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On the Extension of Pseudo-BooleanFuntions for the Aggregation of InteratingCriteriaMihel GRABISCH�LIP6University of Paris VI4, Plae Jussieu, 75252 Paris, Franeemail Mihel.Grabish�lip6.frChristophe LABREUCHEThomson-CSF, Corporate Researh LaboratoryDomaine de Corbeville, 91404 Orsay Cedex, Franeemail flabreuheg�lr.thomson-sf.omJean-Claude VANSNICKUniversity of Mons-HainautPlae du Par, 20, B-7000 Mons, Belgiumemail Jean-Claude.Vansnik�umh.a.beAbstratThe paper presents an analysis on the use of integrals de�ned fornon-additive measures (or apaities) as the Choquet and the �Sipo�sintegral, and the multilinear model, all seen as extensions of pseudo-Boolean funtions, and used as a means to model interation betweenriteria in a multiriteria deision making problem. The emphasis isput on the use, besides lassial omparative information, of infor-mation about di�erene of attrativeness between ats, and on theexistene, for eah point of view, of a \neutral level", allowing to in-trodue the absolute notion of attrative or repulsive at. It is shown�Corresponding author. On leave from Thomson-CSF, Corporate Researh Lab, 91404Orsay Cedex, Frane 1



that in this ase, the �Sipo�s integral is a suitable solution, although notunique. Properties of the �Sipo�s integral as a new way of aggregatingriteria are shown, with emphasis on the interation among riteria.Keywords: multiriteria deision making, Choquet integral, apaity, inter-ative riteria, negative sores1 IntrodutionLet us onsider a deision making problem, of whih the struturing phasehas led to the identi�ation of a family C = fC1; : : : ; Cng of n fundamentalpoints of view (riteria), whih permits to meet the onerns of the deisionmaker (DM) in harge of the above mentioned (deision making) problem.We suppose hereafter that, during the struturing phase, one has assoiatedto eah point of view Ci, i = 1; : : : ; n, a desriptor (attribute), that is, aset Xi of referene levels intended to serve as a basis to desribe plausibleimpats of potential ations with respet to Ci.We make also the assumption that, for all i = 1; : : : ; n, there exists in Xitwo partiular elements whih we all \Neutrali" and \Goodi", and denoted0i and 1i respetively, whih have an absolute signi�ation: 0i is an elementwhih is thought by the DM to be neither good nor bad, neither attrative norrepulsive, relatively to his onerns with respet to Ci, and 1i is an elementwhih the DM onsiders as good and ompletely satisfying if he ould obtainit on Ci, even if more attrative elements ould exist on this point of view.The pratial identi�ation of these absolute elements has been performed inmany real appliations, see for example [6, 8, 9℄.In multiriteria deision aid, after the struturing phase omes the eval-uation phase, in whih for eah point of view Ci, intra-riterion informationis gathered (i.e. attrativeness for the DM of the elements of Xi with respetto point of view Ci), and also, aording to an aggregation model hosenin agreement with the DM, inter-riteria information. This information,whih aims at determining the parameters of the hosen aggregation model,generally onsists in some information on the attrativeness for the DM ofsome partiular elements of X = X1� � � ��Xn. These elements are seletedso as to enable the resolution of some equation system, whose variables arepreisely the unknown parameters of the aggregation model.In this paper, of whih aim is primarily theoretial, we adopt with respetto the lassial approah desribed above, a rather onverse attitude. Speif-ially, we do not suppose to have beforehand a given aggregation model, butrather to have some information onerning the attrativeness for the DM ofa partiular olletion of elements of X. Then we study how to extend this2



information on the preferene of the DM to all elements of X. This kindof problem an be alled an identi�ation of an aggregation model whih isompatible with available information.The paper is organized as follows. In setion 2, we introdue the basiassumptions we make onerning the knowledge on the attrativeness forthe DM of partiular elements of X. Setion 3 shows that this kind ofinformation is ompatible with the existene of some interation phenomenabetween points of view, and introdues some de�nitions related to the oneptof interation. The problem of extending the information on preferenesassumed to be known on a subpart of X, to the whole set X, is addressedin setion 4, and appears to be the problem of identifying an aggregationmodel ompatible with given intra-riterion and inter-riteria information.In setion 5, we show that this problem amounts to de�ne the extension of agiven pseudo-Boolean funtion, and we introdue some possible extensions,whih we relate to already known models in the literature (setion 6). Setion7 briey studies the properties of these models, and onludes about theirusefulness in this ontext. In setion 8, we show an equivalent set of axiomsfor our onstrution, and in setion 9, we address the question of uniity ofthe solution.This paper does not deal with the pratial aspets of the methodologywe are proposing, i.e. how to obtain the neessary information for buildingthe aggregation model. However, the MACBETH approah [7℄ ould be mostuseful for extrating the information from the DM.Lastly, we want to mention that one of the reasons whih have motivatedthis researh is the reent development of multiriteria methods based onapaities and the Choquet integral [2℄, whih seems to open new horizons[12, 18, 20℄. In a sense, this paper aims at giving a theoretial foundation ofthis type of approah in the framework of multiriteria deision making.2 Basi assumptionsWe present two basi assumptions, whih are the starting point of our on-strution. We denote the index set of riteria by N = f1; : : : ; ng. Consider-ing two ats x; y 2 X, and A � N , we will often use the notation (xA; yA)to denote the ompound at z where zi = xi if i 2 A and yi otherwise. ^;_denote respetively min and max operators.
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2.1 Intra-riterion assumptionWe onsider the partiular subsets Xi, i = 1; : : : ; n, of X, whih are de�nedby: Xi = f(01; : : : ; 0i�1; xi; 0i+1; : : : ; 0n)jxi 2 Xig:Using our onvention, ats in Xi are denoted more simply by (xi; 0fig).We assume to have an interval sale denoted vi on eah Xi, whih quan-ti�es the attrativeness for the DM of the elements of Xi (assumption A1).In order to simplify the notation, we denote for all i 2 N , ui : Xi �! R,xi 7! ui(xi) = vi(xi; 0fig). Thus, assumption A1 means exatly the follow-ing:(A1.1) 8xi; yi 2 Xi, ui(xi) � ui(yi) if and only if for the deision maker(xi; 0fig) is at least as attrative as (yi; 0fig).(A1.2) 8xi; yi; zi; wi 2 Xi, suh that ui(xi) > ui(yi) and ui(wi) > ui(zi), wehave ui(xi)� ui(yi)ui(wi)� ui(zi) = k; k 2 R+if and only if the di�erene of attrativeness that the DM feels between(xi; 0fig) and (yi; 0fig) is equal to k times the di�erene of attrative-ness between (wi; 0fig) and (zi; 0fig).We reognize here information onerning the intra-riterion preferenes(i.e. the attrativeness of elements of Xi relatively to Ci), hene the nameof the assumption, whih is a lassial type of information in multiriteriadeision aid. Observe however that our presentation avoids the introdutionof any independene assumption (preferential or ardinal). This is possiblesine we have introdued in every set Xi an element 0i with an absolutemeaning in terms of attrativeness. This strong meaning allows us to �xnaturally ui(0i) = 0,1 i = 1; : : : ; n, and thus to onsider ui as a ratio sale onXi. We an also take advantage of the remaining degree of freedom to �x thevalue of ui(1i). Contrarily to the ase of ui(0i), no partiular value, providedit is positive, is mandatory here. However, sine all elements 1i, i = 1; : : : ; nhave all the same absolute meaning, we have to hoose for ui(1i) the samenumerial value for all i 2 f1; : : : ; ng, whih implies that the only admissible1whih is tehnially always possible, sine an interval sale is de�ned up to a positiveaÆne transformation �(z) = �z + �, � > 0, whih means that we have two degrees offreedom. 4



transformations of the sales ui, i 2 N , are of the form �(ui) = � � ui, where� > 0 does not depend on i. Thanks to the elements 0i and 1i, the intervalsales ui beome thus ommensurable ratio sales. In the sequel, we take asa onvention ui(1i) = 1, for i = 1; : : : ; n.2.2 Inter-riteria assumptionWe onsider now another subset of X, denoted Xef0;1g, ontaining the fol-lowing elements: Xef0;1g := f(1A; 0A)jA � Ng;where (1A; 0A) denotes an at (x1; : : : ; xn) with xi = 1i if i 2 A and xi = 0iotherwise, following our onvention.We assume to have an interval sale uf0;1g on Xef0;1g, quantifying theattrativeness for the DM of all elements in this set (assumption A2). Thismeans that:(A2.1) for all A;B � N , uf0;1g(1A; 0A) � uf0;1g(1B; 0B) if and only if for theDM (1A; 0A) is at least as attrative as (1B; 0B).(A2.2) for all A;B;C;D � N suh that uf0;1g(1A; 0A) > uf0;1g(1B; 0B) anduf0;1g(1C ; 0C) > uf0;1g(1D; 0D), we haveuf0;1g(1A; 0A)� uf0;1g(1B; 0B)uf0;1g(1C ; 0C)� uf0;1g(1D; 0D) = k; k 2 R+if and only if the di�erene of attrativeness felt by the DM between(1A; 0A) and (1B; 0B) is k times the di�erene of attrativeness be-tween (1C ; 0C) and (1D; 0D).As we did for the ase of intra-riterion information, we use the two availabledegrees of freedom of an interval sale to �x:uf0;1g(1;; 0N) = uf0;1g(01; : : : ; 0n) :=0uf0;1g(1N ; 0;) = uf0;1g(11; : : : ; 1n) :=1:Having in mind the meaning of 0i, i = 1; : : : ; n, it is natural to imposeuf0;1g(01; : : : ; 0n) = 0. The sale uf0;1g is then a ratio sale. Let us pointout that any stritly positive value ould have been used instead of 1 for thevalue of uf0;1g(11; : : : ; 1n). However, it is onvenient to impose that the valueof uf0;1g(11; : : : ; 1n) is equal to the ommon value hosen for the ui(1i).5



At this point, let us remark that both ui(1i) and uf0;1g(1i; 0fig) quantifythe attrativeness of at (1i; 0fig) for the DM, however their values are ondi�erent ratio sales, but with the same 0 sine ui(0i) = uf0;1g(01; : : : ; 0n) =0. This means that there exists Ki > 0 suh that uf0;1g(xi; 0fig) = Kiui(xi)for all xi 2 Xi. An important onsequene of this fat is that, in order tohave ompatibility between these sales (and hene between assumptions A1and A2), we must haveuf0;1g(1i; 0fig) > uf0;1g(01; : : : ; 0n) = 0; 8i;otherwise no onstant Ki ould exist. This is not restritive on a pratialpoint of view as soon as eah point of view really orresponds to a onernof the DM.We suppose in addition that whenever A � B, the at (1B; 0B) is atleast as attrative as (1A; 0A), whih is also a natural requirement.Under these onditions, and introduing the set funtion � : P(N) �![0; 1℄ by �(A) := uf0;1g(1A; 0A) (1)we have de�ned a non-additive measure, or fuzzy measure, [36℄ or apaity [2℄,with the additional requirement that �(fig) > 0. Indeed, a apaity is anynon negative set funtion suh that �(;) = 0, �(N) = 1, and �(A) � �(B)whenever A � B.3 Interation among riteriaExept the natural assumptions above for � (monotoniity and �(i) > 0for all i 2 N), no restrition exists on �. Let us take 2 riteria to showthe range of deision behaviours we an obtain with apaities. We supposein addition that �(f1g) = �(f2g), whih means that the DM is indi�erentbetween (11; 02) and (01; 12) (i.e. equal importane of riteria, see setion4), and onsider 4 ats x; y; z; t suh that (see �gure 1):� x = (01; 02)� y = (01; 12)� z = (11; 12)� t = (11; 02) 6



Clearly, z is more attrative than x (written z � x), but preferenes overother pairs may depend on the deision maker. Due to the de�nition ofapaities, we an range from the two extremal following situations (reallthat �(f1; 2g) = 1 is �xed):extremal situation 1 (lower bound): we put �(f1g) = �(f2g) = 0, whihis equivalent to the preferenes x � y � t, where � means indi�erene(�gure 1, left).extremal situation 2 (upper bound): we put �(f1g) = �(f2g) = 1, whihis equivalent to the preferenes y � z � t (�gure 1, middle).Note that the �rst bound annot be reahed due to the ondition �(i) > 0.The exat intermediate situation is �(f1g) = �(f2g) = 1=2, meaning thatz � y � t � x (�gure 1, right), and the di�erene of attrativeness betweenx and y, t respetively is the same than between z and y, t respetively.The �rst ase orresponds to a situation where the riteria are omplemen-tary, sine both have to be satisfatory in order to get a satisfatory at. Oth-erwise said, the DM makes a onjuntive aggregation. We say that in suh aase, whih an be haraterized by the fat that �(f1; 2g) > �(f1g)+�(f2g),there is a positive interation between riteria.The seond ase orresponds to a situation where the riteria are substi-tutive, sine only one has to be satisfatory in order to get a satisfatory at.Here, the DM aggregates disjuntively. We say that in suh a ase, whihan be haraterized by the fat that �(f1; 2g) < �(f1g)+ �(f2g), there is anegative interation between riteria.In the third ase, where we have �(f1; 2g) = �(f1g)+�(f2g), we say thatthere is no interation among riteria, they are non interative.
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The information we assume to have at hand onerning the attrativenessof ats for the DM is thus perfetly ompatible with the interation situationsbetween riteria, situations whih are worth to onsider on a pratial pointof view, but up to now very little studied.In the above simple example, we had only 2 riteria. In the general ase,we use the following de�nition proposed by Murofushi and Soneda [28℄.De�nition 1 The interation index between riteria i and j is given by:Iij := XK�Nnfi;jg (n� jKj � 2)!jKj!(n� 1)! [�(K [ fi; jg)� �(K [ fig)��(K [ fjg) + �(K)℄: (2)The de�nition of this index has been extended to any oalition A � N ofriteria by Grabish [14℄:I(A) := XB�NnA (n� jBj � jAj)!jBj!(n� jAj+ 1)! XK�A(�1)jAj�jKj�(K [B); 8A � N: (3)We have Iij = I(fi; jg). When A = fig, I(fig) is nothing else than theShapley value of game theory [34℄. Properties of this set funtion has beenstudied and related to the M�obius transform [5℄. Also, I has been hara-terized axiomatially by Grabish and Roubens [19℄, in a way similar to theShapley index. Note that Iij > 0 (resp. < 0;= 0) for omplementary (resp.substitutive, non interative) riteria.4 Construting the modelWe will only onsider in this paper the general type of aggregation modelintrodued by Krantz et al. [25, Chap. 7℄:At x = (x1; : : : ; xn) is at least as attrative as at y = (y1; : : : ; yn)if and only ifF (u1(x1); : : : ; un(xn)) � F (u1(y1); : : : ; un(yn));where the aggregation funtion F : Rn �! R is stritly inreasing in all itsarguments.Indeed, this type of model is largely used, and has the advantage of beingrather general, and to lead to a omplete and transitive preferene relationon X. 8



The entral question we deal with in this paper is the identi�ation of anaggregation funtion F whih is ompatible with intra-riterion and inter-riteria information de�ned by assumptions A1 and A2, and satis�es naturalonditions. Spei�ally, we are looking for a mapping F : Rn �! R of theform F (u1(x1); : : : ; un(xn)) = u(x1; : : : ; xn)satisfying the following requirements (in whih the presene of � is due tothe fat that the ui are ommensurable ratio sales):(i) ompatibility with intra-riteria information (assumption A1)� 8i 2 N and 8xi; yi 2 Xi,ui(xi) � ui(yi), u(xi; 0fig) � u(yi; 0fig)whih beomes, in terms of F (due to the onsequenes of assump-tion A1 on the sale):ui(xi) � ui(yi),F (0; : : : ; 0; �ui(xi); 0; : : : ; 0) � F (0; : : : ; 0; �ui(yi); 0; : : : ; 0) (4)for all � > 0. In fat, the onstant � here is useless, sine for any� > 0, ui(xi) � ui(yi), �ui(xi) � �ui(yi).� 8i 2 N and 8wi; xi; yi; zi suh that ui(wi) > ui(xi) and ui(yi) >ui(zi), u(wi; 0fig)� u(xi; 0fig)u(yi; 0fig)� u(zi; 0fig) = ui(wi)� ui(xi)ui(yi)� ui(zi)whih beomes in terms of F :F (0; : : : ; 0; �ui(wi); 0; : : : ; 0)� F (0; : : : ; 0; �ui(xi); 0; : : : ; 0)F (0; : : : ; 0; �ui(yi); 0; : : : ; 0)� F (0; : : : ; 0; �ui(zi); 0; : : : ; 0) =ui(wi)� ui(xi)ui(yi)� ui(zi) (5)for all � > 0.(ii) ompatibility with inter-riteria information (assumption A2)9



� 8A;B � N , we haveuf0;1g(1A; 0A) � uf0;1g(1B; 0B), u(1A; 0A) � u(1B; 0B)whih beomes, in terms of F :uf0;1g(1A; 0A) � uf0;1g(1B; 0B), F (�1A; 0A) � F (�1B; 0B)for all � > 0, where for any A � N , (1A; 0A) is the vetor whoseomponent xi is 1 whenever i 2 A, and 0 otherwise.� 8A;B;C;D � N , with uf0;1g(1A; 0A) > uf0;1g(1B; 0B) anduf0;1g(1C ; 0C) > uf0;1g(1D; 0D), we have:u(1A; 0A)� u(1B; 0B)u(1C ; 0C)� u(1D; 0D) = uf0;1g(1A; 0A)� uf0;1g(1B; 0B)uf0;1g(1C ; 0C)� uf0;1g(1D; 0D)whih beomes, in terms of F :F (�1A; 0A)� F (�1B; 0B)F (�1C ; 0C)� F (�1D; 0D) = uf0;1g(1A; 0A)� uf0;1g(1B; 0B)uf0;1g(1C ; 0C)� uf0;1g(1D; 0D)(6)for all � > 0.(iii) onditions related to absolute informationWe impose that sales u and uf0;1g oinide on partiular ats orre-sponding to absolute information, namely:� u(01; : : : ; 0n) = uf0;1g(01; : : : ; 0n) := 0, whih leads toF (0; : : : ; 0) = 0.� u(11; : : : ; 1n) = uf0;1g(11; : : : ; 1n) := 1, whih leads toF (1; : : : ; 1) = 1. However, remember that the hoie of value\1" was arbitrary when building sales ui and uf0;1g, and any pos-itive onstant � an do. Hene, we should satisfy more generallyF (�; : : : ; �) = �, 8� > 0.(iv) monotoniity of F . This property is a fundamental requirement forany aggregation funtion:8(t1; : : : ; tn); 8(t01; : : : ; t0n) 2 Rn ;t0i � ti; i = 1; : : : ; n) F (t01; : : : ; t0n) � F (tn; : : : ; tn):The monotoniity is strit if all inequalities are strit. Remark thatmonotoniity entails the �rst ondition of (i), namely formula (4).10



Let us remark that, as suggested in (iv) above, that F an be viewed asan aggregation funtion, and thus our problem amounts to the searh of anaggregation model whih is ompatible with intra- and inter-riteria infor-mation de�ned by assumptions A1 and A2.At this point, let us make two remarks.� the reader may wonder about the very spei� form of inter-riteria in-formation asked for, that is, attrativeness of ats of the form (1A; 0A).These ats present the double advantage to be non related with realats, whih permits to avoid any emotional answer from the DM, andto have, taking into aount the de�nition of 0i and 1i, a very learmeaning, and onsequently, to be very well pereived and understood.They are urrently used in real world appliations of the MACBETHapproah [6, 8, 9℄ . Until now, these appliations were done in theframework of an additive aggregation model. In suh a ase, only atsof the form (1i; 0fig) have to be introdued.What we are doing here is merely a generalization, onsidering notonly single riteria, but any oalition of riteria. This natural general-ization from singletons to subsets is indeed the key to the modelling ofinteration, as explained in setion 3. In this sense, the global utilityu(1A; 0A), whih is a apaity (see setion 2.2), ould represent theimportane of oalition A to make deision.� it an be observed that onditions (ii) and (iii) above entail that thefuntion F : Rn �! R to be determined must oinide with � onf0; 1gn, i.e.: F (1A; 0A) = �(A); 8A � N:Indeed, just onsider equation (6) with B = D = ;; C = N , and use(iii), and de�nition of � (eq. (1)).Thus, F must be an extension of � on Rn . In other words, the assign-ment of importane to oalitions is tightly linked with the evaluationfuntion. This fat is well known in the MCDM ommunity (see e.g.Mousseau [27℄), but the argument above puts it more preisely. Thenext setion addresses in full detail the problem of extending apaities.5 Extension of pseudo-Boolean funtionsThe problem of extending a apaity an be niely formalized through theuse of pseudo-Boolean funtions (see e.g. [21℄).11



Any funtion f : f0; 1gn �! R is a said to be a pseudo-Boolean funtion.By making the usual bijetion between f0; 1gn and P(N), it is lear thatpseudo-Boolean funtions on f0; 1gn oinide with real-valued set funtionson N (of whih apaities are a partiular ase). More spei�ally, if wede�ne for any subset A � N the vetor ÆA = [ÆA(1) � � � ÆA(n)℄ in f0; 1gn byÆA(i) = 1 if i 2 A, and 0 otherwise, then for any set funtion v we an de�neits assoiated pseudo-Boolean funtion f byf(ÆA) := v(A); 8A � N;and reiproally. It has been shown by Hammer and Rudeanu [22℄ that anypseudo-Boolean funtion an be written in a multilinear form:f(t) = XA�Nm(A) �Yi2A ti; 8t 2 f0; 1gn: (7)m(A) orresponds to the M�obius transform (see e.g. Rota [31℄) of v, assoi-ated to f , whih is de�ned by:m(A) = XB�A(�1)jAnBjv(B): (8)Reiproally, v an be reovered from the M�obius transform byv(A) = XB�Am(B): (9)If neessary, we write mv for the M�obius transform of v. Note that (7) anbe put in an equivalent form, whih isf(t) = XA�Nm(A) � î2A ti; 8t 2 f0; 1gn: (10)More generally, the produt an be replaed by any operator � on [0; 1℄noiniding with the produt on f0; 1gn, suh as t-norms [32℄ (see e.g. [10℄for a survey on this topi, and [24℄ for a omplete treatment). We reallthat a t-norm is a binary operator T on [0; 1℄ whih is ommutative, as-soiative, non dereasing in eah plae, and suh that T (x; 1) = x, for allx 2 [0; 1℄. Assoiativity permits to unambiguously de�ne t-norms for morethan 2 arguments.These are not the only ways to write pseudo-Boolean funtions. When vis a apaity, it is possible to replae the sum by _, as the following formulashows [15℄: f(t) = _A�Nm_(A) ^ î2A ti! : (11)12



The quantity m_ is alled the ordinal M�obius transform, and is related to vby m_(A) = v(A) whenever v(A) > v(A n i) for all i 2 A, and 0 otherwise.Note that onversely we have (ompare with (9)):v(A) = _B�Am_(B); 8A � N: (12)In the sequel, we fous on formulas (7) and (10). We will ome bak onalternatives to these formulas in setion 8.In order to extend f to Rn , whih is neessary in our framework sine theDM an judge that an element (xi; 0fig) is less attrative than (01; : : : ; 0n)(in that ase ui(xi) < 0), two immediate extensions ome from (7) and (10),where we simply use any t 2 Rn instead of f0; 1gn. We will denote themf�(t) := XA�Nm(A) �Yi2A ti; 8t 2 Rn ; (13)f^(t) := XA�Nm(A) � î2A ti; 8t 2 Rn : (14)However a seond way an be obtained by onsidering the fat that any realnumber t an be written under the form t = t+ � t�, where t+ = t _ 0, andt� = �t_0. If, by analogy with this remark, we replaeQi ti byQi t+i �Qi t�i ,and similarly with V, we obtain two new extensions:f��(t) := XA�Nm(A)"Yi2A t+i �Yi2A t�i # ; 8t 2 Rn ; (15)f^�(t) := XA�Nm(A)"î2A t+i � î2A t�i # ; 8t 2 Rn : (16)These are not the only possible extensions. In fat, nothing prevents us tointrodue for the negative part another apaity, e.g. equation (16) ouldbeome:f^�12 (t) := XA�Nm1(A) � î2A t+i �XA�Nm2(A) � î2A t�i ; 8t 2 Rn : (17)However, we will not onsider this possibility in the subsequent development,exept in setion 9 where the question of uniity is addressed. In the nextsetions we investigate whether extensions (13) to (16) are related to knownmodels of aggregation, and whih one satisfy the requirements (i) to (iv)introdued in setion 4, and an be thus used as an aggregation funtion inour ase. 13



6 Link with existing modelsWe introdue the Choquet integral with respet to a apaity, whih hasbeen introdued as an aggregation operator by Grabish [11, 12℄. Let � be aapaity on N , and t = (t1; : : : ; tn) 2 (R+)n. The Choquet integral of t withrespet to � is de�ned by [29℄:C�(t) = nXi=1 (t(i) � t(i�1))�(f(i); : : : ; (n)g) (18)where �(i) indiates a permutation on N so that t(1) � t(2) � � � � � t(n), andt(0) := 0 by onvention. It an be shown that the Choquet integral an bewritten as follows: C�(t) = XA�Nm(A) î2A ti; 8t 2 (R+)n (19)where m denotes the M�obius transform of �. This result has been shownby Chateauneuf and Ja�ray [1℄ (also by Walley [40℄), extending Dempster'sresult [3℄.We are now ready to relate previous extensions to known aggregationmodels.� the extension f� is known in multiattribute utility theory as the mul-tilinear model [23℄, whih we denote by MLE. Note that our pre-sentation gives a meaning to the oeÆients of the polynom, sinethey are the M�obius transform of the underlying apaity de�ned by�(A) = u(1A; 0A), for all A � N . Up to now, no lear interpretationof these oeÆients were given.� onerning f��, to our knowledge, it does not orrespond to anythingknown in the literature. We will denote it by SMLE (symmetri MLE).� onsidering f^ restrited to (R+)n, it appears due to the above result(19) that f^ is the Choquet integral of t with respet to �, where �orresponds to f . This extension is also known as the Lov�asz extensionof f [26, 35℄. At this point, let us remark that the extension of the Cho-quet integral to negative arguments has been onsidered by Denneberg[4℄, who gives two possibilities:1. the symmetri extension SC� de�ned bySC�(t) = C�(t+)� C�(t�); 8t 2 Rn : (20)14



2. the asymmetri extension ASC � de�ned byASC �(t) = C�(t+)� C��(t�); 8t 2 Rn ; (21)where �� is the onjugate apaity de�ned by ��(A) := �(N) ��(A).The �rst extension has been proposed �rst by �Sipo�s [39℄, while the se-ond one is onsidered as the lassial de�nition of the Choquet integralon real numbers. In the sequel, we will denote the �Sipo�s integral by�S�, while we keep C� for the (usual) Choquet integral.The following proposition gives the expression of Choquet and �Sipo�s integralsin terms of the M�obius transform, and shows that f^ � C� and f^� � �S�.Proposition 1 Let � be a apaity. For any t 2 Rn ,C�(t) = XA�Nm(A) î2A ti; (22)�S�(t) = XA�Nm(A)"î2A t+i � î2A t�i #= XA�N+m(A) î2A ti + XA�N�m(A)_i2A ti; (23)where N+ := fi 2 N jti � 0g and N� = N nN+.The proof is based on the following lemma, shown in [16℄.Lemma 1 Let v be any set funtion suh that v(;) = 0, and onsider itso-M�obius transform2 [13℄, de�ned by:�mv(A) := XB�NnA(�1)n�jBjv(B) = XB�A(�1)jBjv(N nB); 8A � N:Then, if �v denotes the onjugate set funtion:�m�v(A) = (�1)jAj+1mv(A); 8A � N;A 6= ; (24)and for any a 2 (R+)n,Cv(a) = XA�N;A 6=;(�1)jAj+1 �mv(A)_i2A ai: (25)2Called \ommonality funtion" by Shafer [33℄.15



Proof of Prop. 1: The ase of �Sipo�s integral is lear from (14) and (20).For the ase of Choquet, the proof is based on the above lemma. Using (14),we have: C�(t+) = XA�Nm(A) î2A t+i= XA�N;A\N�=;m(A) î2A tiAlso, using (24) and (25) and remarking that m(;) = 0, we get:C��(t�) = XA�N;A 6=;(�1)jAj+1 �m��(A)_i2A t�i= XA�Nm(A)_i2A t�i :Now _i2A t�i = � �Vi2A ti; if A \N� 6= ;0; otherwiseThus C��(t�) = � XA�N;A\N� 6=;m(A) î2A tiso that C�(t) = C�(t+) + C��(t�) = XA�Nm(A) î2A ti:� The next proposition gives the expression of Choquet and �Sipo�s integraldiretly in terms of the apaity.Proposition 2 Let � be a apaity. For any t 2 Rn ,C�(t) = t(1) + nXi=2 �t(i) � t(i�1)�� (f(i); : : : ; (n)g) (26)�S�(t) = p�1Xi=1 �t(i) � t(i+1)�� (f(1); : : : ; (i)g) + t(p)� (f(1); : : : ; (p)g)+ t(p+1)� (f(p+ 1); : : : ; (n)g) + nXi=p+2 �t(i) � t(i�1)�� (f(i); : : : ; (n)g)(27)16



where �(i) indiates a permutation on N so that t(1) � t(2) � � � � � t(p) < 0 �t(p+1) � � � � � t(n).Proof: from the de�nition (18), we have:C�(t) = t(1) + nXi=2 �t(i) � t(i�1)�� (f(i); : : : ; (n)g) :Let t 2 Rn . We split t into its positive and negative parts t+; t�. Sine8>>><>>>: (t+)(1) = (t+)(2) = � � � = (t+)(p) = 0(t+)(p+1) = t(p+1)...(t+)(n) = t(n)we haveC�(t+) = t(p+1)� (f(p+ 1); : : : ; (n)g) + nXi=p+2 �t(i) � t(i�1)�� (f(i); : : : ; (n)g) :In the same way, one hasC�(t�) = �t(p)� (f(p); : : : ; (1)g)� p�1Xi=1 �t(i) � t(i+1)�� (f(i); : : : ; (1)g) :This gives the desired expression for �Sipo�s integral. The ase of Choquetintegral proeeds similarly. �Remarking that C�(0) = �S�(0) for any apaity, we have from proposi-tion 2: C�(�t) = �C��(t) (28)�S�(�t) = � �S�(t) (29)for any t in Rn , hene the terms asymmetri and symmetri.In summary, three among the four extensions orrespond to known modelsof aggregation, even if ontexts may di�er.7 Properties of the extensionsThis setion is devoted to the study of the four extensions, regarding theproperties requested in the onstrution of the aggregation model (setion4). 17



ompatibility with intra-riterion information (assumption A1) Re-alling that ui(0i) = 0 8i 2 N , and noting that m(fig) = �(fig), a straight-forward omputation shows that for any � > 0:C�(0; : : : ; 0; �ui(xi); 0; : : : ; 0) = � ��(fig)ui(xi) if xi �i 0i���(fig)ui(xi) if xi �i 0i (30)�S�(0; : : : ; 0; �ui(xi); 0; : : : ; 0) = ��(fig)ui(xi) (31)MLE�(0; : : : ; 0; �ui(xi); 0; : : : ; 0) = ��(fig)ui(xi) (32)SMLE�(0; : : : ; 0; �ui(xi); 0; : : : ; 0) = ��(fig)ui(xi): (33)In the general ase, we have �(fxig) 6= ��(fxig). Thus there is an angularpoint around the origin for the Choquet integral. The onsequene is thatequation (5), and hene assumption A1, are not satis�ed by the Choquetintegral in general.This urious property an be explained as follows. For the �Sipo�s in-tegral, the zero has a speial role, sine it is the zero of the ratio sale,and all is symmetri with respet to this point. For the Choquet integral,the zero has no speial meaning, but observe that if xi � 0i � yi, theats (01; : : :0i�1; xi; 0i+1; : : : ; 0n) and (01; : : :0i�1; yi; 0i+1; : : : ; 0n) are notomonotoni, i.e. they indue a di�erent ordering of the integrand.ompatibility with inter-riteria information (assumption A2) Itresults from the de�nitions of C�, �S�, MLE� and SMLE� that, 8A � N and8� > 0, MLE�(�1A; 0A) = SMLE�(�1A; 0A) = XB�Am(B)�jBj; (34)and C�(�1A; 0A) = �S�(�1A; 0A) = ��(A):Consequently, MLE and SMLE are inadequate for our model.use of absolute information Obviously any extension satis�esF (0; : : : ; 0) = 0, and taking into aount the fat that �(N) = 1, we haveC�(�; : : : ; �) = �S�(�; : : : ; �) = �, for all � > 0. But from (34), this propertyis not satis�ed by MLE and SMLE.Monotoniity It an be shown that, for any t; t0 2 Rn ,ti � t0i; i = 1; : : : ; n) C�(t1; : : : ; tn) � C�(t01; : : : ; t0n) (35)ti � t0i; i = 1; : : : ; n) �S�(t1; : : : ; tn) � �S�(t01; : : : ; t0n): (36)18



This well-known result (see e.g. Denneberg [4℄) omes from the fat that forany t 2 (R+)n, an equivalent form of (18) is:C�(t) = nXi=1 t(i)[�(f(i); : : : ; (n)g)� �(f(i+ 1); : : : ; (n)g)℄:Monotoniity is immediate from the fat that A � B implies �(A) � �(B).Now, for any t 2 Rn , monotoniity of the Choquet and �Sipo�s integrals followfrom equations (20) and (21). To obtain strit monotoniity, we need stritmonotoniity of the apaity, i.e. A $ B implies �(A) < �(B).It is easy to see from de�nition that MLE and SMLE are monotoni whenthe oeÆients m(A) are all positive. But in general, the M�obius transformof a apaity is not always positive. To our knowledge, there is no result inthe general ase. The following an be proven.Proposition 3 For any t 2 [0; 1℄n, for any apaity �, MLE� is non de-reasing with respet to ti, i = 1; : : : ; n. Strit inreasingness is ensured i�� is stritly monotoni.Proof: We an express easily MLE with respet to � (see Owen [30℄):MLE�(t) = XA�N "Yi2A ti#"Yi 62A(1� ti)#�(A):Then we have, for any t 2 [0; 1℄n and any k 2 N :�MLE(t)�tk = XA�Nnk "Yi2A ti#" Yi 62A;i6=k(1� ti)#�(A [ k)� XA�Nnk "Yi2A ti#" Yi 62A;i6=k(1� ti)#�(A)= XA�Nnk "Yi2A ti#" Yi 62A;i6=k(1� ti)# (�(A [ k)� �(A)):Clearly, the expression is non negative (resp. positive) for any k 2 N i� � ismonotoni (resp. stritly monotoni). �The proof shows learly that MLE ould be non inreasing when t is nomore in [0; 1℄n. Taking for example n = 2, with �(f1g) = �(f2g) = 0:9, wehave:MLE�(1; 1) = 0:9 + 0:9� 0:8 = 1MLE�(3; 3) = (3)(0:9) + (3)(0:9)� (9)(0:8) = �1:8 < MLE�(1; 1):19



As a onsequene, the use of MLE should be restrited to riteria of whihsores are limited to [0; 1℄, that is, unipolar bounded riteria. Also, SMLEwhih di�ers from MLE only for negative values, is learly useless.Sale preservation Although this property is not required by our on-strution (but it somehow underlies it in assumptions A1 and A2), it isinteresting to investigate whether the extensions satisfy it.The following is easy to prove.(C.1) invariane to the same positive aÆne transformationC�(�t1 + �; : : : ; �tn + �) = �C�(t1; : : : ; tn) + �; 8� � 0; 8� 2 R :(S.1) homogeneity �S�(�t1; : : : ; �tn) = � �S�(t1; : : : ; tn); 8� 2 R :As remarked by Sugeno and Murofushi [37℄, this means that if the soresti are on ommensurable interval sales, then the global sore omputed bythe Choquet integral is also on an interval sale (i.e. relative position of thezero), and if the sores are on a ratio sale, then the global sore omputedby the �Sipo�s integral is on a ratio sale (absolute position of the zero).By ontrast, MLE and SMLE neither preserve the interval nor the ratiosale, sine they are not homogeneous. Indeed, taking n = 2 and any � 2 R� :MLE�(�t1; �t2) = m(f1g)�t1 +m(f2g)�t2 +m(f1; 2g)�2t1t26= �MLE�(t1; t2):This is the reason why MLE and SMLE failed to ful�ll assumption A2. Notehowever that MLE satis�es (5) but not (6).As a onlusion, only the �Sipo�s integal among our four andidates an �tall requirements of our onstrution.8 An equivalent axiomatiOur onstrution is based on a ertain number of requirements for aggrega-tion funtion F , whih we sum up below:� restrited monotoniity (M1), oming from assumption A1:8i = 1; : : : ; n; 8ai; a0i 2 R; ai � a0i ) F (ai; 0fig) � F (a0i; 0fig)20



� interval sale for intra-riterion information (A1):F (�ai; 0fig)� F (�bi; 0fig)F (�i; 0fig)� F (�di; 0fig) = ai � bii � di ; 8� > 0; 8ai; bi; i; di 2 R; i 6= di� interval sale for inter-riteria information (A2):F (�1A; 0A)� F (�1B; 0B)F (�1C; 0C)� F (�1D; 0D) = �(A)� �(B)�(C)� �(D) ; 8� > 0� idempotene (I): F (�; : : : ; �) = �; 8� � 0;with restrited versions (I0) for � = 0 and (I1) for � = 1.� monotoniity (M), whih is non dereasingness of F for eah plae.As already noted, (M) implies (M1). All these requirements ome from on-siderations linked with the preferene of the DM and sales of measurement.It is possible to show that they are equivalent to a muh simpler set of axiomsabout F .Proposition 4 Let F : Rn ) R and � a apaity on N . Then the set ofaxioms (A1), (A2), (I), (M) is equivalent to the following set of axioms:1. homogeneous extension (HE):F (�1A; 0A) = ��(A); 8� � 0; 8A � N2. restrited aÆnity (A)F (ai; 0fig) = aiF (1i; 0fig); 8ai 2 R; 8i = 1; : : : ; n3. monotoniity (M).Proof: ()) Letting B = D = ;; C = N in (A2) and using (I) lead toF (�1A; 0) = ��(A), whih is (HE). Now, using (A1) with bi = di = 0, i = 1,� = 1 and using (I0) we get F (ai; 0fig) = aiF (1i; 0fig), whih is (A).(() Using (A), we get:F (�ai; 0fig)� F (�bi; 0fig)F (�i; 0fig)� F (�di; 0fig) = �aiF (1i; 0fig)� �biF (1i; 0fig)�iF (1i; 0fig)� �diF (1i; 0fig)= ai � bii � di ;21



whih proves (A1). Now, from (HE) we get immediatelyF (�1A; 0A)� F (�1B; 0B)F (�1C ; 0C)� F (�1D; 0D) = �(A)� �(B)�(C)� �(D)whih is (A2). Finally, from (HE) with A = N , we get (I) sine �(N) = 1.� Nota: (M) an be dropped from the 2 sets of axioms without hangingthe equivalene.9 The uniity issueHaving this simpler set of axioms, we address the question of the uniity ofthe solution, i.e. is the �Sipo�s integral the only aggregation funtion satisfyingthe requirements?First we examine the following extension on [0; 1℄n of pseudo-Booleanfuntions: F (a1; : : : ; an) = XA�Nm(A) � (�i2A ai); 8ai 2 [0; 1℄ (37)as suggested in setion 5, where � is a \pseudo-produt". Reall that m isthe M�obius transform of the underlying apaity. Let us suppose as a basirequirement that � is a ommutative and assoiative operator, otherwiseour expression of F would be ill-de�ned sine �i2A ai would depend on theorder of elements in A (ommutativity), and on the grouping of elements(assoiativity). Thus, it is suÆient to de�ne � on [0; 1℄2. The following anbe shown.Proposition 5 Let � : [0; 1℄2 �! [0; 1℄ be a ommutative and assoiativeoperator, and F be given by (37). Then:(i) F satis�es (HE) on [0; 1℄n if and only if � oinide with the produt onf0; 1g, satis�es ��� = � for all � 2 [0; 1℄, and �� 0 = 0.(ii) F satis�es (M) implies � is non dereasing.Proof: (i) ()) Let us onsider the partiular apaity u1;2 de�ned byu1;2(A) = 1 if f1; 2g � A, and 0 otherwise (unanimity game). It is easyto see that its M�obius transform is suh that m(f1; 2g) = 1 and 0 elsewhere.Let us onsider (HE) with A = ;, � = 1, and the apaity u1;2. We obtainF (0; : : : ; 0) = 1 � (0� 0) = u1;2(;) = 0;22



hene 0� 0 = 0. Taking now A = N , we get:F (1; : : : ; 1) = 1 � (1� 1) = u1;2(N) = 1;hene 1� 1 = 1. Now let us take A = f1g, with any � > 0 and we obtainfrom (HE): F (�; 0; : : : ; 0) = 1 � (�� 0) = �u1;2(f1g) = 0;hene �� 0 = 0 for any = � > 0, in partiular when � = 1. Thus, �oinides with the produt on f0; 1g. Lastly, let us apply (HE) with A = Nand again the apaity u1;2. We obtain:F (�; �; : : : ; �) = 1 � (���) = �hene ��� = �.(() For any apaity �, any A � N , any � 2 [0; 1℄:F (�1A; 0A) = XB�Am(B) � ( �i2B �) + XB 6�Am(B) � [( �i2A�)�(�i 62A 0)℄= �XB�Am(B) + 0= ��(A):(ii) If � is dereasing in some plae, and m is positive, then F annot beinreasing, a ontradition. Thus, � is non dereasing in eah plae. �To go further in the analysis, let us assume in the sequel that � is nondereasing. Then we obtain the following result.Corollary 1 Let � : [0; 1℄2 �! [0; 1℄ be a ommutative, assoiative, and nondereasing operator, and F be given by (37). The following propositions areequivalent:(i) F satis�es (HE), (M) and (A) on [0; 1℄n.(ii) � oinide with the produt on f0; 1g, and satis�es ��� = � for all� 2 [0; 1℄.Proof: lear from Prop. 5, the fat that (A) is implied by (HE) whenworking on positive numbers, and the fat that �� 0 = 0 is implied by0� 0 = 0 = 1� 0 and non dereasingness. �This result gives neessary and suÆient onditions for � in order to beonsistent with our onstrution. 23



Adding the requirement 1�� = � for all � 2 [0; 1℄, operator � beomesa t-norm, as de�ned in Setion 5. Then, the only solution to this set ofrequirements is the minimum operator [24℄. Indeed, taking �; � 2 [0; 1℄ suhthat � � �, we have � = ��� � ��� � 1�� = �. This means that the�Sipo�s integral (for numbers in [0; 1℄, hene it is the Choquet integral) is theonly solution with this form of pseudo-Boolean funtion. However, withoutthis additional assumption, other solutions may exist.Interestingly enough, the requirement 1�� = � has a lear interpretationin terms of F . Indeed, for any A � N , and any � 2 [0; 1℄,F (1A; �A) = XB�Am(B):1 +XB 6�Am(B):�= XB�Am(B) + �(1�XB�Am(B))= �+ (1� �)�(A)= �+ F ((1� �)1A; 0A):This last expression shows an additivity property of F with partiular ats,spei�ally: F (1A; �A) = F ((1� �)1A; 0A) + F (�; : : : ; �):It also shows that F indues a di�erene sale for those ats, sine the zeroan be shifted and set to � without any hange.We now present a solution in the spirit of equation (11), whih is in fatthe Sugeno integral [36℄ (see [15℄). Let us �rst restrit to positive numbers.We introdue the following aggregation funtion on R+ :Sm_(a1; : : : ; an) = _B�N hm_(B) � î2B aii: (38)This is a variant of Sugeno integral where the produt takes plae of theminimum operator, whih satis�es all requirements when restrited to R+ :� monotoniity (M): lear sine m_ is a non negative set funtion.� (HE): using equation (12) we get:Sm_(�1A; 0A) = _B�Am_(B) � � = � � �(A) = �Sm_(1A; 0A):� (A) for positive numbers is simply a partiular ase of (HE).24



Note that (HE) works thanks to the produt operator in Sm_. Thus theoriginal Sugeno integral would not work.We have to extend this de�nition for negative numbers in a way similar tothe �Sipo�s integral. The problem of extending the Sugeno integral on negativenumbers has been studied by Grabish [17℄, in an ordinal framework. Weadapt this approah to our ase and propose the following:Sm_(a1; : : : ; an) = Sm_(a+1 ; : : : ; a+n )6(�Sm_(a�1 ; : : : ; a�n )) (39)with usual notations, and 6 (alled symmetri maximum) is de�ned by:a6 b = 8<: a; if jaj > jbj0; if b = �ab; otherwise:The main properties of the symmetri maximum are a6 0 = a for all a 2 R(existene of a unique neutral element), and a6(�a) = 0 for all a 2 R(existene of a unique symmetri element). Also, it is non dereasing in eahplae, and assoiative on R+ and R� .It suÆes to verify that (M) and (A) still hold. (M) omes from nondereasingness of 6 and Sm_ for positive arguments. Let us onsider ai < 0.Then Sm_(ai; 0fig) = 06(�a�i Sm_(1i; 0fig)) = aiSm_(1i; 0fig):Thus the proposed Sm_ satis�es all requirements of our onstrution.Let us examine now a third way to �nd other solutions. It was suggestedin Setion 5, formula (17), whih we reprodue here with suitable notations:F (a1; : : : ; an) = XA�Nm1(A) � î2A a+i �XA�Nm2(A) � î2A a�i ; 8a 2 Rn :with a+i := ai _ 0 and a�i = �ai _ 0. This aggregation funtion is built fromtwo di�erent apaities �1; �2, one for positive numbers, and the other onefor negative numbers. On eah part, it is a Choquet integral. Let us mentionhere that this type of funtion is well-known in Cumulative Prospet Theory[38℄. Obviously, F satis�es (M) and (HE), let us hek (A) for negativenumbers. We have for any i 2 N , any ai < 0:F (ai; 0fig) = 0�m2(fig)a�i = aim2(fig):But F (1i; 0fig) = m1(fig), so that a neessary and suÆient ondition toensure the ompatibility with our onstrution is:m2(fig) = m1(fig); 8i 2 N:At this stage, we do not know if other solutions exist, and a ompleteharaterization is left for further study.25
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