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We provide a necessary and sufficient condition for the uniqueness of penalized least-squares estimators whose penalty term is given by a norm with a polytope unit ball, covering a wide range of methods including SLOPE, PACS, fused, clustered and classical LASSO as well as the related method of basis pursuit. We consider a strong type of uniqueness that is relevant for statistical problems. The uniqueness condition is geometric and involves how the row span of the design matrix intersects the faces of the dual norm unit ball, which for SLOPE is given by the signed permutahedron. Further considerations based this condition also allow to derive results on sparsity and clustering features. In particular, we define the notion of a SLOPE pattern to describe both sparsity and clustering properties of this method and also provide a geometric characterization of accessible SLOPE patterns.

Introduction

The linear regression model Y = Xβ + ε, where X ∈ R n×p is a fixed matrix, β ∈ R p is an unknown parameter vector, and ε is a centered random error term in R n , plays a central role in statistics. When ker(X) = {0}, the ordinary least-squares estimator βols = (X X) -1 X Y , which minimizes the residual sum of squares Y -Xb 2 2 with respect to b ∈ R p , is the usual estimator of β. In high dimensions, when p > n, and thus ker(X) = {0}, the ordinary least squares estimator is no longer well-defined, as then the function b ∈ R p → Y -Xb 2 2 does not have a unique minimizer. In this case, typically, a penalty term is added to the residual sum of squares to provide an alternative to ordinary least-squares estimation. In some cases, also the minimizer of the penalized leastsquares optimization problem is not unique. Since Y is a random vector and the induced stochastic properties on the minimizer are often the object of study in a statistical framework, it is relevant to 1 consider a strong type of uniqueness: uniqueness for a given X that holds for all realizations 1 of Y in R n . In this paper, we provide a necessary and sufficient condition for uniqueness for a wide class of penalties based on a geometric criterion, as well as for the related methods of basis pursuit. Moreover, the geometry involved in this condition also yields results for model selection and pattern recovery, i.e., sparsity and related clustering properties, which we investigate for SLOPE in particular.

Penalized least-squares estimators and uniqueness

The Ridge estimator, minimizing the function b

∈ R p → 1 2 Y -Xb 2 2 + λ b 2 2
, where λ > 0 is a tuning parameter, was the first penalized estimator to appear in the statistics literature [START_REF] Hoerl | Ridge regression: Biased estimation for non-orthogonal problems[END_REF][START_REF] Golub | Generalized cross-validation as a method for choosing a good ridge parameter[END_REF]. Due to the strict convexity of the function b → b 2 2 , the minimizer is always unique and given by βridge = (X X + λI p ) -1 X Y . This estimator is not sparse, meaning that it does not set components equal to zero almost surely. Especially when p is large, this can make the estimator more difficult to interpret compared to other methods such as LASSO or SLOPE, which do exhibit sparsity and are described in the following.

The Least Absolute Shrinkage and Selection Operator or LASSO [START_REF] Chen | Basis pursuit[END_REF][START_REF] Alliney | An algorithm for the minimization of mixed l 1 and l 2 norms with applications to bayesian estimation[END_REF][START_REF] Tibshirani | Regression shrinkage and selection via the Lasso[END_REF] is the 1 -penalized least-squares estimator defined as βlasso = arg min When ker(X) = {0}, the function b ∈ R p → Y -Xb 2 2 is strictly convex, immediately implying the uniqueness of the LASSO minimizer. In high dimensions, ker(X) = {0} and the function b ∈ R p → Y -Xb 2 2 is not strictly convex, thus uniqueness of βlasso is not guaranteed. A geometric description of the set of LASSO minimizers, relevant when non-uniqueness occurs, is given in [START_REF] Dupuis | The geometry of sparse analysis regularization[END_REF]. A sufficient condition for uniqueness of the estimator for all Y ∈ R n is for the columns of the design matrix X to be in general position. This was first outlined by [START_REF] Rosset | Boosting as a regularized path to a maximum margin classifier[END_REF] and later investigated by [START_REF] Tibshirani | The Lasso problem and uniqueness[END_REF] and [START_REF] Ali | The generalized lasso problem and uniqueness[END_REF]. Recently, this condition was relaxed by [START_REF] Ewald | Model selection properties and uniqueness of the Lasso estimator in low and high dimensions[END_REF] to a geometric criterion that is both sufficient and necessary and which is generalized for a wide class of possible penalty terms in the present paper.

A strongly related procedure is basis pursuit, which first appeared in compressed sensing [START_REF] Chen | Basis pursuit[END_REF] and is defined as βbp = arg min b 1 subject to Y = Xb, provided that Y ∈ col(X). In the noiseless case, this method allows to recover a sparse vector β (see e.g. [START_REF] Candès | Stable signal recovery from incomplete and inaccurate measurements[END_REF][START_REF] Cohen | Compressed sensing and best k-term approximation[END_REF]. In the noisy case, when ε is no longer zero, the basis pursuit estimator can be viewed as the LASSO when the tuning parameter λ > 0 becomes infinitely small (Dossal, 2012, Lemma 3.6) 2 . Naturally, basis pursuit shares a lot of properties with the LASSO estimator. For example, general position of the columns of the design matrix X is also a can be viewed as part of the norm, for instance . = λ . 1 for the LASSO estimator. When . is a norm for which b + b = b + b holds if and only if b = t b where t ≥ 03 , such as the 2 -norm, then S X, . (y) is a singleton for all y ∈ R n and for all X ∈ R n×p . This statement is a straightforward consequence of the following facts. When β, β ∈ S X, . (y) we have i) X β = X β (see Lemma 2 in the appendix).

ii) Since ( β + β)/2 ∈ S X, . (y) also, ( β + β)/2 = β = β = ( β + β )/2 follows.

Geometrically, such a norm . possesses a unit ball {x ∈ R p : x = 1} with no edges. Subsequently, the problem of uniqueness is only relevant when the unit ball of the norm under consideration contains an edge. More concretely, we restrict our attention to norms for which the unit ball B = {x ∈ R p : x ≤ 1} is given by a polytope. Note that this is the case for the 1 -norm, the ∞ -norm, and the sorted-1 -norm. Our results also cover the fused LASSO [START_REF] Tibshirani | Sparsity and smoothness via the fused Lasso[END_REF], the Pairwise Absolute Clustering and Sparsity (PACS) procedure [START_REF] Sharma | Consistent group identification and variable selection in regression with correlated predictors[END_REF], the clustered LASSO [START_REF] She | Sparse regression with exact clustering[END_REF], or methods with a mixed 1 , ∞ -norm penalty term [START_REF] Negahban | Joint support recovery under high-dimensional scaling: Benefits and perils of l 1,∞ -regularization[END_REF][START_REF] Bach | Optimization with sparsity-inducing penalties[END_REF].

Sparsity and clustering: accessible patterns and sign estimation

As mentioned above, the LASSO estimator is a sparse method that generally sets components equal to zero with positive probability, entailing that the estimator also performs so-called model or variable selection. In fact, when p > n and the solution is unique, βlasso contains at least p-n zero components. Instigated by this property, an abundant literature has arisen to deal with the recovery of the location of the non-null components of β, or, more specifically, the recovery of the sign vector of β [START_REF] Zou | The adaptive Lasso and its oracle properties[END_REF][START_REF] Zhao | On model selection consistency of Lasso[END_REF][START_REF] Wainwright | Sharp thresholds for high-dimensional and noisy sparsity recovery using 1 -constrained quadratic programming (lasso)[END_REF].

A necessary condition for the recovery of sign(β) is for this vector to be accessible by the LASSO, i.e., for a fixed λ > 0, there has to exist Y ∈ R n for which sign( βlasso ) = sign(β). Otherwise, P(sign( βlasso ) = sign(β)) = 0, and recovery is clearly impossible. A geometrical characterization of accessible sign vectors is given in [START_REF] Sepehri | The accessible lasso models[END_REF] under the assumption of uniqueness of LASSO solutions. In the appendix, we provide a geometrical characterization of accessible sign vectors for both basis pursuit and LASSO without a uniqueness assumption.

In the OSCAR procedure mentioned in Section 1.1, the letter "C" stands for "Clustering", referring to the fact that some components of this estimator can be equal in absolute value. This property can be illustrated for OSCAR -as well as the more general SLOPE method -by drawing the elliptic contour lines of the residual sum of squares b → Y -Xb 2 2 (when ker(X) = {0}) together with balls of the sorted-1 -norm4 . This clustering property can also be deduced from the explicit expressions of SLOPE one obtains for the case where the columns of X are orthogonal [START_REF] Tardivel | Simple expressions of the LASSO and SLOPE estimators in small-dimension[END_REF]Dupuis & Tardivel, 2022). We show that the clustering phenomenon also holds in the general case by using our geometric approach. This feature of SLOPE -which is not shared by the LASSO -has, of course, been known in practice and may be of particular relevance in certain applications [START_REF] Figueiredo | Ordered weighted l1 regularized regression with strongly correlated covariates: Theoretical aspects[END_REF][START_REF] Kremer | Sparse portfolio selection via the sorted 1 -norm[END_REF][START_REF] Kremer | Sparse index clones via the sorted 1 -norm[END_REF].

With a similar objective as the articles written a decade ago on support or sign recovery by LASSO, there are now several papers dealing with pattern recovery by SLOPE where the notion of SLOPE pattern is a central concept [START_REF] Skalski | Pattern recovery and signal denoising by SLOPE when the design matrix is orthogonal[END_REF][START_REF] Bogdan | Pattern recovery by SLOPE[END_REF]. In the present article, we show how our geometric approach can be used to provide a characterization of the clusters induced by SLOPE.

Related geometrical works

Most articles providing geometric properties in the context of penalized estimation treat the LASSO. [START_REF] Tibshirani | Degrees of freedom in lasso problems[END_REF] show that the LASSO residual Y -X βlasso is the projection of Y onto the so-called LASSO null polyhedron {z ∈ R n : X z ∞ ≤ λ}. From this result, the authors derive an explicit formula for the Stein's unbiased risk estimate that provides an unbiased estimator for E( X βlasso -Xβ 2

2 ). This geometric result also lays the groundwork for selective inference [START_REF] Lee | Exact post-selection inference with an application to the Lasso[END_REF], for deriving screening procedures [START_REF] Ghaoui | Safe feature elimination in sparse supervised learning[END_REF][START_REF] Wang | Lasso screening rules via dual polytope projection[END_REF], and to describe the accessible LASSO patterns in [START_REF] Sepehri | The accessible lasso models[END_REF]. For basis pursuit, geometrical considerations focus on dealing with the 1 -recovery in the noiseless case and are aimed at deriving the phase-transition curve [START_REF] Donoho | Counting faces of randomly projected polytopes when the projection radically lowers dimension[END_REF]. The recent article of [START_REF] Minami | Degrees of freedom in submodular regularization: A computational perspective of Stein's unbiased risk estimate[END_REF] generalizes some results of [START_REF] Tibshirani | Degrees of freedom in lasso problems[END_REF] to SLOPE and shows that the number of non-null clusters (the quantity patt( βslope ) ∞ in our article) appears in the Stein's unbiased risk estimate for SLOPE estimator. For the sake of completeness we mention that in the present paper, we provide a convex null set in Proposition 3 that generalizes the concept of the LASSO null polyhedron to all norm-penalized least-squares estimators, where the projection of Y onto this set yields the estimation residuals.

Notation and structure

To conclude this section, we introduce the notation used throughout this article. We denote the set {1, . . . , k} by [k] and use |I| for the cardinality of a set I. The set S p contains all permutations on the set [p]. For a matrix A, the symbols col(A) and row(A) stand for the column and row space of A, respectively, whereas conv(A) represents the convex hull of the columns of A. As used in previous sections already, for a number t, sign(t) is given by 1, -1, or 0 if t > 0, t < 0, or t = 0, respectively.

For a vector x, sign(x) is the vector containing the signs of the components of x. Finally, the symbols . 1 , . 2 , . ∞ , and . w represent the 1 -, 2 -, supremum, and the sorted-1 -norm, respectively.

The remainder of this article is organized as follows. Section 2 contains the main theorem of uniqueness for penalized least-squares estimators, as well as the analogous necessary and sufficient uniqueness condition for basis pursuit. In Section 3, we investigate the pattern selection properties related to the geometric condition introduced in Section 2 for SLOPE, including a characterization of the SLOPE's clustering property. This section also contains a general result on the convex null set for norm-penalized least-squares estimation. Appendix A illustrates what our results entail for LASSO and BP. All proofs are relegated to Appendix B, which also contains a remainder of basic facts of subdifferentials and polytopes.

A necessary and sufficient condition for uniqueness of penalized problems

We start by providing the framework for the theorem on uniqueness of penalized least-squares minimization problems. For a norm . on R p , the dual norm . * is defined by

x * = sup s∈R p : s ≤1 s x.
If the unit ball B = {x ∈ R p : x ≤ 1} is of polytope shape, the dual of B given by B * = {x ∈ R p :

x * ≤ 1}, the unit ball of the dual norm, is, again, a polytope. In this case, the penalty term is not differentiable everywhere and there is a strong connection between the subdifferentials ∂ . (.) of the norm . and the faces of the polytope B * . The precise association is detailed in Appendices B. 1-B.3 and this connection provides the basis for the main theorem.

Theorem 1 (Necessary and sufficient condition for uniqueness). Let X ∈ R n×p and let . be a norm on R p whose unit ball B is given by a polytope. Consider the penalized optimization problem

S X, . (y) = Arg min b∈R p 1 2 y -Xb 2 + b , (1) 
where y ∈ R n . Let B * denote the unit ball of the dual norm . * . There exists y ∈ R n with |S X, . (y)| > 1 if and only if row(X) intersects a face of the dual unit ball B * whose codimension is larger than rk(X).

It should be noted that also vertices are faces (of dimension zero and codimension p), as is the polytope itself (of dimension p and codimension zero), a precise definition for faces is given in the appendix.

As mentioned in the introduction, the notion of uniqueness considered in Theorem 1 is strong in the sense that it guarantees uniqueness for a given design matrix X for all values y ∈ R n . This concept of uniqueness is beneficial when studying the stochastic properties of the minimizer in a statistical framework, as then y varies and a criterion independent of y is desirable. Also note that we make no assumptions on X.

If the norm . involves a tuning parameter λ, the uniqueness of the corresponding penalized problem does not depend on the particular choice of λ. The parameter simply scales B and subsequently B * and does not affect which faces are intersected by the vector space row(X).

Theorem 1 generalizes Theorem 14 given in [START_REF] Ewald | Model selection properties and uniqueness of the Lasso estimator in low and high dimensions[END_REF], which provides a necessary and sufficient condition for the uniqueness of the LASSO minimizer: All LASSO solutions are unique if and only if row(X) only intersects faces of the unit cube [-1, 1] p whose codimension is less than or equal to rk(X). Note that the unit cube is, indeed, the corresponding dual to the unit ball of the 1 -norm.

Example 1. We illustrate the criterion from Theorem 1 for . = . ∞ , the supremum norm, in Fig- ure 1. Let X = (1 0). The unit dual ball B * is given by the unit cross-polytope conv{±(1, 0) , ±(0, 1) } and we have rk(X) = 1. Clearly, the vertex (1, 0) with codimension p -0 = 2 > 1 = rk(X) intersects row(X), so that one can pick y ∈ R for which the set of minimizers S X, . ∞ (y) is not a singleton. In Figure 1(a), we illustrate this fact for S X, . ∞ (2).

Also consider X = (1 1). Because row(X) does not intersect any vertex of conv{±(1, 0) , ±(0, 1) }, the solution set S X, . ∞ (y) is always a singleton. In Figure 1(b), we illustrate this fact for S X, . ∞ (2).

The related problem of basis pursuit

As mentioned before, the methods of LASSO and basis pursuit (BP) are closely related, as the BP problem can be thought of a LASSO problem with vanishing tuning parameter. More concretely, the setting for BP is the following. Let X ∈ R n×p and let y ∈ col(X). The set S X,bp (y) of BP minimizers is defined as S X,bp (y) = Arg min b 1 subject to Xb = y.

The following theorem shows that, indeed, as BP is a limiting case of the LASSO, the corresponding uniqueness condition -which is independent of the choice of tuning parameter as discussed above -(a) Let X = (1 0). On the left-hand side, we see that row(X) intersects a vertex of the cross-polytope whose codimension is 2 and thus is larger than rk(X) = 1. Therefore, there exists y ∈ R for which S X, . ∞ (y) is not a singleton. On the right-hand side, the contour lines of the objective function φ(b1, b2) = 0.5(2 -b1) 2 + max{|b1|, |b2|} show that the set S X, . ∞ (2) (in red), indeed, contains infinitely many points.

(b) Let X = (1 1). On the left-hand side, we see that row(X) does not intersect any face of the cross-polytope whose codimension is larger than rk(X) = 1 (such faces are the vertices in this example). Therefore, the set S X, . ∞ (y) is a singleton for all y ∈ R. On the right-hand side, the contour lines of the objective function φ(b1, b2) = 0.5(2 -b1) 2 + max{|b1|, |b2|} show that the set S X, . ∞ (2) (in red) does, indeed, only contain a single point. carries over to the BP problem.

Theorem 2. Let X ∈ R n×p . There exists y ∈ col(X) for which |S X,bp (y)| > 1 if and only if row(X) intersects a face of the unit cube [-1, 1] p whose codimension is larger than rk(X).

We illustrate Theorem 2 in Figures 2(a) and 2(b).

(a) Let X = (1 1). On the left-hand side, we see that row(X) intersects a face of the unit square whose codimension 2 is larger than rk(X) = 1 (which are the vertices in this example). Therefore, by Theorem 2, there exists y ∈ R for which the BP minimizer is not unique. The right-hand side illustrates that, indeed, for an arbitrary y ∈ R \ {0}, the set S X,bp (y) (the red segment) is not a singleton.

(b) Let X = (1 2). On the left-hand side, we see that row(X) does not intersect any face of the unit square whose codimension is larger than rk(X) = 1 (which are the vertices in this example). Therefore, by Theorem 2, the BP minimizer is unique for all y ∈ R. The right-hand side illustrates that for an arbitrary y ∈ R, the set S X,bp (y) (in red) is, indeed, a singleton. In the following proposition, we show that the necessary and sufficient condition given in Theorem 1

and therefore also the one given in Theorem 2 is weak. More precisely, we establish that the set of X ∈ R n×p for which the necessary and sufficient condition given in Theorem 1 does not hold, is negligible with respect to the Lebesgue measure.

Proposition 1. Let µ be the Lebesgue measure on R n×p and let . be a norm on R p whose unit ball is given by a polytope. The following equality holds

µ X ∈ R n×p : ∃y ∈ R n with |S X, . (y)| > 1 = 0.
The following corollary is then straightforward given the fact that the LASSO, which is covered by Theorem 1, and BP share the same characterization for uniqueness.

Corollary 1. Let µ be the Lebesgue measure on R n×p , then the following equality holds

µ X ∈ R n×p : ∃y ∈ R n with |S X,bp (y)| > 1 = 0.
By taking the appropriate norms in Proposition 1, and by Corollary 1, one may deduce that the necessary and sufficient conditions for uniqueness of SLOPE, PACS, fused, clustered and classical LASSO are weak. However, one should be aware that Proposition 1 does not mean that this condition always occurs in practice! For example, for BP (or LASSO), when p > n and X ∈ [-1, 1] n×p is a matrix having a row with at least n + 1 elements in {-1, 1} then, one can pick y ∈ col(X) for which the set of minimizers S X,bp (y) is not a singleton (or, for any λ > 0, one can pick y ∈ R n for which the set of minimizers S X,λ . 1 (y) is not a singleton). Matrices having entries in {-1, 1} appear in several theoretical works, such as Rauhut ( 2010) and [START_REF] Tardivel | Sparsest representations and approximations of an underdetermined linear system[END_REF], and are used for applications in radar and wireless communication (see e.g. [START_REF] Romberg | Compressive sensing by random convolution[END_REF][START_REF] Haupt | Toeplitz compressed sensing matrices with applications to sparse channel estimation[END_REF]. Moreover, [START_REF] Dupuis | The geometry of sparse analysis regularization[END_REF] recently illustrated that the matrix X ∈ [-1, 1] 5000×6000 , having most entries in {-1, 1}, and the vector y ∈ R 5000 provided by the dataset "gisette" give a set of minimizers S X,λ . 1 (y) which is not a singleton once λ > 0 is small enough.

Pattern selection properties

The geometric considerations around Theorems 1 and 2 can also provide insights on the pattern selection aspects of the method under consideration. The keystone is to associate a pattern with a face of the polytope B * , the unit ball of the dual norm. For LASSO and BP, we exploit the fact that each face of the unit cube corresponds to a sign vector and show that the faces intersected by the row span of X provide the accessible sign vectors for these estimators, see Appendix A. We take a similar, but more sophisticated approach for SLOPE in Section 3.1 where the patterns we consider also carry information about the clustering phenomenon of the method.

In Section 3.2, we take a different angle and characterize the SLOPE null polyhedron and its connection to the sparsity and clustering property of this method. For the LASSO, it is known that the estimation residuals are the projection of y onto the LASSO null polyhedron. We also further generalize this fact to arbitrary norm-penalized least-squares estimation.

Accessible patterns for SLOPE

We now turn to accessible patterns for SLOPE, whose norm is given by b w = p j=1 w j |b| (j) , where

|b| (1) ≥ • • • ≥ |b| (p)
, as introduced before. For the remainder of Section 3, we assume that the weight vector w of the satisfies

w 1 > • • • > w p > 0,
i.e., that all components non-zero and strictly decreasing. (This assumption is not needed for applying Theorem 1 to SLOPE, since w 1 > 0 and decreasing components are sufficient for . w to be a norm.)

We introduce a more sophisticated notion of a "pattern" chosen by SLOPE compared to sign vectors that can account for the clustering property which is not shared by LASSO or BP.

Definition 1. We say that a vector m ∈ Z p is a SLOPE pattern, if either m = 0, or, if for all l ∈ [ m ∞ ], there exists j ∈ [p] such that |m j | = l. We denote the set of all SLOPE patterns of dimension p by P p . Moreover, for x ∈ R p , we define patt(x) ∈ P p through the following.

1) sign(patt(x)) = sign(x) 2) |x i | = |x j | =⇒ |patt(x) i | = |patt(x) j | 3) |x i | > |x j | =⇒ |patt(x) i | > |patt(x) j | Example 2. For x = (3.1, -1.2, 0, -3.1) , we have patt(x) = (2, -1, 0, -2) . For x ∈ R 4 with patt(x) = (0, 2, 1, -2) , we have sign(x) = (0, 1, 1, -1) and |x 2 | = |x 4 | > |x 3 | > x 1 = 0. The set of all SLOPE patterns in R 2 is given by P 2 = {(0, 0) , (1, 0) , (-1, 0) , (0, 1) , (0, -1) , (1, 1) , (1, -1) , (-1, 1) , (-1, -1) , (2, 1) , (-2, 1) , (2, -1) , (-2, -1) , (1, 2) , (-1, 2) , (1, -2) , (-1, -2) }.
The main geometric object of study in this section is the signed permutahedron, which constitutes the dual of the sorted-1 -norm unit ball (Proposition 8 in Appendix B.6) and is defined as

P ± w = conv (σ 1 w π(1) , . . . , σ p w π(p) ) : σ 1 , . . . , σ p ∈ {-1, 1}, π ∈ S p .
The shape of this polytope is illustrated in Figure 3 (in two dimensions) and in Figure 4 (in three dimensions). Also of importance will be the permutahedron, defined by

P w = conv (w π(1) , . . . , w π(p) ) : π ∈ S p .
The permutahedron is, in fact, a face of the signed permutahedron P ± w . We denote the subdifferential of the sorted-

1 -norm at x ∈ R p by ∂ . w (x). Any ∂ . w (x) is a face of P ±
w , which we shall denote by F w (x) in the following.

SLOPE patterns m having only positive components can be interpreted as an ordered partition of

[p], where the the smallest and largest element of this partition is the set {j : m j = 1} and the set {j : m j = m ∞ }, respectively. It is well known that there is a one-to-one relationship between the elements of an ordered partition and the faces of the permutahedron (see e.g. [START_REF] Maes | On the permutahedron and the quadratic placement problem[END_REF][START_REF] Simion | Convex polytopes and enumeration[END_REF][START_REF] Ziegler | Lectures on Polytopes[END_REF]. Instigated by this, we show in Theorem 3 that this result can, indeed, be extended to a one-to-one relationship between all SLOPE patterns and the non-empty faces of the signed permutahedron, which we denote by F 0 (P ± w ).

Theorem 3. The mapping m ∈ P p → F w (m) = ∂ . w (m) is a bijection between the SLOPE patterns P p and F 0 (P ± w ), the non-empty faces of the signed permutahedron P ± w . In addition, the following holds.

1) The codimension of F w (m) is given by m ∞ .

2) We have

F w (x) = F w (patt(x)).
The assumption that components of w are strictly decreasing and non-zero is important. For example, if w 1 = • • • = w p > 0, the signed permutahedron is just a cube and clearly, there is no one-toone relationship between the set SLOPE patterns and the set of faces of the cube. A similar situation arises if w contains zero components. As can be seen when p = 2 and w 2 = 0, the sorted-1 -norm is the supremum norm and the corresponding dual unit ball is the unit cross-polytope in R 2 , whose faces cannot bijectively be mapped to P 2 given in the example above.

Example 3. We now describe the faces F w (m), m ∈ P 2 , of the signed permutahedron P ± w when w = (3.5, 1.5) . In the following, we use the fact that -up to an orthogonal transformation described in Lemma 4 -F w (m) is equal to F w ( m) for some m, a non-negative and non-increasing SLOPE pattern.

The relationship between the SLOPE patterns m ∈ P 2 and faces of the signed permutahedron P ± w are listed below and illustrated in Figure 3

. Note that codim(F w (m)) = m ∞ . pattern m face F w ( m) codim. faces F w (m) isometric to F w ( m) m = (0, 0) signed permutahedron P ± w 0 - m = (1, 0) segment {3.5} × [-1.5, 1.5] 1 m ∈ {(-1, 0) , ±(0, 1) } m = (1, 1) permutahedron P w 1 m ∈ {(-1, -1) , ±(1, -1) } m = (2, 1) point: (3.5, 1.5) 2 m ∈ {(-2, -1) , ±(2, -1) , ±(1, 2) , ±(1, -2) }
Analogously to the accessible sign vectors for LASSO and BP, for a given X, we introduce the notion of accessible SLOPE patterns.

Definition 2 (Accessible SLOPE pattern). Let X ∈ R n×p and m ∈ P p . We say that m is an accessible SLOPE pattern with respect to X if

∃y ∈ R n and ∃ β ∈ S X, . w (y) such that patt( β) = m.
We now provide a geometric and analytic characterization of accessible SLOPE patterns.

Theorem 4 (Characterization of accessible SLOPE patterns). Let X ∈ R n×p .

1) Geometric characterization: A SLOPE pattern m ∈ P p is accessible with respect to X if and only if row(X) intersects the face F w (m).

2) Analytic characterization: A SLOPE pattern m ∈ P p is accessible with respect to X if and only if the implication We point out that the analytic characterization allows to check accessibility of a particular SLOPE pattern by in fact minimizing a BP-like problem where the 1 -norm is replaced by the sorted-1norm. This in turn can give insight on whether the corresponding face of the signed permutahedron is intersected by row(X). Also note that the set of accessible SLOPE patterns is invariant by scaling w with a constant, since row(X) intersects F w (m) if and only if row(X) intersects F λw (m) with λ > 0. The following corollary, which is in line with Theorem 2.1 very recently given in [START_REF] Kremer | Sparse index clones via the sorted 1 -norm[END_REF], is a straightforward consequence of Theorems 1, 3 and 4.

Xb = Xm =⇒ b w ≥ m w holds.
Corollary 2. Let X ∈ R n×p . If row(X) does not intersect any face of P ± w with codimension larger than rk(X), then for all y ∈ R n , βw (y), the unique element of S X, . w (y), satisfies patt( βw (y)) ∞ ≤ rk(X).

Corollary 2 generalizes the well-known fact that, when uniqueness occurs, the LASSO minimizer has less than rk(X) non-null components. Indeed, the above corollary shows that when the SLOPE minimizer is unique, the number of non-null clusters is less than or equal to rk(X).

Example 4. We illustrate the criterion for accessible SLOPE patterns from Theorem 4 for w = (5.5, 3.5, 1.5) and X given by X = 8 5 8 10 1.25 -6 .

Table 1 lists all accessible non-null SLOPE patterns (m = 0 is always accessible through y = 0), the geometric illustration is shown in Figure 4.

colour type intersection = ∅ face intersected isom. to SLOPE patt. orange segments row(X) ∩ F w (±(1, 0, 0)) {5.5} × P ± (3.5,1.5)
±(1, 0, 0) red segments row(X) ∩ F w (±(1, 1, 1)) P (5.5,3.5,1.5) ±(1, 1, 1) black segments row(X) ∩ F w (±(0, 0, 1)) {5.5} × P ± (3.5,1.5) ±(0, 0, 1) pink segments row(X) ∩ F w (±(-1, 0, 1)) P (5.5,3.5) × [-1.5, 1.5] ±(-1, 0, 1) purple points row(X) ∩ F w (±(2, 0, -1)) {5.5} × {3.5} × [-1.5, 1.5] ±(2, 0, -1)

green points row(X) ∩ F w (±(2, 1, 1)) {5.5} × P (3.5,1.5) ±(2, 1, 1) blue points row(X) ∩ F w (±(1, 1, 2)) {5.5} × P (3.5,1.5) ±(1, 1, 2) yellow points row(X) ∩ F w (±(-1, 0, 2)) {5.5} × {3.5} × [-1.5, 1.5] ±(-1, 0, 2)
Table 1: Accessible SLOPE patterns with respect to X = 8 5 8 10 1.25 -6 and w = (5.5, 3.5, 1.5) .

Figure 4: Illustration of the signed permutahedron P ± w (in brown) and the plane row(X) (in light blue). Because rk(X) = 2 and row(X) does not intersect any vertex of P ± w (the faces with codimension equal to 3), the SLOPE estimator βw (y) is unique for all values of y ∈ R 2 . Colored segments and points are the intersections between row(X) and the faces of P ± w , determining the accessible SLOPE patterns shown in Table 1. For example, m = (2, 1, 1) is an accessible SLOPE pattern, which implies that there exists y ∈ R 2 for which the SLOPE minimizer βw (y) satisfies βw (y) 1 > βw (y) 2 = βw (y) 3 > 0. In addition, since m = (2, 1, 0) is not an accessible pattern, one cannot pick y ∈ R 2 for which the SLOPE minimizer satisfies βw (y) 1 > βw (y) 2 > βw (y) 3 = 0.

The SLOPE null polyhedron and a general result

In the previous section, we gave a description of accessible SLOPE patterns based on the intersection of row(X) with the signed permutahedron P ± w . In this section, our aim is the following: Given an accessible pattern m ∈ P p , we want to provide the set of y ∈ R n for which there exists β ∈ S X, . w (y) with patt( β) = m. In other words, we want to describe the set

A w (m) = {y ∈ R n : ∃ β ∈ S X, . w (y) where patt( β) = m}.
Note that when the SLOPE minimizer is unique, the sets A w (m) and A w ( m) are disjoint for m = m, whereas A w (m) ∩ A w ( m) = ∅ might occur in case of non-uniqueness. Clearly, the null pattern m = 0 is accessible. The corresponding set A w (0), called the SLOPE null polyhedron, given by

A w (0) = {y ∈ R n : X y * w ≤ 1}
by Proposition 7. This is the set of all y such that X y ∈ P ± w , which is again a polytope. The proposition below shows that the faces of this polytope N w (m) = {f ∈ R n : X f ∈ F w (m)} for the accessible SLOPE patterns m are the cornerstone to describe the sets A w (m).

Proposition 2. Let X ∈ R n×p . The SLOPE pattern m ∈ P p is an accessible SLOPE pattern if and

only if N w (m) = {f ∈ R n : X f ∈ F w (m)} = ∅. In that case, the set A w (m) is given by A w (m) = {y = f + Xb : f ∈ N w (m), patt(b) = m} .
Note that Proposition 2 yields another characterization of accessible SLOPE patterns, namely that m is accessible if and only if N w (m) is a non-empty face of the SLOPE null polyhedron. In case of non-uniqueness, different patterns may yield the same face, so one should be aware that there is no bijection between the accessible SLOPE patterns and the faces of the SLOPE null polytope. Also note that if rk(X) = n and we are given the intersection between row(X) and F w (m) for some accessible SLOPE pattern m, we can write Note that the SLOPE null polyhedron A w (0) can also be interpreted as the set of SLOPE residuals in the sense that û = y -X β is the projection of y onto A w (0) whenever β ∈ S X, . w (y) [START_REF] Minami | Degrees of freedom in submodular regularization: A computational perspective of Stein's unbiased risk estimate[END_REF]. Or put differently again, we can decompose y as y = X β + û, where X β is the SLOPE fit and û ∈ A w (0), the set of all values that lead to a zero SLOPE minimizer. This property is well known also and w = (5.5, 3.5, 1.5) .

N w (m) = (XX ) -1 X(row(X) ∩ F w (m)) since f ∈ N w (m) ⇐⇒ X f ∈ row(X) ∩ F w (m) ⇐⇒ f ∈ (XX ) -1 X(row(X) ∩ F w (m)).
The resulting accessible patterns are {±(1, 0, 0), ±(1, 1, 1), ±(0, 0, 1), ±(-1, 0, 1), ±(2, 0, -1), ±(2, 1, 1), ±(1, 1, 2), ±(-1, 0, 2)}, each associated with a face of the polytope. Depicted also are the sets A w (m) = {y ∈ R 2 : ∃ β ∈ S X, . w (y) with patt( β) = m} for each accessible pattern.

for the LASSO, (c.f. [START_REF] Tibshirani | Degrees of freedom in lasso problems[END_REF]. In fact, it is straightforward to see from Proposition 7 that the same considerations hold for all problems as defined in (1). For completeness, we summarize this in the following proposition which holds for arbitrary norms.

Proposition 3. Let X ∈ R n×p and y ∈ R n and let . be a norm on R p . Define the convex null set

A ∅ = {u ∈ R n : X u * ≤ 1}.
We then have S X, . (u) = {0} for all u ∈ A ∅ , and any β ∈ S X, . (y) satisfies y = X β + û with û ∈ A ∅ . Moreover, û is the projection of y onto A ∅ .

Conclusion and perspective

In Theorem 1, we provide a necessary and sufficient condition for the uniqueness of penalized leastsquares estimators whose penalty term is given by a norm with a polytope-shaped unit ball. To the best of our knowledge, this kind of uniqueness has not been treated in this generality before, only a necessary and sufficient condition in the special case of the LASSO has been available. Our condition involves a new geometric approach that allows to also investigate other properties of these types of methods. A central role in this approach is played by the unit ball of the norm that is dual to the penalizing term, denoted by B * . For the LASSO, it is fairly straightforward to see that every possible signed model corresponds to a face of B * , the unit cube in this case. For SLOPE, we show that B * is, in fact, given by the so-called signed permutahedron. We also show the highly non-trivial fact that there is a one-to-one correspondence between the faces of this signed permutahedron and the so-called SLOPE patterns, which contain the information about zero components, signs, clusters, and the ordering in a SLOPE solution. Our findings illustrate the intrinsic connection between the faces of the geometric object B * and the type of patterns the corresponding penalized method can uncover. This suggests to further explore this link generally in penalized estimation, which could, for example, be accomplished by the implicit definition that patterns are equivalence classes of elements sharing the same subdifferential with respect to the penalty term. Another natural direction for extending the uniqueness result (and also the results for pattern selection) would be to consider even more general penalties to also encompass methods such as the generalized LASSO and related procedures which are currently not covered in our setting.
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A Appendix -Accessible sign vectors for LASSO and BP

We start by introducing the notion of accessible sign vectors for LASSO and BP problems.

Definition 3 (Accessible sign vectors for LASSO and BP). Let X ∈ R n×p , σ ∈ {-1, 0, 1} p , and λ > 0.

We say that σ is an accessible sign vector for LASSO (or BP) with respect to X, if there exists y ∈ R n and β ∈ S X,λ . 1 (y) (or there exists y ∈ col(X) and β ∈ S X,bp (y), respectively), such that sign( β) = σ.

The following theorem provides a geometric characterization of accessible sign vectors for LASSO and BP based on faces of the unit cube [-1, 1] p and the vector space row(X). First, note that subdifferential calculus of the 1 -norm at σ ∈ {-1, 0, 1} p gives

∂ . 1 (σ) = E 1 × • • • × E p with E j =    {σ j } |σ j | = 1 [-1, 1] σ j = 0,
where ∂ . 1 (x) denotes the subdifferential of the 1 -norm at x ∈ R p , see Appendices B.1 and B.3 for more details. Therefore, the mapping σ → ∂ . 1 (σ) is a bijection between sign vectors in {-1, 0, 1} p and faces of the unit cube in R p . We let F 1 (σ) = ∂ . 1 (σ) in the following. For completeness, Theorem 5 also contains an analytic characterization of accessibility.

Theorem 5 (Characterization of accessible LASSO and BP sign vectors). Let X ∈ R n×p and λ > 0.

1) Geometric characterization: A sign vector σ ∈ {-1, 0, 1} p is accessible for LASSO or BP with respect to X if and only if row(X) intersects the face F 1 (σ).

2) Analytic characterization: A sign vector σ ∈ {-1, 0, 1} p is accessible for LASSO or BP with respect to X if and only if the implication

Xb = Xσ =⇒ b 1 ≥ σ 1 holds.
The analytic characterization for accessible sign vectors is, in fact, closely related to the identifiability condition given in Tardivel & Bogdan (2022), in which the inequality above is replaced by a strict inequality. In high-dimensional linear regression, this condition is necessary and sufficient for sign recovery of thresholded LASSO and thresholded BP (Tardivel & Bogdan, 2022), as well as for so-called thresholded justice pursuit [START_REF] Descloux | Robust Lasso-zero for sparse corruption and model selection with missing covariates[END_REF], a method closely related to BP. We point out that the analytic characterization allows to check accessibility of a particular sign vector simply by solving a BP problem, which in turn gives insight on whether the corresponding face of the unit cube is intersected by row(X). In practice, one does not even need an accurate numerical solver to check whether a sign vector σ ∈ {-1, 0, 1} p is accessible, when the BP problem is uniquely solvable: if we are given an approximate minimizer β for the BP problem with y = Xσ that satisfies ββ ∞ < 1/2, where β is the exact minimizer, it suffices to check whether sign(round( β)) = σ, where round(.) rounds componentwise to the closest integer. In that case, σ is accessible, whereas σ is not accessible if sign(round( β)) = σ, as outlined in Corollary 3 in Appendix B.10. This approach to check accessibility was used in Tardivel & Bogdan (2022) to derive the so-called identifiability curve.

Note that Theorem 5 reveals that whether a sign vector is accessible for LASSO does not depend on the value of the tuning parameter λ. We also point out that Theorems 1 and 5 allow to deduce that the number of non-null components of the LASSO is always less than or equal to rk(X) when the solutions are unique. Indeed, if the LASSO minimizer is unique, according to Theorem 1, row(X) does not intersect a face of [-1, 1] p associated to a sign vector having more than rk(X) non-null components, i.e., a face whose codimension is larger than rk(X). This implies that only sign vectors with at most rk(X) components different to zero are accessible. For the LASSO, this is a refined version of the well-known fact that, in case the estimator is unique, at most n components can be non-zero (see e.g. [START_REF] Tibshirani | The Lasso problem and uniqueness[END_REF][START_REF] Osborne | On the Lasso and its dual[END_REF].

B Appendix -Proofs

In the appendix, we additionally make use of the following notation. Let A be a matrix. We use the symbol A j to denote the j-the column of A. For an index set I, A I is the matrix containing columns with indices in I only. For a vector x, supp(x) contains the indices of the non-zero components of x.

The symbol |x| (j) denotes the j-th order statistic of the absolute values of the components of x, i.e., |x| (1) ≥ |x| (2) ≥ . . . . Let l, k ∈ N with l ≤ k, then [l : k] denotes the set {l, l + 1, . . . , k}. We let 1 m stand for the vector (1, . . . , 1) ∈ R m . All inequalities involving vectors are understood componentwise.

B.1 Facts about subdifferentials

We remind the reader of some definitions and facts on subgradients and subdifferentials. The following can, for instance, be found in Hiriart-Urruty & Lemarechal (1993). For a function f :

R p → R, a vector s ∈ R p is a subgradient of f at x ∈ R p if f (z) ≥ f (x) + s (z -x) ∀z ∈ R p . (2) 
The set of all subgradients of f at x, which is a convex set, is called the subdifferential of f at x, denoted by ∂ f (x). It is straightforward to characterize the minimizer of a function in the following way

x * ∈ Arg min f ⇐⇒ 0 ∈ ∂ f (x * ). (3)
While convexity of f is not necessary for the above statement, the use of subdifferentials is an especially important tool when this is the case. Given that f is convex, subdifferentiability is also a local property in the sense that for any δ > 0, we have

s ∈ ∂ f (x) ⇐⇒ f (x + h) ≥ f (x) + s h for all h : h ∞ ≤ δ. (4) 

B.2 Facts about polytopes

We report some basic definitions and facts on polytopes, which we will use throughout the article and, in particular, in the proofs in subsequent sections. The following can, for instance, be found in the excellent textbooks by [START_REF] Gruber | Convex and Discrete Geometry[END_REF] and [START_REF] Ziegler | Lectures on Polytopes[END_REF].

A set P V ⊆ R p is called a V-polytope, if it is the convex hull of a finite set of points in R p , namely,

P V = conv(V 1 , . . . , V k ) = conv(V ) for V = (V 1 . . . V k ) ∈ R p×k . A set P H ⊆ R p is called an H-polyhedron, if it is the intersection of a
finite number of half-spaces, namely,

P H = m l=1 {x ∈ R p : A l x ≤ b l } = {x ∈ R p : A x ≤ b}, for some A = (A 1 . . . A m ) ∈ R p×m and b ∈ R m . A bounded H-polyhedron is called H-polytope. A set P ⊆ R p is an H-polytope if and only if it is a V-polytope.
We therefore simply use the term polytope in the following. The dimension dim(P ) of a polytope is given by the dimension of aff(P ), the affine subspace spanned by P , and its codimension by codim(P ) = p -dim(P ). A face F of P is any subset

F ⊆ P that satisfies F = {x ∈ P : a x = b 0 }, where P ⊆ {x : a x ≤ b 0 },
for some a ∈ R p and b 0 ∈ R. Such an inequality a x ≤ b 0 is called a valid inequality of P . Note that F = ∅ and F = P are faces of P and that any face F is again a polytope. A face F = P is called proper. A face of dimension 0 is called vertex, and we denote the set of all vertices of P by vert(P ).

This set satisfies vert(P ) ⊆ {V 1 , . . . , V k }, where

P = conv(V 1 , . . . , V k ). A point x 0 ∈ P lies in relint(P ),
the relative interior of P , if x 0 is not contained in a proper face of P . Finally, the (polar) dual of P is defined as

P * = {s ∈ R p : s x ≤ 1 ∀x ∈ P },
which is again a polytope. We now list a number of useful facts about polytopes involving the above definitions, which are used throughout the article. These properties can either be found explicitly or as a straightforward consequence of properties listed in the above mentioned references.

Proposition 4. Let P ∈ R p be a polytope given by P = conv(V ), where

V = (V 1 , . . . , V k ) ∈ R p×k ,
and denote by P * the dual of P . For simplicity, we assume that vert(P ) = {V 1 , . . . , V k }. Moreover, let 0 ∈ P . The following properties hold.

1) If F and F are faces of P , then so is F ∩ F .

2) For any face F of P , F = conv(vert(P ) ∩ F ).

3) Let D be an affine line contained in the affine span of P . If D ∩ relint(P ) = ∅ then D intersects a proper face of P .

4) We can write

P * = {s ∈ R p : V s ≤ 1 k }.
5) Any face F * of P * can be written as F * = {s ∈ P * :

V I s = 1 |I| } for some I ⊆ [k]. 6) Let I ⊆ [k]. F = conv(V I ) is a face of P ⇐⇒ F * = {s ∈ P * : V I s = 1 |I| } is a face of P * ,
where I is the maximal index set in this representation.

In this case, F * is the dual of F (and vice versa), and codim(F * ) = rk(V I ).

B.3 Facts about subdifferentials of norms with polytope unit balls

We now consider subdifferentials of norms and list several properties in the following. In particular, we

show in Proposition 5 that the subdifferential of a norm evaluated at zero is simply given by the unit ball of the corresponding dual norm, a fact that will be used throughout subsequent proofs. Proposition 6 then shows that all faces of this dual norm unit ball can be represented by a subdifferential of the original norm, provided that this norm is such that its unit ball, and therefore also the unit ball of its dual norm, are given by a polytope. Lemma 1 contains a technical result needed for the proof of Theorem 1.

A version of the following proposition -which holds independently of the shape of the unit ball of the norm under consideration -can also be found in Hiriart-Urruty & Lemarechal (1993).

Proposition 5. Let . be a norm on R p , and let . * denote the dual norm. Then the following holds.

1) The subdifferential of . at 0 is given by

∂ . (0) = {s ∈ R p : s * ≤ 1}.
2) In general, the subdifferential of . at x is given by

∂ . (x) = {s ∈ R p : s * ≤ 1, s x = x }.
Proof. It suffices to show 2 ). By definition, we have

∂ . (x) = {s ∈ R p : v ≥ x + s (v -x) ∀v ∈ R p } Take s ∈ ∂ . (x). When v = 0, we get s x ≥ x . When v = 2x
, we may deduce that s x ≤ x , implying that s x = x must hold. This also implies v ≥ s v for all v ∈ R p , so that s ∈ B * , yielding

∂ . (x) ⊆ {s ∈ B * : s x = x }.
To see that also the converse is true, take any s ∈ B * satisfying s x = x . Now, take any v ∈ R p .

Clearly v ≥ s v = x + s (v -x), implying that {s ∈ B * : s x = x } ⊆ ∂ . (x).
Proposition 6. Let . be a norm whose unit ball B is the polytope conv(V ) for some 

V = (V 1 . . . V k ) ∈ R p×k . Let F ⊆ B * ,
V I s = 1 |I| } for some I ⊆ [k],
where I is the maximal set satisfying this. Let x = l∈I V l . Since

x/|I| ∈ conv(V I ), a proper and non-empty face of B, we have x = |I|. Note that for s ∈ B * , we have

s V l ≤ 1, so that s ∈ ∂ . (x) ⇐⇒ s x = l∈I V l s = x = |I| ⇐⇒ V l s = 1 ∀l ∈ I ⇐⇒ s ∈ F. ( ⇐= ) If F = ∂ . (x), then F = {s ∈ B * : s x = x } by Proposition 5. Since (x/ x ) s ≤ 1 clearly is a valid inequality for all s ∈ B * , F is a face of B * .
Lemma 1. Let . be a norm whose unit ball B is the polytope conv(V ) for some

V = (V 1 . . . V k ) ∈ R p×k . Let F = {s ∈ B * : V I s = 1 |I|
} be a face of B * , the dual norm unit ball, and let I be the maximal set satisfying this. Then the following holds.

F ⊆ ∂ . (b) =⇒ b ∈ col(V I ). Proof. Since b/ b ∈ B = conv(V ), we can write b = k l=1 α l V l with α l ≥ 0 and k l=1 α l = b . Since ∂ . (b) = {s ∈ B * : s b = b } and s V l ≤ 1, we have for A = supp(α) and any s ∈ ∂ . (b) b = s b = l∈A α l s V l ≤ l∈A α l = b . This implies that s V l = 1 for all l ∈ supp(α), which, since F ⊆ ∂ . (b), yields supp(α) ⊆ I.

B.4 Proofs of Theorems 1 and 2

The proofs of Theorems 1 and 2 follow a similar outline, with the proof of Theorem 2 being more accessible. We therefore start with the latter one.

B.4.1 Characterization of BP minimizers and proof of Theorem 2

The following characterization of BP minimizers will prove useful in the following. It can be found in [START_REF] Zhang | Necessary and sufficient conditions of solution uniqueness in 1-norm minimization[END_REF] and [START_REF] Gilbert | On the solution uniqueness characterization in the l1 norm and polyhedral gauge recovery[END_REF], as well as in general form in [START_REF] Mousavi | Solution uniqueness of convex piecewise affine functions based optimization with applications to constrained l 1 minimization[END_REF].

Let y ∈ col(X) and let β satisfy X β = y then, β ∈ S X,bp (y) if and only if

∃z ∈ R n such that    X z ∞ ≤ 1, X j z = sign( βj ) ∀j ∈ supp( β).
(5) Proof of Theorem 2.

( ⇐= ) Let us assume that row(X) intersects a face F of [-1, 1] p whose codimension is larger than rk(X). We show that one can find some y ∈ col(X) for which S X,bp (y) is not a singleton.

The face F can be written as

F = E 1 × • • • × E p , where E j ∈ {{-1}, {1}, [-1, 1]} for j ∈ [p]. Now, let J = {j ∈ [p] : |E j | = 1}
, the set of indices of sets E j that are singletons. We have codim(F ) = |J| and, by assumption, |J| > rk(X). Now define β ∈ R p by setting

βj =          1 E j = {1} -1 E j = {-1} 0 j / ∈ J. Clearly, supp( β) = J. Set y = X β. Since row(X) intersects F , there exists z ∈ R n such that X z ∈ F .
This implies that X z ∞ ≤ 1 and X j z = βj = sign( βj ) for any j ∈ supp( β) = J. Therefore, by (5), β ∈ S X,bp (y).

To show that β is not a unique minimizer, we provide β ∈ R p with β = β, X β = y and β 1 = β 1 .

Since |J| > rk(X), the columns of X J are linearly dependent, so that we can pick h ∈ ker(X), h = 0

such that supp(h) ⊆ J and h ∞ < 1. Since h ∞ < 1, sign( β + h) = sign( β) = β. Let β = β + h.
Note that X β = X β = y and that

β 1 = p j=1 sign( βj + h j )( βj + h j ) = p j=1 sign( βj ) βj + j∈J βj h j = β 1 + j∈J (X z) j h j = β 1 + z Xh = β 1 , implying that β ∈ S X,bp (y) also. 
( =⇒ ) We assume that β, β ∈ S X,bp (y) with β = β for some y ∈ col(X). We need to show that there

exists a face F of [-1, 1] p with F ∩ row(X) = ∅ and codim(F ) > rk(X). Consider F = E 1 × • • • × E p and F = Ẽ1 × • • • × Ẽp with E j =    {sign( βj )} if j ∈ supp( β) [-1, 1] if j / ∈ supp( β) and Ẽj =    {sign( βj )} if j ∈ supp( β) [-1, 1] if j / ∈ supp( β).
Note that for any two minimizers β and β, we have βj βj ≥ 0 for all j ∈ [p], since otherwise β = ( β+ β)/2 satisfies X β = X β = X β as well as β 1 < β 1 = β 1 , which would lead to a contradiction. We therefore have supp( β) = supp( β) ∪ supp( β). Note that by a convexity argument, β ∈ S X,bp (y) also, so that by ( 5), there exists ž ∈ R n with X ž ∞ ≤ 1 and X j ž = sign( βj ) for all j ∈ supp( β). Moreover, X ž ∈ F ∩ F holds. Now, let F 0 be a face of the face F ∩ F of smallest dimension that still intersects row(X). We write

F 0 = E 0,1 × • • • × E 0,p and let J 0 = {j ∈ [p] : |E 0,j | = 1}. Note that row(X) must intersect F 0 in its relative interior relint(F 0 ) where relint(F 0 ) = relint(E 0,1 ) × • • • × relint(E 0,p ) where relint(E 0,j ) =    E 0,j j ∈ J 0 (-1, 1) j / ∈ J 0 ,
since otherwise row(X) intersects a proper face of F 0 , which contradicts the assumption that F 0 is of minimal dimension. We now need to show that codim

(F 0 ) = |J 0 | > rk(X). Assume that |J 0 | ≤ rk(X).
The columns of X J0 are linearly dependent since X J0 βJ0 = X β = X β = X J0 βJ0 with βJ0 = βJ0 , since both supp( β) and supp( β) are subsets of supp( β) ⊆ J 0 . We therefore have

dim(col(X J0 )) < |J 0 | ≤ rk(X) = dim(col(X)) and col(X) ⊥ col(X J0 ) ⊥ .
This implies that we can pick

u ∈ col(X J0 ) ⊥ \ col(X) ⊥ so that X J0 u = 0, but X u = 0. Pick z 0 ∈ R n
with X z 0 ∈ relint(F 0 ). The affine line {X (z 0 + tu) : t ∈ R} ⊆ row(X) intersects the relative interior relint(F 0 ) and is included in the affine span of F 0 by construction of u. Therefore, by Proposition 4, row(X) intersects a proper face of F 0 , yielding a contradiction.

B.4.2 Characterization of penalized minimizers and proof of Theorem 1

In the particular and well-studied case in which the norm of the penalized problem is the 1 -norm, the solutions to the corresponding optimization problem can be characterized by the Karush-Kuhn-Tucker (KKT) conditions for the LASSO, which can be summarized as follows, see for instance, Bühlmann & Van de Geer (2011).

β ∈ S X,λ . 1 (y) ⇐⇒ X (y -X β) ∞ ≤ λ and X j (y -X β) = λsign( βj ) ∀j ∈ supp( β) (6) ⇐⇒ X (y -X β) ∞ ≤ λ and β X (y -X β) = λ β 1
In the above, the supremum norm is the dual to the 1 -norm. We can generalize the above characterization for solutions to the penalized problem from (1) in the following proposition. Note that in our notation, the tuning parameter λ is part of the norm . . Proposition 7. Let X ∈ R n×p , y ∈ R n . We have β ∈ S X, . (y) if and only if

X (y -X β) * ≤ 1 and β X (y -X β) = β .
Proof. Using subdifferential calculus, the proof a straightforward consequence of (3) and Proposition 5.

β ∈ S X, . (y) ⇐⇒ 0 ∈ X (X β -y) + ∂ . ( β) ⇐⇒ X (y -X β) ∈ ∂ . ( β) ⇐⇒ X (y -X β) * ≤ 1 and β X (y -X β) = β .
Before finally showing Theorem 1, the following lemma states that the fitted values are unique over all solutions of the penalized problem for a given y. It is a generalization of Lemma 1 in Tibshirani Now, let F * be a face of ∂ . ( β) ∩ ∂ . ( β) of smallest dimension that intersects row(X) and write

F * = {s ∈ B * : V I s = 1 |I| },
where I is the largest index set I ⊆ [k] satisfying this relationship. If codim(F * ) = dim(col(V I )) ≤ rk(X), consider the following. Note that we can pick u ∈ R n for which X u = 0 and X u ∈ col(V I ) ⊥ . For this, let I 0 ⊆ I be such that the columns of V I0 are linearly independent, and col(V I0 ) = col(V I ).

By Lemma 1, we have β, β ∈ col(V I0 ), so that we get

XV I0 γ = X β = X β = XV I0 γ
with γ = γ, implying that the columns of XV I0 are linearly dependent. But this means that

rk(XV I ) = dim(col(XV I )) = dim(col(XV I0 )) < |I 0 | = dim(col(V I0 )) = dim(col(V I )) ≤ rk(X).
Therefore, col(XV I ) col(X) and, consequently, col(X) ⊥ col(XV I ) ⊥ , so that we can pick u ∈ col(XV I ) ⊥ \ col(X) ⊥ for which X u = 0 and X u ∈ col(V I ) ⊥ . Also note that X z ∈ F * for some z ∈ R n and that X z lies in the relative interior relint(F * ), as otherwise, row(X) would intersect a face of ∂ . 

B.5 Proof of Proposition 1

We turn to proving Proposition 1. Note that a set is negligible with respect to the Lebesgue measure on R n×p if and only if it is negligible with respect to the standard Gaussian measure on R n×p . Therefore, to establish Proposition 1, it suffices to prove the equality

P Z ∃y ∈ R n , |S Z, . (y)| > 1 = 0, where Z ∈ R n×p has iid N (0, 1) entries. (7) 
Note that rk(Z) = min{n, p} almost surely. Therefore, when n ≥ p, ker(Z) = 0 almost surely and S Z, . (y) is a singleton almost surely. We use the following lemma to establish (7), where N stands for the (positive) natural numbers.

Lemma 3. Let n ∈ N, q ≥ n+1, and v ∈ R q where v = 0 is a fixed vector.

If Z = (Z 1 , . . . , Z n ) ∈ R q×n has iid N (0, 1) entries, then P Z (v ∈ col(Z)) = 0.
Proof. We first prove the result for q

= n + 1. If v ∈ col(Z) then det(Z 1 , . . . , Z n , v) = 0 ⇐⇒ det(Z 1 / Z 1 2 , . . . , Z n / Z n 2 , v/ v 2 ) = 0.
Now, because the columns Z 1 / Z 1 2 , . . . , Z n / Z n 2 follow a uniform distribution on the 2 -unit sphere, we can deduce that the distribution of the random variable det(Z

1 / Z 1 2 , . . . , Z n / Z n 2 , v/ v 2 ) is equal to the distribution of det(Z 1 / Z 1 2 , . . . , Z n / Z n 2 , ζ/ ζ 2 ).
Here, ζ follows a N(0, I n+1 ) distribution, independent from Z 1 , . . . , Z n as conditioning on ζ = v does not change the distribution.

Finally, the random variable

det(Z 1 / Z 1 2 , . . . , Z n / Z n 2 , ζ/ ζ 2 ) = 1 Z 1 2 × • • • × Z n 2 × ζ 2 det(Z 1 , . . . , Z n , ζ)
is non-zero almost surely. This implies P Z (v ∈ col(Z)) = 0. When q > n+1, let I ⊆ [q] with |I| = n+1

and v I = 0. Consequently, v I ∈ col( Z), where Z ∈ R (n+1)×n is obtained by keeping the rows of Z with indices in I. Therefore, P Z (v ∈ col(Z)) ≤ P Z (v I ∈ col( Z)) = 0, which concludes the proof.

Proof of Proposition 1. If p ≤ n, we are done. If p > n, let F 0 be a proper face of B * such that codim(F 0 ) = q > n. Note that 0 / ∈ aff(F 0 ), the affine space spanned by F 0 . There exists A ∈ R q×p with orthonormal rows and v ∈ R q , v = 0 such that aff(F 0 ) = {x ∈ R p : Ax = v}. Since AA = I p , AZ ∈ R q×n has iid N (0, 1) entries. Thus, by Lemma 3, we have

P Z (row(Z) ∩ F 0 = ∅) ≤ P Z (row(Z) ∩ aff(F 0 ) = ∅) = P Z (v ∈ col(AZ )) = 0. ( 8 
)
According to Theorem 1 and since rk(Z) = n almost surely, the following equalities hold.

P Z ∃y ∈ R n , |S Z, . (y)| > 1 = P Z     F ∈F (P ) codim(F )>rk(Z) {row(Z) ∩ F = ∅}     = P Z     F ∈F (P ) codim(F )>n {row(Z) ∩ F = ∅}     = 0.
The last equality is a consequence of (8).

B.6 Proof of Theorem 3

Theorem 3 states that there is a bijection between the SLOPE patterns and the faces of the signed permutahedron. The basis for proving this is the fact that the signed permutahedron is the dual of the sorted-1 -norm unit ball, and that any face of it is given by a subdifferential of the sorted-1 -norm by Proposition 6.

We start by proving the following proposition which shows that the subdifferential of the sorted-1 -norm at zero is, indeed, the signed permutahedron, and also characterizes the subdifferential of the sorted-1 -norm for certain values of x.

Proposition 8. The subdifferential F w (x) = ∂ . w (x) of the sorted-1 -norm exhibits the following properties.

1) We have F w (0) = P ± w .

2) For any x ∈ R p with x 1 = • • • = x p > 0, we have F w (x) = P w .

3) For any x ∈ R p with

x 1 ≥ • • • ≥ x k > x k+1 ≥ • • • ≥ x p ≥ 0, we have F w (x) = F w [k] (x [k] ) × F w [k+1:p] (x [k+1:p] ). 4) Let 0 < k 1 < • • • < k l < p be an arbitrary subdivision of [0 : p], then for any x ∈ R p with x 1 = • • • = x k1 > x k1+1 = • • • = x k2 > • • • > x k l +1 = • • • = x p ≥ 0, we have codim (F w (patt(x))) = patt(x) ∞ and F w (x) = F w (patt(x)) =    P w [k 1 ] × • • • × P w [k l-1 +1:k l ] × P w [k l +1:p] if x p > 0 P w [k 1 ] × • • • × P w [k l-1 +1:k l ] × P ± w [k l +1:p] if x p = 0.
Proof. 1) By Proposition 5, we may show that P ± w = B * . (⊆) Take any vertex W = (σ 1 w π(1) , . . . , σ p w π(p) ) of P ± w and any x ∈ R p with x w ≤ 1. We have

W x = p j=1 σ j w π(j) x j ≤ p j=1 |x j |w π(j) ≤ p j=1 w j |x| (j) = x w ≤ 1
and therefore W ∈ B * . By convexity, P ± w ⊆ B * follows. (⊇) Let a x ≤ b 0 for some a ∈ R p and b 0 ∈ R be a valid inequality of P ± w . We show that this is a valid inequality of B * also: Let W be the vertex of P ± w defined by W j = sign(a j )w π -1 (j) , where the permutation π satisfies |a π( 1 sign(a j )a j w π -1 (j) = a W ≤ b 0 .

Since P ±

w can be written as the (finite) intersection of half-spaces, P ± w ⊇ B * follows. 2) According to Proposition 5 and 1), we have

F w (x) =    s ∈ P ± w : p j=1 s j = p j=1 w j    . A vertex W = (σ 1 w π(1) , . . . , σ p w π(p) ) of P ± w with σ ∈ {-1, 1} p and π ∈ S p then fulfills W ∈ F w (x) if and only if σ 1 = • • • = σ p = 1. Convexity then yields F w (x) = P w . 3) (⊆) Let s ∈ F w (x). We show that s [k] ∈ F w [k] (x [k] ) and s [k+1:p] ∈ F w [k+1:p] (x [k+1:p] ). Let e = x k -x k+1 2 > 0 and h ∈ R p with h ∞ < e. Since the k largest components of x+h are {x j +h j } j∈[k] , we have x + h w = (x + h) [k] w [k] + (x + h) [k+1:p] w [k+1:p] . Now, take h ∈ R p such that h ∞ < e and h k+1 = • • • = h p = 0.
Using the above identity and the definition of F w (x), one may deduce that

(x + h) [k] w [k] = x + h w -x [k+1:p] w [k+1:p] ≥ x w + s h -x [k+1:p] w [k+1:p] = x [k] w [k] + k j=1 s j h j .
We therefore obtain that

x [k] + h w [k] ≥ x [k] w [k] + s [k] h for all h ∈ R k satisfying h ∞ < e. By (4), we conclude s [k] ∈ F w [k] (x [k] ). To show that s [k+1:p] ∈ F w [k+1:p] (x [k+1:p] ), one can proceed in a similar manner. (⊇) For s ∈ F w [k] (x [k] ) × F w [k+1:p] (x [k+1:p] ), we clearly have s x = k i=1 s i x i + p i=k+1 s i x i = x [k] w [k] + x [k+1:p] w [k+1:p] = x w , so that s ∈ F w (x) follows. 4) For x ∈ R p with x 1 = • • • = x k1 > • • • > x k l +1 = • • • = x p , patt(x) is clearly given by    patt(x) 1 = • • • = patt(x) k1 = l + 1 > • • • > patt(x) k l +1 = • • • = patt(x) p = 1 if x p > 0 patt(x) 1 = • • • = patt(x)) k1 = l > • • • > patt(x) k l +1 = • • • = patt(x) p = 0 if x p = 0.
According to 1), 2) and 3), it is clear that

F w (x) = F w (patt(x)) =    P w [k 1 ] × • • • × P w [k l-1 +1:k l ] × P w [k l +1:p] if x p > 0 P w [k 1 ] × • • • × P w [k l-1 +1:k l ] × P ± w [k l +1:p] if x p = 0.
Since the codimension of a permutahedron is equal to 1 (see [START_REF] Maes | On the permutahedron and the quadratic placement problem[END_REF][START_REF] Simion | Convex polytopes and enumeration[END_REF], the one of signed permutahedron is equal to 0, and since the (co-)dimensions of the individual (sign) permutahedra can simply be added up, we have codim (F w (x)) = patt(x) ∞ .

Proposition 8 lays the groundwork by essentially proving Theorem 3 for all SLOPE patterns with non-negative and non-decreasing components. We denote this set of patterns by P ≥,+ p , given by

P ≥,+ p = {m ∈ P p : m 1 ≥ • • • ≥ m p ≥ 0}.
In order to extend this proposition to all SLOPE patterns in P p , we introduce the following group of linear transformations.

Definition 4. Let σ ∈ {-1, 1} p , let π ∈ S p . We define the map

φ σ,π : x ∈ R p → (σ 1 x π(1) , . . . , σ p x π(p) )
and denote by G = {φ σ,π : σ ∈ {-1, 1} p , π ∈ S p }.

The set G is a finite sub-group of the group of orthogonal transformations on R p . We list a number of straight-forward properties of G in the following lemma.

Lemma 4. Let x, v ∈ R p , φ ∈ G, and let σ ∈ {-1, 1} p and π ∈ S p . Then the following holds.

1) x v = φ(x) φ(v) 2) x w = φ(x) w 3) x ∞ = φ(x) ∞ 4) φ(P p ) = P p and φ(P ± w ) = P ± w 5) patt(φ(x)) = φ(patt(x)) 6) φ -1 σ,π = φ σ,π -1 ∈ G 7) If, for m ∈ P p , |m π(1) | ≥ • • • ≥ |m π(p) | and σ j m π(j) = |m π(j) | for all j ∈ [p], then φ σ,π (m) ∈ P ≥+ p .
Lemma 5. Let φ ∈ G and x ∈ R p . We then have

φ -1 (F w (φ(x))) = F w (x) and F w (φ(x)) = φ (F w (x)) .
Proof. The two statements are equivalent, we show the second one. Let s ∈ P ± w . Then

s ∈ F w (φ(x)) ⇐⇒ s φ(x) = φ(x) w ⇐⇒ φ -1 (s) x = x w ⇐⇒ φ -1 (s) ∈ F w (x) ⇐⇒ s ∈ φ(F w (x))
by Proposition 5 and Lemma 4.

We are now equipped to prove Theorem 3.

Proof of Theorem 3.

We start by proving 1) and 2) before showing that the map is a bijection.

1) Let m ∈ P p and let φ ∈ G such that φ(m) ∈ P ≥,+ p . According to Lemma 5, and because φ is an isomorphism on R p , we have

codim(F w (m)) = codim φ -1 (F w (φ(m))) = codim (F w (φ(m))) = φ(m) ∞ = m ∞ . 2) Let x ∈ R p and let φ ∈ G such that φ(x) 1 ≥ • • • ≥ φ(x) p ≥ 0.
According to Lemma 5 and Proposition 8, the following equalities hold

F w (x) = φ -1 (F w (φ(x))) = φ -1 (F w (patt(φ(x)))) = φ -1 (F w (φ (patt(x)))) = F w (patt(x)).
We now show that the mapping under consideration is indeed a bijection between P p and F 0 .

(surjection) According to Proposition 6, a non-empty face of P ± w can be expressed as F w (x) for some x ∈ R p . According to 2) above, we have F w (x) = F w (patt(x)) for patt(x) ∈ P p .

(injection) Note that Proposition 8 shows that the mapping is injective on P ≥,+ p . To prove that it remains injective on all of P p , we show that |P p | ≤ |F 0 |. For this, we need several definitions. For m ∈ P p , let stab G (m) = {φ ∈ G : φ(m) = m} and orb G (m) = {φ(m) : φ ∈ G}, the stabilizer and orbit of m, respectively, with respect to G. For m ∈ P p , there exists φ ∈ G such that φ(m) ∈ P ≥,+ p . Therefore, the orbit-stabilizer formula (Artin, 2011)[Proposition 6.8.4] gives 

P p =

B.7 Proof of Theorem 4

The following lemma generalizes Proposition 4.1 from Gilbert (2017) that is stated for the 1 -norm to an arbitrary norm. This lemma is used in the proof of both Theorem 4 and Theorem 5.

Lemma 6. Let s ∈ R p and . be a norm on R p . The vector space row(X) intersects ∂ . (s) if and where the first inequality holds since X f ∈ F w (m), a face of P ± w , and the latter one by applying Proposition 6 after noticing that X f ∈ F w (m) = F w (b) = ∂ . w (b) by Theorem 3. Proposition 7 then yields b ∈ S X, . w (y), so that y ∈ A w (m).

Conversely, let y ∈ A w (m) and let β ∈ S X, . w (y) so that patt( β) = m. Then y -X β ∈ N w (m) since by Proposition 7, we have

X (y -X β) ∈ ∂ . w ( β) = F w (m),
where the last equality holds by Theorem 3.

B.9 Proof of Proposition 3

Proof. Note that by Proposition 7 we have that β ∈ S X, . (y) if and only if we have X (y -X β) * ≤ 1 and β (y -X β) = β .

Consequently, when X u * ≤ 1 it is clear that 0 ∈ S X, . (u) implying that S X, . (u) = {0} as all elements of S X, . (u) must have the same norm. Now, let u ∈ A ∅ and remember that û = y -X β.

The following inequality

(y -û) (u -û) = β X u ≤ β -β X (y -X β) = β ≤ 0
shows that, indeed, û is the projection of y onto the convex null set A ∅ .

B.10 Proof of Theorem 5

Proof. ( =⇒ ) Let σ be an accessible sign vector for LASSO. Then there exists y ∈ R n and β ∈ S X,λ . 1 (y) such that sign( β) = σ. According to the characterization of LASSO minimizers in (6), by setting z = (y -X β)/λ, one may deduce that X z ∈ F 1 (σ). If σ is an accessible sign vector for BP, there exists y ∈ col(X) and β ∈ S X,bp (y) with sign( β) = σ. According to the characterization of BP minimizers in (5), there exisits z ∈ R n such that X z ∈ F 1 (σ). Therefore, row(X) intersects F 1 (σ) = ∂ . 1 (σ) (geometric characterization), or, equivalently, by Lemma 6, whenever Xb = Xσ, we have b 1 ≥ σ 1 (analytic characterization).

( ⇐= ) If row(X) intersects the face F 1 (σ) (geometric characterization) or, equivalently, if Xb = Xσ implies b 1 ≥ σ 1 (analytic characterization), then there exists f ∈ F 1 (σ) and z ∈ R n such that X z = f . Note that j ∈ supp(σ) implies that f j = σ j = sign(σ j ). Set y = λz + Xσ We show that σ ∈ S X,λ . 1 (y). We have    X (y -Xσ) ∞ = λ X z ∞ ≤ λ, X j (y -Xσ) = λX j z = λf j = λσ j = λsign(σ j ) ∀j ∈ supp(σ), so that according to the characterization of LASSO minimizers in (6), we have σ ∈ S X,λ . 1 (y), implying that σ is accessible for LASSO. For BP, set y = Xσ and note that, according to the characterization of BP minimizers in (5), σ ∈ S X,bp (y), implying that σ is also accessible for BP.

Corollary 3. Let X ∈ R n×p , σ ∈ {-1, 0, 1} p and assume that β is the unique solution to the BP problem S X,bp (y) with y = Xσ. Let β ∈ R p satisfy ββ ∞ < 1/2. We then have that σ is accessible ⇐⇒ sign(round( β)) = σ, where round(.) rounds componentwise to the nearest integer. Since row(X) intersects F 1 (sign( β)) by the geometric characterization in Theorem 5, sign(round( β))

is accessible. But then sign(round( β)) = σ must hold.

  b 1 , where λ > 0.
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 1 Figure 1: Illustration of Theorem 1 for the supremum norm.

Figure 2 :

 2 Figure 2: Illustration of Theorem 2.

Figure 3 :

 3 Figure 3: Illustration of the relationship between the SLOPE patterns and the faces of the signed permutahedron P ± w for w = (3.5, 1.5) through subdifferential calculus, see Proposition 6 in Appendix B.3 and Proposition 8 in Appendix B.6. Note that F w (m) = ∂ . w (m). Faces having the same color are isometric. One may notice that codim(F w (m)) = m ∞ .

Example 5 .

 5 Figure 4 illustrates the accessible SLOPE patterns from Theorem 4 for w = (5every accessible SLOPE pattern, Figure 5 below provides the set A m = {y ∈ R 2 : ∃ β ∈ S X, . w (y) where patt( β) = m} and the SLOPE null polyhedron.

Figure 5 :

 5 Figure 5: Illustration of the SLOPE null polytope and the accessible patterns for X = 8 5 8 10 1.25 -6

  where B * is the dual norm unit ball, with F = ∅. Then F is a face of B * ⇐⇒ F = ∂ . (x) for some x ∈ R p . Proof. ( =⇒ ) If F = B * , then x = 0 by Proposition 5. If F is a proper face, we can write F = {s ∈ B * :

  ( β) ∩ ∂ . ( β) of smaller dimension. The affine line {X (z + tu) : t ∈ R} ⊆ row(X) intersects relint(F * ) and is included in the affine span of F * by construction. Therefore, by Proposition 4, row(X) intersects a proper face of F * , yielding a contradiction.

  ) | ≥ • • • ≥ |a π(p) |.For any s ∈ B * , we have a s ≤ a w = p j=1 |a π(j) |w j = p j=1

  We also look at stabilizer and orbit when G operates on F 0 . For a faceF ∈ F 0 , let stab G (F ) = {φ ∈ G : φ(F ) = F } and orb G (F ) = {φ(F ) : φ ∈ G}. We first show that if orb G (F w (m)) ∩ orb G (F w ( m)) = ∅ for some m, m ∈ P ≥,+ p , m = m follows. Let us assume that F w ( m) = φ(F w (m)) for some φ ∈ G. Note that φ(F w (m)) = F w (φ(m)) by Lemma 5. Since w ∈ F w (m) and w ∈ F w ( m) = F w (φ(m)), we have w m = m w = φ(m) w = w φ(m),where the first equality holds since m ∈ P ≥,+ p , the second equality holds by Lemma 4 and the last equality holds since m ∈ F w (φ(m)). Now, if φ(m) = m, w φ(m) < m w follows since the components of w are positive and strictly decreasing. But that would contradict the above, so φ(m) = m must hold. Consequently, F w ( m) = F w (m), which in turn implies m = m by Proposition 8. Now, let m ∈ P ≥,+ p and let us show that stab G(m) = stab G (F w (m)). The inclusion stab G (m) ⊆ stab G (F w (m)) immediately follows from φ ∈ stab G (m) =⇒ F w (m) = φ -1 (F w (φ(m))) = φ -1 (F w (m)) =⇒ φ(F w (m)) = F w (m) =⇒ φ ∈ stab G (F w (m)). To show stab G (F w (m)) ⊆ stab G (m), let φ ∈ stab G (F w (m)) and note that F w (m) = φ(F w (m)) =F w (φ(m)). Since m ∈ P ≥,+ p , this implies that w ∈ F w (m) = F w (φ(m)), so that the same reasoning as above yields m = φ(m) and φ ∈ stab G (m). To conclude, note that since the orbits orb G (F w (m)) with m ∈ P ≥,+ p are disjoint, and since stab G (m) = stab G (F w (m)), we may deduce that |P p orb G (F w (m)) ≤ |F 0 |.

  Proof. ( =⇒ ) If σ is accessible, by the analytic characterization in Theorem 5,β = σ. Since β-σ ∞ < 1/2, we get sign(round( β)) = round( β) = σ. ( ⇐= ) If σ is not accessible, we have sign( β) = σ. Using ββ ∞ < 1/2, we can show that F 1 (sign( β)) = ∂ . 1 (sign( β)) ⊆ ∂ . 1 (sign(round( β))) = F 1 (sign(round( β))).

  

Certain results in the literature(Zhang et al., 

2015;[START_REF] Gilbert | On the solution uniqueness characterization in the l1 norm and polyhedral gauge recovery[END_REF][START_REF] Mousavi | Solution uniqueness of convex piecewise affine functions based optimization with applications to constrained l 1 minimization[END_REF] provide a criterion for the uniqueness of a given minimizer. These results naturally differ strongly from the ones in the present article as they deal with a weaker notion of uniqueness.2 This reference focuses on necessary and sufficient conditions to uniquely recover a given b 0 from y = Xb 0 (in our notation), which is a different type of uniqueness than we consider.

Typically, b and b are not orthogonal, thus the equality in the triangular inequality does not coincide with the decomposability property described in[START_REF] Negahban | A unified framework for high-dimensional analysis of m-estimators with decomposable regularizers[END_REF].

See, e.g., Figure2in[START_REF] Bondell | Simultaneous regression shrinkage, variable selection, and supervised clustering of predictors with OSCAR[END_REF] or Figure1in[START_REF] Zeng | Decreasing weighted sorted 1 regularization[END_REF].

(2013), who proves this fact for the special case of the LASSO.

Lemma 2. Let X ∈ R n×p , y ∈ R n . Then X β = X β for all β, β ∈ S X, . (y).

Proof. Assume that X β = X β for some β, β ∈ S X, . (y) and let β = ( β + β)/2. Because the function µ ∈ R n → y -µ 2 2 is strictly convex, one may deduce that

Consequently,

which contradicts both β and β being minimizers.

Proof of Theorem 1.

( ⇐= ) Assume that there exists a face F of B * that intersects row(X) (so that F is non-empty)

and satisfies codim(F ) > rk(X) (so that F is proper). This implies that there exists

where I is the maximal index set satisfying this relationship. Moreover, this implies that conv(V I ) is a proper, non-empty face of B and that we have s * = 1 for all s ∈ F and v = 1 for all v ∈ conv(V I ). We show that non-unique solutions exist. Define β = l∈I V l and observe that β = |I| l∈I V l /|I| = |I|. Pick z ∈ R n with X z ∈ F , which exists by assumption, and set y = X β + z. Then β ∈ S X, . (y) by Proposition 7, since

We also have

proving that β ∈ S X, . (y) also.

( =⇒ ) Let us assume that there exists y ∈ R n and β, β ∈ S X, . (y) with β = β. We then have

Because X β = X β by Lemma 2, one may deduce that row(X) intersects the face ∂ . 

By Theorem 3, we may deduce that

Therefore, row(X) intersects F w (m) (geometric characterization), or, equivalently, by Lemma 6, whenever Xb = Xm we have b w ≥ m w (analytic characterization).

( ⇐= ) If row(X) intersects the face F w (m) (geometric characterization), or, equivalently, whenever Xb = Xm we have b w ≥ m w (analytic characterization), there exists z ∈ R n such that X z = f ∈ F w (m). We set y = z + Xm and show that m ∈ S X, . w (y). We have

which, by Proposition 7, yields m ∈ S X, . w (y).

B.8 Proof of Proposition 2

Proof. By Theorem 4, we know that