N

N

A Comparison of the Basic DO concepts in
Standardization

Xavier Blanc, Marie-Pierre Gervais, Juliette Le Delliou

» To cite this version:

Xavier Blanc, Marie-Pierre Gervais, Juliette Le Delliou. A Comparison of the Basic DO concepts in
Standardization. [Research Report| 1ip6.2000.027, LIP6. 2000. hal-02548336

HAL Id: hal-02548336
https://hal.science/hal-02548336
Submitted on 20 Apr 2020

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-02548336
https://hal.archives-ouvertes.fr

This article has been published in Distributed ©tg§& Application (DOA 2000) September 21-23, AntpjeBelgium

A Comparison of the Basic DO Conceptsin Standar dization

X. Blanc (*+), M-P. Gervais(*), J. Le Delliou(+)
(*)Laboratoire d'Informatique de Paris 6 - 8 rue @apitaine Scott F75015 PARIS
(+)EDF Research Division - 1, av du Gnl De Gaul@2841 CLAMART Cedex
Xavier.Blanc@lip6.fr, Marie-Pierre.Gervais@lip6.fiuliette.Le-Delliou@edf.fr

Abstract

Standards are partly useful because they proviskt a
of concepts and rules shared among a communitytigut

This paper provides a comparison of the basic DO multiplicity of standards in the same area sometiteads

(Distributed Object) concepts, namely "object",
"instance" and "class" used in various standardstiod
DO world. Two families of standards are identifiedose
related to the modelling aspects (MOF and UML) and
those related to the architectural and implemewtati

to some confusion since they do not use the samdswo
with the same meaning.

This paper aims to clarify all possible interprietas of
elementary concepts used in DO in comparing them in
several standards. The chosen concepts are "object”

aspects (CORBA and Java). Moreover, the RM-ODP "instance" and "class". The standards are thossadyr

standard is considered as it includes both aspects.

The objective is to help out with a common
understanding of these concepts. For this, we coenpa
these concepts as defined in these standards aogotal
the four layer architecture proposed by the MOF
standard. An example is provided to illustrate the
comparison.

1. Introduction

mentioned, ie., MOF, UML, RM-ODP, Java and
CORBA. A first question that appears when comparing
these concepts is: How to compare them? Whichrierite
can be useful to conclude that two concepts arevaigat
or not? For this, we use the MOF architecture dedines
the concept oflayer”. Thanks to this concept, we classify
the three concepts according to this four layehitecture
and we then compare them.

Part 2 of this article explains the four layer
architecture, details the concept of "layer" andspnts
the definition of a MOF Object, a MOF Instance and

Several standards are commonly used in the DO world MOF Class. Part 3 presents UML in the context @ th

We can classify them into two families: standarelated

four layer architecture and explains the conceptdML

to modelling aspects such as OMG's UML and MOF and Object, UML Instance and UML Class. Part 4 preséms

those related to architectural and implementatispeats
such as OMG's CORBA and Sun's Java [5][6][7][8].
Another standard covers both aspects: ISO's RM-2DP

RM-ODP in the context of the four layer architeetand
explains the concepts of ODP Instance, ODP Obgeu,
ODP Class. Part 5 presents Java and CORBA in the

Indeed, although RM-ODP defines an architectural context of the four layer architecture and explaihe

framework for distributed object systems, it pr@sd set
of concepts useful in modelling too, especially capts
from the enterprise viewpoint.

concepts of Java Instance, Java/CORBA Obiject, Java
Class and CORBA Interface. Part 6 presents a
classification of all these concepts in the fouyela

Communication between people who refer to thesearchitecture. And then part 7 concludes.

standards is sometimes difficult because of theéowuar

meanings of the basic concepts they provide. Wee hav

realised a test within our company, asking twerdggpte
for the definition of the basic concepts in DO, e&m
"Object", "Instance" and "Class". The result wasaaimg,
we had close to twenty different definitions. The
definitions were quite equivalent but little diféerces
changed the meaning. After analysing these diffagn
we found that they came from the profile of thesper It
appears that UML people use quite the same defmiti
but people using MOF or RM-ODP have another one.

2. Thefour layer architecture

Before dealing with the four layer architecture, we
present a two layer architecture. This providesni»eded
background to understand the concept of "layer” thed
to understand the four layer architecture.

2.1 A two layer architecture

The two layer architecture deals with data and rhode
of data.

Let us first introduce a definition of "model" take
from an English dictionary: "A model is a schematic

Meta-models describe models as models describe data
These meta-models are composednefa-meta-data. It

description of a system, theory, or phenomenon thatshould be noted that the term meta-model is useg mo

accounts for its known or inferred properties arayrhe
used for further study of its characteristies:model of

than meta-meta-data.
From a two layer architecture, a three layer aechitre

generative grammar; a model of an atom; an economicis now built. The relationship between elementsved

model".

This definition leads us to consider two worldsg(ie
1). The world of data to be described, also catles
universe of discourse or the real world (althougtan be
abstract and not real). And the world of the modik
world contains descriptions of the "real world".

We have the "real world" containindata and the
"model world" containing descriptions of data. Tées
descriptions of data are calletkta-data.

" Instantiation
Model World

Real World

Fig 1 : The two layer architecture.

Basically, the relation between the "model worldta
the "real world" defines the concept of "layef'.model
belonging to layer M, describes data belonging to
layer M.1.

adjacent layers is an instantiation. Data are mtgs of
meta-data, meta-data are instances of meta-medaeatat
A four layer architecture can be built based on the

three layer architecture in the same process as the
previous one used to build the three layer architec
from the two layer one. The question is now: wheedd
this process stop ? As layers are defined thankheo
relationship between described elements and désigijp

it could be possible to imagine architectures witayers.

Of course, it is needed to define the limits ofsthe
architectures. What is the lowest layer? The MOF
standard defines it as the layer that describdsinmptThe
MO layer is only composed of the things to be désct,
it does not describe anything.

Then, the M1 layer is the layer that describesNi@e
layer. Examples of models belonging to M1 layer are
illustrated in the MOF standard (e.g. UML models).

The M2 layer describes the M1 layer. Examples of M2
models are the UML meta-model that defines theciira
of all UML Models, or the Workflow meta-model that
defines the structure of all workflows models etc.

Last, but not least, the MOF standard described/be
layer. Models belonging to the M3 layer describe M2
models. Actually, the MOF standard stipulates thally
one model belongs to the M3 layer, called the MOF
Model. Moreover, it defines that the M3 layer isth
highest layer. This is possible because the MOFemod
can describe itself. Thus, the MOF model describes

A model is composed of several elements, each ofMOF model and it is the only one model belongindg/®

them describes elements of the lower layer. Thatiosl
between elements of the model and elements ofdhk r
world is aninstantiation. An element of the real world is
aninstance of an element of the model.

2.2 The MOF architecture

Thanks to the two layer architecture, we can
understand what a layer is. The four layer architec
described by the MOF (Meta Object Facility) staildisr
just a generalization of the concept of layer [6].

A model is composed of elements called meta-data.

These meta-data can be considered as data. Inéyat
we can build a new model that describes these data.

To sum up, meta-data describe data, and a model is
set of meta-data. Considering this model as dagaietis a
model that describes it. This new model is a maxfel
model, it is aneta-model.

layer.

Tosumup :

e Data belong to the MO layer. Data do not describe
anything.

+ Meta-data belong to the M1 layer. A model is
composed of meta-data and it describes data. Data
are instances of meta-data.

* Meta-meta-data belong to M2 layer. A meta-model
is composed of meta-meta-data and it describes
meta-data. Models are instances of meta-models.

+ Meta-meta-meta-data belong to M3 layer. The
MOF model is the meta-meta-model, it is
composed of meta-meta-meta-data, and it
describes meta-models. Meta-models are instances
of the MOF model. The MOF model describes
itself.

The figure 2 shows the four layer architecture rodi
by the MOF standard.

/ MOF Model M3 Layer
\
o
Mete-Model M2 Layer
/ \ Mete-Model
1
Mode! \ Model M1 Layer

Model

| /
S

Fig 2: the four layer architecture defined in th©M
standard

2.3 Definition of " layer"

In this four layer architecture, the MOF standard
defines the concept of type as follows: the typa afodel
is defined in its meta-model.

So, we can distinguish two meanings of this concept
1. A model is of type Tm, the type of the model
isTm.
2. Atype is defined by a model. A model defines
the typeTd.

Then, keeping in mind that the "type of a model is
defined by its meta-model" we have:
* The type of the MOF model is the same as the type
defined by the MOF model.
(E1): Tmof = Tdmof

e The types of meta-models are defined by the MOF

model. So Tmm = Tdmof. Applying (E1) we
obtain:
(E2): Tmm=Tdmof=Tmof

i.e. the type of a meta-model is the same as the
type of the MOF model.

e The types of models are defined by meta-models.
(E3): Tm=Tdmm

* The types of data are defined by models.
(E4): T=Tdm

These properties are very helpful to know if a ntode
belongs to MO, M1, M2 or M3 layer and we will used
compare the Instance, Object and Class concepts.

2.4 Object, Instance and Classin the MOF

We have presented the four layer architecture ddfin
in the MOF standard. In this presentation, we hased
several times the word "instance". In fact, the MOF
defines the concepts of instance, object and ctass
follows.

An instance is defined as a relationship. Thus:

« Data are instances of meta-data.

e Meta-data are instances of meta-meta-data and
models are instances of meta-models.

* Meta-models are instances of the MOF model.

e The MOF model is an instance of itself.

These two meanings are linked because the type of a

model is defined by its meta-model:
Tm(of amodel) = Td (of its meta-model).

If we look at the types of models in the four layer
architecture then we have:

¢ For M3 layer, the type of the MOF model is Tmof.
The MOF model defines the type Tdmof.

¢ For M2 layer, the type of a meta-model is Tmm. A
meta-model defines a type Tdmm.

¢ For M1 layer, the type of a model is Tm. A model
defines a type Tdm.

e For MO layer, the type of data is T. Data do not
define anything.

In the MOF standard, due to the encapsulation
principle, meta-data are also called meta-objddsta-
objects belong to a model, they are in the M1 layer
Applying this view to the MO layer, a data is then
considered as MOF object, which belongs to the MO
layer.

Classes in the MOF standard describe meta-objects.
other words, a class is an element of a meta-mddel.
belongs to the M2 layer.

According to (E2), the type of the MOF model is the
same as the types of the meta-models. So, the Maielm
is also composed of classes. But to distinguishMiGs-
model from the other meta-models, its elementcalled

meta-classes. Meta-classes are elements of the MOF

model, they belong to the M3 layer. l Instantiation

The figure 3 shows the concepts of object and @dass Meta-Class
defined in the MOF standard. In the next sectioreswill M3
classify these concepts as defined by other steadar <
this array to compare them. — A
Class Class Cla&s
inanimate relationship animate
Layer Term Mete-object Meta-object
MO Object N \ /w2
M1 M eta-object
M2 Meta-meta-object o€lass \ \ M1
M3 Meta-meta-meta-object & eta-class M eta-obj ect is or M eta-obj ect
The carpet The cat

Fig 3: Object and class concepts in the MOF.
Moroccan

carpet MO

2.5 An example

We have chosen to illustrate the four layer archite Fig 4: The example of the cat in the MOF

with a simple example. We will also use this exampith

the other standards to be sure of our comparison. 3. UML
This example is the classic one of a cat sittingaon UML (Unified Modelling Language) is one of the most
carpet. A cat named Pussy is sitting on a Moroceapet. ~ PoPular language to model oriented-object appbeeti

According to the MOF standard, the cat Pussy agd th [5]. Although UML is only a notation, there are sty
carpet are data to be described. They do not dwescri definitions for UML Object, UML Class and UML
anything. According to (E4) they belong to MO layrey Instance

are objects. UML is often used as an input when building new
Describing this cat and this carpet consists ofding applications, that's why there are several mappings
a model. This model will be composed of meta-olsiect Petween UML and programming languages. These
the model and its components belong to the M1 layer mappings will also help us to compare the concepts.
If we want to describe the model, for example to))
explain the concepts that we have used, we mu#d hui 3.1UML inthefour layer architecture
meta-model. This meta-model describes the modes it o
composed of classes. This meta-model and its coemten In all the specifications of UML, from 1.0 to 1.3,
belong to the M2 layer. models are used to define UML concepts. The natatio
If the meta-model is MOF compliant, then it is used to build these models is UML. _
described by the MOF model that belongs to the &4@i ~ The core of UML is the basis of all other concepts,
and that is Composed of meta-classes. it is sufficient to define the other partS.

As the UML core was used to define MOF model, then
The figure 4 shows the example of the cat in the models contained in the UML standard are now MOF
context of the MOF. It shows the differences betwae compliant. The UML specification provides the UML
MOF Object and a MOF Class. The MOF objects belong Meta-model, which belongs to the M2 layer and whsch
to the MO layer, they are the elements to be desdriA ~ an instance of the MOF model (Figure 5).

MOF Class belongs to the M2 layer, it describesamet It should be noted that the UML meta-model is it t
objects. UML specification. For example, the UML meta-model

does not deal with the notation, the UML specifimat
Regarding to the MOF instance, it should be notedi t ~ does.

everything is an instance of Something_ For exarrqhb The UML meta-model describes the structure oftadl t
meta_object "the cat" is an instance of the Class UML models. A UML model is an instance of the UML
"inanimate meta-object’. MOF instance is a relattop, =~ Meta-model, it belongs to the M1 layer and it déssr

that's why it does not belong to a specific layer. data.

M3 Layer
MOF Model
/i
J M2 Layer
UML Meta-Model
\
Ve
UML Me=lal | M1 Layer
UML | Andanl |
UML M odel
MO Layer

Fig 5: the UML meta-model, an instance of the MOF
model

3.2 Object, Instance and Classin UML

The UML meta-model defines the concepts of UML

From this figure, one can notice that the UML staad
does not deal with M2 and M3 layer.

This classification will help us to compare the cepts
in the context of each standard. But right now, caa
already say that a MOF obiject is totally differémm a
UML Object. We will detail this comparison in thanp 6.

Let us go back to the example of the section 2.5.
Figure 7 shows this example using the UML meta-rhode

We can see in the M2 layer a part of the UML meta-
model. This part defines the UML concepts @lbject
ClassandAssociation.Each of these UML concepts is a
MOF class. Thus the UML meta-model is composed of
three MOF classes, each of them is an instanceM®B&
meta-class. This part of the UML meta-model defines
part of the structure of all UML models.

In this example, we have one UML model. This model
is the model of the cat sitting on the carpets kémposed
of two Classes namely "Carpet" and "Cat", twObjects
"the carpet" and "the cat" and so on. Each of these
elements is a MOF meta-object. Their types arenddfi
by the UML meta-model.

In UML, an instance is an element linked to a cldtss

Instance, UML Object and UML Class. These conceptsshould be noted that in the UML meta-model, UML

are defined in the M2 layer. So, according to (E8),
element of type “UML Class”, called a UML Class,
belongs to the M1 layer. This is the same for UML
Instance and Object.

UML Instances, UML Objects and UML Classes
belong to the M1 layer, they are MOF meta-objeittay
are components of UML Models. This proposition is
enforced by the fact that all of them inherit fréi¥ML
model element” that is defined in the UML meta-niade
a component of the UML model. They define UML
entities [4].

A UML entity is the thing to be modelled, it belatp
MO layer. It should be noted that the concept diteitis
not defined in the UML meta-model, it is mentioriedhe
UML specification.

More precisely, a UML instance defines an entity to
which a set of operations can be applied and whaha
state that stores the effect of the operations. MLU
object is an instance that originates from a UMéassl
And a UML Class is a set of objects that sharestmae
features.

The figure 6 classifies these concepts in the fayer
architecture.

Layer Term
MO Entity
M1 Class, I nstance, Object

Fig 6: UML terms in the four layer architecture

objects inherit from UML instances. This is why no
instances appear in this example.

M eta-Class
|
C|6_\SS Class Class
Object |.. ... Class Association
\
Class >< Class
Carpet_~+.. O cat
Object - ~ Object
the carp the cat
o
M OF Concepts l MOF . UML
UML Concepts instantiatio | instantiatio
n n

Fig 7: Example of the cat with the UML meta-model

4. RM-ODP

RM-ODP (Reference Model of Open Distributed
Process) is an ISO standard [1]. It gives concepis
structuring rules for specifying open DO systems.RFM-
ODP system could be an application or an organisaif

human. The definitions provided by RM-ODP are
rigorous and consistent. RM-ODP also defines five
viewpoints that establish the separation of corxern
needed to specify different facets of a system. &om
concepts are specific to some viewpoints but theepts
of Class, Object and Instance are common concepts.
RM-ODP does not provide any notation to express
specifications, moreover it is method-free.

4.2 Object, Instance and Classin RM-ODP

The RM-ODP standard defines the concepts of
instance, object and class.

Before defining them, in order to help the
understanding, let us first introduce the conceptsntity

and type:

4.1 RM-ODP in thefour layer architecture

Some works have been done to compare RM-ODP and

UML [3]. Their goal is to compare the power of
expression of these two standards. Since the MOF
standard is available, research has been orienteards

the construction of the RM-ODP meta-model. The next
normative part of the RM-ODP will certainly include
meta-model for describing some of the RM-ODP cotgep
[2].

Open distributed systems specified according to the
RM-ODP concepts are the things to be modelledhsy t
belong to the MO layer.

A specification of an open distributed system is a
model of the system as it describes the systemit so
belongs to the M1 layer.

The RM-ODP standard describes the structure of all
the RM-ODP specifications.

As it is for UML, the RM-ODP meta-model will not

A RM-ODP entity is any concrete or abstract thing
of interest. It is something to be modelled, it
belongs to the MO layer.

A RM-ODP type is a predicate. RM-ODP deals

with type of an <X>when an X can satisfy a type.

Then RM-ODP defines the concepts of instance, objec
and class.

An object is a model of an entity. Objects belomghe
M1 layer.

A class is a set of elements that satisfy the sype
More precisely, RM-ODP deals with classes of <X>

where <X> are elements satisfying a same type T.

An element satisfying a type is called an instavfcine
type.

To sum up, RM-ODP classes, instances and objects
belong to the M1 layer (Figure 9).

consider the whole standard, i.e., it will not defiall the

RM-ODP concepts. For example, it will not define th

concept "entity", which is defined in that same was/

Layer Term
MO Entity
M1 Class Instance Object

UML, i.e. the thing of the real world.
The figure 8 shows the relationships between RM-
ODP, the MOF and UML.

/ MOF Mode \ M3 Layer
P ~a
UML RM-ODP M2 Layer
Mete- Mete-
¥ \ "4 \
UM RM-==2 M1 Layer
Mol UML Md RM-ODP
Model Model

| : / :
/ x MO Layer
y

Fig 8. RM-ODP and UML
architecture

in the four layer

Fig 9: RM-ODP terms in the four layer architecture

We can now present our example using RM-ODP as
meta-model (fig 10). This example shows the diffiess
between RM-ODP concepts and MOF concepts. For sake
of simplicity, it only deals with classes of objestd types
of object. Actually, the concepts of class, typed an
instance are not reduced to objects. As alreadytiomed,
they can be applied to an <X> where <X> can be an
action, or interfaces or other elements definedRM-
ODP. Thus classes of actions or classes of intesfac
could be found. It should be noted that an instasfca
type of object is an object.

The concept of association is not defined in RM-ODP
We have chosen to express it with a role. Thisaghbias
not impact on the comparison of instances, objaat$
classes.

interfaces. We have to determine what concerngehke
world, what concerns the model and so on. We assume
that the runtime is an element of the real wotldhelongs

to the MO layer.
Meta-Class A Java program, either the source or the bytecode,
] describes the runtime. It belongs to the M1 layeor
— ! ~ CORBA, IDL interfaces are used to describe theimugst
Class Class this description is completed yvith a programming
Obiect Class Rol language (Java for example). IDL interfaces belanthe
SRIEC Class nole M1 layer.
The Java specification describes the structurellof a
m >< Class Java programs. We can assume that the Java met;mod
Class = if it would exist, would belong to the M2 layer. &h
carpet IS or cat CORBA specification includes the IDL grammar that
Object 7 - Object describes the structure of all IDL interfaces. Wan c
the carp@ the cat assume that the CORBA meta-model, if it would exist
would belong to the M2 layer.

=X The figure 11 shows Java and CORBA in the fourraye
(\ . architecture. It should be noted that Java soueres
bytecode are considered to be equivalent.

M OF Concepts . RM-ODP l MOF
RM-ODP Concepts | instance instantiatio
n
M3 Layer

Fig 10: example of the cat with the RM-ODP meta- / MOF Model \

model — A
Java Corba M2 Layer
5. Javaand CORBA Meta-Model MPt:—-M odel

Java is one of the most popular programming languag Jav M1 Layer
[7]. It is an oriented-object language that makss of the Java BvteCoc

concepts of instance, object and class.
CORBA (Common Object Request Broker 'DL Interface:
Architecture) is a middleware useful for building
heterogeneous DO applications [8]. Although CORBA MO Layer
applications are written in a programming languabere
are CORBA definitions for Objects and Interfaces.

It then would seem interesting to study how these
concepts are defined in such standards used in an
implementation purpose rather than a modelling one.
Moreover, Java programs and IDL interfaces freduent
can be automatically generated from modelling laiggs, . .
especially UML. Including Java and CORBA in our 2-2 Object, Instance and Class in Java and
comparison could then provide some feedback on theCORBA
concepts mapping between modelling and implememtati

Fig 11: Java and CORBA in the four layer architeetu

viewpoints. The Java specification is not so clear as the other
standards for the concepts of class, instance ajetto
51 Java and CORBA in the four layer However, there is a definition commonly agreed .
architecture From this definition, a Java program is composed of

classes while objects belong to the runtime, theey are
instances of classes.

The CORBA specification defines an Object as an
element of the program. CORBA also uses the term

Java and CORBA are not modelling languages. So we
face a problem when applying the previous clas#ific
based on the MOF architecture to a Java progranizind

"servant. Although the goal of this article is just to
compare the concepts of "instance", "object" ards&,
it should be noted that we introduce IDL interfaagshey
model CORBA objects.

This is illustrated in Figure 12 with the exampletiee
cat.

Class
or | nterface
cal

Class
carpe
M1

\

MO
Object
or Servant
The ca

OFp

Fig 12: Example of the cat with Java and CORBA

Another point of view can be considered and thedde
to other definitions of Java classes and objec&. us

consider a line of code that can be found in a Java

program such as:
String _text = new String(“text”);

In this line of code, there is an identifier nanfietext"
and its type is "String". This identifier can bensamered
as a model of something and consequently, it beldag
the M1 layer. In the Java language, this identifiealso
called an object. This means that objects can bedfon
the M1 layer as well as objects can be found inNtte
layer.

On the other hand, in the Java virtual machine,nwhe
an object is built, an image of the class is algiit.bThis
image is also called a class. This means that edass
belong to the MO layer as well as M1 layer.

The figure 13 shows this ambiguity. There are no
strong definitions of Class, Instance and Objeetre;the
same terms are used to define MO or M1 concepts.

Layer Term
MO Java Object, Java ClassCORBA Object
M1 Java ObjectJava Class, CORBA I nterface

Fig 13: Java and CORBA terms in four layer
architecture. Word in bold represents the usuahinga

L A "servant" is an CORBA object linked to a POA
(Portable Object Adapter)

6. Classification and Comparison

Figure 14 summarises all the terms presented & thi
paper. We can then compare them.

¢ Objects:
There are several different meanings for objects
according to the standards. It is clear that MOF
objects cannot be compared to UML and RM-
ODP ones. We will admit that, using the common
definition of Java, Java objects are equivalent to
MOF objects. UML and RM-ODP have quite the
same definition for objects.

e Classes:
Again, there are several different meanings for
classes according to the standards. MOF classes
belong to the M2 layer and they are not
comparable to anything. UML, Java and RM-ODP
are comparable. RM-ODP and UML classes are
quite equivalent even if RM-ODP classes are more
general. Java classes are more oriented
programming, but they are close to UML classes.

* Instances:
Once again there are several different meanings
for instances. For the MOF, instantiation is a
relationship, so an instance can belong to any
layers. UML and RM-ODP instances are different.
UML instances are linked to UML Class on the
contrary RM-ODP instances are linked to RM-
ODP type. A Java instance belongs to MO, it is a

Java object.
tandard M OF UML RM-ODP | Java
CORBA
Layer
MO Object | Entity Entity Object,
Class
M1 Meta- | Class, Class, Object
object |Object, |Object, Class
Instance | Instance
M2 Class
M3 Meta-
class

Fig 14: Used terms in MOF, UML, RM-ODP, Java and
CORBA

7. Conclusion

DO applications development is more and more
complex. From modelling to implementation, several
teams are involved in the same project, and eadheof
refers to standards devoted to its area.

The project development success is based on the
mutual interaction of the involved teams and thguied

condition of a common understanding. Thus a tratigab [2] ISO/IEC JTC1/SC7 CD 154140DP Reference
of concepts must be ensured between the variousModel : Enterprise Viewpoinfanuary 2000.
meanings of the same terms defined in differemtdsteds.

We could argue that, as well as most of these atdsd [3] P. Linington, Options for Expressing ODP
deal with interoperability, the terms they use sticoe Enterprise Communities and their Policies by Using
interoperable too. UML, In Proceedings of the 3rd International Entegpris

This paper highlights the existing heterogeneitppi@ Distributing Object Computing Conference (EDOC'99),
standards that frequently leads to misunderstandind) IEEE Press, Mannheim, Germany, September 1999,
confusion between people. It contributes to cross the pp72-82.
gap between the various meanings of concepts nsBOi
standards. Once the comparison achieved, it seems [4] OMG: UML Specification v1.3 June 1999.
necessary to be rigorous when using these condepts www.omg.org 99-06-09
order to build DO applications in an effective manmn
easy way to be very clear and precise and to bé wel [5] G. Booch, J. Rumbauch and I|. Jacohsdine
understood is to prefix the concept with the statida Unified Modelling Language User GuideAddison
name. Speaking of a UML object or a CORBA object Wesley
rather than an object enables the interlocutor riowk
exactly what the discussion is about. In this way, [6] OMG, MOF Specification v1,3 July 1999
communication between development teams should gainvww.omg.org.
in efficiency.

[7] J. Gosling, B. Joy and G. Steel@he Java

8. References Specification Addison Wesley

java.sun.com

[1] ISO/IEC IS 10746-x — ITU-T Rec. X90xQDP

Reference Model Part ®995. [8] OMG, CORBA 2.3.1 SpecificationOMG TC
Document formal/99-10-07.

