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tThe paper presents an analysis on the use of integrals de�ned fornon-additive measures (or 
apa
ities) as the Choquet and the �Sipo�sintegral, and the multilinear model, all seen as extensions of pseudo-Boolean fun
tions, and used as a means to model intera
tion between
riteria in a multi
riteria de
ision making problem. The emphasis isput on the use, besides 
lassi
al 
omparative information, of infor-mation about di�eren
e of attra
tiveness between a
ts, and on theexisten
e, for ea
h point of view, of a \neutral level", allowing to in-trodu
e the absolute notion of attra
tive or repulsive a
t. It is shown�Corresponding author. On leave from Thomson-CSF, Corporate Resear
h Lab, 91404Orsay Cedex, Fran
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that in this 
ase, the �Sipo�s integral is a suitable solution, although notunique. Properties of the �Sipo�s integral as a new way of aggregating
riteria are shown, with emphasis on the intera
tion among 
riteria.Keywords: multi
riteria de
ision making, Choquet integral, 
apa
ity, inter-a
tive 
riteria, negative s
ores1 Introdu
tionLet us 
onsider a de
ision making problem, of whi
h the stru
turing phasehas led to the identi�
ation of a family C = fC1; : : : ; Cng of n fundamentalpoints of view (
riteria), whi
h permits to meet the 
on
erns of the de
isionmaker (DM) in 
harge of the above mentioned (de
ision making) problem.We suppose hereafter that, during the stru
turing phase, one has asso
iatedto ea
h point of view Ci, i = 1; : : : ; n, a des
riptor (attribute), that is, aset Xi of referen
e levels intended to serve as a basis to des
ribe plausibleimpa
ts of potential a
tions with respe
t to Ci.We make also the assumption that, for all i = 1; : : : ; n, there exists in Xitwo parti
ular elements whi
h we 
all \Neutrali" and \Goodi", and denoted0i and 1i respe
tively, whi
h have an absolute signi�
ation: 0i is an elementwhi
h is thought by the DM to be neither good nor bad, neither attra
tive norrepulsive, relatively to his 
on
erns with respe
t to Ci, and 1i is an elementwhi
h the DM 
onsiders as good and 
ompletely satisfying if he 
ould obtainit on Ci, even if more attra
tive elements 
ould exist on this point of view.The pra
ti
al identi�
ation of these absolute elements has been performed inmany real appli
ations, see for example [6, 8, 9℄.In multi
riteria de
ision aid, after the stru
turing phase 
omes the eval-uation phase, in whi
h for ea
h point of view Ci, intra-
riterion informationis gathered (i.e. attra
tiveness for the DM of the elements of Xi with respe
tto point of view Ci), and also, a

ording to an aggregation model 
hosenin agreement with the DM, inter-
riteria information. This information,whi
h aims at determining the parameters of the 
hosen aggregation model,generally 
onsists in some information on the attra
tiveness for the DM ofsome parti
ular elements of X = X1� � � ��Xn. These elements are sele
tedso as to enable the resolution of some equation system, whose variables arepre
isely the unknown parameters of the aggregation model.In this paper, of whi
h aim is primarily theoreti
al, we adopt with respe
tto the 
lassi
al approa
h des
ribed above, a rather 
onverse attitude. Spe
if-i
ally, we do not suppose to have beforehand a given aggregation model, butrather to have some information 
on
erning the attra
tiveness for the DM ofa parti
ular 
olle
tion of elements of X. Then we study how to extend this2



information on the preferen
e of the DM to all elements of X. This kindof problem 
an be 
alled an identi�
ation of an aggregation model whi
h is
ompatible with available information.The paper is organized as follows. In se
tion 2, we introdu
e the basi
assumptions we make 
on
erning the knowledge on the attra
tiveness forthe DM of parti
ular elements of X. Se
tion 3 shows that this kind ofinformation is 
ompatible with the existen
e of some intera
tion phenomenabetween points of view, and introdu
es some de�nitions related to the 
on
eptof intera
tion. The problem of extending the information on preferen
esassumed to be known on a subpart of X, to the whole set X, is addressedin se
tion 4, and appears to be the problem of identifying an aggregationmodel 
ompatible with given intra-
riterion and inter-
riteria information.In se
tion 5, we show that this problem amounts to de�ne the extension of agiven pseudo-Boolean fun
tion, and we introdu
e some possible extensions,whi
h we relate to already known models in the literature (se
tion 6). Se
tion7 brie
y studies the properties of these models, and 
on
ludes about theirusefulness in this 
ontext. In se
tion 8, we show an equivalent set of axiomsfor our 
onstru
tion, and in se
tion 9, we address the question of uni
ity ofthe solution.This paper does not deal with the pra
ti
al aspe
ts of the methodologywe are proposing, i.e. how to obtain the ne
essary information for buildingthe aggregation model. However, the MACBETH approa
h [7℄ 
ould be mostuseful for extra
ting the information from the DM.Lastly, we want to mention that one of the reasons whi
h have motivatedthis resear
h is the re
ent development of multi
riteria methods based on
apa
ities and the Choquet integral [2℄, whi
h seems to open new horizons[12, 18, 20℄. In a sense, this paper aims at giving a theoreti
al foundation ofthis type of approa
h in the framework of multi
riteria de
ision making.2 Basi
 assumptionsWe present two basi
 assumptions, whi
h are the starting point of our 
on-stru
tion. We denote the index set of 
riteria by N = f1; : : : ; ng. Consider-ing two a
ts x; y 2 X, and A � N , we will often use the notation (xA; yA
)to denote the 
ompound a
t z where zi = xi if i 2 A and yi otherwise. ^;_denote respe
tively min and max operators.
3



2.1 Intra-
riterion assumptionWe 
onsider the parti
ular subsets X
i, i = 1; : : : ; n, of X, whi
h are de�nedby: X
i = f(01; : : : ; 0i�1; xi; 0i+1; : : : ; 0n)jxi 2 Xig:Using our 
onvention, a
ts in X
i are denoted more simply by (xi; 0fig
).We assume to have an interval s
ale denoted vi on ea
h X
i, whi
h quan-ti�es the attra
tiveness for the DM of the elements of X
i (assumption A1).In order to simplify the notation, we denote for all i 2 N , ui : Xi �! R,xi 7! ui(xi) = vi(xi; 0fig
). Thus, assumption A1 means exa
tly the follow-ing:(A1.1) 8xi; yi 2 Xi, ui(xi) � ui(yi) if and only if for the de
ision maker(xi; 0fig
) is at least as attra
tive as (yi; 0fig
).(A1.2) 8xi; yi; zi; wi 2 Xi, su
h that ui(xi) > ui(yi) and ui(wi) > ui(zi), wehave ui(xi)� ui(yi)ui(wi)� ui(zi) = k; k 2 R+if and only if the di�eren
e of attra
tiveness that the DM feels between(xi; 0fig
) and (yi; 0fig
) is equal to k times the di�eren
e of attra
tive-ness between (wi; 0fig
) and (zi; 0fig
).We re
ognize here information 
on
erning the intra-
riterion preferen
es(i.e. the attra
tiveness of elements of Xi relatively to Ci), hen
e the nameof the assumption, whi
h is a 
lassi
al type of information in multi
riteriade
ision aid. Observe however that our presentation avoids the introdu
tionof any independen
e assumption (preferential or 
ardinal). This is possiblesin
e we have introdu
ed in every set Xi an element 0i with an absolutemeaning in terms of attra
tiveness. This strong meaning allows us to �xnaturally ui(0i) = 0,1 i = 1; : : : ; n, and thus to 
onsider ui as a ratio s
ale onXi. We 
an also take advantage of the remaining degree of freedom to �x thevalue of ui(1i). Contrarily to the 
ase of ui(0i), no parti
ular value, providedit is positive, is mandatory here. However, sin
e all elements 1i, i = 1; : : : ; nhave all the same absolute meaning, we have to 
hoose for ui(1i) the samenumeri
al value for all i 2 f1; : : : ; ng, whi
h implies that the only admissible1whi
h is te
hni
ally always possible, sin
e an interval s
ale is de�ned up to a positiveaÆne transformation �(z) = �z + �, � > 0, whi
h means that we have two degrees offreedom. 4



transformations of the s
ales ui, i 2 N , are of the form �(ui) = � � ui, where� > 0 does not depend on i. Thanks to the elements 0i and 1i, the intervals
ales ui be
ome thus 
ommensurable ratio s
ales. In the sequel, we take asa 
onvention ui(1i) = 1, for i = 1; : : : ; n.2.2 Inter-
riteria assumptionWe 
onsider now another subset of X, denoted Xef0;1g, 
ontaining the fol-lowing elements: Xef0;1g := f(1A; 0A
)jA � Ng;where (1A; 0A
) denotes an a
t (x1; : : : ; xn) with xi = 1i if i 2 A and xi = 0iotherwise, following our 
onvention.We assume to have an interval s
ale uf0;1g on Xef0;1g, quantifying theattra
tiveness for the DM of all elements in this set (assumption A2). Thismeans that:(A2.1) for all A;B � N , uf0;1g(1A; 0A
) � uf0;1g(1B; 0B
) if and only if for theDM (1A; 0A
) is at least as attra
tive as (1B; 0B
).(A2.2) for all A;B;C;D � N su
h that uf0;1g(1A; 0A
) > uf0;1g(1B; 0B
) anduf0;1g(1C ; 0C
) > uf0;1g(1D; 0D
), we haveuf0;1g(1A; 0A
)� uf0;1g(1B; 0B
)uf0;1g(1C ; 0C
)� uf0;1g(1D; 0D
) = k; k 2 R+if and only if the di�eren
e of attra
tiveness felt by the DM between(1A; 0A
) and (1B; 0B
) is k times the di�eren
e of attra
tiveness be-tween (1C ; 0C
) and (1D; 0D
).As we did for the 
ase of intra-
riterion information, we use the two availabledegrees of freedom of an interval s
ale to �x:uf0;1g(1;; 0N) = uf0;1g(01; : : : ; 0n) :=0uf0;1g(1N ; 0;) = uf0;1g(11; : : : ; 1n) :=1:Having in mind the meaning of 0i, i = 1; : : : ; n, it is natural to imposeuf0;1g(01; : : : ; 0n) = 0. The s
ale uf0;1g is then a ratio s
ale. Let us pointout that any stri
tly positive value 
ould have been used instead of 1 for thevalue of uf0;1g(11; : : : ; 1n). However, it is 
onvenient to impose that the valueof uf0;1g(11; : : : ; 1n) is equal to the 
ommon value 
hosen for the ui(1i).5



At this point, let us remark that both ui(1i) and uf0;1g(1i; 0fig
) quantifythe attra
tiveness of a
t (1i; 0fig
) for the DM, however their values are ondi�erent ratio s
ales, but with the same 0 sin
e ui(0i) = uf0;1g(01; : : : ; 0n) =0. This means that there exists Ki > 0 su
h that uf0;1g(xi; 0fig
) = Kiui(xi)for all xi 2 Xi. An important 
onsequen
e of this fa
t is that, in order tohave 
ompatibility between these s
ales (and hen
e between assumptions A1and A2), we must haveuf0;1g(1i; 0fig
) > uf0;1g(01; : : : ; 0n) = 0; 8i;otherwise no 
onstant Ki 
ould exist. This is not restri
tive on a pra
ti
alpoint of view as soon as ea
h point of view really 
orresponds to a 
on
ernof the DM.We suppose in addition that whenever A � B, the a
t (1B; 0B
) is atleast as attra
tive as (1A; 0A
), whi
h is also a natural requirement.Under these 
onditions, and introdu
ing the set fun
tion � : P(N) �![0; 1℄ by �(A) := uf0;1g(1A; 0A
) (1)we have de�ned a non-additive measure, or fuzzy measure, [36℄ or 
apa
ity [2℄,with the additional requirement that �(fig) > 0. Indeed, a 
apa
ity is anynon negative set fun
tion su
h that �(;) = 0, �(N) = 1, and �(A) � �(B)whenever A � B.3 Intera
tion among 
riteriaEx
ept the natural assumptions above for � (monotoni
ity and �(i) > 0for all i 2 N), no restri
tion exists on �. Let us take 2 
riteria to showthe range of de
ision behaviours we 
an obtain with 
apa
ities. We supposein addition that �(f1g) = �(f2g), whi
h means that the DM is indi�erentbetween (11; 02) and (01; 12) (i.e. equal importan
e of 
riteria, see se
tion4), and 
onsider 4 a
ts x; y; z; t su
h that (see �gure 1):� x = (01; 02)� y = (01; 12)� z = (11; 12)� t = (11; 02) 6



Clearly, z is more attra
tive than x (written z � x), but preferen
es overother pairs may depend on the de
ision maker. Due to the de�nition of
apa
ities, we 
an range from the two extremal following situations (re
allthat �(f1; 2g) = 1 is �xed):extremal situation 1 (lower bound): we put �(f1g) = �(f2g) = 0, whi
his equivalent to the preferen
es x � y � t, where � means indi�eren
e(�gure 1, left).extremal situation 2 (upper bound): we put �(f1g) = �(f2g) = 1, whi
his equivalent to the preferen
es y � z � t (�gure 1, middle).Note that the �rst bound 
annot be rea
hed due to the 
ondition �(i) > 0.The exa
t intermediate situation is �(f1g) = �(f2g) = 1=2, meaning thatz � y � t � x (�gure 1, right), and the di�eren
e of attra
tiveness betweenx and y, t respe
tively is the same than between z and y, t respe
tively.The �rst 
ase 
orresponds to a situation where the 
riteria are 
omplemen-tary, sin
e both have to be satisfa
tory in order to get a satisfa
tory a
t. Oth-erwise said, the DM makes a 
onjun
tive aggregation. We say that in su
h a
ase, whi
h 
an be 
hara
terized by the fa
t that �(f1; 2g) > �(f1g)+�(f2g),there is a positive intera
tion between 
riteria.The se
ond 
ase 
orresponds to a situation where the 
riteria are substi-tutive, sin
e only one has to be satisfa
tory in order to get a satisfa
tory a
t.Here, the DM aggregates disjun
tively. We say that in su
h a 
ase, whi
h
an be 
hara
terized by the fa
t that �(f1; 2g) < �(f1g)+ �(f2g), there is anegative intera
tion between 
riteria.In the third 
ase, where we have �(f1; 2g) = �(f1g)+�(f2g), we say thatthere is no intera
tion among 
riteria, they are non intera
tive.
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The information we assume to have at hand 
on
erning the attra
tivenessof a
ts for the DM is thus perfe
tly 
ompatible with the intera
tion situationsbetween 
riteria, situations whi
h are worth to 
onsider on a pra
ti
al pointof view, but up to now very little studied.In the above simple example, we had only 2 
riteria. In the general 
ase,we use the following de�nition proposed by Murofushi and Soneda [28℄.De�nition 1 The intera
tion index between 
riteria i and j is given by:Iij := XK�Nnfi;jg (n� jKj � 2)!jKj!(n� 1)! [�(K [ fi; jg)� �(K [ fig)��(K [ fjg) + �(K)℄: (2)The de�nition of this index has been extended to any 
oalition A � N of
riteria by Grabis
h [14℄:I(A) := XB�NnA (n� jBj � jAj)!jBj!(n� jAj+ 1)! XK�A(�1)jAj�jKj�(K [B); 8A � N: (3)We have Iij = I(fi; jg). When A = fig, I(fig) is nothing else than theShapley value of game theory [34℄. Properties of this set fun
tion has beenstudied and related to the M�obius transform [5℄. Also, I has been 
hara
-terized axiomati
ally by Grabis
h and Roubens [19℄, in a way similar to theShapley index. Note that Iij > 0 (resp. < 0;= 0) for 
omplementary (resp.substitutive, non intera
tive) 
riteria.4 Constru
ting the modelWe will only 
onsider in this paper the general type of aggregation modelintrodu
ed by Krantz et al. [25, Chap. 7℄:A
t x = (x1; : : : ; xn) is at least as attra
tive as a
t y = (y1; : : : ; yn)if and only ifF (u1(x1); : : : ; un(xn)) � F (u1(y1); : : : ; un(yn));where the aggregation fun
tion F : Rn �! R is stri
tly in
reasing in all itsarguments.Indeed, this type of model is largely used, and has the advantage of beingrather general, and to lead to a 
omplete and transitive preferen
e relationon X. 8



The 
entral question we deal with in this paper is the identi�
ation of anaggregation fun
tion F whi
h is 
ompatible with intra-
riterion and inter-
riteria information de�ned by assumptions A1 and A2, and satis�es natural
onditions. Spe
i�
ally, we are looking for a mapping F : Rn �! R of theform F (u1(x1); : : : ; un(xn)) = u(x1; : : : ; xn)satisfying the following requirements (in whi
h the presen
e of � is due tothe fa
t that the ui are 
ommensurable ratio s
ales):(i) 
ompatibility with intra-
riteria information (assumption A1)� 8i 2 N and 8xi; yi 2 Xi,ui(xi) � ui(yi), u(xi; 0fig
) � u(yi; 0fig
)whi
h be
omes, in terms of F (due to the 
onsequen
es of assump-tion A1 on the s
ale):ui(xi) � ui(yi),F (0; : : : ; 0; �ui(xi); 0; : : : ; 0) � F (0; : : : ; 0; �ui(yi); 0; : : : ; 0) (4)for all � > 0. In fa
t, the 
onstant � here is useless, sin
e for any� > 0, ui(xi) � ui(yi), �ui(xi) � �ui(yi).� 8i 2 N and 8wi; xi; yi; zi su
h that ui(wi) > ui(xi) and ui(yi) >ui(zi), u(wi; 0fig
)� u(xi; 0fig
)u(yi; 0fig
)� u(zi; 0fig
) = ui(wi)� ui(xi)ui(yi)� ui(zi)whi
h be
omes in terms of F :F (0; : : : ; 0; �ui(wi); 0; : : : ; 0)� F (0; : : : ; 0; �ui(xi); 0; : : : ; 0)F (0; : : : ; 0; �ui(yi); 0; : : : ; 0)� F (0; : : : ; 0; �ui(zi); 0; : : : ; 0) =ui(wi)� ui(xi)ui(yi)� ui(zi) (5)for all � > 0.(ii) 
ompatibility with inter-
riteria information (assumption A2)9



� 8A;B � N , we haveuf0;1g(1A; 0A
) � uf0;1g(1B; 0B
), u(1A; 0A
) � u(1B; 0B
)whi
h be
omes, in terms of F :uf0;1g(1A; 0A
) � uf0;1g(1B; 0B
), F (�1A; 0A
) � F (�1B; 0B
)for all � > 0, where for any A � N , (1A; 0A
) is the ve
tor whose
omponent xi is 1 whenever i 2 A, and 0 otherwise.� 8A;B;C;D � N , with uf0;1g(1A; 0A
) > uf0;1g(1B; 0B
) anduf0;1g(1C ; 0C
) > uf0;1g(1D; 0D
), we have:u(1A; 0A
)� u(1B; 0B
)u(1C ; 0C
)� u(1D; 0D
) = uf0;1g(1A; 0A
)� uf0;1g(1B; 0B
)uf0;1g(1C ; 0C
)� uf0;1g(1D; 0D
)whi
h be
omes, in terms of F :F (�1A; 0A
)� F (�1B; 0B
)F (�1C ; 0C
)� F (�1D; 0D
) = uf0;1g(1A; 0A
)� uf0;1g(1B; 0B
)uf0;1g(1C ; 0C
)� uf0;1g(1D; 0D
)(6)for all � > 0.(iii) 
onditions related to absolute informationWe impose that s
ales u and uf0;1g 
oin
ide on parti
ular a
ts 
orre-sponding to absolute information, namely:� u(01; : : : ; 0n) = uf0;1g(01; : : : ; 0n) := 0, whi
h leads toF (0; : : : ; 0) = 0.� u(11; : : : ; 1n) = uf0;1g(11; : : : ; 1n) := 1, whi
h leads toF (1; : : : ; 1) = 1. However, remember that the 
hoi
e of value\1" was arbitrary when building s
ales ui and uf0;1g, and any pos-itive 
onstant � 
an do. Hen
e, we should satisfy more generallyF (�; : : : ; �) = �, 8� > 0.(iv) monotoni
ity of F . This property is a fundamental requirement forany aggregation fun
tion:8(t1; : : : ; tn); 8(t01; : : : ; t0n) 2 Rn ;t0i � ti; i = 1; : : : ; n) F (t01; : : : ; t0n) � F (tn; : : : ; tn):The monotoni
ity is stri
t if all inequalities are stri
t. Remark thatmonotoni
ity entails the �rst 
ondition of (i), namely formula (4).10



Let us remark that, as suggested in (iv) above, that F 
an be viewed asan aggregation fun
tion, and thus our problem amounts to the sear
h of anaggregation model whi
h is 
ompatible with intra- and inter-
riteria infor-mation de�ned by assumptions A1 and A2.At this point, let us make two remarks.� the reader may wonder about the very spe
i�
 form of inter-
riteria in-formation asked for, that is, attra
tiveness of a
ts of the form (1A; 0A
).These a
ts present the double advantage to be non related with reala
ts, whi
h permits to avoid any emotional answer from the DM, andto have, taking into a

ount the de�nition of 0i and 1i, a very 
learmeaning, and 
onsequently, to be very well per
eived and understood.They are 
urrently used in real world appli
ations of the MACBETHapproa
h [6, 8, 9℄ . Until now, these appli
ations were done in theframework of an additive aggregation model. In su
h a 
ase, only a
tsof the form (1i; 0fig
) have to be introdu
ed.What we are doing here is merely a generalization, 
onsidering notonly single 
riteria, but any 
oalition of 
riteria. This natural general-ization from singletons to subsets is indeed the key to the modelling ofintera
tion, as explained in se
tion 3. In this sense, the global utilityu(1A; 0A
), whi
h is a 
apa
ity (see se
tion 2.2), 
ould represent theimportan
e of 
oalition A to make de
ision.� it 
an be observed that 
onditions (ii) and (iii) above entail that thefun
tion F : Rn �! R to be determined must 
oin
ide with � onf0; 1gn, i.e.: F (1A; 0A
) = �(A); 8A � N:Indeed, just 
onsider equation (6) with B = D = ;; C = N , and use(iii), and de�nition of � (eq. (1)).Thus, F must be an extension of � on Rn . In other words, the assign-ment of importan
e to 
oalitions is tightly linked with the evaluationfun
tion. This fa
t is well known in the MCDM 
ommunity (see e.g.Mousseau [27℄), but the argument above puts it more pre
isely. Thenext se
tion addresses in full detail the problem of extending 
apa
ities.5 Extension of pseudo-Boolean fun
tionsThe problem of extending a 
apa
ity 
an be ni
ely formalized through theuse of pseudo-Boolean fun
tions (see e.g. [21℄).11



Any fun
tion f : f0; 1gn �! R is a said to be a pseudo-Boolean fun
tion.By making the usual bije
tion between f0; 1gn and P(N), it is 
lear thatpseudo-Boolean fun
tions on f0; 1gn 
oin
ide with real-valued set fun
tionson N (of whi
h 
apa
ities are a parti
ular 
ase). More spe
i�
ally, if wede�ne for any subset A � N the ve
tor ÆA = [ÆA(1) � � � ÆA(n)℄ in f0; 1gn byÆA(i) = 1 if i 2 A, and 0 otherwise, then for any set fun
tion v we 
an de�neits asso
iated pseudo-Boolean fun
tion f byf(ÆA) := v(A); 8A � N;and re
ipro
ally. It has been shown by Hammer and Rudeanu [22℄ that anypseudo-Boolean fun
tion 
an be written in a multilinear form:f(t) = XA�Nm(A) �Yi2A ti; 8t 2 f0; 1gn: (7)m(A) 
orresponds to the M�obius transform (see e.g. Rota [31℄) of v, asso
i-ated to f , whi
h is de�ned by:m(A) = XB�A(�1)jAnBjv(B): (8)Re
ipro
ally, v 
an be re
overed from the M�obius transform byv(A) = XB�Am(B): (9)If ne
essary, we write mv for the M�obius transform of v. Note that (7) 
anbe put in an equivalent form, whi
h isf(t) = XA�Nm(A) � î2A ti; 8t 2 f0; 1gn: (10)More generally, the produ
t 
an be repla
ed by any operator � on [0; 1℄n
oin
iding with the produ
t on f0; 1gn, su
h as t-norms [32℄ (see e.g. [10℄for a survey on this topi
, and [24℄ for a 
omplete treatment). We re
allthat a t-norm is a binary operator T on [0; 1℄ whi
h is 
ommutative, as-so
iative, non de
reasing in ea
h pla
e, and su
h that T (x; 1) = x, for allx 2 [0; 1℄. Asso
iativity permits to unambiguously de�ne t-norms for morethan 2 arguments.These are not the only ways to write pseudo-Boolean fun
tions. When vis a 
apa
ity, it is possible to repla
e the sum by _, as the following formulashows [15℄: f(t) = _A�Nm_(A) ^ î2A ti! : (11)12



The quantity m_ is 
alled the ordinal M�obius transform, and is related to vby m_(A) = v(A) whenever v(A) > v(A n i) for all i 2 A, and 0 otherwise.Note that 
onversely we have (
ompare with (9)):v(A) = _B�Am_(B); 8A � N: (12)In the sequel, we fo
us on formulas (7) and (10). We will 
ome ba
k onalternatives to these formulas in se
tion 8.In order to extend f to Rn , whi
h is ne
essary in our framework sin
e theDM 
an judge that an element (xi; 0fig
) is less attra
tive than (01; : : : ; 0n)(in that 
ase ui(xi) < 0), two immediate extensions 
ome from (7) and (10),where we simply use any t 2 Rn instead of f0; 1gn. We will denote themf�(t) := XA�Nm(A) �Yi2A ti; 8t 2 Rn ; (13)f^(t) := XA�Nm(A) � î2A ti; 8t 2 Rn : (14)However a se
ond way 
an be obtained by 
onsidering the fa
t that any realnumber t 
an be written under the form t = t+ � t�, where t+ = t _ 0, andt� = �t_0. If, by analogy with this remark, we repla
eQi ti byQi t+i �Qi t�i ,and similarly with V, we obtain two new extensions:f��(t) := XA�Nm(A)"Yi2A t+i �Yi2A t�i # ; 8t 2 Rn ; (15)f^�(t) := XA�Nm(A)"î2A t+i � î2A t�i # ; 8t 2 Rn : (16)These are not the only possible extensions. In fa
t, nothing prevents us tointrodu
e for the negative part another 
apa
ity, e.g. equation (16) 
ouldbe
ome:f^�12 (t) := XA�Nm1(A) � î2A t+i �XA�Nm2(A) � î2A t�i ; 8t 2 Rn : (17)However, we will not 
onsider this possibility in the subsequent development,ex
ept in se
tion 9 where the question of uni
ity is addressed. In the nextse
tions we investigate whether extensions (13) to (16) are related to knownmodels of aggregation, and whi
h one satisfy the requirements (i) to (iv)introdu
ed in se
tion 4, and 
an be thus used as an aggregation fun
tion inour 
ase. 13



6 Link with existing modelsWe introdu
e the Choquet integral with respe
t to a 
apa
ity, whi
h hasbeen introdu
ed as an aggregation operator by Grabis
h [11, 12℄. Let � be a
apa
ity on N , and t = (t1; : : : ; tn) 2 (R+)n. The Choquet integral of t withrespe
t to � is de�ned by [29℄:C�(t) = nXi=1 (t(i) � t(i�1))�(f(i); : : : ; (n)g) (18)where �(i) indi
ates a permutation on N so that t(1) � t(2) � � � � � t(n), andt(0) := 0 by 
onvention. It 
an be shown that the Choquet integral 
an bewritten as follows: C�(t) = XA�Nm(A) î2A ti; 8t 2 (R+)n (19)where m denotes the M�obius transform of �. This result has been shownby Chateauneuf and Ja�ray [1℄ (also by Walley [40℄), extending Dempster'sresult [3℄.We are now ready to relate previous extensions to known aggregationmodels.� the extension f� is known in multiattribute utility theory as the mul-tilinear model [23℄, whi
h we denote by MLE. Note that our pre-sentation gives a meaning to the 
oeÆ
ients of the polynom, sin
ethey are the M�obius transform of the underlying 
apa
ity de�ned by�(A) = u(1A; 0A
), for all A � N . Up to now, no 
lear interpretationof these 
oeÆ
ients were given.� 
on
erning f��, to our knowledge, it does not 
orrespond to anythingknown in the literature. We will denote it by SMLE (symmetri
 MLE).� 
onsidering f^ restri
ted to (R+)n, it appears due to the above result(19) that f^ is the Choquet integral of t with respe
t to �, where �
orresponds to f . This extension is also known as the Lov�asz extensionof f [26, 35℄. At this point, let us remark that the extension of the Cho-quet integral to negative arguments has been 
onsidered by Denneberg[4℄, who gives two possibilities:1. the symmetri
 extension SC� de�ned bySC�(t) = C�(t+)� C�(t�); 8t 2 Rn : (20)14



2. the asymmetri
 extension ASC � de�ned byASC �(t) = C�(t+)� C��(t�); 8t 2 Rn ; (21)where �� is the 
onjugate 
apa
ity de�ned by ��(A) := �(N) ��(A
).The �rst extension has been proposed �rst by �Sipo�s [39℄, while the se
-ond one is 
onsidered as the 
lassi
al de�nition of the Choquet integralon real numbers. In the sequel, we will denote the �Sipo�s integral by�S�, while we keep C� for the (usual) Choquet integral.The following proposition gives the expression of Choquet and �Sipo�s integralsin terms of the M�obius transform, and shows that f^ � C� and f^� � �S�.Proposition 1 Let � be a 
apa
ity. For any t 2 Rn ,C�(t) = XA�Nm(A) î2A ti; (22)�S�(t) = XA�Nm(A)"î2A t+i � î2A t�i #= XA�N+m(A) î2A ti + XA�N�m(A)_i2A ti; (23)where N+ := fi 2 N jti � 0g and N� = N nN+.The proof is based on the following lemma, shown in [16℄.Lemma 1 Let v be any set fun
tion su
h that v(;) = 0, and 
onsider its
o-M�obius transform2 [13℄, de�ned by:�mv(A) := XB�NnA(�1)n�jBjv(B) = XB�A(�1)jBjv(N nB); 8A � N:Then, if �v denotes the 
onjugate set fun
tion:�m�v(A) = (�1)jAj+1mv(A); 8A � N;A 6= ; (24)and for any a 2 (R+)n,Cv(a) = XA�N;A 6=;(�1)jAj+1 �mv(A)_i2A ai: (25)2Called \
ommonality fun
tion" by Shafer [33℄.15



Proof of Prop. 1: The 
ase of �Sipo�s integral is 
lear from (14) and (20).For the 
ase of Choquet, the proof is based on the above lemma. Using (14),we have: C�(t+) = XA�Nm(A) î2A t+i= XA�N;A\N�=;m(A) î2A tiAlso, using (24) and (25) and remarking that m(;) = 0, we get:C��(t�) = XA�N;A 6=;(�1)jAj+1 �m��(A)_i2A t�i= XA�Nm(A)_i2A t�i :Now _i2A t�i = � �Vi2A ti; if A \N� 6= ;0; otherwiseThus C��(t�) = � XA�N;A\N� 6=;m(A) î2A tiso that C�(t) = C�(t+) + C��(t�) = XA�Nm(A) î2A ti:� The next proposition gives the expression of Choquet and �Sipo�s integraldire
tly in terms of the 
apa
ity.Proposition 2 Let � be a 
apa
ity. For any t 2 Rn ,C�(t) = t(1) + nXi=2 �t(i) � t(i�1)�� (f(i); : : : ; (n)g) (26)�S�(t) = p�1Xi=1 �t(i) � t(i+1)�� (f(1); : : : ; (i)g) + t(p)� (f(1); : : : ; (p)g)+ t(p+1)� (f(p+ 1); : : : ; (n)g) + nXi=p+2 �t(i) � t(i�1)�� (f(i); : : : ; (n)g)(27)16



where �(i) indi
ates a permutation on N so that t(1) � t(2) � � � � � t(p) < 0 �t(p+1) � � � � � t(n).Proof: from the de�nition (18), we have:C�(t) = t(1) + nXi=2 �t(i) � t(i�1)�� (f(i); : : : ; (n)g) :Let t 2 Rn . We split t into its positive and negative parts t+; t�. Sin
e8>>><>>>: (t+)(1) = (t+)(2) = � � � = (t+)(p) = 0(t+)(p+1) = t(p+1)...(t+)(n) = t(n)we haveC�(t+) = t(p+1)� (f(p+ 1); : : : ; (n)g) + nXi=p+2 �t(i) � t(i�1)�� (f(i); : : : ; (n)g) :In the same way, one hasC�(t�) = �t(p)� (f(p); : : : ; (1)g)� p�1Xi=1 �t(i) � t(i+1)�� (f(i); : : : ; (1)g) :This gives the desired expression for �Sipo�s integral. The 
ase of Choquetintegral pro
eeds similarly. �Remarking that C�(0) = �S�(0) for any 
apa
ity, we have from proposi-tion 2: C�(�t) = �C��(t) (28)�S�(�t) = � �S�(t) (29)for any t in Rn , hen
e the terms asymmetri
 and symmetri
.In summary, three among the four extensions 
orrespond to known modelsof aggregation, even if 
ontexts may di�er.7 Properties of the extensionsThis se
tion is devoted to the study of the four extensions, regarding theproperties requested in the 
onstru
tion of the aggregation model (se
tion4). 17




ompatibility with intra-
riterion information (assumption A1) Re-
alling that ui(0i) = 0 8i 2 N , and noting that m(fig) = �(fig), a straight-forward 
omputation shows that for any � > 0:C�(0; : : : ; 0; �ui(xi); 0; : : : ; 0) = � ��(fig)ui(xi) if xi �i 0i���(fig)ui(xi) if xi �i 0i (30)�S�(0; : : : ; 0; �ui(xi); 0; : : : ; 0) = ��(fig)ui(xi) (31)MLE�(0; : : : ; 0; �ui(xi); 0; : : : ; 0) = ��(fig)ui(xi) (32)SMLE�(0; : : : ; 0; �ui(xi); 0; : : : ; 0) = ��(fig)ui(xi): (33)In the general 
ase, we have �(fxig) 6= ��(fxig). Thus there is an angularpoint around the origin for the Choquet integral. The 
onsequen
e is thatequation (5), and hen
e assumption A1, are not satis�ed by the Choquetintegral in general.This 
urious property 
an be explained as follows. For the �Sipo�s in-tegral, the zero has a spe
ial role, sin
e it is the zero of the ratio s
ale,and all is symmetri
 with respe
t to this point. For the Choquet integral,the zero has no spe
ial meaning, but observe that if xi � 0i � yi, thea
ts (01; : : :0i�1; xi; 0i+1; : : : ; 0n) and (01; : : :0i�1; yi; 0i+1; : : : ; 0n) are not
omonotoni
, i.e. they indu
e a di�erent ordering of the integrand.
ompatibility with inter-
riteria information (assumption A2) Itresults from the de�nitions of C�, �S�, MLE� and SMLE� that, 8A � N and8� > 0, MLE�(�1A; 0A
) = SMLE�(�1A; 0A
) = XB�Am(B)�jBj; (34)and C�(�1A; 0A
) = �S�(�1A; 0A
) = ��(A):Consequently, MLE and SMLE are inadequate for our model.use of absolute information Obviously any extension satis�esF (0; : : : ; 0) = 0, and taking into a

ount the fa
t that �(N) = 1, we haveC�(�; : : : ; �) = �S�(�; : : : ; �) = �, for all � > 0. But from (34), this propertyis not satis�ed by MLE and SMLE.Monotoni
ity It 
an be shown that, for any t; t0 2 Rn ,ti � t0i; i = 1; : : : ; n) C�(t1; : : : ; tn) � C�(t01; : : : ; t0n) (35)ti � t0i; i = 1; : : : ; n) �S�(t1; : : : ; tn) � �S�(t01; : : : ; t0n): (36)18



This well-known result (see e.g. Denneberg [4℄) 
omes from the fa
t that forany t 2 (R+)n, an equivalent form of (18) is:C�(t) = nXi=1 t(i)[�(f(i); : : : ; (n)g)� �(f(i+ 1); : : : ; (n)g)℄:Monotoni
ity is immediate from the fa
t that A � B implies �(A) � �(B).Now, for any t 2 Rn , monotoni
ity of the Choquet and �Sipo�s integrals followfrom equations (20) and (21). To obtain stri
t monotoni
ity, we need stri
tmonotoni
ity of the 
apa
ity, i.e. A $ B implies �(A) < �(B).It is easy to see from de�nition that MLE and SMLE are monotoni
 whenthe 
oeÆ
ients m(A) are all positive. But in general, the M�obius transformof a 
apa
ity is not always positive. To our knowledge, there is no result inthe general 
ase. The following 
an be proven.Proposition 3 For any t 2 [0; 1℄n, for any 
apa
ity �, MLE� is non de-
reasing with respe
t to ti, i = 1; : : : ; n. Stri
t in
reasingness is ensured i�� is stri
tly monotoni
.Proof: We 
an express easily MLE with respe
t to � (see Owen [30℄):MLE�(t) = XA�N "Yi2A ti#"Yi 62A(1� ti)#�(A):Then we have, for any t 2 [0; 1℄n and any k 2 N :�MLE(t)�tk = XA�Nnk "Yi2A ti#" Yi 62A;i6=k(1� ti)#�(A [ k)� XA�Nnk "Yi2A ti#" Yi 62A;i6=k(1� ti)#�(A)= XA�Nnk "Yi2A ti#" Yi 62A;i6=k(1� ti)# (�(A [ k)� �(A)):Clearly, the expression is non negative (resp. positive) for any k 2 N i� � ismonotoni
 (resp. stri
tly monotoni
). �The proof shows 
learly that MLE 
ould be non in
reasing when t is nomore in [0; 1℄n. Taking for example n = 2, with �(f1g) = �(f2g) = 0:9, wehave:MLE�(1; 1) = 0:9 + 0:9� 0:8 = 1MLE�(3; 3) = (3)(0:9) + (3)(0:9)� (9)(0:8) = �1:8 < MLE�(1; 1):19



As a 
onsequen
e, the use of MLE should be restri
ted to 
riteria of whi
hs
ores are limited to [0; 1℄, that is, unipolar bounded 
riteria. Also, SMLEwhi
h di�ers from MLE only for negative values, is 
learly useless.S
ale preservation Although this property is not required by our 
on-stru
tion (but it somehow underlies it in assumptions A1 and A2), it isinteresting to investigate whether the extensions satisfy it.The following is easy to prove.(C.1) invarian
e to the same positive aÆne transformationC�(�t1 + �; : : : ; �tn + �) = �C�(t1; : : : ; tn) + �; 8� � 0; 8� 2 R :(S.1) homogeneity �S�(�t1; : : : ; �tn) = � �S�(t1; : : : ; tn); 8� 2 R :As remarked by Sugeno and Murofushi [37℄, this means that if the s
oresti are on 
ommensurable interval s
ales, then the global s
ore 
omputed bythe Choquet integral is also on an interval s
ale (i.e. relative position of thezero), and if the s
ores are on a ratio s
ale, then the global s
ore 
omputedby the �Sipo�s integral is on a ratio s
ale (absolute position of the zero).By 
ontrast, MLE and SMLE neither preserve the interval nor the ratios
ale, sin
e they are not homogeneous. Indeed, taking n = 2 and any � 2 R� :MLE�(�t1; �t2) = m(f1g)�t1 +m(f2g)�t2 +m(f1; 2g)�2t1t26= �MLE�(t1; t2):This is the reason why MLE and SMLE failed to ful�ll assumption A2. Notehowever that MLE satis�es (5) but not (6).As a 
on
lusion, only the �Sipo�s integal among our four 
andidates 
an �tall requirements of our 
onstru
tion.8 An equivalent axiomati
Our 
onstru
tion is based on a 
ertain number of requirements for aggrega-tion fun
tion F , whi
h we sum up below:� restri
ted monotoni
ity (M1), 
oming from assumption A1:8i = 1; : : : ; n; 8ai; a0i 2 R; ai � a0i ) F (ai; 0fig
) � F (a0i; 0fig
)20



� interval s
ale for intra-
riterion information (A1):F (�ai; 0fig
)� F (�bi; 0fig
)F (�
i; 0fig
)� F (�di; 0fig
) = ai � bi
i � di ; 8� > 0; 8ai; bi; 
i; di 2 R; 
i 6= di� interval s
ale for inter-
riteria information (A2):F (�1A; 0A
)� F (�1B; 0B
)F (�1C; 0C
)� F (�1D; 0D
) = �(A)� �(B)�(C)� �(D) ; 8� > 0� idempoten
e (I): F (�; : : : ; �) = �; 8� � 0;with restri
ted versions (I0) for � = 0 and (I1) for � = 1.� monotoni
ity (M), whi
h is non de
reasingness of F for ea
h pla
e.As already noted, (M) implies (M1). All these requirements 
ome from 
on-siderations linked with the preferen
e of the DM and s
ales of measurement.It is possible to show that they are equivalent to a mu
h simpler set of axiomsabout F .Proposition 4 Let F : Rn ) R and � a 
apa
ity on N . Then the set ofaxioms (A1), (A2), (I), (M) is equivalent to the following set of axioms:1. homogeneous extension (HE):F (�1A; 0A
) = ��(A); 8� � 0; 8A � N2. restri
ted aÆnity (A)F (ai; 0fig
) = aiF (1i; 0fig
); 8ai 2 R; 8i = 1; : : : ; n3. monotoni
ity (M).Proof: ()) Letting B = D = ;; C = N in (A2) and using (I) lead toF (�1A; 0) = ��(A), whi
h is (HE). Now, using (A1) with bi = di = 0, 
i = 1,� = 1 and using (I0) we get F (ai; 0fig
) = aiF (1i; 0fig
), whi
h is (A).(() Using (A), we get:F (�ai; 0fig
)� F (�bi; 0fig
)F (�
i; 0fig
)� F (�di; 0fig
) = �aiF (1i; 0fig
)� �biF (1i; 0fig
)�
iF (1i; 0fig
)� �diF (1i; 0fig
)= ai � bi
i � di ;21



whi
h proves (A1). Now, from (HE) we get immediatelyF (�1A; 0A
)� F (�1B; 0B
)F (�1C ; 0C
)� F (�1D; 0D
) = �(A)� �(B)�(C)� �(D)whi
h is (A2). Finally, from (HE) with A = N , we get (I) sin
e �(N) = 1.� Nota: (M) 
an be dropped from the 2 sets of axioms without 
hangingthe equivalen
e.9 The uni
ity issueHaving this simpler set of axioms, we address the question of the uni
ity ofthe solution, i.e. is the �Sipo�s integral the only aggregation fun
tion satisfyingthe requirements?First we examine the following extension on [0; 1℄n of pseudo-Booleanfun
tions: F (a1; : : : ; an) = XA�Nm(A) � (�i2A ai); 8ai 2 [0; 1℄ (37)as suggested in se
tion 5, where � is a \pseudo-produ
t". Re
all that m isthe M�obius transform of the underlying 
apa
ity. Let us suppose as a basi
requirement that � is a 
ommutative and asso
iative operator, otherwiseour expression of F would be ill-de�ned sin
e �i2A ai would depend on theorder of elements in A (
ommutativity), and on the grouping of elements(asso
iativity). Thus, it is suÆ
ient to de�ne � on [0; 1℄2. The following 
anbe shown.Proposition 5 Let � : [0; 1℄2 �! [0; 1℄ be a 
ommutative and asso
iativeoperator, and F be given by (37). Then:(i) F satis�es (HE) on [0; 1℄n if and only if � 
oin
ide with the produ
t onf0; 1g, satis�es ��� = � for all � 2 [0; 1℄, and �� 0 = 0.(ii) F satis�es (M) implies � is non de
reasing.Proof: (i) ()) Let us 
onsider the parti
ular 
apa
ity u1;2 de�ned byu1;2(A) = 1 if f1; 2g � A, and 0 otherwise (unanimity game). It is easyto see that its M�obius transform is su
h that m(f1; 2g) = 1 and 0 elsewhere.Let us 
onsider (HE) with A = ;, � = 1, and the 
apa
ity u1;2. We obtainF (0; : : : ; 0) = 1 � (0� 0) = u1;2(;) = 0;22



hen
e 0� 0 = 0. Taking now A = N , we get:F (1; : : : ; 1) = 1 � (1� 1) = u1;2(N) = 1;hen
e 1� 1 = 1. Now let us take A = f1g, with any � > 0 and we obtainfrom (HE): F (�; 0; : : : ; 0) = 1 � (�� 0) = �u1;2(f1g) = 0;hen
e �� 0 = 0 for any = � > 0, in parti
ular when � = 1. Thus, �
oin
ides with the produ
t on f0; 1g. Lastly, let us apply (HE) with A = Nand again the 
apa
ity u1;2. We obtain:F (�; �; : : : ; �) = 1 � (���) = �hen
e ��� = �.(() For any 
apa
ity �, any A � N , any � 2 [0; 1℄:F (�1A; 0A
) = XB�Am(B) � ( �i2B �) + XB 6�Am(B) � [( �i2A�)�(�i 62A 0)℄= �XB�Am(B) + 0= ��(A):(ii) If � is de
reasing in some pla
e, and m is positive, then F 
annot bein
reasing, a 
ontradi
tion. Thus, � is non de
reasing in ea
h pla
e. �To go further in the analysis, let us assume in the sequel that � is nonde
reasing. Then we obtain the following result.Corollary 1 Let � : [0; 1℄2 �! [0; 1℄ be a 
ommutative, asso
iative, and nonde
reasing operator, and F be given by (37). The following propositions areequivalent:(i) F satis�es (HE), (M) and (A) on [0; 1℄n.(ii) � 
oin
ide with the produ
t on f0; 1g, and satis�es ��� = � for all� 2 [0; 1℄.Proof: 
lear from Prop. 5, the fa
t that (A) is implied by (HE) whenworking on positive numbers, and the fa
t that �� 0 = 0 is implied by0� 0 = 0 = 1� 0 and non de
reasingness. �This result gives ne
essary and suÆ
ient 
onditions for � in order to be
onsistent with our 
onstru
tion. 23



Adding the requirement 1�� = � for all � 2 [0; 1℄, operator � be
omesa t-norm, as de�ned in Se
tion 5. Then, the only solution to this set ofrequirements is the minimum operator [24℄. Indeed, taking �; � 2 [0; 1℄ su
hthat � � �, we have � = ��� � ��� � 1�� = �. This means that the�Sipo�s integral (for numbers in [0; 1℄, hen
e it is the Choquet integral) is theonly solution with this form of pseudo-Boolean fun
tion. However, withoutthis additional assumption, other solutions may exist.Interestingly enough, the requirement 1�� = � has a 
lear interpretationin terms of F . Indeed, for any A � N , and any � 2 [0; 1℄,F (1A; �A
) = XB�Am(B):1 +XB 6�Am(B):�= XB�Am(B) + �(1�XB�Am(B))= �+ (1� �)�(A)= �+ F ((1� �)1A; 0A
):This last expression shows an additivity property of F with parti
ular a
ts,spe
i�
ally: F (1A; �A
) = F ((1� �)1A; 0A
) + F (�; : : : ; �):It also shows that F indu
es a di�eren
e s
ale for those a
ts, sin
e the zero
an be shifted and set to � without any 
hange.We now present a solution in the spirit of equation (11), whi
h is in fa
tthe Sugeno integral [36℄ (see [15℄). Let us �rst restri
t to positive numbers.We introdu
e the following aggregation fun
tion on R+ :Sm_(a1; : : : ; an) = _B�N hm_(B) � î2B aii: (38)This is a variant of Sugeno integral where the produ
t takes pla
e of theminimum operator, whi
h satis�es all requirements when restri
ted to R+ :� monotoni
ity (M): 
lear sin
e m_ is a non negative set fun
tion.� (HE): using equation (12) we get:Sm_(�1A; 0A
) = _B�Am_(B) � � = � � �(A) = �Sm_(1A; 0A
):� (A) for positive numbers is simply a parti
ular 
ase of (HE).24



Note that (HE) works thanks to the produ
t operator in Sm_. Thus theoriginal Sugeno integral would not work.We have to extend this de�nition for negative numbers in a way similar tothe �Sipo�s integral. The problem of extending the Sugeno integral on negativenumbers has been studied by Grabis
h [17℄, in an ordinal framework. Weadapt this approa
h to our 
ase and propose the following:Sm_(a1; : : : ; an) = Sm_(a+1 ; : : : ; a+n )6(�Sm_(a�1 ; : : : ; a�n )) (39)with usual notations, and 6 (
alled symmetri
 maximum) is de�ned by:a6 b = 8<: a; if jaj > jbj0; if b = �ab; otherwise:The main properties of the symmetri
 maximum are a6 0 = a for all a 2 R(existen
e of a unique neutral element), and a6(�a) = 0 for all a 2 R(existen
e of a unique symmetri
 element). Also, it is non de
reasing in ea
hpla
e, and asso
iative on R+ and R� .It suÆ
es to verify that (M) and (A) still hold. (M) 
omes from nonde
reasingness of 6 and Sm_ for positive arguments. Let us 
onsider ai < 0.Then Sm_(ai; 0fig
) = 06(�a�i Sm_(1i; 0fig
)) = aiSm_(1i; 0fig
):Thus the proposed Sm_ satis�es all requirements of our 
onstru
tion.Let us examine now a third way to �nd other solutions. It was suggestedin Se
tion 5, formula (17), whi
h we reprodu
e here with suitable notations:F (a1; : : : ; an) = XA�Nm1(A) � î2A a+i �XA�Nm2(A) � î2A a�i ; 8a 2 Rn :with a+i := ai _ 0 and a�i = �ai _ 0. This aggregation fun
tion is built fromtwo di�erent 
apa
ities �1; �2, one for positive numbers, and the other onefor negative numbers. On ea
h part, it is a Choquet integral. Let us mentionhere that this type of fun
tion is well-known in Cumulative Prospe
t Theory[38℄. Obviously, F satis�es (M) and (HE), let us 
he
k (A) for negativenumbers. We have for any i 2 N , any ai < 0:F (ai; 0fig
) = 0�m2(fig)a�i = aim2(fig):But F (1i; 0fig
) = m1(fig), so that a ne
essary and suÆ
ient 
ondition toensure the 
ompatibility with our 
onstru
tion is:m2(fig) = m1(fig); 8i 2 N:At this stage, we do not know if other solutions exist, and a 
omplete
hara
terization is left for further study.25



10 Con
lusionWe have shown in this paper that 
onsidering, besides 
lassi
al 
omparativeinformation, absolute information, strongly modi�es the aggregation problemin MCDA. The 
lassi
al multilinear model is no more adequate but newmodels like Choquet and �Sipo�s integrals appear be
ause absolute informationallows to lead to 
ommensurable s
ales. Among these two models, we haveshown that the �Sipo�s integral is the only a

eptable solution, although thereexist other models �tting all the requirements. The approa
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