the set of C ∞ functions on (0, T ) with compact support. Then for all φ ∈ D(0, T ),

∫ T 0 D α RL y(t)φ(t)dt = ∫ T 0 y(t)D α C φ(t)dt
where D α C is right fractional Caputo derivative.

Existence and uniqueness results

In this section, we prove the existence and uniqueness of a weak solution of the following fractional diffusion wave equation:

(10)            D α RL y(x, t) -∆y(x, t) = v(x, t), (x, t) ∈ Q y(σ, t) = 0, (σ, t) ∈ Σ I 2-α y(0) = y 0 (x), x ∈ Ω d dt I 2-α y(0) = y 1 (x), x ∈ Ω where 1 < α < 2, y 0 ∈ H 2 (Ω) ∩ H 1 0 (Ω), y 1 ∈ L 2 (Ω) and v ∈ L 2 (Q). Set (φ, ψ) L 2 (Ω) = ∫ Ω φ(x)ψ(x)dx, ∀φ, ψ ∈ L 2 (Ω)
the inner scalar product on L 2 (Ω) and denote by ∥.∥ L 2 (Ω) the associate norm. Set also [START_REF] Mainardi | Model of diffusion waves in viscoelasticity based on fractal calculus[END_REF] a(φ, ψ) =

∫ Ω ∇φ(x)∇ψ(x)dx, ∀φ, ψ ∈ H 1 0 (Ω).
Then the bilinear form a(., .) defines an inner scalar product on H 1 0 (Ω). We denote by [START_REF] Mainardi | The wright functions as solutions of time-fractional diffusion equation[END_REF] ∥φ∥ 2

H 1 0 (Ω) = a(φ, φ), the associate norm.
On the other hand, we know that it admits real eigenvalues 0

< λ 1 ≤ λ 2 ≤ λ 3 ≤ • • • with λ k → ∞ as k → ∞ since (-∆) is a compact self-adjoint operator on L 2 (Ω). Moreover there exists an orthonormal basis {w k } ∞ k=1 of L 2 (Ω)
, where

w k ∈ H 1 0 (Ω) is an eigenfunction corresponding to λ k : -∆w k = λ k w k . This means that (13) a(w k , p) = λ k (w k , p) L 2 (Ω) , ∀p ∈ H 1 0 (Ω).
Furthermore, the sequence

{ w k √ λ k } ∞ k=1
being an orthonormal basis of H 1 0 (Ω) for the scalar product a(., .), we have [START_REF]Solution for a fractional diffusion-wave equation defined in a bounded domain[END_REF] ∀ψ ∈ H 1 0 (Ω), ∥ψ∥

H 1 0 (Ω) = +∞ ∑ i=1 λ i (ψ, w i ) 2 L 2 (Ω) .
Now, we assume that y ∈ C ∞ ( Q) and we introduce, for all t ∈ (0, T ), the functions y(t) : x ∈ Ω → y(x, t) and v(t) : x ∈ Ω → v(x, t). Then multiplying the first equation of (10) by a function u ∈ H 1 0 (Ω) and integrating by part over Ω, we obtain (15)

∫ Ω D α RL y(t) u dx + ∫ Ω ∇y(t)∇udx = ∫ Ω v(t) u dx,
which can be rewritten as

D α RL (y(t), u) L 2 (Ω) + a(y(t), u) = (v(t), u) L 2 (Ω) . Hence for all t ∈ (0, T ), Problem (10) becomes (16)            D α RL (y(t), u) L 2 (Ω) + a(y(t), u) = (v(t), u) L 2 (Ω) in Ω, ∀u ∈ H 1 0 (Ω), y(t) = 0 on ∂Ω I 2-α y(0) = y 0 in Ω d dt I 2-α y(0) = y 1 in Ω
We then consider the following problem:

Given 1 < α < 2, y 0 ∈ H 2 (Ω)∩H 1 0 (Ω), y 1 ∈ L 2 (Ω) and v ∈ L 2 (Q), find y ∈ L 2 ((0, T ), H 1 0 (Ω)), (17a) I 2-α y ∈ C([0, T ]; H 1 0 (Ω)), (17b) d dt (I 2-α y) ∈ C([0, T ]; L 2 (Ω)) (17c) such that ∀u ∈ H 1 0 (Ω), D α RL (y(t), u) L 2 (Ω) + a(y(t), u) = (v(t), u) L 2 (Ω) ∀t ∈ (0, T ), ( 18a 
)
I 2-α y(0) = y 0 in Ω and d dt I 2-α y(0) = y 1 in Ω. (18b) Theorem 3.1. Let 1 < α < 2.
Let also a(., .) be the bilinear form defined by [START_REF] Mainardi | Model of diffusion waves in viscoelasticity based on fractal calculus[END_REF].

Then the problem (17) -( 18) has a weak solution y given by: 

y(t) = +∞ ∑ i=1 { t α-2 E α,α-1 (-λ i t α )y 0 i + t α-1 E α,α (-λ i t α )y 1 i } w i + +∞ ∑ i=1 {∫ t 0 (t -s) α-1 E α,α (-λ i (t -s) α )v i (s)ds } w i .
where λ i is the eigenvalue of the operator -∆ corresponding to the eigenfunction

w i , y 0 i = (y 0 , w i ) L 2 (Ω) , y 1 i = (y 1 , w i ) L 2 (Ω) and v i (t) = (v(t), w i ) L 2 (Ω)
are respectively the i-th component of y 0 , y 1 

and v(t) in the orthonormal basis {w

i } ∞ i=1 of L 2 (Ω).
Proof. Replacing u by w i in (18a) and using the fact that a(y(t), w i ) = λ i (y(t), w i ) L 2 (Ω) = λ i y i , we deduce from (18) that y i = (y(t), w i ) L 2 (Ω) is solution of the fractional ordinary differential equation:

       D α RL y i (t) + λ i y i (t) = v i (t), ∀t ∈ (0, T ), I 2-α y i (0) = y 0 i , d dt I 2-α y i (0) = y 1 i . (20) 
Using the Laplace transform, one can easily prove that the solution of ( 20) is given by:

y i (t) = t α-2 E α,α-1 (-λ i t α )y 0 i + t α-1 E α,α (-λ i t α )y 0 i + ∫ t 0 (t -s) α-1 E α,α (-λ i (t -s) α )v i (s)ds.
Hence, we obtain [START_REF]Formulation of Euler-Lagrange equations for fractional variational problems[END_REF] since

y(t) = +∞ ∑ i=1 y i (t)w i . Theorem 3.2. Let 3/2 < α < 2.
Let also a(., .) be the bilinear form defined by [START_REF] Mainardi | Model of diffusion waves in viscoelasticity based on fractal calculus[END_REF]. Then the problem ( 17)-( 18) has a unique solution.

Proof. Let V m be a subspace of H 1 0 (Ω) generated by w 1 , w 2 , . . . , w m . Consider the following approximate problem associated to ( 17) - [START_REF]A general formulation and solution scheme for fractional optimal control problems[END_REF]: find

y m : t ∈ [0, T ] → y m (t) ∈ V m solution to D α RL (y m (t), u) L 2 (Ω) + a(y m (t), u) = (v(t), u) L 2 (Ω) , ∀u ∈ V m , (21a) I 2-α y m (0) = y 0 m , d dt I 2-α y m (0) = y 1 m , ( 21b 
)
where

y 0 m = m ∑ i=1 y 0 i w i and y 1 m = m ∑ i=1 y 1 i w i .
Then proceeding as for the proof of Theorem 3.1, we show that ( 22)

y m (t) = m ∑ i=1 { t α-2 E α,α-1 (-λ i t α )y 0 i + t α-1 E α,α (-λ i t α )y 1 i } w i . + m ∑ i=1 {∫ t 0 (t -s) α-1 E α,α (-λ i (t -s) α )v i (s)ds } w i = m ∑ i=1 y i (t)w i .
is solution of the problem (21). To complete the proof of Theorem 3.2, we proceed in two steps.

Step 1: We show that the sequences (y m ), (I 2-α y m ) and

( d dt (I 2-α y m )
) are respectively Cauchy sequences in L 2 ((0, T ); H 1 0 (Ω)),C([0, T ]; H 1 0 (Ω)) and C([0, T ]; L 2 (Ω)). Let m and p be two integers such that p > m ≥ 1. We have

y p (t) -y m (t) = p ∑ i=m+1 y i (t)w i .
Therefore, we can write,

a(y p (t) -y m (t), y p (t) -y m (t)) = p ∑ i=m+1 λ i [y i (t)] 2 ≤ 2 p ∑ i=m+1 λ i t 2α-4 E 2 α,α-1 (-λ i t α )|y 0 i | 2 + 2 p ∑ i=m+1 λ i t 2α-2 E 2 α,α (-λ i t α )|y 1 i | 2 + 2 p ∑ i=m+1 λ i {∫ t 0 (t -s) α-1 E α,α (-λ i (t -s) α )v i (s)ds } 2
Then, we have,

||y p (t) -y m (t)|| 2 L 2 ((0,T );H 1 0 (Ω)) = ∫ T 0 a(y p (t) -y m (t), y p (t) -y m (t))dt ≤ A p + B p + C p
where

A P = 2 p ∑ i=m+1 λ i |y 0 i | 2 ∫ T 0 t 2α-4 E 2 α,α-1 (-λ i t α )dt B P = 2 p ∑ i=m+1 λ i |y 1 i | 2 ∫ T 0 t 2α-2 E 2 α,α (-λ i t α )dt C P = 2 p ∑ i=m+1 λ i ∫ T 0 {∫ t 0 (t -s) α-1 E α,α (-λ i (t -s) α )v i (s)ds } 2 dt
Using ( 8) and the fact that 3/2 < α < 2, we obtain,

A p ≤ 2C 2 T 2α-3 2α -3 p ∑ i=m+1 λ i |y 0 i | 2 , B p ≤ 2C 2 T α-1 α -1 p ∑ i=m+1 |y 1 i | 2
And

C P ≤ 2 p ∑ i=m+1 λ i ∫ T 0 (∫ t 0 |v i (s)| 2 ds ) (∫ t 0 (t -s) 2α-2 E 2 α,α (-λ i (t -s) α )ds ) dt ≤ 2 p ∑ i=m+1 λ i ∫ T 0 C 2 λ i (∫ t 0 |v i (s)| 2 ds ) (∫ t 0 (t -s) α-2 ds ) dt ≤ 2 ∫ T 0 C 2 t α-1 (α -1) dt p ∑ i=m+1 (∫ t 0 |v i (s)| 2 ds ) ≤ 2 C 2 T α (α -1) p ∑ i=m+1 ( ∫ T 0 |v i (s)| 2 ds ) . Thus ( 23 
)
||y p (t) -y m (t)|| 2 L 2 ((0,T );H 1 0 (Ω)) ≤ 2C 2 T 2α-3 (2α -3) p ∑ i=m+1 λ i |y 0 i | 2 + 2C 2 T α-1 (α -1) p ∑ i=m+1 |y 1 i | 2 + 2 C 2 T α α(α -1) p ∑ i=m+1 ( ∫ T 0 |v i (t)| 2 dt ) .
We can write, (24)

I 2-α (y p (t) -y m (t)) = p ∑ i=m+1 Z 1i (t)y 0 i w i + p ∑ i=m+1 Z 2i (t)y 1 i w i + p ∑ i=m+1 Z 2i (t)w i ,
where

Z 1i (t) = 1 Γ(2-α) ∫ t 0 (t -s) 1-α s α-2 E α,α-1 (-λ i s α )ds, Z 2i (t) = 1 Γ(2 -α) ∫ t 0 (t -s) 1-α s α-1 E α,α (-λ i s α )ds, Z 3i (t) = 1 Γ(2 -α) ∫ t 0 (t -s) 1-α [∫ s 0 (s -τ ) α-1 E α,α (-λ i (s -τ ) α )v i (τ )dτ ] ds.
Observing that

∫ t 0 (t -s) 1-α s αk+α-2 ds = t αk Γ(2 -α)Γ(αk + α -1) Γ(αk + 1) , ∫ t 0 (t -s) 1-α s αk+α-1 ds = t αk+1 Γ(2 -α)Γ(αk + α) Γ(αk + 2) , ∫ t τ (t -s) 1-α (s -τ ) αk+α-1 ds = (t -τ ) αk+1 Γ(2 -α)Γ(αk + α) Γ(αk + 2) ,
and using the definition of the Mittag-Leffler function given by ( 5), we obtain that

Z 1i (t) = E α (-λ i t α ), (25a) Z 2i (t) = tE α,2 (-λ i t α ), (25b) Z 3i (t) = ∫ t 0 (t -s)E α,2 (-λ i (t -s) α )v i (s)ds. (25c)
Hence using ( 6) and ( 7), we get

d dt Z 1i (t) = -λ i t α-1 E α,α (-λ i t α ), (26a) d dt Z 2i (t) = E α (-λ i t α ), (26b) d dt Z 3i (t) = ∫ t 0 E α (-λ i (t -s) α )v i (s)ds. (26c)
From ( 24) and ( 25),

I 2-α (y p (t) -y m (t)) = p ∑ i=m+1 E α (-λ i t α )y 0 i w i + p ∑ i=m+1 tE α,2 (-λ i t α )y 1 i w i + p ∑ i=m+1 {∫ t 0 v i (τ )(t -τ )E α,2 (-λ i (t -τ ) α )dτ } w i ,
which in view of ( 8), ( 12) and the Cauchy-Schwartz inequality gives

||I 2-α (y p (t) -y m (t))|| 2 H 1 0 (Ω) = a(I 2-α (y p (t) -y m (t)), I 2-α (y p (t), y m (t))) ≤ 2C 2 p ∑ i=m+1 λ i |y 0 i | 2 + 2C 2 T 2-α p ∑ i=m+1 |y 1 i | 2 + 2C 2 T 3-α 3 -α p ∑ i=m+1 ∫ T 0 |v i (τ )| 2 dτ and (27) 
sup

t∈[0,T ] ||I 2-α (y p (t) -y m (t))|| H 1 0 (Ω) ≤ Π ( p ∑ i=m+1 λ i |y 0 i | 2 ) 1/2 + Π ( p ∑ i=m+1 |y 1 i | 2 ) 1/2 + Π p ∑ i=m+1 ( ∫ T 0 |v i (τ )| 2 dτ ) 1/2
, where Π = sup

( C √ 2, C √ 2T 2-α , C √ 2T 3-α (3 -α)
)

.

Using ( 24) and ( 26), we obtain that

d dt I 2-α (y p (t) -m (t)) 2 L 2 (Ω) ≤ 2 p ∑ i=m+1 λ 2 i |y 0 i | 2 [t 2α-2 E 2 α,α (-λ i t α )] + 2 p ∑ i=m+1 |y 1 i | 2 E 2 α (-λ i t α ) + 2 p ∑ i=m+1 ∫ t 0 v i (s)E α (-λ i (t -s) α )ds 2 ,
which in view of [START_REF] Dorville | Optimal control of a nonhomogeneous Dirichlet boundary fractional diffusion equation[END_REF] gives

d dt I 2-α (y p (t) -y m (t)) 2 L 2 (Ω) ≤ 2C 2 T 2α-2 p ∑ i=m+1 λ 2 i |y 0 i | 2 + 2C 2 p ∑ i=m+1 |y 1 i | 2 + 2C 2 p ∑ i=m+1 ∫ T 0 |v i (s)| 2 ds.
Consequently,

sup

t∈[0,T ] d dt I 2-α (y p (t) -y m (t)) L 2 (Ω) ≤ √ 2CT α-1 ( p ∑ i=m+1 λ 2 i |y 0 i | 2 ) 1/2 + √ 2C ( p ∑ i=m+1 |y 1 i | 2 ) 1/2 + √ 2C ( p ∑ i=m+1 ∫ T 0 |v i (s)| 2 ds ) 1/2 . As y 0 ∈ H 2 (Ω) ∩ H 1 0 (Ω), y 1 ∈ L 2 (Ω) and v ∈ L 2 (Q), we have lim m,p→∞ ( p ∑ i=m+1 ∫ T 0 |v i (s)| 2 ds ) 1/2 = 0, lim m,p→∞ ( p ∑ i=m+1 λ i |y 0 i | 2 ) 1/2 = 0, lim m,p→∞ ( p ∑ i=m+1 λ 2 i |y 0 i | 2 ) 1/2 = 0, lim m,p→∞ ( p ∑ i=m+1 |y 1 i | 2 ) 1/2 = 0.
Then, it follows from ( 23),( 27) and ( 28) that (y m ), (I 2-α y m ) and

( d dt I 2-α y m )
are Cauchy in L 2 ((0, T ); H 1 0 (Ω)), C([0, T ]; H 1 0 (Ω)) and C([0, T ]; L 2 (Ω)) respectively. We deduce that

y m → y in L 2 ((0, T ); H 1 0 (Ω)), ( 29 
)
I 2-α y m → I 2-α y in C([0, T ]; H 1 0 (Ω)), (30) d dt I 2-α y m → d dt I 2-α y in C([0, T ], L 2 (Ω)) (31)
Step 2: We prove that y is solution of the problem ( 17)- [START_REF]A general formulation and solution scheme for fractional optimal control problems[END_REF].

Let φ ∈ D(0, T ). Let also µ ≥ 1 be an integer. Then from (21a), we have for all m ≥ µ,

∫ T 0 (v(t), u) L 2 (Ω) φ(t)dt = ∫ T 0 D α RL (y m (t), u) L 2 (Ω) φ(t)dt + ∫ T 0 a(y m (t), u)φ(t)dt, ∀u ∈ V µ ,
which according to the Corollary 2.10 , gives

∫ T 0 (v(t), u) L 2 (Ω) φ(t)dt = ∫ T 0 (y m (t), u) L 2 (Ω) D α C φ(t)dt + ∫ T 0 a(y m (t), u)φ(t)dt, ∀u ∈ V µ .
Therefore passing to the limit while using ( 29), we get

∫ T 0 (v(t), u) L 2 (Ω) φ(t)dt = ∫ T 0 (y(t), u) L 2 (Ω) D α C φ(t)dt + ∫ T 0 a(y(t), u)φ(t)dt, ∀u ∈ V µ , since ∪ µ≥1 V µ is dense in H 1 0 (Ω), we can write ∫ T 0 (v(t), u) L 2 (Ω) φ(t)dt = ∫ T 0 (y(t), u) L 2 (Ω) D α C φ(t)dt + ∫ T 0 a(y(t), u)φ(t)dt, ∀u ∈ H 1 0 (Ω),
Hence, using again the Corollary 2.10, we obtain that,

∫ T 0 (v(t), u) L 2 (Ω) φ(t)dt = ∫ T 0 D α RL (y(t), u) L 2 (Ω) φ(t)dt + ∫ T 0 a(y(t), u)φ(t)dt, ∀u ∈ H 1 0 (Ω),
This means that,

∀u ∈ H 1 0 (Ω), (v(t), u) L 2 (Ω) = D α RL (y(t), u) L 2 (Ω) + a(y(t), u), ∀t ∈ (0, T ).
From ( 30) and ( 31), we get that

I 2-α y m (0) = m ∑ i=1 y 0 i w i → +∞ ∑ i=1 y 0 i w i = I 2-α y(0) in H 1 0 (Ω)
and

d dt I 2-α y m (0) = m ∑ i=1 y 1 i w i → +∞ ∑ i=1 y 1 i w i = d dt I 2-α y(0) in L 2 (Ω).
This implies that I 2-α y(0) = y 0 and

d dt I 2-α y(0) = y 1 . Theorem 3.3. Let 3/2 < α < 2.
Then the solution y of problem ( 17)-( 18) verifies the following estimates

(32) ∥y∥ L 2 ((0,T );H 1 0 (Ω)) ≤ ∆ ( ∥y 0 ∥ H 1 0 (Ω) + ∥y 1 ∥ L 2 (Ω) + ∥v∥ L 2 (Q) ) (33) ∥I 2-α y∥ C([0,T ];H 1 0 (Ω)) ≤ Π ( ∥y 0 ∥ H 1 0 (Ω) + ∥y 1 ∥ L 2 (Ω) + ∥v∥ L 2 (Q) ) (34) d dt I 2-α y C([0,T ];L 2 (Ω)) ≤ Θ ( ∥y 0 ∥ H 2 (Ω) + ∥y 1 ∥ L 2 (Ω) + ∥v∥ L 2 (Q) )
where

∆ = max ( C √ 2T 2α-3 (2α -3) , C √ T α-1 (α -1) , C √ 2T α (α -1) ) , Π = sup ( C √ 2, C √ 2T 2-α , C √ 2T 3-α (3 -α)
)

and

Θ = max ( √ 2CT α-1 , √ 2C ) Proof.
In view of Theorem 3.2, the solution of problem ( 17)-( 18) is given by

y(t) = +∞ ∑ i=1 { t α-2 E α,α-1 (-λ i t α )y 0 i + t α-1 E α,α (-λ i t α )y 1 i } w i + +∞ ∑ i=1 {∫ t 0 (t -s) α-1 E α,α (-λ i (t -s) α )v i (s)ds } w i
Thus using the calculations obtained in the proof of Theorem 3.2, pages 9-12, we have

∫ T 0 ||y(t)|| 2 H 1 0 (Ω) dt = ∫ T 0 a(y(t), y(t))dt ≤ 2C 2 T 2α-3 (2α -3) +∞ ∑ i=1 λ i |y 0 i | 2 + 2C 2 T α-1 (α -1) +∞ ∑ i=1 |y 1 i | 2 + 2 C 2 T α α(α -1) +∞ ∑ i=1 ( ∫ T 0 |v i (t)| 2 dt ) .

This means that

||y p (t) -y m (t)|| 2 L 2 ((0,T );H 1 0 (Ω)) ≤ 2C 2 T 2α-3 (2α -3) ∥y 0 ∥ 2 H 1 0 (Ω) + 2C 2 T α-1 (α -1) ∥y 1 ∥ 2 L 2 (Ω) + 2 C 2 T α α(α -1) ∥v∥ 2 L 2 (Q) .
Hence we deduce [START_REF] Baeumer | Inhomgeneous fractional diffusion equations[END_REF]. Using ( 24), ( 25), ( 8), ( 12) and the Cauchy-Schwartz inequality, we get

||I 2-α y(t)|| 2 H 1 0 (Ω) = a(I 2-α y(t), I 2-α y(t)) ≤ 2C 2 +∞ ∑ i=1 λ i |y 0 i | 2 + 2C 2 T 2-α +∞ ∑ i=1 |y 1 i | 2 + 2C 2 T 3-α 3 -α +∞ ∑ i=1 ∫ T 0 |v i (τ )| 2 dτ and sup t∈[0,T ] ||I 2-α y(t)|| H 1 0 (Ω) ≤ Π ( ∥y 0 ∥ H 1 0 (Ω) + ∥y 1 ∥ 2 L 2 (Ω) + ∥v∥ 2 L 2 (Q))
)

where

Π = sup ( C √ 2, C √ 2T 2-α , C √ 2T 3-α (3 -α)
)

.

Finally, using ( 24), ( 26) and ( 8), we obtain that

d dt I 2-α y(t) 2 L 2 (Ω) ≤ 2C 2 T 2α-2 +∞ ∑ i=1 λ 2 i |y 0 i | 2 + 2C 2 +∞ ∑ i=1 |y 1 i | 2 + 2C 2 +∞ ∑ i=1 ∫ T 0 |v i (s)| 2 ds. Consequently, sup t∈[0,T ] d dt I 2-α y(t) L 2 (Ω) ≤ Θ ( ∥y 0 ∥ H 2 (Ω) + ∥y 1 ∥ L 2 (Ω) + ∥v∥ L 2 (Q)) )
where

Θ = max ( √ 2CT α-1 , √ 2C
)

We need the following results to solve the optimal control problem. 

         D α C p(x, t) -∆p(x, t) = 0 (x, t) ∈ Q p(σ, t) = 0 (x, t) ∈ Σ p(x, 0) = 0 x ∈ Ω p ′ (x, 0) = p 1 x ∈ Ω
has a unique solution p ∈ C([0, T ]; L 2 (Ω)). Moreover, there exists a positive constant C such that

(36) ∥p∥ C([0,T ];L 2 (Ω)) + ∂p ∂t C([0,T ];L 2 (Ω)) ≤ C∥p 1 ∥ 2 L 2 (Ω) .
Proof. Set

T T p(t) = p(T -t), t ∈ (0, T ). Then d 2 dt 2 T T p(t) = p ′′ (T -t) = T T p ′′ (t)
. The left fractional Caputo derivative is defined by,

D α C p(t) = 1 Γ(2 -α) ∫ T t (s -t) 1-α p ′′ (s)ds.
Making the change of variable t → T -t, we obtain,

D α C p(T -t) = 1 Γ(2 -α) ∫ T T -t (t -(T -s)) 1-α p ′′ (s)ds = 1 Γ(2 -α) ∫ t 0 (t -u) 1-α p ′′ (T -u)du. This is implies that (37) D α C T T p(t) = D α C T T p(t).
Now, making the change of variable t → T -t, in (35) and using (37), we deduce that (38)

         D α C p(x, τ ) -∆p(x, τ ) = 0 (x, τ ) ∈ Q p(σ, τ ) = 0 (σ, τ ) ∈ Σ p(x, 0) = 0 x ∈ Ω p ′ (x, 0) = p 1 x ∈ Ω
since τ = T -t ∈ (0, T ). Therefore using Theorem 2.3 in [START_REF] Sakamoto | Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems[END_REF] we deduce that there exists a unique p ∈ C([0, T ]; L 2 (Ω)) solution of (38) such that

∥p∥ C([0,T ];L 2 (Ω)) + ∂p ∂t C([0,T ];L 2 (Ω)) ≤ C∥p 1 ∥ 2 L 2 (Ω) .
Since (38) is equivalent to (35), there exists a unique p ∈ C([0, T ]; L 2 (Ω)) solution of (35) such that (36) holds.

Remark 3.5. Since [0, T ] is bounded, the solution p of (35) belongs to L 2 (Q) and satisfies

(39) ∥p∥ L 2 (Q) ≤ C∥p 1 ∥ 2 L 2 (Ω) .

Optimal Control

In this section, we consider the following problem:

(40)

           D α RL y(x, t) -∆y(x, t) = v(x, t) (x, t) ∈ Q y(x, t) = 0 (x, t) ∈ Σ I 2-α y(x, 0) = y 0 x ∈ Ω d dt I 2-α y(x, 0) = y 1 x ∈ Ω
where y 0 ∈ H 2 (Ω)∩H 1 0 (Ω), y 1 ∈ L 2 (Ω) and the control v ∈ U ad , a closed convex set of L 2 (Q). In view of Theorem 3.2, we know that y = y(v, x, t) ∈ L 2 ((0, T ); H 1 0 (Ω)) and

I 2-α y ∈ C([0, T ]; H 1 0 (Ω). Hence I 2-α y(v, T ) ∈ H 1 0 (Ω) ⊂ L 2
(Ω) and we define the functional (41)

J(v) = 1 2 ∥I 2-α y(v, T ) -z d ∥ 2 L 2 (Ω) + N 2 ∥v∥ 2 L 2 (Q)
where z d ∈ L 2 (Ω) and N > 0.

We are concerned with the optimal control problem: find u ∈ U ad such that, (42)

J(u) = inf v∈U ad J(v).
Theorem 4.1. Assume that the state y = y(v, x, t) is solution of the system (40).

Then there exists a unique optimal control u in U ad such that (42) holds.

Proof. Let (v n ) ∈ U ad be a minimizing sequence such that,

(43) lim n→+∞ J(v n ) = inf v∈U ad J(v).
Then, there exists C > 0 such that

J(v n ) ≤ C.
It then follows from the structure of J given by (41) that

∥v n ∥ L 2 (Q) ≤ C (44a) ∥I 2-α y(v n , T )∥ L 2 (Ω) ≤ C (44b)
Moreover y n = y(v n , x, t) being solution of (40), y n satisfies:

D α RL y n (x, t) -∆y n (x, t) = v n (x, t) (x, t) ∈ Q, (45a) y n (σ, t) = 0 (σ, t) ∈ Σ, (45b) I 2-α y n (x, 0) = y 0 x ∈ Ω, (45c) d dt I 2-α y n (x, 0) = y 1 x ∈ Ω (45d)
and in view of Theorem 3.3, we have

∥y n ∥ L 2 ((0,T );H 1 0 (Ω)) < C, (46a) ∥I 2-α y n ∥ L 2 ((0,T );H 1 0 (Ω)) < C, (46b) ∥ d dt I 2-α y n ∥ L 2 ((0,T );L 2 (Ω)) < C. (46c)
Now using (44a) and (45a), we deduce that, (47)

∥D α RL y n -∆y n ∥ L 2 (Q) ≤ C.
Hence, from (44a), ( 47) and ( 46), we can extract subsequences of (v n ) and (y n ) (still called (v n ) and (y n )) such that

v n ⇀ u weakly in L 2 (Q), (48a) D α RL y n -∆y n ⇀ δ weakly in L 2 (Q), (48b) y n ⇀ y weakly in L 2 (Q), (48c) I 2-α y n ⇀ γ weakly in L 2 ([0, T ], H 1 0 (Ω)), (48d) d dt I 2-α y n ⇀ η weakly inL 2 (Q). (48e) U ad being convex closed subset of L 2 (Q), we have, u ∈ U ad
Set D(Q), the set of C ∞ function on Q with compact support and denote by D ′ (Q) its dual. Then multiplying (45a) by φ ∈ D(Q) and integrating by part over Q, we obtain

∫ T 0 ∫ Ω (D α RL y n (x, t) -∆y n (x, t))φ(x, t)dxdt = ∫ T 0 ∫ Ω v n (x, t) φ(x, t)dxdt ∀φ ∈ D(Q).
Therefore using Lemma 2.9, we get

∫ T 0 ∫ Ω y n (x, t)(D α C φ(x, t)-∆φ(x, t))dxdt = ∫ T 0 ∫ Ω v n (x, t) φ(x, t)dxdt ∀φ ∈ D(Q).
Passing to the limit in this latter identity while using (48c) and (48a), we obtain that

∫ T 0 ∫ Ω y(x, t)(D α C φ(x, t) -∆φ(x, t))dxdt = ∫ T 0 ∫ Ω u(x, t) φ(x, t)dxdt ∀φ ∈ D(Q),
which by using again Lemma 2.9 gives

∫ T 0 ∫ Ω (D α RL y(x, t) -∆y(x, t))φ(x, t)dxdt = ∫ T 0 ∫ Ω u(x, t) φ(x, t)dxdt ∀φ ∈ D(Q).
This implies that (49) D α RL y(x, t) -∆y(x, t) = u(x, t) (x, t) ∈ Q.

On the other hand, we have

∫ Ω ∫ T 0 I 2-α y n (x, t)φ(x, t)dtdx = ∫ Ω ∫ T 0 y n (x, s) ( 1 Γ(2 -α) ∫ T s (t -s) 1-α φ(x, t)dt ) dsdx ∀φ ∈ D(Q).
Passing to the limit in this latter identity while using (48c) and (48d), we get We have y ∈ L 2 ((0, T ); H 1 0 (Ω)) and I 2-α y ∈ L 2 ((0, T ); H 1 0 (Ω)). Therefore, D α RL y = d 2 dt 2 I 2-α y ∈ H -2 ((0, T ); H 1 0 (Ω)) ⊂ H -2 ((0, T ); L 2 (Ω)) on the one hand, and on the other hand ∆y ∈ H -2 ((0, T ); L 2 (Ω)) because we have ∆y = D α RL y -u. Thus for almost all t ∈ (0, T )), y(t) ∈ L 2 (Ω) and ∆y ∈ L 2 (Ω). Hence we deduce that y|∂Ω and ∂y ∂v |∂Ω exist and belong respectively to H -1/2 (∂Ω) and to ∂y ∂v (t) ∈ H -3/2 (∂Ω). (see [START_REF] Lions | Contrôle optimal de systèmes gouvernés par des équations aux dérivées partielles[END_REF]).

On the other hand, y being in L 2 ((0, T ); H 1 0 (Ω)) and u in L 2 ((0, T ); L 2 (Ω)), we deduce that ∆y ∈ L 2 ((0, T ); H -1 (Ω)) and consequently D α RL y = d 2 dt 2 I 2-α y = ∆y + u ∈ L 2 ((0, T ); H -2 (Ω)). Hence in view of (51), we have that I Combining (59) with (62), we (58).

Proposition 3 . 4 .

 34 Let 1 < α < 2 and p 1 ∈ L 2 (Ω). Denote by D α C p, the right Caputo fractional derivative of the function p. Then problem: (35)

  s) 1-α φ(x, t)dt) α y(x, t)φ(x, t)dtdx ∀φ ∈ D(Q).This implies thatI 2-α y(x, t) = γ in Q.Hence (48d) can be rewritten as(50) I 2-α y n ⇀ I 2-α y weakly in L 2 ([0, T ], H 1 0 (Ω)).From (50), we have thatd dt I 2-α y n ⇀ d dt I 2-α y weakly in D ′ (Q)and because of (48e), (51) d dt I 2-α y n ⇀ d dt I 2-α y = η weakly in L 2 (Q)

  2-α ∈ C([0, T ]; L 2 (Ω)) and d dt I 2-α y ∈ C([0, T ]; H -1 (Ω)) (see[START_REF] Lions | Problèmes aux limites non homogènes et applications[END_REF]).Now multiplying (45a) by a function φ ∈ C ∞ (Q) with φ |∂Ω = 0 and φ(x, T ) = φ ′ (x, T ) = 0 in Ω, and integrating by part overQ, z(x, t) -∆z(x, t) = w(x, t) (x, t) ∈ Q z(σ, t) = 0 (σ, t) ∈ Σ I 2-α z(x, 0) = 0 x ∈ Ω d dt I 2-α z(x, 0) = 0 x ∈ Ω.To interpret (59), we consider the following adjoint system:x, t) -∆p(x, t) = 0 (x, t) ∈ Q, p(σ, t) = 0 (σ, t) ∈ Σ, p(x, T ) = 0 x ∈ Ω, p ′ (x, T ) = I 2-α y(u, T ) -z d x ∈ Ω.In view of Proposition 3.4 and Remark 3.5, we have thatp ∈ C([0, T ], L 2 (Ω)) ⊂ L 2 (Q) since I 2-α y(u, T ) -z d ∈ L 2 (Q). Multiplying (60) by the solution p of (61), we obtain that RL z(x, t) -∆z(x, t))p(x, t)dxdt= -∫ Ω p ′ (x, T )(I 2-α y(u, T ) -z d )I 2-α z(w, T )dx., t)p(x, t)dxdt = -∫ Ω p ′ (x, T )(I 2-α y(u, T ) -z d )I 2-α z(w, T )dx.

supported by the Région Martinique (F.W.I)..

since (45c) and (45d) hold. Thus, passing to the limit this latter identity while using (48a) and (48c), we have that

which in view of Lemma 2.9 gives

Using (49), this latter identity is reduced to

Choosing successively in (52) φ such that φ(x, 0) = φ ′ (x, 0) = 0 and φ(x, 0) = 0, we deduce that (53) y(x, t) = 0 (x, t) ∈ Σ, (54)

From (49), ( 53), ( 54) and (55), we have y = y(u, x, t) is solution of the system (40). It then follows from the lower semi-continuity of the functional J and

Hence in view of (43), we get

From the strict convexity of J, we obtain the uniqueness of the optimal control u.

Theorem 4.2. Let u be solution of (42). Then there exists p ∈ L 2 (Q) such that (u, y, p) verifies the following optimality systems:

Proof. We express the Euler-Lagrange optimality conditions which characterize u:

After some calculations, we obtain