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Abstract

We provide a necessary and sufficient condition for the uniqueness of penalized least-squares
estimators with a penalty term consisting a norm whose unit ball is given by a polytope. The
condition is given by a geometric criterion involving how the row span of the design matrix in-
tersects the faces of the dual norm unit cube. This criterion also provides information about the
model selection properties of the corresponding estimation method. Our analyses cover LASSO,
the related method of basis pursuit, as well as the SLOPE estimator.

1 Introduction

The linear regression model Y = Xβ + ε, where X ∈ Rn×p is a fixed matrix, β ∈ Rp is an unknown
parameter vector, and ε is a centered random error term in Rn, is one of the most important models
in statistics. When ker(X) = {0}, the ordinary least-squares estimator β̂ols = (X ′X)−1X ′Y , which
minimizes the residual sum of squares ‖Y −Xb‖22 with respect to b ∈ Rp, is the usual estimator of β.
In high dimensions, when p > n, and thus ker(X) 6= {0}, the ordinary least squares estimator is no
longer well-defined, as then the function b ∈ Rp 7→ ‖Y −Xb‖22 does not have a unique minimizer.

In this case, typically, a penalty term is added to the residual sum of squares to provide an al-
ternative to ordinary least-squares estimation. In some cases, also the minimizer of the penalized
least-squares optimization problem is not unique. In this paper, we provide a necessary and sufficient
condition for uniqueness based on a geometric criterion for a wide class of penalties. Moreover, the
geometry involved in this condition also yields results for model selection, i.e. sparsity, and related
properties of SLOPE, LASSO and basis pursuit.

1.1 Penalized least-squares estimators

The Ridge estimator, which minimizes the function b ∈ Rp 7→ 1
2 ‖Y −Xb‖

2
2 + λ‖b‖22, where λ > 0 is

a so-called tuning parameter, was the first penalized estimator to appear in the statistics literature
(Hoerl and Kennard, 1970; Golub et al., 1979). Due to the strict convexity of the function b 7→ ‖b‖22
the minimizer is always unique and is given by β̂ridge = (X ′X + λIp)−1X ′Y . This estimator is not

1



sparse, meaning that it does almost surely not set components equal to zero. Especially when p is
large, this can make the estimator more difficult to interpret compared to other sparse methods such
as LASSO or SLOPE which are described in the following.

The Least Absolute Shrinkage and Selection Operator (LASSO) (Chen and Donoho, 1994; Alliney
and Ruzinsky, 1994; Tibshirani, 1996) is the l1-penalized least-squares estimator defined as

β̂lasso = arg min
b∈Rp

1

2
‖Y −Xb‖22 + λ‖b‖1, where λ > 0.

When ker(X) = {0}, the function b ∈ Rp 7→ ‖Y −Xb‖22 is strictly convex, immediately implying the
uniqueness of the LASSO minimizer. In high dimensions, ker(X) 6= {0} and the function b ∈ Rp 7→
‖Y −Xb‖22 is not strictly convex, thus uniqueness of β̂lasso is not guaranteed. The condition of the
columns of the design matrix X being in general position, first outlined by Rosset et al. (2004) and later
investigated by Tibshirani (2013) and Ali and Tibshirani (2019), provides a sufficient condition under
which, for all Y ∈ Rn, the LASSO minimizer is unique and subsequently β̂lasso is well-defined. This
condition was recently relaxed by Ewald and Schneider (2020) to a criterion that is both sufficient
and necessary. As mentioned above, the LASSO estimator is a sparse method that generally sets
components equal to zero with positive probability, entailing that the estimator also performs what is
called model selection. In particular, if the solution is unique and p > n, β̂lasso contains at least p− n
null components.

A strongly related procedure is basis pursuit, which first appeared in compressed sensing (Chen
and Donoho, 1994) and is defined as

β̂bp = arg min ‖b‖1 subject to Y = Xb.

In the noiseless case, this method allows to recover a sparse vector β (see e.g. Candès et al., 2006; Cohen
et al., 2009). In the noisy case, when ε is no longer zero, the basis pursuit estimator can be viewed
as the LASSO when the tuning parameter λ > 0 becomes infinitely small. This estimator sometimes
used for sign recovery of β (see e.g. Saligrama and Zhao, 2011; Tardivel and Bogdan, 2018). Naturally,
basis pursuit shares lot of properties with the LASSO estimator. For example, general position of the
columns of the design matrix X is also a sufficient condition for uniqueness of β̂bp (see e.g. Tardivel
and Bogdan, 2018) for all Y ∈ Rn. However, to the best of our knowledge, a necessary and sufficient
condition has previously been unknown.

Our results also cover Sorted L-One Penalized Estimation (SLOPE) (Zeng and Figueiredo, 2014;
Bogdan et al., 2015) which is the penalized estimator given by

β̂slope = arg min
b∈Rp

1

2
‖Y −Xb‖22 +

p∑
j=1

wj |b|(j),

where w1 > 0 and w1 ≥ · · · ≥ wp ≥ 0 and |b|(1) ≥ · · · ≥ |b|(p). Note that penalty term gives rise to
the so-called SLOPE norm. A special case of this estimator, the Octagonal Shrinkage and Clustering
Algorithm for Regression (OSCAR), has already been introduced in Bondell and Reich (2008). The

2



SLOPE estimator is well-defined once the corresponding minimizer is unique and, similarly to the
LASSO, uniqueness is obvious when ker(X) = {0}. However, in contrast to the LASSO, no condition
guaranteeing uniqueness has been established.

The SLOPE estimator is a sparse method that also exhibits a clustering property in that some
components may be equal in absolute value with positive probability. This can be learned from the
explicit expressions one obtains in case the columns of X are orthogonal (Tardivel et al., 2020), and
this property also holds in the non-orthogonal case.

In certain applications, this clustering phenomenon – which is not shared by the LASSO – may
be of particular relevance (Kremer et al., 2019, 2020). To the best of our knowledge, an exhaustive
description of the clusters induced by SLOPE has not been provided before.

1.2 Uniqueness and polytope unit balls

We study the problem of uniqueness of penalized estimators in a general setting, where the penalty
term is not restricted the l1- or the SLOPE norm. Let X ∈ Rn×p, y ∈ Rn, and ‖.‖ be a norm on Rp.
Consider the solution set SX,‖.‖(y) to the penalized least-squares problem

SX,‖.‖(y) = arg min
b∈Rp

1

2
‖y −Xb‖22 + ‖b‖.

Note that SX,‖.‖(y) is non-empty since the function b ∈ Rp 7→ 1
2 ‖y −Xb‖

2
2 + ‖b‖ is continuous and

unbounded when ‖b‖ becomes large. The penalty term may include a positive tuning parameter which
can be viewed as part of the norm, for instance ‖.‖ = λ‖.‖1 for the LASSO estimator. When ‖.‖ is
a norm for which ‖b + b̃‖ = ‖b‖ + ‖b̃‖ holds if and only if b = tb̃ where t ≥ 0, such as the l2-norm,
then SX,‖.‖(y) is a singleton for all y ∈ Rn and for all X ∈ Rn×p. This statement is a straightforward
consequence of the following facts. When β̂, β̃ ∈ SX,‖.‖(y) we have

i) Xβ̂ = Xβ̃ (see Lemma 2 in the appendix).

ii) Since (β̂ + β̃)/2 ∈ SX,‖.‖(y) also, ‖(β̂ + β̃)/2‖ = (‖β̂‖+ ‖β̃‖)/2 follows.

Geometrically, such a norm ‖.‖ possess a unit ball {x ∈ Rp : ‖x‖ = 1} with no edges. Subsequently,
the problem of uniqueness is only relevant when the unit ball of the norm under consideration contains
an edge. More concretely, we restrict our attention to norms for which the unit ball B = {x ∈ Rp :

‖x‖ ≤ 1} is given by a polytope. Note that this is the case for the l1-norm, the l∞-norm, and the
SLOPE norm. Our results also cover methods with a mixed l1,l∞-norm penalty term (Negahban and
Wainwright, 2008; Bach et al., 2012).

1.3 Accessible models and sign estimation

The sign vector sign(β) = (sign(β1), . . . , sign(βp))
′ (where sign(t) = 1 if t > 0, sign(t) = −1 if

t < 0 or 0 otherwise) is accessible when there exists Y ∈ Rn for which sign(β̂lasso) = sign(β).
Under the assumption that LASSO minimizer is unique, Sepehri and Harris (2017) provide a geo-
metrical characterization of accessible sign vectors. Of course, when sign(β) is not accessible then
P(sign(β̂lasso) = sign(β)) = 0. Note that the irrepresentable condition on β (which is a necessary
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condition for P(sign(β̂lasso) = sign(β)) > 1/2, see Wainwright, 2009) implies that sign(β) is accessible.
To our knowledge, there is no theoretical work for clusters recovery by SLOPE estimator. Generalizing
the notion of accessible sign vectors for LASSO estimator to accessible models for SLOPE estimator
should be a first improvement for the development of such a theory.

1.4 Related geometrical works

Most articles providing geometrical properties for penalized estimators concern the LASSO and one
recent article provides geometrical results for SLOPE, which we discuss below. For basis pursuit,
geometrical properties mainly deal with the l1-recovery in the noiseless case, en route to derive the
phase-transition curve (Donoho and Tanner, 2009), which is not directly related to our work.

Concerning the LASSO, Tibshirani and Taylor (2012) show that the LASSO residual Y −Xβ̂lasso is
the projection of Y onto the polytope {z ∈ Rn : ‖X ′z‖∞ ≤ λ}. From this result, the authors derive an
explicit formula for the Stein’s unbiased risk estimate which allows to select λ in order to minimize the
L2 risk: E(‖Xβ̂lasso −Xβ‖22). This geometrical result also lays the groundwork for selective inference
(Lee et al., 2016), for deriving screening procedures (Ghaoui et al., 2010; Wang et al., 2013), and
to describe the accessible LASSO models in Sepehri and Harris (2017). Concerning SLOPE, very
recent work of Minami (2020) generalizes some results of Tibshirani and Taylor (2012) and shows that
the number of non-null clusters (‖mdl(β̂slope)‖∞ in our article) appears in the Stein’s unbiased risk
estimate for SLOPE estimator.

Our article provides properties for penalized estimators for 1) the uniqueness of the minimizer,
2) accessible models and 3) model selection based on the null polytope. We apply our approach to
SLOPE, LASSO and Basis Pursuit (BP). Table 1 summarizes results already known in the literature.

BP LASSO SLOPE
Sufficient condition for uniqueness YES1 YES2,3,4 NO
Necessary and sufficient condition for uniqueness NO YES5 NO
Accessible models (characterization through dual unit ball in Rp) NO NO NO
Accessible models (characterization through null polytope in Rn) NO YES6 NO

Table 1: Summary of results known in the literature. 1: Tardivel and Bogdan (2018), 2: Rosset et al.
(2004), 3: Tibshirani (2013), 4: Ali and Tibshirani (2019), 5: Ewald and Schneider (2020), 6: Sepehri
and Harris (2017).

1.5 Notation and structure

We use the following notation in this article. We denote the set {1, . . . , k} by [k] and use |I| for the
cardinality of a set I. For a matrix A, the symbols col(A) and row(A) stand for the column and
row space of A, respectively, and conv(A) is the convex hull of the columns of A. As used in the
introduction, for a number t, sign(t) is given by 1,−1 or 0 if t > 0, t < 0 , or t = 0, respectively. For
a vector x, sign(x) is the vector containing the signs of the components of x. The symbols ‖.‖1, ‖.‖2,
‖.‖∞, and ‖.‖w represent the l1, l2, supremum, and the SLOPE-norm, respectively. Finally, the set Sp
contains all permutations on the set [p].
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The remainder of this article is organized as follows. Section 2 contains the general theorem of
uniqueness for penalized least-squares estimators, as well as the analogous necessary and sufficient
uniqueness condition for basis pursuit. In Section 3, we investigate the model selection properties
related to the geometric condition introduced in Section 2 for LASSO, BP, and SLOPE estimators,
including a characterization of the SLOPE’s clustering property. This section also contains results on
model selection in connection with the null polytope. All proofs are relegated to the appendix, which
also contains a remainder of basic facts of subdifferentials and polytopes.

2 A necessary and sufficient condition for uniqueness of penal-

ized problems

For a norm ‖.‖ on Rp, the dual norm ‖.‖∗ is defined by

‖x‖∗ = sup
s∈Rp:‖s‖≤1

s′x.

If the unit ball B = {x ∈ Rp : ‖x‖ ≤ 1} is of polytope shape, the polar dual of B is given by
B∗ = {x ∈ Rp : ‖x‖∗ ≤ 1}, the unit ball of the dual norm, which is, again, a polytope. In that
case, there is a strong connection between the subdifferentials ∂‖.‖(.) of the norm ‖.‖ and the faces of
the polytope B∗, the unit ball of the dual norm ‖.‖∗, see Appendices A.1-A.3 for more details. This
connection is the basis for (the proof of) the main theorem:

Theorem 1 (Necessary and sufficient condition for uniqueness). Let X ∈ Rn×p and let ‖.‖ be a norm
on Rp whose unit ball B is given by a polytope. Consider the penalized optimization problem

SX,‖.‖(y) = arg min
b∈Rp

1

2
‖y −Xb‖2 + ‖b‖, (1)

where y ∈ Rn. Let B∗ denote the unit ball of the dual norm ‖.‖∗. There exists y ∈ Rn with |SX,‖.‖(y)| >
1 if and only if row(X) intersects a face of the dual unit ball B∗ whose codimension is larger than
rk(X).

The notion of uniqueness considered in Theorem 1 is strong in the sense that it involves uniqueness
for a given design matrix X for all values y ∈ Rn. Note that if the norm ‖.‖ involves a tuning parameter
λ, uniqueness of the corresponding penalized problem does not depend on the particular choice of λ:
The parameter simply scales the unit ball B and subsequently the dual unit ball B∗ which does not
influence which faces are intersected by the vector space row(X).

Theorem 1 generalizes Theorem 14 given in Ewald and Schneider (2020) which provides a necessary
and sufficient condition for the uniqueness of the LASSO minimizer: All LASSO solutions are unique
if and only if row(X) only intersects faces of the unit cube [−1, 1]p whose codimension is less than
or equal to rk(X). Note that the unit cube is, indeed, the corresponding dual to the unit ball of the
l1-norm.

Example. We illustrate the criterion from Theorem 1 for ‖.‖ = ‖.‖∞, the supremum norm. Let
X = (1 0). The unit dual ball B∗ is given by the unit cross polytope conv{±(1, 0)′,±(0, 1)′} and
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we have rk(X) = 1. Clearly, the vertex (1, 0)′ with codimension p − 0 = 2 > 1 = rk(X) intersects
row(X), so that one can pick y ∈ R for which the set of minimizers SX,‖.‖∞(y) is not a singleton. In
Figure 1, we illustrate that SX,‖.‖∞(2) is not a singleton by plotting the contour lines of the function
φ(b1, b2) = 0.5(2− b1)2 + max{|b1|, |b2|}.

Figure 1: Illustration of Theorem 1 for the supremum norm and X = (1 0). On the left-hand side, we
see that row(X) intersects a vertex of the cross polytope whose codimension is 2 and thus is larger than
rk(X) = 1. Therefore, by Theorem 1, there exists y ∈ R for which SX,‖.‖∞(y) is not a singleton. On
the right-hand side, the contour lines of the function φ(b1, b2) = 0.5(2− b1)2 + max{|b1|, |b2|} illustrate
that the set SX,bp(2) (in red) is, indeed, not a singleton.

Also consider X = (1 1). Because row(X) does not intersect any vertex of conv{±(1, 0)′,±(0, 1)′},
the solution set SX,‖.‖∞(y) is always a singleton. In Figure 2, we illustrate that in this example,
SX,‖.‖∞(2) is a singleton through the contour lines of the function φ(b1, b2) = 0.5(2 − b1 − b2)2 +

max{|b1|, |b2|}.

2.1 The related problem of basis pursuit

As mentioned before, the methods of LASSO and basis pursuit (BP) are closely related, as the BP
problem can be thought of a LASSO problem with vanishing tuning parameter. More concretely, the
setting for BP is the following. Let X ∈ Rn×p and let y ∈ col(X). The set SX,bp(y) of BP minimizers
is defined as

SX,bp(y) = arg min ‖b‖1 subject to Xb = y.

The following theorem shows that, indeed, as BP is a limiting case of the LASSO, the corresponding
uniqueness condition – which is independent of the choice of tuning parameter as discussed above –
carries over to the BP problem.

Theorem 2. Let X ∈ Rn×p. There exists y ∈ col(X) for which |SX,bp(y)| > 1 if and only if row(X)

intersects a face of the unit cube [−1, 1]p whose codimension is larger than rk(X).

We illustrate Theorem 2 in Figures 4 and 3.
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Figure 2: Illustration of Theorem 1 for the supremum norm and X = (1 1). On the left-hand side,
we see that row(X) does not intersect a face of the cross polytope whose codimension is larger than
rk(X) = 1 (which are the vertices in this example). Therefore, by Theorem 1, the set SX,‖.‖∞(y)
is a singleton for all y ∈ R. On the right-hand side, the contour lines of the function φ(b1, b2) =
0.5(2− b1)2 + max{|b1|, |b2|} illustrate that the set SX,‖.‖∞(2) (in red) is a singleton in this example.

Figure 3: Illustration of Theorem 2 with X = (1 1). On the left-hand side, we see that row(X)
intersects a face of the unit square whose codimension 2 is larger than rk(X) = 1 (which are the
vertices in this example). Therefore, by Theorem 2, there exists y ∈ R for which the BP minimizer is
not unique. The right-hand side illustrates that, indeed, for an arbitrary y ∈ R \ {0}, the set SX,bp(y)
(the red segment) is not a singleton.
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Figure 4: Illustration of Theorem 2 with X = (1 2). On the left-hand side, we see that row(X) does
not intersect any face of the unit square whose codimension is larger than rk(X) = 1 (which are the
vertices in this example). Therefore, by Theorem 2, the BP minimizer is unique for all y ∈ R. The
right-hand side illustrates that for an arbitrary y ∈ R, the set SX,bp(y) (in red) is, indeed, a singleton.

In the following proposition, we show that the necessary and sufficient condition given in Theorem 1
and, therefore also the one given in Theorem 2, is weak. More precisely, we establish that the set of
X ∈ Rn×p for which the necessary and sufficient condition given in Theorem 1 does not hold, is
negligible with respect to the Lebesgue measure.

Proposition 1. Let µ be the Lebesgue measure on Rn×p and let ‖.‖ be a norm on Rp whose unit ball
is given by a polytope. The following equality holds

µ
({
X ∈ Rn×p : ∃y ∈ Rn with |SX,‖.‖(y)| > 1

})
= 0.

The following corollary is then straightforward given the fact that LASSO, covered by Theorem 1),
and BP share the same the characterization for uniqueness.

Corollary 1. Let µ be the Lebesgue measure on Rn×p, then the following equality holds

µ
({
X ∈ Rn×p : ∃y ∈ Rn with |SX,bp(y)| > 1

})
= 0.

By taking the appropriate norms in Proposition 1, and by Corollary 1, one may deduce that the
necessary and sufficient conditions for uniqueness of BP, LASSO, and SLOPE are weak. However,
one should be aware that Proposition 1 does not mean that this condition always occurs in practice!
For example, for BP (or LASSO), when p > n and X ∈ {−1, 1}n×p, one can always pick y ∈ col(X)

for which the set of minimizers SX,bp(y) is not a singleton (or, for any λ > 0, one can pick y ∈ Rn

for which the set of minimizers SX,λ‖.‖1(y) is not a singleton). Matrices having entries in {−1, 1}
appear in several theoretical works, such as Rauhut (2010) and Tardivel et al. (2018), and are used for
applications in radar and wireless communication (see e.g. Romberg, 2009; Haupt et al., 2010).
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3 Model selection properties

We now investigate the geometrical aspects of the model selection features of certain penalized esti-
mators.

3.1 Accessible sign vectors for LASSO and BP

We start by introducing the notion of accessible sign vectors for LASSO and BP problems.

Definition 1 (Accessible sign vectors for LASSO and BP). Let X ∈ Rn×p, σ ∈ {−1, 0, 1}p, and
λ > 0. We say that σ is an accessible sign vector for LASSO (or BP), if there exists y ∈ Rn and
β̂ ∈ SX,λ‖.‖1(y) (or there exists y ∈ col(X) and β̂ ∈ SX,bp(y), respectively), such that sign(β̂) = σ.

The following theorem provides a geometric characterization of accessible sign vectors for LASSO
and BP based on faces of the unit cube [−1, 1]p and the vector space row(X). First, note that sub-
differential calculus of the l1-norm at σ ∈ {−1, 0, 1}p gives

∂‖.‖1(σ) = E1 × · · · × Ep with Ej =

{σj} |σj | = 1

[−1, 1] σj = 0,

where ∂‖.‖1(x) denotes the subdifferential of the l1-norm at x ∈ Rp, see Appendices A.1 and A.3 for
more details. Therefore, the mapping σ 7→ ∂‖.‖1(σ) is a bijection between sign vectors in {−1, 0, 1}p

and faces of the unit cube in Rp. We let F (σ) = ∂‖.‖1(σ) in the following.

Theorem 3 (Characterization of accessible LASSO and BP sign vectors). Let X ∈ Rn×p and λ > 0.
A sign vector σ ∈ {−1, 0, 1}p is accessible for LASSO (or BP, respectively) if and only if row(X)

intersects the face F (σ).

Note that Theorem 3 shows that whether a sign vector is accessible for LASSO does not depend on
the value of the tuning parameter λ. We also point out that Theorems 1 and 3 allow to deduce that
the number of non-null components of the LASSO minimizer is always less than or equal to rk(X)

if the solutions are unique. Indeed, when the LASSO minimizer is unique, according to Theorem 1,
row(X) does not intersect a face of [−1, 1]p associated to a sign vector having more than rk(X) non-null
components, i.e., a face whose codimension is larger than rk(X). This implies that only models (sign
vectors) with at most rk(X) non-null components are accessible. For the LASSO, this is a refined
version of the well-known fact that, in case the estimator is unique, at most n components can be non-
zero (see e.g. Tibshirani, 2013; Osborne et al., 2000). A similar approach for SLOPE is developed in
the following, geometrically characterizing why the number of non-null clusters of SLOPE minimizers
is less than or equal to rk(X) in case of uniqueness.

3.2 Accessible models for SLOPE

We investigate geometric features of the model selection properties of SLOPE. For the remainder of
Section 3, we assume that the weight vector of the SLOPE norm ‖.‖w satisfies

w1 > · · · > wp > 0,
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i.e., that all components non-zero and strictly decreasing.

Definition 2. We say that a vector m ∈ Zp is a SLOPE model, if either m = 0, or, if for all
l ∈ [‖m‖∞], there exists j ∈ [p] such that |mj | = l. We denote the set of all SLOPE models with p by
Mp. Moreover, for x ∈ Rp, we define mdl(x) ∈Mp through the following.

1) sign(x) = sign(mdl(x))

2) |xi| = |xj | =⇒ |mdl(x)i| = |mdl(x)j |

3) |xi| > |xj | =⇒ |mdl(x)i| > |mdl(x)j |

Example. For x = (3.1,−1.2, 0,−3.1)′, we have mdl(x) = (2,−1, 0,−2)′. For x ∈ R4 with mdl(x) =

(0, 2, 1,−2)′, we have sign(x) = (0, 1, 1,−1)′ and |x2| = |x4| > |x3| > x1 = 0. The set of all SLOPE
models in R2 is given by

M2 = {(0, 0)′, (1, 0)′, (−1, 0)′, (0, 1)′, (0,−1)′, (1, 1)′, (1,−1)′, (−1, 1)′, (−1,−1)′,

(2, 1)′, (−2, 1)′, (2,−1)′, (−2,−1)′, (1, 2)′, (−1, 2)′, (1,−2)′, (−1,−2)′}.

In Theorem 4 we prove there is a one-to-one relationship between SLOPE models and the so-called
sign permutahedron, which is the unit ball of the dual of the SLOPE norm (see Proposition 8 in
Appendix A.7). First, we define this polytope. The sign permutahedron P±w is defined as

P±w = conv
{

(σ1wπ(1), . . . , σpwπ(p))
′ : σ1, . . . , σp ∈ {−1, 1}, π ∈ Sp

}
.

The shape of this polytope is illustrated in Figure 5 in two dimensions, and in Figure 6 in three
dimensions. We denote the set of non-empty faces of the sign permutahedron by F0(P±w ). The
permutahedron Pw, which is a face of the sign permutahedron, is defined as the following polytope.

Pw = conv
{

(wπ(1), . . . , wπ(p))
′ : π ∈ Sp

}
.

We denote the subdifferential of the SLOPE norm at x ∈ Rp by ∂‖.‖w(x) (for the definition of sub-
differential, see Appendix A.1). In fact, ∂‖.‖w(x) is a face of P±w , which we shall denote by Fw(x) in
the following.

SLOPE models having only positive components can be interpreted as an ordered partition of
[p], where the the smallest and largest element of this partition is the set {j : mj = 1} and the set
{j : mj = ‖m‖∞}, respectively. It is well known that there is a one-to-one relationship between
the elements of an ordered partition and the faces of the permutahedron (see e.g. Maes and Kappen,
1992; Simion, 1997; Ziegler, 2012). Instigated by this, we show in Theorem 4 that this result can,
indeed, be extended to a one-to-one relationship between all SLOPE models and the faces of the sign
permutahedron.

Theorem 4. The mapping m ∈ Mp 7→ Fw(m) = ∂‖.‖w(m) is a bijection between the SLOPE models
Mp and F0(P±w ), the non-empty faces of the sign permutahedron P±w . In addition, the following holds.

1) The codimension of Fw(m) is given by ‖m‖∞.
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2) We have Fw(x) = Fw(mdl(x)).

The assumption that components of w are strictly decreasing and non-zero is important. For
example, if w1 = · · · = wp > 0, the sign permutahedron is just a cube and clearly, there is no one-to-
one relationship between the set SLOPE models and the set of faces of the cube. A similar situation
arises if w contains zero components. As can be seen when p = 2 and w2 = 0, the SLOPE norm is the
supremum norm and the corresponding dual unit ball is the unit cross polytope in R2.

Example. We now describe the faces Fw(m), m ∈ M2, of the sign permutahedron P±w when w =

(3.5, 1.5)′. In the following, we use the fact that – up to an orthogonal transformation described in
Lemma 4 – Fw(m) is equal to Fw(m̃) for some m̃, a non-negative and non-increasing SLOPE model.
The relationship between the SLOPE models m ∈ M2 and faces of the sign permutahedron P±w are
listed below and illustrated in Figure 5. Note that codim(Fw(m)) = ‖m‖∞.

model m̃ face Fw(m̃) codim. faces Fw(m) isometric to Fw(m̃)

m̃ = (0, 0)′ sign permutahedron: P±w 0 ∅

m̃ = (1, 0)′ segment: {3.5} × [−1.5, 1.5] 1 m ∈ {(−1, 0)′,±(0, 1)′}

m̃ = (1, 1)′ permutahedron: Pw 1 m ∈ {(−1,−1)′,±(1,−1)′}

m̃ = (2, 1)′ point: (3.5, 1.5)′ 2 m ∈ {(−2,−1)′,±(2,−1)′,±(1, 2)′,±(1,−2)′}

Figure 5: Illustration of the relationship between the SLOPE models and the faces of the sign permu-
tahedron P±w for w = (3.5, 1.5)′ through subdifferential calculus, see Proposition 6 in Appendix A.3
and Proposition 8 in Appendix A.7. Note that Fw(m) = ∂‖.‖w(m). Faces having the same color are
isometric. One may notice that codim(Fw(m)) = ‖m‖∞.
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Definition 3 (Accessible SLOPE model). Let X ∈ Rn×p and m ∈Mp. We say that m is an accessible
SLOPE model if

∃y ∈ Rn and ∃β̂ ∈ SX,‖.‖w(y) such that mdl(β̂) = m.

Theorem 5 (Characterization of accessible SLOPE models). Let X ∈ Rn×p. A SLOPE model m ∈
Mp is accessible if and only if row(X) intersects the face Fw(m).

Note that the set of accessible SLOPE models is invariant by scaling w, since row(X) intersects
Fw(m) if and only if row(X) intersects Fλw(m) with λ > 0. The following corollary, which confirms the
very recent Theorem 2.1 given in Kremer et al. (2019), is a straightforward consequence of Theorems 1,
4 and 5.

Corollary 2. Let X ∈ Rn×p. If row(X) does not intersect any face of P±w with codimension larger than
rk(X), then for all y ∈ Rn, β̂w(y), the unique element of SX,‖.‖w(y), satisfies ‖mdl(β̂w(y))‖∞ ≤ rk(X).

Corollary 2 generalizes the well known fact that, when uniqueness occurs, the LASSO minimizer
has less than rk(X) non-null components. Indeed, the above corollary shows that when the SLOPE
minimizer is unique, the number of non-null clusters is less than or equal to rk(X).

Example. We illustrate the criterion for accessible SLOPE models for w = (5.5, 3.5, 1.5)′ and X given
by

X =

(
8 5 8

10 1.25 −6

)
.

The table below lists all accessible SLOPE models, the geometric illustrations is shown in Figure 6.

colour type intersection 6= ∅ face intersected isometric to SLOPE models

orange segments row(X) ∩ Fw(±(1, 0, 0)) {5.5} × P±(3.5,1.5) ±(1, 0, 0)

red segments row(X) ∩ Fw(±(1, 1, 1)) P(5.5,3.5,1.5) ±(1, 1, 1)

black segments row(X) ∩ Fw(±(0, 0, 1)) {5.5} × P±(3.5,1.5) ±(0, 0, 1)

pink segments row(X) ∩ Fw(±(−1, 0, 1)) P(5.5,3.5) × [−1.5, 1.5] ±(−1, 0, 1)

purple points row(X) ∩ Fw(±(2, 0,−1)) {5.5} × {3.5} × [−1.5, 1.5] ±(2, 0,−1)

green points row(X) ∩ Fw(±(2, 1, 1)) {5.5} × P(3.5,1.5) ±(2, 1, 1)

blue points row(X) ∩ Fw(±(1, 1, 2)) {5.5} × P(3.5,1.5) ±(1, 1, 2)

yellow points row(X) ∩ Fw(±(−1, 0, 2)) {5.5} × {3.5} × [−1.5, 1.5] ±(−1, 0, 2)

3.3 The SLOPE null polytope

Above we gave description of accessible SLOPE models based on the intersection of row(X) and the
sign permutahedron P±w . Given an accessible model m ∈Mp, our aim is to describe the set of y ∈ Rn

for which there exists β̂ ∈ SX,‖.‖w(y) such that mdl(β̂) = m. In other words, we want to describe the
set

Aw(m) = {y ∈ Rn : ∃β̂ ∈ SX,‖.‖w(y) where mdl(β̂) = m}.

Note that when the SLOPE minimizer is unique, the sets Aw(m) and Aw(m̃) are disjoint for m 6= m̃,
whereas possibly Aw(m) ∩ Aw(m̃) 6= ∅, when the SLOPE minimizer is not unique. Clearly, m = 0 is
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Figure 6: Illustration of the sign permutahedron P±w (in brown) and the plane row(X) (in light blue).
Because rk(X) = 2 and row(X) does not intersect any vertex of P±w , i.e., the faces of P±w with
codimension equal to 3, one may notice that SX,‖.‖w(y) is a singleton with unique element β̂w(y) for
all values of y ∈ R2. Colored segments and points are the intersections between row(X) and the faces
of P±w , determining the accessible SLOPE models shown in the table below. For example, m = (2, 1, 1)′

is an accessible SLOPE model which implies that there exists y ∈ R2 for which the SLOPE minimizer
β̂w(y) satisfies 1) sign(β̂w(y)) = (1, 1, 1)′ and 2) β̂w(y)1 > β̂w(y)2 = β̂w(y)3 > 0. In addition, since
(2, 1, 0)′ is not an accessible model, one cannot pick y ∈ R2 for which the SLOPE minimizer satisfies
1) sign(β̂w(y)) = (1, 1, 0)′ and 2) β̂w(y)1 > β̂w(y)2 > β̂w(y)3 = 0.
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accessible. The set Aw(0), called the SLOPE null polytope, given by

Aw(0) = {y ∈ Rn : ‖X ′y‖∗w ≤ 1}

by Proposition 7, namely the set of all y such that X ′y ∈ P±w , which is again a polytope. The
proposition below shows that the faces of this polytope are given byNw(m) = {f ∈ Rn : X ′f ∈ Fw(m)}
for the accessible SLOPE models m ∈Mp. These faces are the cornerstone to describe the sets Aw(m).

Proposition 2. Let X ∈ Rn×p. The SLOPE model m ∈ Mp is an accessible SLOPE model if and
only if Nm = {f ∈ Rn : X ′f ∈ Fw(m)} 6= ∅. In that case, the set Aw(m) is given by

Aw(m) = {y = f +Xb : f ∈ Nw(m),mdl(b) = m} .

If rk(X) = n and we are given the intersection between row(X) and Fw(m) for some accessible
SLOPE model m, we have that Aw(m) = (XX ′)−1X(row(X) ∩ Fw(m)) since

f ∈ Nw(m) ⇐⇒ X ′f ∈ row(X) ∩ Fw(m) ⇐⇒ f ∈ (XX ′)−1X(row(X) ∩ Fw(m)).

Example. Figure 6 illustrates the accessible SLOPE models from Theorem 5 for w = (5.5, 3.5, 1.5)′

and

X =

(
8 5 8

10 1.25 −6

)
.

Now, for every accessible SLOPE model (which are elements of Rp), Figure 7 below provides the set
Am = {y ∈ R2 : ∃β̂ ∈ SX,‖.‖w(y) where mdl(β̂) = m} and the SLOPE null polytope (which are
geometric objects in Rn).

Figure 7: Illustration of the null polytope and the accessible models
{±(1, 0, 0),±(1, 1, 1),±(0, 0, 1),±(−1, 0, 1),±(2, 0,−1),±(2, 1, 1),±(1, 1, 2),±(−1, 0, 2)}, associated to
the faces of the polytope. Depicted also are the sets Am = {y ∈ R2 : ∃β̂ ∈ SX,‖.‖w(y) where mdl(β̂) =
m} for each accessible model.

Note that the SLOPE null polytope Aw(0) can also be interpreted as the set of SLOPE residuals in
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the sense that û = y−Xβ̂ is the projection of y onto Aw(0) whenever β̂ ∈ SX,‖.‖w(y) (Minami, 2020).
Or put differently again, the decomposition y = Xβ̂ + û, where Xβ̂ is the SLOPE fit and û ∈ Aw(0),
the set of all values that lead to a zero SLOPE minimizer.

This property is well known also for the LASSO, (c.f. Tibshirani and Taylor, 2012). In fact, it is
straightforward to see from Proposition 7 that the same considerations hold for all problems as defined
in (1). For completeness, we summarize this in the following proposition.

Proposition 3. Let X ∈ Rn×p and y ∈ Rn and let ‖.‖ be a norm on Rp. Define the null polytope
A∅ = {u ∈ Rn : ‖X ′u‖∗ ≤ 1}. We then have SX,‖.‖(u) = {0} for all u ∈ A∅, and any β̂ ∈ SX,‖.‖(y)

satisfies y = Xβ̂ + û with û ∈ A∅. Moreover, û is the projection of y onto A∅.

A Appendix – Proofs

In the appendix, we additionally make use of the following notation. Let A be a matrix. We use the
symbol Aj to denote the j-the column of A. For an index set I, AI is the matrix containing columns
with indices in I only. For a vector x, supp(x) contains the indices of the non-zero components of x.
The symbol |x|(j) denotes the j-th order statistic of the absolute values of the components of x, i.e.,
|x|(1) ≥ |x|(2) ≥ . . . . Let l, k ∈ N with l ≤ k, then [l : k] denotes the set {l, l + 1, . . . , k}. We let 1m

stand for the vector (1, . . . , 1)′ ∈ Rm. All inequalities involving vectors are understood componentwise.

A.1 Facts about subdifferentials

We remind the reader of some definitions and facts on subgradients and subdifferentials. The following
can, for instance, be found in Hiriart-Urruty and Lemarechal (1993). For a function f : Rp → R, a
vector s ∈ Rp is a subgradient of f at x ∈ Rp if

f(z) ≥ f(x) + s′(z − x) ∀z ∈ Rp. (2)

The set of all subgradients of f at x, which is a convex set, is called the subdifferential of f at x,
denoted by ∂f (x). It is straightforward to characterize the minimizer of a function in the following
way

x∗ ∈ arg min f ⇐⇒ 0 ∈ ∂f (x∗). (3)

While convexity of f is not necessary for the above statement, the treatment of subdifferentials is
an especially important tool when this is the case. Given that f is convex, subdifferentiability is also
a local property in the sense that for any δ > 0, we have

s ∈ ∂f (x) ⇐⇒ f(x+ h) ≥ f(x) + s′h for all h : ‖h‖∞ ≤ δ. (4)

A.2 Facts about polytopes

We report some basic definitions and facts on polytopes, which we will use throughout the article and,
in particular, in proofs in the subsequent sections. The following can, for instance, be found in the
excellent textbooks by Gruber (2007) and Ziegler (2012).

15



A set PV ⊆ Rp is called a V-polytope, if it is the convex hull of a finite set of points in Rp, namely,

PV = conv(V1, . . . , Vk) = conv(V ),

for V = (V1 . . . Vk) ∈ Rp×k. A set PH ⊆ Rp is called an H-polyhedron, if it is the intersection of a
finite number of half-spaces, namely,

PH =

m⋂
l=1

{x ∈ Rp : A′lx ≤ bl} = {x ∈ Rp : A′x ≤ b},

for some A = (A1 . . . Am) ∈ Rp×m and b ∈ Rm. A bounded H-polyhedron is called H-polytope. A set
P ⊆ Rp is an H-polytope if and only if it is a V-polytope. We therefore simply use the term polytope
in the following. The dimension dim(P ) of a polytope is given by the dimension of the affine subspace
spanned by P , and its codimension by codim(P ) = p − dim(P ). A face F of P is any subset F ⊆ P

that satisfies
F = {x ∈ P : a′x = b0}, where P ⊆ {x : a′x ≤ b0},

for some a ∈ Rp and b0 ∈ R. Such an inequality a′x ≤ b0 is called a valid inequality of P . Note
that F = ∅ and F = P are faces of P and that any face F is again a polytope. A face F 6= P is
called proper. A face of dimension 0 is called vertex, and we denote the set of all vertices of P by
vert(P ), which satisfy that vert(P ) ⊆ {V1, . . . , Vk}, where P = conv(V1, . . . , Vk). A point x0 ∈ P lies
in relint(P ), the relative interior of P , if x0 is not contained in a proper face of P . Finally, the (polar)
dual of P is defined as

P ∗ = {s ∈ Rp : s′x ≤ 1 ∀x ∈ P},

which is again a polytope. We now list a number of useful facts about polytopes involving the above
definitions, which are used throughout the article. These properties can either be found explicitly or
as a straightforward consequence of properties listed in the references mentioned above.

Proposition 4. Let P ∈ Rp be a polytope given by P = conv(V ), where V = (V1, . . . , Vk) ∈ Rp×k,
and denote by P ∗ the dual of P . For simplicity, we assume that vert(P ) = {V1, . . . , Vk}. Moreover,
let 0 ∈ P . The following properties hold.

1) If F and F̃ are faces of P , then so is F ∩ F̃ .

2) For any face F of P , F = conv(vert(P ) ∩ F ).

3) We have x0 ∈ relint(P ) if and only if any valid inequality a′x ≤ b0 of P with a′x0 = b0 implies
that a′x = b for all x ∈ P .

4) Let D be an affine line contained in the affine span of P . If D∩ relint(P ) 6= ∅ then D intersects
a proper face of P .

5) We can write P ∗ = {s ∈ Rp : V ′s ≤ 1k}.

6) Any face F ∗ of P ∗ can be written as F ∗ = {s ∈ P ∗ : V ′I s = 1|I|} for some I ⊆ [k].
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7) Let I ⊆ [k]. F = conv(VI) is a face of P ⇐⇒ F ∗ = {s ∈ P ∗ : V ′I s = 1|I|} is a face of P ∗,
where I is the maximal index set in this representation.

In this case, F ∗ is the dual of F (and vice versa), and codim(F ∗) = rk(VI).

A.3 Facts on subdifferentials of norms with polytope unit balls

We now consider subdifferentials of norms and list several properties in the following. In particular, we
show in Proposition 5 that the subdifferential of a norm evaluated at zero is simply given by the unit ball
of the corresponding dual norm, a fact that will be used throughout subsequent proofs. Proposition 6
then shows that all faces of this dual norm unit ball can be represented by a subdifferential of the
original norm, provided that this norm is such that its unit ball, and therefore also the unit ball of
its dual norm, are given by a polytope. Lemma 1 contains a technical result needed for the proof of
Theorem 1.

A version of the following proposition – which holds independently of the shape of the unit ball of
the norm under consideration – can also be found in Hiriart-Urruty and Lemarechal (1993).

Proposition 5. Let ‖.‖ be a norm on Rp, and let ‖.‖∗ denote the dual norm. Then the following
holds.

1) The subdifferential of ‖.‖ at 0 is given by

∂‖.‖(0) = {s ∈ Rp : ‖s‖∗ ≤ 1}.

2) The subdifferential of ‖.‖ at x is given by

∂‖.‖(x) = {s ∈ Rp : ‖s‖∗ ≤ 1, s′x = ‖x‖}.

Proof. 1 ) According to the definition of a subdifferential in (2), we have

∂‖.‖(0) = {s ∈ Rp : ‖v‖ ≥ s′v ∀v ∈ Rp} = {s ∈ Rp : v′s ≤ 1 ∀v ∈ Rp with ‖v‖ ≤ 1}

= {s ∈ Rp : ‖v‖∗ ≤ 1}.

2 ) By definition, we have

∂‖.‖(x) = {s ∈ Rp : ‖v‖ ≥ ‖x‖+ s′(v − x) ∀v ∈ Rp}

Take s ∈ ∂‖.‖(x). When v = 0, we get s′x ≥ ‖x‖. When v = 2x, we may deduce that s′x ≤ ‖x‖,
implying that s′x = ‖x‖ must hold. This also implies ‖v‖ ≥ s′v for all v ∈ Rp, so that s ∈ B∗, yielding

∂‖.‖(x) ⊆ {s ∈ B∗ : s′x = ‖x‖}.

To see that also the converse is true, take any s ∈ B∗ satisfying s′x = ‖x‖. Now, take any v ∈ Rp.
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Clearly ‖v‖ ≥ s′v = ‖x‖+ s′(v − x), implying that

{s ∈ B∗ : s′x = ‖x‖} ⊆ ∂‖.‖(x).

Proposition 6. Let ‖.‖ be a norm whose unit ball B is the polytope conv(V ) for some V = (V1 . . . Vk) ∈
Rp×k. Let F ⊆ B∗, where B∗ is the dual norm unit ball, with F 6= ∅. Then

F is a face of B∗ ⇐⇒ F = ∂‖.‖(x) for some x ∈ Rp.

Proof. ( =⇒ ) If F = B∗, then x = 0 by Proposition 5. If F is a proper face, then F = {s ∈ B∗ :

V ′I s = 1|I|} for some I ⊆ [k], where I is the maximal set satisfying this. Let x =
∑
l∈I Vl. Since

x/|I| ∈ conv(VI), a proper and non-empty face of B, we have ‖x‖ = |I|. Note that for s ∈ B∗, we have
s′Vl ≤ 1, so that

s ∈ ∂‖.‖(x) ⇐⇒ s′x =
∑
l∈I

V ′l s = ‖x‖ = |I| ⇐⇒ V ′l s = 1 ∀l ∈ I ⇐⇒ s ∈ F.

(⇐= ) If F = ∂‖.‖(x), then F = {s ∈ B∗ : s′x = ‖x‖} by Proposition 5. Since (x/‖x‖)′s ≤ 1 clearly is
a valid inequality for all s ∈ B∗, F is a face of B∗.

Lemma 1. Let ‖.‖ be a norm whose unit ball B is the polytope conv(V ) for some V = (V1 . . . Vk) ∈
Rp×k. Let F = {s ∈ B∗ : V ′I s = 1|I|} be a face of B∗, the dual norm unit ball, and let I be the maximal
set satisfying this. Then the following holds.

F ⊆ ∂‖.‖(b) =⇒ b ∈ col(VI).

Proof. Since b/‖b‖ ∈ B = conv(V ), we can write b =
∑k
l=1 αlVl with αl ≥ 0 and

∑k
l=1 αl = ‖b‖. Since

∂‖.‖(b) = {s ∈ B∗ : s′b = ‖b‖} and s′Vl ≤ 1, we have for A = supp(α) and any s ∈ ∂‖.‖(b)

‖b‖ = s′b =
∑
l∈A

αls
′Vl ≤

∑
l∈A

αl = ‖b‖.

This implies that s′Vl = 1 for all l ∈ supp(α), which, since F ⊆ ∂‖.‖(b), yields supp(α) ⊆ I.

A.4 Proofs of Theorems 1 and 2

The proofs of Theorems 1 and 2 follow a similar outline, with the proof of Theorem 2 being more
accessible. We therefore start with the latter one.

A.4.1 Characterization of BP minimizers and proof of Theorem 2

The following characterization of BP minimizers can be found in Zhang et al. (2015) and Gilbert
(2017), and will prove to be useful in the following.

Let y ∈ col(X) and let β̂ satisfy Xβ̂ = y then, β̂ ∈ SX,bp(y) if and only if
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∃z ∈ Rn such that

‖X ′z‖∞ ≤ 1,

X ′jz = sign(β̂j) ∀j ∈ supp(β̂).
(5)

Proof of Theorem 2.
(⇐= ) Let us assume that row(X) intersects a face F of [−1, 1]p whose codimension is larger than

rk(X). We show that one can find some y ∈ col(X) for which SX,bp(y) is not a singleton.
The face F can be written as F = E1 × · · · ×Ep, where Ej ∈ {{−1}, {1}, [−1, 1]} for j ∈ [p]. Now,

let J = {j ∈ [p] : |Ej | = 1}, the set of indices of sets Ej that are singletons. We have codim(F ) = |J |
and, by assumption, |J | > rk(X). Now define β̂ ∈ Rp by setting

β̂j =


1 Ej = {1}

−1 Ej = {−1}

0 j /∈ J.

Clearly, supp(β̂) = J . Set y = Xβ̂. Since row(X) intersects F , there exists z ∈ Rn such that X ′z ∈ F .
This implies that ‖X ′z‖∞ ≤ 1 and X ′jz = β̂j = sign(β̂j) for any j ∈ supp(β̂) = J . Therefore, by (5),
β̂ ∈ SX,bp(y).

To show that β̂ is not a unique minimizer, we provide β̃ ∈ Rp with β̃ 6= β̂, Xβ̃ = y and ‖β̃‖1 = ‖β̂‖1.
Since |J | > rk(X), the columns of XJ are linearly dependent, so that we can pick h ∈ ker(X), h 6= 0

such that supp(h) ⊆ J and ‖h‖∞ < 1. Since ‖h‖∞ < 1, sign(β̂ + h) = sign(β̂) = β̂. Let β̃ = β̂ + h.
Note that Xβ̃ = Xβ̂ = y and that

‖β̃‖1 =

p∑
j=1

sign(β̂j + hj)(β̂j + hj) = t

p∑
j=1

sign(β̂j)β̂j +
∑
j∈J

β̂jhj = ‖β̂‖1 +
∑
j∈J

(X ′z)jhj

= ‖β̂‖1 + z′Xh = ‖β̂‖1,

implying that β̃ ∈ SX,bp(y) also.

( =⇒ ) We assume that β̂, β̃ ∈ SX,bp(y) with β̂ 6= β̃ for some y ∈ col(X). We need to show that there
exists a face F of [−1, 1]p with F ∩ row(X) 6= ∅ and codim(F ) > rk(X). Consider F = E1 × · · · ×Ep
and F̃ = Ẽ1 × · · · × Ẽp with

Ej =

{sign(β̂j)} if j ∈ supp(β̂)

[−1, 1] if j /∈ supp(β̂)
and Ẽj =

{sign(β̃j)} if j ∈ supp(β̃)

[−1, 1] if j /∈ supp(β̃).

Note that for any two minimizers β̂ and β̃, we have β̂j β̃j ≥ 0 for all j ∈ [p], since otherwise β̌ = (β̂+β̃)/2

satisfies Xβ̌ = Xβ̂ = Xβ̃ as well as ‖β̌‖1 < ‖β̂‖1 = ‖β̃‖1, which would lead to a contradiction. We
therefore have supp(β̌) = supp(β̂)∪supp(β̃). Note that by a convexity argument, β̌ ∈ SX,bp(y) also, so
that by (5), there exists ž ∈ Rn with ‖X ′ž‖∞ ≤ 1 and X ′j ž = sign(β̌j) for all j ∈ supp(β̌). Moreover,
X ′ž ∈ F ∩ F̃ holds. Now, let F0 be a face of the face F ∩ F̃ of smallest dimension that still intersects
row(X). We write F0 = E0,1 × · · · × E0,p and let J0 = {j ∈ [p] : |E0,j | = 1}. Note that row(X) must
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intersect F0 in its relative interior relint(F0) where

relint(F0) = relint(E0,1)× · · · × relint(E0,p) where relint(E0,j) =

E0,j j ∈ J0
(−1, 1) j /∈ J0,

since otherwise row(X) intersects a proper face of F0, which contradicts the assumption that F0 is of
minimal dimension. We now need to show that codim(F0) = |J0| > rk(X). Assume that |J0| ≤ rk(X).
The columns of XJ0 are linearly dependent since XJ0 β̂J0 = Xβ̂ = Xβ̃ = XJ0 β̃J0 with β̂J0 6= β̃J0 , since
both supp(β̂) and supp(β̃) are subsets of supp(β̌) ⊆ J0. We therefore have

dim(col(XJ0)) < |J0| ≤ rk(X) = dim(col(X)) and col(X)⊥ $ col(XJ0)⊥.

This implies that we can pick u ∈ col(XJ0)⊥ \ col(X)⊥ so that X ′J0u = 0, but X ′u 6= 0. Pick z0 ∈ Rn

with X ′z0 ∈ relint(F0). The affine line {X ′(z0 + tu) : t ∈ R} ⊆ row(X) intersects the relative interior
relint(F0) and is included in the affine span of F0 by construction of u. Therefore, by Proposition 4,
row(X) intersects a proper face of F0, yielding a contradiction.

A.4.2 Characterization of penalized minimizers and proof of Theorem 1

In the particular and well-studied case in which the norm of the penalized problem is the l1-norm, the
solutions to the corresponding optimization problem can be characterized by the Karush-Kuhn-Tucker
(KKT) conditions for the LASSO, which can be summarized as follows, see for instance, Bühlmann
and Van de Geer (2011).

β̂ ∈ SX,λ‖.‖1(y) ⇐⇒ ‖X ′(y −Xβ̂)‖∞ ≤ λ and X ′j(y −Xβ̂) = λsign(β̂j) ∀j ∈ supp(β̂) (6)

⇐⇒ ‖X ′(y −Xβ̂)‖∞ ≤ λ and β̂′X ′(y −Xβ̂) = λ‖β̂‖1

In the above, the supremum-norm is the dual to the l1-norm. We can generalize the above characteri-
zation for solutions to the penalized problem from (1) in the following proposition. Note that in our
notation, the tuning parameter λ is part of the norm ‖.‖.

Proposition 7. Let X ∈ Rn×p, y ∈ Rn. We have β̂ ∈ SX,‖.‖(y) if and only if

‖X ′(y −Xβ̂)‖∗ ≤ 1 and β̂′X ′(y −Xβ̂) = ‖β̂‖.

Proof of Proposition 7. Using subdifferential calculus, the proof a straightforward consequence of (3)
and Proposition 5.

β̂ ∈ SX,‖.‖(y) ⇐⇒ 0 ∈ X ′(Xβ̂ − y) + ∂‖.‖(β̂) ⇐⇒ X ′(y −Xβ̂) ∈ ∂‖.‖(β̂)

⇐⇒ ‖X ′(y −Xβ̂)‖∗ ≤ 1 and β̂′X ′(y −Xβ̂) = ‖β̂‖.

Before finally showing Theorem 1, the following lemma states that the fitted values are unique over
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all solutions of the penalized problem for a given y. It is a generalization of Lemma 1 in Tibshirani
(2013), who proves this fact for the special case of the LASSO.

Lemma 2. Let X ∈ Rn×p, y ∈ Rn. Then Xβ̂ = Xβ̃ for all β̂, β̃ ∈ SX,‖.‖(y).

Proof. Assume that Xβ̂ 6= Xβ̃ for some β̂, β̃ ∈ SX,‖.‖(y) and let β̌ = (β̂ + β̃)/2. Because the function
µ ∈ Rn 7→ ‖y − µ‖22 is strictly convex, one may deduce that

‖y −Xβ̌‖22 <
1

2
‖y −Xβ̂‖22 +

1

2
‖y −Xβ̃‖22.

Consequently,

1

2
‖y −Xβ̌‖22 + ‖β̌‖ < 1

2

(
1

2
‖y −Xβ‖22 + ‖β‖+

1

2
‖y −Xβ̃‖22 + ‖β̃‖

)
,

which contradicts both β and β̃ being minimizers.

Proof of Theorem 1.
Throughout the proof, let B = conv(V ) with V = (V1 . . . Vk) ∈ Rp×k.

( ⇐= ) Assume that there exists a face F of B∗ that intersects row(X) (so that F is non-empty)
and satisfies codim(F ) > rk(X) (so that F is proper). This implies that there exists I ⊆ [k] such that

F = {s ∈ B∗ : V ′I s = 1|I|},

where I is the maximal index set satisfying this relationship. Moreover, this implies that conv(VI)

is a proper, non-empty face of B and that we have ‖s‖∗ = 1 for all s ∈ F and ‖v‖ = 1 for all
v ∈ conv(VI). We show that non-unique solutions exist. Define β̂ =

∑
l∈I Vl and observe that

‖β‖ = ‖I|‖
∑
l∈I Vl/|I|‖ = |I|. Pick z ∈ Rn with X ′z, which exists by assumption, and set y = Xβ̂+z.

Then β̂ ∈ SX,‖.‖(y) by Proposition 7, since

‖X ′(y −Xβ̂)‖∗ = ‖X ′z‖∗ = 1 and β̂′(X ′(y −Xβ̂) = β̂′X ′z =
∑
l∈I

V ′l X
′z = |I| = ‖β̂‖.

We now construct β̃ ∈ SX,‖.‖(y) with β̃ 6= β̂. Since codim(FI) = dim(col(VI)) > rk(X), we can pick
h ∈ col(VI) ∩ ker(X) with h 6= 0. Scale h such that for h =

∑
l∈I clVl, we have maxl∈I |cl| < 1, and

define β̃ = b+ h 6= β. Clearly, we have Xβ̃ = Xβ. Note that 1 + cl ≥ 0 and let γ =
∑
l∈I(1 + cl) > 0.

We also have

‖β̃‖ = γ ‖
∑
l∈I

1 + cl
γ

Vl‖ = γ =
∑
l∈I

(1 + cl) = |I|+
∑
l∈I

cl(X
′z)′Vl = |I|+ (X ′z)′h = |I| = ‖β̂‖,

proving that β̃ ∈ SX,‖.‖(y) also.

( =⇒ ) Let us assume that there exists y ∈ Rn and β̂, β̃ ∈ SX,‖.‖(y) with β 6= β̃. We then have

X ′(y −Xβ̂) ∈ ∂‖.‖(β̂) and X ′(y −Xβ̃) ∈ ∂‖.‖(β̃).
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Because Xβ̂ = Xβ̃ by Lemma 2, one may deduce that row(X) intersects the face ∂‖.‖(β̂) ∩ ∂‖.‖(β̃).
Now, let F ∗ be a face of ∂‖.‖(β̂) ∩ ∂‖.‖(β̃) of smallest dimension that intersects row(X) and write

F ∗ = {s ∈ B∗ : V ′I s = 1|I|},

where I is the largest index set I ⊆ [k] satisfying this relationship. If codim(F ) = dim(col(VI)) ≤
rk(X), consider the following. Note that we can pick u ∈ Rn for which X ′u 6= 0 and X ′u ∈ col(VI)

⊥.
For this, let I0 ⊆ I be such that the columns of VI0 are linearly independent, and col(VI0) = col(VI).
By Lemma 1, we have β̂, β̃ ∈ col(VI0), so that we get

XVI0γ = Xβ = Xβ̃ = XVI0 γ̃

with γ 6= γ̃, implying that the columns of XVI0 are linearly dependent. But this means that

rk(XVI) = dim(col(XVI)) = dim(col(XVI0)) < |I0| = dim(col(VI0)) = dim(col(VI)) ≤ rk(X).

Therefore, col(XVI) $ col(X) and, consequently, col(X)⊥ $ col(XVI)
⊥, so that we can pick u ∈

col(XVI)
⊥ \ col(X)⊥ for which X ′u 6= 0 and X ′u ∈ col(VI)

⊥. Also note that X ′z ∈ F ∗ for some
z ∈ Rn and that X ′z lies in the relative interior relint(F ∗), as otherwise, row(X) would intersect a
face of ∂‖.‖(β̂)∩ ∂‖.‖(β̃) of smaller dimension. The affine line {X ′(z+ tu) : t ∈ R} ⊆ row(X) intersects
relint(F ∗) and is included in the affine span of F ∗ by construction. Therefore, by Proposition 4,
row(X) intersects a proper face of F ∗, yielding a contradiction.

A.5 Proof of Proposition 1

Note that a set is negligible with respect to the Lebesgue measure on Rn×p if and only if it is negligible
with respect to the standard Gaussian measure on Rn×p. Therefore, to establish Proposition 1, it is
enough to prove the following equality

PZ
(
∃y ∈ Rn, |SZ,‖.‖(y)| > 1

)
= 0, where Z ∈ Rn×p has iid N (0, 1) entries. (7)

Not that rk(Z) = min{n, p} almost surely. Thus, when n ≥ p, ker(Z) = 0 almost surely and
SZ,‖.‖(y) is a singleton almost surely. We will use the following lemma to establish (7), where N stands
for the (positive) natural numbers.

Lemma 3. Let n ∈ N, q ≥ n+1, and v ∈ Rq where v 6= 0 is a fixed vector. If Z = (Z1, . . . , Zn) ∈ Rq×n

has iid N (0, 1) entries, then PZ(v ∈ col(Z)) = 0.

Proof. We first prove the result for q = n+ 1. If v ∈ col(Z) then

det(Z1, . . . , Zn, v) = 0 ⇐⇒ det(Z1/‖Z1‖2, . . . , Zn/‖Zn‖2, v/‖v‖2) = 0.

Now, because the columns Z1/‖Z1‖2, . . . , Zn/‖Zn‖2 follow a uniform distribution on the l2 unit sphere,
one may deduce that the distribution of the random variable det(Z1/‖Z1‖2, . . . , Zn/‖Zn‖2, v/‖v‖2) is
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equal to the distribution of det(Z1/‖Z1‖2, . . . , Zn/‖Zn‖2, ζ/‖ζ‖2) where ζ has a N(0, In+1) distribution,
independent from Z1, . . . , Zn, because conditioning on ζ = v does not change the distribution. Finally,
the random variable

det(Z1/‖Z1‖2, . . . , Zn/‖Zn‖2, ζ/‖ζ‖2) =
1

‖Z1‖2 × · · · × ‖Zn‖2 × ‖ζ‖2
det(Z1, . . . , Zn, ζ)

is non-zero almost surely. Consequently, PZ(v ∈ col(Z)) = 0. When q > n + 1, let I ⊆ [q] with
|I| = n + 1 and vI 6= 0. Consequently, vI ∈ col(Z̃), where Z̃ ∈ R(n+1)×n is obtained by keeping the
rows of Z with indices in I. Therefore, PZ(v ∈ col(Z)) ≤ PZ̃(vI ∈ col(Z̃)) = 0, which concludes the
proof.

Proof of Proposition 1. If n ≤ p, we are done. Therefore, assume that p > n, and let F0 be a proper
face of B∗ such that codim(F0) = q > n (note that 0 /∈ aff(F0), the affine space spanned by F0).
There exists A ∈ Rq×p, where rows of A are orthonormal (AA′ = Iq) and v ∈ Rq, v 6= 0 such that
aff(F0) = {x ∈ Rp : Ax = v}. Since AA′ = Ip, AZ ′ ∈ Rq×n has iid N (0, 1) entries. Thus, by Lemma 3,
we have

PZ (row(Z) ∩ F0 6= ∅) ≤ PZ(row(Z) ∩ aff(F0) 6= ∅) = PZ(v ∈ col(AZ ′)) = 0. (8)

According to Theorem 1 and since rk(Z) = n almost surely, the following equalities hold.

PZ
(
∃y ∈ Rn, |SZ,‖.‖(y)| > 1

)
= PZ

 ⋃
F∈F(P )

codim(F )>rk(Z)

{row(Z) ∩ F 6= ∅}



= PZ

 ⋃
F∈F(P )

codim(F )>n

{row(Z) ∩ F 6= ∅}

 = 0.

The last equality is a consequence of (8).

A.6 Proof of Theorem 3

Proof. ( =⇒ ) Let σ be an accessible sign vector for LASSO. Then there exists y ∈ Rn and β̂ ∈
SX,λ‖.‖1(y) such that sign(β̂) = σ. According to the characterization of LASSO minimizers in (6), by
setting z = (y − Xβ̂)/λ, one may deduce that X ′z ∈ F (σ). If σ is an accessible sign vector for BP,
there exists y ∈ col(X) and β̂ ∈ SX,bp(y) with sign(β̂) = σ. According to the characterization of BP
minimizers in (5), there exisits z ∈ Rn such that X ′z ∈ F (σ).

( ⇐= ) If row(X) intersects the face F (σ), then there exists f ∈ F (σ) and z ∈ Rn such that
X ′z = f . Note that j ∈ supp(σ) implies that fj = σj = sign(σj). Set y = λz + Xσ We show that
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σ ∈ SX,‖.‖1(y). We have‖X ′(y −Xσ)‖∞ = λ‖X ′z‖∞ ≤ λ,

X ′j(y −Xσ) = λX ′jz = λfj = λσj = λsign(σj) ∀j ∈ supp(σ),

so that according to the characterization of LASSO minimizers in (6), we have σ ∈ SX,‖.‖1(y), implying
that σ is accessible for LASSO. For BP, set y = Xσ and note that, according to the characterization
of BP minimizers in (5), σ ∈ SX,bp(y), implying that σ is also accessible for BP.

A.7 Proof of Theorem 4

Theorem 4 states that there is a bijection between the SLOPE models and the faces of the sign
permutahedron. The basis for proving this is the fact that the sign permutahedron is the dual of the
SLOPE norm unit ball, and that any face of it is given by a subdifferential of the SLOPE norm by
Proposition 6.

We start by proving the following proposition which shows that the subdifferential of the SLOPE
norm at zero is, indeed, the sign permutahedron, and also characterizes the subdifferential of the
SLOPE norm for certain values of x.

Proposition 8. The subdifferential Fw(x) = ∂‖.‖w(x) of the SLOPE norm exhibits the following
properties.

1) We have Fw(0) = P±w .

2) For any x ∈ Rp with x1 = · · · = xp > 0, we have Fw(x) = Pw.

3) For any x ∈ Rp with x1 ≥ · · · ≥ xk > xk+1 ≥ · · · ≥ xp ≥ 0, we have

Fw(x) = Fw[k]
(x[k])× Fw[k+1:p]

(x[k+1:p]).

4) Let 0 < k1 < · · · < kl < p be an arbitrary subdivision of [0 : p], then for any x ∈ Rp with x1 =

· · · = xk1 > xk1+1 = · · · = xk2 > · · · > xkl+1 = · · · = xp ≥ 0, we have codim (Fw(mdl(x))) =

‖mdl(x)‖∞ and

Fw(x) = Fw(mdl(x)) =

Pw[k1]
× · · · × Pw[kl−1+1:kl]

× Pw[kl+1:p]
if xp > 0

Pw[k1]
× · · · × Pw[kl−1+1:kl]

× P±w[kl+1:p]
if xp = 0.

Proof. 1) By Proposition 5, we may show that P±w = B∗.

(⊆) Take any vertex W = (σ1wπ(1), . . . , σpwπ(p))
′ of P±w and any x ∈ Rp with ‖x‖w ≤ 1. We have

W ′x =

p∑
j=1

σjwπ(j)xj ≤
p∑
j=1

|xj |wπ(j) ≤
p∑
j=1

wj |x|(j) = ‖x‖w ≤ 1
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and therefore W ∈ B∗. By convexity, P±w ⊆ B∗ follows.

(⊇) Let a′x ≤ b0 for some a ∈ Rp and b0 ∈ R be a valid inequality of P±w . We show that this is a
valid inequality of B∗ also: Let W be the vertex of P±w defined by Wj = sign(aj)wπ−1(j), where the
permutation π satisfies |aπ(1)| ≥ · · · ≥ |aπ(p)|. For any s ∈ B∗, we have

a′s ≤ ‖a‖w =

p∑
j=1

|aπ(j)|wj =

p∑
j=1

sign(aj)ajwπ−1(j) = a′W ≤ b0.

Since P±w can be written as the (finite) intersection of half-spaces, P±w ⊇ B∗ follows.

2) According to Proposition 5 and 1), we have

Fw(x) =

s ∈ P±w :

p∑
j=1

sj =

p∑
j=1

wj

 .

A vertex W = (σ1wπ(1), . . . , σpwπ(p))
′ of P±w with σ ∈ {−1, 1}p and π ∈ Sp then fulfills W ∈ Fw if and

only if σ1 = · · · = σp = 1. Convexity then yields Fw(x) = Pw.

3) (⊆) Let s ∈ Fw(x). We show that s[k] ∈ Fw[k]
(x[k]) and s[k+1:p] ∈ Fw[k+1:p]

(x[k+1:p]). Let
e = xk−xk+1

2 > 0 and h ∈ Rp with ‖h‖∞ < e. Since the k largest components of x+h are {xj+hj}j∈[k],
we have

‖x+ h‖w = ‖(x+ h)[k]‖w[k]
+ ‖(x+ h)[k+1:p]‖w[k+1:p]

.

Now, take h ∈ Rp such that ‖h‖∞ < e and hk+1 = · · · = hp = 0. Using the above identity and the
definition of Fw(x), one may deduce that

‖(x+ h)[k]‖w[k]
= ‖x+ h‖w − ‖x[k+1:p]‖w[k+1:p]

≥ ‖x‖w + s′h− ‖x[k+1:p]‖w[k+1:p]
= ‖x[k]‖w[k]

+

k∑
j=1

sjhj .

We therefore obtain that
‖x[k] + h‖w[k]

≥ ‖x[k]‖w[k]
+ s′[k]h

for all h ∈ Rk satisfying ‖h‖∞ < e. By (4), we conclude s[k] ∈ Fw[k]
(x[k]). To show that s[k+1:p] ∈

Fw[k+1:p]
(x[k+1:p]), one can proceed in a similar manner.

(⊇) For s ∈ Fw[k]
(x[k])× Fw[k+1:p]

(x[k+1:p]), we clearly have

s′x =

k∑
i=1

sixi +

p∑
i=k+1

sixi = ‖x[k]‖w[k]
+ ‖x[k+1:p]‖w[k+1:p]

= ‖x‖w,

so that s ∈ Fw(x) follows.

25



4) For x ∈ Rp with x1 = · · · = xk1 > · · · > xkl+1 = · · · = xp, mdl(x) is clearly given bymdl(x)1 = · · · = mdl(x)k1 = l + 1 > · · · > mdl(x)kl+1 = · · · = mdl(x)p = 1 if xp > 0

mdl(x)1 = · · · = mdl(x))k1 = l > · · · > mdl(x)kl+1 = · · · = mdl(x)p = 0 if xp = 0.

According to 1), 2) and 3), it is clear that

Fw(x) = Fw(mdl(x)) =

Pw[k1]
× · · · × Pw[kl−1+1:kl]

× Pw[kl+1:p]
ifxp > 0

Pw[k1]
× · · · × Pw[kl−1+1:kl]

× P±w[kl+1:p]
ifxp = 0.

Since the codimension of a permutahedron is equal to 1 (see Maes and Kappen, 1992; Simion, 1997),
the one of sign permutahedron is equal to 0, and since the (co-)dimensions of the individual (sign)
permutahedra can simply be added up, we have codim (Fw(x)) = ‖mdl(x)‖∞.

Proposition 8 lays the groundwork by essentially proving Theorem 4 for all SLOPE models with
non-negative and non-decreasing components. We denote this set of models byM≥,+p , given by

M≥,+p = {m ∈Mp : m1 ≥ · · · ≥ mp ≥ 0}.

In order to extend this proposition to all SLOPE models inMp, we introduce the following group
of linear transformations.

Definition 4. Let σ ∈ {−1, 1}p, let π ∈ Sp. We define the map

φσ,π : x ∈ Rp 7→ (σ1xπ(1), . . . , σpxπ(p))
′

and denote by G = {φσ,π : σ ∈ {−1, 1}p, π ∈ Sp}.

The set G is a finite sub-group of the group of orthogonal transformations on Rp. We list a number
of straight-forward properties of G in the following lemma.

Lemma 4. Let x, v ∈ Rp, φ ∈ G, and let σ ∈ {−1, 1}p and π ∈ Sp. Then the following holds.

1) x′v = φ(x)′φ(v)

2) ‖x‖w = ‖φ(x)‖w

3) ‖x‖∞ = ‖φ(x)‖∞

4) φ(Mp) =Mp and φ(P±w ) = P±w

5) mdl(φ(x)) = φ(mdl(x))

6) φ−1σ,π = φσ,π−1 ∈ G

7) If, for m ∈ Mp, |mπ(1)| ≥ · · · ≥ |mπ(p)| and σjmπ(j) = |mπ(j)| for all j ∈ [p], then φσ,π(m) ∈
M≥+p .
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Lemma 5. Let φ ∈ G and x ∈ Rp. We then have

φ−1 (Fw(φ(x))) = Fw(x) and Fw(φ(x)) = φ (Fw(x)) .

Proof. The two statements are equivalent, we show the second one. Let s ∈ P±w . Then

s ∈ Fw(φ(x)) ⇐⇒ s′φ(x) = ‖φ(x)‖w ⇐⇒ φ−1(s)′x = ‖x‖w
⇐⇒ φ−1(s) ∈ Fw(x) ⇐⇒ s ∈ φ(Fw(x))

by Proposition 5 and Lemma 4.

We are now equipped to prove Theorem 4.

Proof of Theorem 4.
We start by proving 1) and 2) before showing that the map is a bijection.
1) Let m ∈ Mp and let φ ∈ G such that φ(m) ∈ M≥,+p . According to Lemma 5, and because φ is

an isomorphism on Rp, we have

codim(Fw(m)) = codim
(
φ−1 (Fw(φ(m)))

)
= codim (Fw(φ(m))) = ‖φ(m)‖∞ = ‖m‖∞.

2) Let x ∈ Rp and let φ ∈ Mp such that φ(x)1 ≥ · · · ≥ φ(x)p ≥ 0. According to Lemma 5 and
Proposition 8, the following equalities hold

Fw(x) = φ−1 (Fw(φ(x))) = φ−1 (Fw (mdl(φ(x)))) = φ−1 (Fw (φ (mdl(x)))) = Fw(mdl(x)).

We now show that the mapping under consideration is indeed a bijection betweenMp and F0.

(surjection) According to Proposition 6, a non-empty face of P±w can be expressed as Fw(x) for
some x ∈ Rp. According to 2) above, we have Fw(x) = Fw(mdl(x)) for mdl(x) ∈Mp.

(injection) Note that Proposition 8 shows that the mapping is injective on M≥,+p . To prove that
it remains injective on all of Mp, we show that |Mp| ≤ |F0|. For this, we need several definitions.
For m ∈ Mp, let stabG(m) = {φ ∈ G : φ(m) = m} and orbG(m) = {φ(m) : φ ∈ G}, the stabilizer and
orbit of m, respectively, with respect to G. For m ∈ Mp, there exists φ ∈ G such that φ(m) ∈ M≥,+p .
Therefore, the orbit-stabilizer formula gives

Mp =
⋃

m∈M≥,+
p

orbG(m) =⇒ |Mp| ≤
∑

m∈M≥,+
p

|orbG(m)| =
∑

m∈M≥,+
p

|G|
|stabG(m)|

.

We also look at stabilizer and orbit when G operates on F0. For a face F ∈ F0, let stabG(F ) = {φ ∈
G : φ(F ) = F} and orbG(F ) = {φ(F ) : φ ∈ G}. We first show that if orbG(Fw(m))∩ orbG(Fw(m̃)) 6= ∅
for some m, m̃ ∈M≥,+p , m = m̃ follows. Let us assume that Fw(m̃) = φ(Fw(m)) for some φ ∈ G. Note
that φ(Fw(m)) = Fw(φ(m)) by Lemma 5. Since w ∈ Fw(m) and w ∈ Fw(m̃) = Fw(φ(m)), we have

w′m = ‖m‖w = ‖φ(m)‖w = w′φ(m),
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where the second-last equality holds by Lemma 4 and the last equality holds since m ∈ M≥,+p . Now,
if φ(m) 6= m, φ(m)′m < ‖m‖w follows since the components of w are positive and strictly decreasing.
But that would contradict the above, so φ(m) = m must hold. Consequently, Fw(m̃) = Fw(m), which
in turn implies m̃ = m by Proposition 8.

Now, let m ∈ M≥,+p and let us show that stabG(m) = stabG(Fw(m)). The inclusion stabG(m) ⊆
stabG(Fw(m)) immediately follows from

φ ∈ stabG(m) =⇒ Fw(m) = φ−1(Fw(φ(m))) = φ−1(Fw(m)) =⇒ φ(Fw(m)) = Fw(m)

=⇒ φ ∈ stabG(Fw(m)).

To show stabG(Fw(m)) ⊆ stabG(m), let φ ∈ stabG(Fw(m)) and note that Fw(m) = φ(Fw(m)) =

Fw(φ(m)). Since m ∈ M≥,+p , this implies that w ∈ Fw(m) = Fw(φ(m)), so that the same reasoning
as above yields m = φ(m) and φ ∈ stabG(m).

To conclude, note that since the orbits orbG(Fw(m)) with m ∈ M≥,+p are disjoint, and since
stabG(m) = stabG(Fw(m)), we may deduce that

|Mp| ≤
∑

m∈M≥,+
p

|G|
|stabG(Fw(m))|

=
∑

m∈M≥,+
p

∣∣orbG(Fw(m))
∣∣ =

∣∣∣ ⋃
m∈M≥,+

p

orbG (Fw(m))
∣∣∣ ≤ |F0|.

A.8 Proof of Theorem 5

Proof. ( =⇒ ) If m is an accessible SLOPE model, then

∃y ∈ Rn,∃β̂ ∈ SX,‖.‖w(y) such that mdl(β̂) = m.

By Theorem 4, we may deduce that ∂‖.‖w(β̂) = Fw(β̂) = Fw(m). Consequently,

0 ∈ X ′(Xβ̂ − y) + ∂‖.‖w(β̂) = Fm =⇒ X ′(y −Xβ̂) ∈ Fw(m).

Therefore, row(X) intersects Fw(m).

(⇐= ) If row(X) intersects the face Fw(m), then there exists z ∈ Rn such that X ′z = f ∈ Fw(m).
We set y = z +Xm and show that m ∈ SX,‖.‖w(y). We have

‖X ′(y −Xm)‖∗w = ‖f‖∗w ≤ 1 and m′X ′(y −Xm) = m′f = ‖m‖w,

which, by Proposition 7, yields m ∈ SX,‖.‖w(y).

A.9 Proof of Proposition 2

Proof. By Theorem 5, we know that

m ∈Mp is accessible ⇐⇒ row(X) ∩ Fw(m) 6= ∅ ⇐⇒ ∃f ∈ Rn : X ′f ∈ Fw(m) ⇐⇒ f ∈ Nw(m),
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which proves the first statement. Now, let y = f + Xb, where f ∈ Nw(m) and b ∈ Rp such that
mdl(b) = m. Note that

‖X ′(y −Xb)‖∗w = ‖X ′f‖∗w ≤ 1 and b′X ′(y −Xb) = b′X ′f = ‖b‖∗w,

where the first inequality holds since X ′f ∈ Fw(m), a face of P±w , and the latter one by applying
Proposition 6 after noticing that X ′f ∈ Fw(m) = Fw(b) = ∂‖.‖w(b) by Theorem 4. Proposition 7 then
yields b ∈ SX,‖.‖w(y), so that y ∈ Aw(m).

Conversely, let y ∈ Aw(m) and let β̂ ∈ SX,‖.‖w(y) so that mdl(β̂) = m. Then y − Xβ̂ ∈ Nw(m)

since by Proposition 7, we have

X ′(y −Xβ̂) ∈ ∂‖.‖w(β̂) = Fw(m),

where the last equality holds by Theorem 4.
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