
HAL Id: hal-02548336
https://hal.science/hal-02548336

Submitted on 20 Apr 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Comparison of the Basic DO concepts in
Standardization

Xavier Blanc, Marie-Pierre Gervais, Juliette Le Delliou

To cite this version:
Xavier Blanc, Marie-Pierre Gervais, Juliette Le Delliou. A Comparison of the Basic DO concepts in
Standardization. [Research Report] lip6.2000.027, LIP6. 2000. �hal-02548336�

https://hal.science/hal-02548336
https://hal.archives-ouvertes.fr

This article has been published in Distributed Objects & Application (DOA 2000) September 21-23, Antwerp, Belgium

A Comparison of the Basic DO Concepts in Standardization

X. Blanc (*+), M-P. Gervais(*), J. Le Delliou(+)
(*)Laboratoire d'Informatique de Paris 6 - 8 rue du Capitaine Scott F75015 PARIS

(+)EDF Research Division - 1, av du Gnl De Gaulle F92141 CLAMART Cedex
Xavier.Blanc@lip6.fr, Marie-Pierre.Gervais@lip6.fr, Juliette.Le-Delliou@edf.fr

Abstract

This paper provides a comparison of the basic DO

(Distributed Object) concepts, namely "object",
"instance" and "class" used in various standards of the
DO world. Two families of standards are identified: those
related to the modelling aspects (MOF and UML) and
those related to the architectural and implementation
aspects (CORBA and Java). Moreover, the RM-ODP
standard is considered as it includes both aspects.

The objective is to help out with a common
understanding of these concepts. For this, we compare
these concepts as defined in these standards according to
the four layer architecture proposed by the MOF
standard. An example is provided to illustrate the
comparison.

1. Introduction

Several standards are commonly used in the DO world.

We can classify them into two families: standards related
to modelling aspects such as OMG's UML and MOF and
those related to architectural and implementation aspects
such as OMG's CORBA and Sun's Java [5][6][7][8].
Another standard covers both aspects: ISO's RM-ODP [2].
Indeed, although RM-ODP defines an architectural
framework for distributed object systems, it provides a set
of concepts useful in modelling too, especially concepts
from the enterprise viewpoint.

Communication between people who refer to these
standards is sometimes difficult because of the various
meanings of the basic concepts they provide. We have
realised a test within our company, asking twenty people
for the definition of the basic concepts in DO, namely
"Object", "Instance" and "Class". The result was amazing,
we had close to twenty different definitions. The
definitions were quite equivalent but little differences
changed the meaning. After analysing these differences,
we found that they came from the profile of the person. It
appears that UML people use quite the same definition,
but people using MOF or RM-ODP have another one.

Standards are partly useful because they provide a set
of concepts and rules shared among a community. But the
multiplicity of standards in the same area sometimes leads
to some confusion since they do not use the same words
with the same meaning.

This paper aims to clarify all possible interpretations of
elementary concepts used in DO in comparing them in
several standards. The chosen concepts are "object",
"instance" and "class". The standards are those already
mentioned, i.e., MOF, UML, RM-ODP, Java and
CORBA. A first question that appears when comparing
these concepts is: How to compare them? Which criteria
can be useful to conclude that two concepts are equivalent
or not? For this, we use the MOF architecture that defines
the concept of "layer". Thanks to this concept, we classify
the three concepts according to this four layer architecture
and we then compare them.

Part 2 of this article explains the four layer
architecture, details the concept of "layer" and presents
the definition of a MOF Object, a MOF Instance and a
MOF Class. Part 3 presents UML in the context of the
four layer architecture and explains the concepts of UML
Object, UML Instance and UML Class. Part 4 presents the
RM-ODP in the context of the four layer architecture and
explains the concepts of ODP Instance, ODP Object, and
ODP Class. Part 5 presents Java and CORBA in the
context of the four layer architecture and explains the
concepts of Java Instance, Java/CORBA Object, Java
Class and CORBA Interface. Part 6 presents a
classification of all these concepts in the four layer
architecture. And then part 7 concludes.

2. The four layer architecture

Before dealing with the four layer architecture, we

present a two layer architecture. This provides the needed
background to understand the concept of "layer" and then
to understand the four layer architecture.

2.1 A two layer architecture

The two layer architecture deals with data and model

of data.

Let us first introduce a definition of "model" taken
from an English dictionary: "A model is a schematic
description of a system, theory, or phenomenon that
accounts for its known or inferred properties and may be
used for further study of its characteristics: a model of
generative grammar; a model of an atom; an economic
model".

This definition leads us to consider two worlds (Figure
1). The world of data to be described, also called the
universe of discourse or the real world (although it can be
abstract and not real). And the world of the model, this
world contains descriptions of the "real world".

We have the "real world" containing data and the
"model world" containing descriptions of data. These
descriptions of data are called meta-data.

Fig 1 : The two layer architecture.

Basically, the relation between the "model world" and

the "real world" defines the concept of "layer". A model
belonging to layer Mn describes data belonging to
layer Mn-1.

A model is composed of several elements, each of
them describes elements of the lower layer. The relation
between elements of the model and elements of the real
world is an instantiation. An element of the real world is
an instance of an element of the model.

2.2 The MOF architecture

Thanks to the two layer architecture, we can

understand what a layer is. The four layer architecture
described by the MOF (Meta Object Facility) standard is
just a generalization of the concept of layer [6].

A model is composed of elements called meta-data.
These meta-data can be considered as data. In that way,
we can build a new model that describes these data.

To sum up, meta-data describe data, and a model is a
set of meta-data. Considering this model as data, there is a
model that describes it. This new model is a model of
model, it is a meta-model.

Meta-models describe models as models describe data.
These meta-models are composed of meta-meta-data. It
should be noted that the term meta-model is used more
than meta-meta-data.

From a two layer architecture, a three layer architecture
is now built. The relationship between elements of two
adjacent layers is an instantiation. Data are instances of
meta-data, meta-data are instances of meta-meta-data, etc.

A four layer architecture can be built based on the
three layer architecture in the same process as the
previous one used to build the three layer architecture
from the two layer one. The question is now: when does
this process stop ? As layers are defined thanks to the
relationship between described elements and descriptors,
it could be possible to imagine architectures with n layers.

Of course, it is needed to define the limits of these

architectures. What is the lowest layer? The MOF
standard defines it as the layer that describes nothing. The
M0 layer is only composed of the things to be described,
it does not describe anything.

Then, the M1 layer is the layer that describes the M0
layer. Examples of models belonging to M1 layer are
illustrated in the MOF standard (e.g. UML models).

The M2 layer describes the M1 layer. Examples of M2
models are the UML meta-model that defines the structure
of all UML Models, or the Workflow meta-model that
defines the structure of all workflows models etc.

Last, but not least, the MOF standard describes the M3
layer. Models belonging to the M3 layer describe M2
models. Actually, the MOF standard stipulates that only
one model belongs to the M3 layer, called the MOF
Model. Moreover, it defines that the M3 layer is the
highest layer. This is possible because the MOF model
can describe itself. Thus, the MOF model describes the
MOF model and it is the only one model belonging to M3
layer.

To sum up :
• Data belong to the M0 layer. Data do not describe

anything.
• Meta-data belong to the M1 layer. A model is

composed of meta-data and it describes data. Data
are instances of meta-data.

• Meta-meta-data belong to M2 layer. A meta-model
is composed of meta-meta-data and it describes
meta-data. Models are instances of meta-models.

• Meta-meta-meta-data belong to M3 layer. The
MOF model is the meta-meta-model, it is
composed of meta-meta-meta-data, and it
describes meta-models. Meta-models are instances
of the MOF model. The MOF model describes
itself.

Model World

Real World

Instantiation

The figure 2 shows the four layer architecture defined
by the MOF standard.

Fig 2: the four layer architecture defined in the MOF

standard

2.3 Definition of "layer"

In this four layer architecture, the MOF standard

defines the concept of type as follows: the type of a model
is defined in its meta-model.

So, we can distinguish two meanings of this concept.

1. A model is of type Tm, the type of the model
is Tm.

2. A type is defined by a model. A model defines
the type Td.

These two meanings are linked because the type of a

model is defined by its meta-model:
Tm(of a model) = Td (of its meta-model).

If we look at the types of models in the four layer

architecture then we have:
• For M3 layer, the type of the MOF model is Tmof.

The MOF model defines the type Tdmof.
• For M2 layer, the type of a meta-model is Tmm. A

meta-model defines a type Tdmm.
• For M1 layer, the type of a model is Tm. A model

defines a type Tdm.
• For M0 layer, the type of data is T. Data do not

define anything.

Then, keeping in mind that the "type of a model is
defined by its meta-model" we have:

• The type of the MOF model is the same as the type
defined by the MOF model.
(E1): Tmof = Tdmof

• The types of meta-models are defined by the MOF
model. So Tmm = Tdmof. Applying (E1) we
obtain:
(E2): Tmm=Tdmof=Tmof

i.e. the type of a meta-model is the same as the
type of the MOF model.

• The types of models are defined by meta-models.
(E3): Tm=Tdmm

• The types of data are defined by models.

(E4): T = Tdm

These properties are very helpful to know if a model

belongs to M0, M1, M2 or M3 layer and we will use it to
compare the Instance, Object and Class concepts.

2.4 Object, Instance and Class in the MOF

We have presented the four layer architecture defined

in the MOF standard. In this presentation, we have used
several times the word "instance". In fact, the MOF
defines the concepts of instance, object and class as
follows.

An instance is defined as a relationship. Thus:
• Data are instances of meta-data.
• Meta-data are instances of meta-meta-data and

models are instances of meta-models.
• Meta-models are instances of the MOF model.
• The MOF model is an instance of itself.

In the MOF standard, due to the encapsulation

principle, meta-data are also called meta-objects. Meta-
objects belong to a model, they are in the M1 layer.
Applying this view to the M0 layer, a data is then
considered as MOF object, which belongs to the M0
layer.

Classes in the MOF standard describe meta-objects. In
other words, a class is an element of a meta-model. It
belongs to the M2 layer.

According to (E2), the type of the MOF model is the

same as the types of the meta-models. So, the MOF model
is also composed of classes. But to distinguish the MOF
model from the other meta-models, its elements are called

MOF Model

Meta-Model

Meta-Model

Model
Model

Model

 Data Data

M3 Layer

M2 Layer

M1 Layer

M0 Layer

meta-classes. Meta-classes are elements of the MOF
model, they belong to the M3 layer.

The figure 3 shows the concepts of object and class as

defined in the MOF standard. In the next sections, we will
classify these concepts as defined by other standards in
this array to compare them.

Layer Term
M0 Object
M1 Meta-object
M2 Meta-meta-object or Class
M3 Meta-meta-meta-object or Meta-class

Fig 3: Object and class concepts in the MOF.

2.5 An example

We have chosen to illustrate the four layer architecture

with a simple example. We will also use this example with
the other standards to be sure of our comparison.

This example is the classic one of a cat sitting on a

carpet. A cat named Pussy is sitting on a Moroccan carpet.
According to the MOF standard, the cat Pussy and the

carpet are data to be described. They do not describe
anything. According to (E4) they belong to M0 layer, they
are objects.

Describing this cat and this carpet consists of building
a model. This model will be composed of meta-objects,
the model and its components belong to the M1 layer.

If we want to describe the model, for example to
explain the concepts that we have used, we must build a
meta-model. This meta-model describes the model, it is
composed of classes. This meta-model and its components
belong to the M2 layer.

If the meta-model is MOF compliant, then it is
described by the MOF model that belongs to the M3 layer
and that is composed of meta-classes.

The figure 4 shows the example of the cat in the

context of the MOF. It shows the differences between a
MOF Object and a MOF Class. The MOF objects belong
to the M0 layer, they are the elements to be described. A
MOF Class belongs to the M2 layer, it describes meta-
objects.

Regarding to the MOF instance, it should be noted that

everything is an instance of something. For example, the
meta-object "the cat" is an instance of the Class
"inanimate meta-object". MOF instance is a relationship,
that's why it does not belong to a specific layer.

Fig 4: The example of the cat in the MOF

3. UML

UML (Unified Modelling Language) is one of the most

popular language to model oriented-object applications
[5]. Although UML is only a notation, there are strong
definitions for UML Object, UML Class and UML
Instance

UML is often used as an input when building new
applications, that's why there are several mappings
between UML and programming languages. These
mappings will also help us to compare the concepts.

3.1 UML in the four layer architecture

In all the specifications of UML, from 1.0 to 1.3,

models are used to define UML concepts. The notation
used to build these models is UML.

The core of UML is the basis of all other concepts, i.e.,
it is sufficient to define the other parts.

As the UML core was used to define MOF model, then
models contained in the UML standard are now MOF
compliant. The UML specification provides the UML
meta-model, which belongs to the M2 layer and which is
an instance of the MOF model (Figure 5).

It should be noted that the UML meta-model is not the
UML specification. For example, the UML meta-model
does not deal with the notation, the UML specification
does.

The UML meta-model describes the structure of all the
UML models. A UML model is an instance of the UML
meta-model, it belongs to the M1 layer and it describes
data.

Instantiation

 is on Meta-object
The cat

Meta-object
The carpet

Class
inanimate
Meta-object

Class
animate
Meta-object

Class
relationship

Meta-Class

M0

M1

M2

M3

pussy
Moroccan
carpet

Fig 5: the UML meta-model, an instance of the MOF

model

3.2 Object, Instance and Class in UML

The UML meta-model defines the concepts of UML

Instance, UML Object and UML Class. These concepts
are defined in the M2 layer. So, according to (E3), an
element of type “UML Class”, called a UML Class,
belongs to the M1 layer. This is the same for UML
Instance and Object.

UML Instances, UML Objects and UML Classes
belong to the M1 layer, they are MOF meta-objects, they
are components of UML Models. This proposition is
enforced by the fact that all of them inherit from "UML
model element" that is defined in the UML meta-model as
a component of the UML model. They define UML
entities [4].

A UML entity is the thing to be modelled, it belongs to
M0 layer. It should be noted that the concept of entity is
not defined in the UML meta-model, it is mentioned in the
UML specification.

More precisely, a UML instance defines an entity to
which a set of operations can be applied and which has a
state that stores the effect of the operations. A UML
object is an instance that originates from a UML class.
And a UML Class is a set of objects that share the same
features.

The figure 6 classifies these concepts in the four layer
architecture.

Layer Term
M0 Entity
M1 Class, Instance, Object

Fig 6: UML terms in the four layer architecture

From this figure, one can notice that the UML standard
does not deal with M2 and M3 layer.

This classification will help us to compare the concepts
in the context of each standard. But right now, we can
already say that a MOF object is totally different from a
UML Object. We will detail this comparison in the part 6.

Let us go back to the example of the section 2.5.
Figure 7 shows this example using the UML meta-model.

We can see in the M2 layer a part of the UML meta-
model. This part defines the UML concepts of Object,
Class and Association. Each of these UML concepts is a
MOF class. Thus the UML meta-model is composed of
three MOF classes, each of them is an instance of a MOF
meta-class. This part of the UML meta-model defines a
part of the structure of all UML models.

In this example, we have one UML model. This model
is the model of the cat sitting on the carpet. It is composed
of two Classes, namely "Carpet" and "Cat", two Objects
"the carpet" and "the cat" and so on. Each of these
elements is a MOF meta-object. Their types are defined
by the UML meta-model.

In UML, an instance is an element linked to a class. It
should be noted that in the UML meta-model, UML
objects inherit from UML instances. This is why no
instances appear in this example.

Fig 7: Example of the cat with the UML meta-model

4. RM-ODP

RM-ODP (Reference Model of Open Distributed

Process) is an ISO standard [1]. It gives concepts and
structuring rules for specifying open DO systems. An RM-
ODP system could be an application or an organisation of

MOF Model

UML Meta-Model

UML M odel

 Data Data

M3 Layer

M2 Layer

M1 Layer

M0 Layer

UML M odel
UML M odel

 is on

Object
the cat

Object
the carpet

Class
Object

Class
Association

Class
Class

Meta-Class

Class
cat

Class
Carpet

MOF
instantiatio
n

UML
instantiatio
n

MOF Concepts
UML Concepts

human. The definitions provided by RM-ODP are
rigorous and consistent. RM-ODP also defines five
viewpoints that establish the separation of concerns
needed to specify different facets of a system. Some
concepts are specific to some viewpoints but the concepts
of Class, Object and Instance are common concepts.

RM-ODP does not provide any notation to express
specifications, moreover it is method-free.

4.1 RM-ODP in the four layer architecture

Some works have been done to compare RM-ODP and

UML [3]. Their goal is to compare the power of
expression of these two standards. Since the MOF
standard is available, research has been oriented towards
the construction of the RM-ODP meta-model. The next
normative part of the RM-ODP will certainly include a
meta-model for describing some of the RM-ODP concepts
[2].

Open distributed systems specified according to the
RM-ODP concepts are the things to be modelled, so they
belong to the M0 layer.

A specification of an open distributed system is a
model of the system as it describes the system, so it
belongs to the M1 layer.

The RM-ODP standard describes the structure of all
the RM-ODP specifications.

As it is for UML, the RM-ODP meta-model will not
consider the whole standard, i.e., it will not define all the
RM-ODP concepts. For example, it will not define the
concept "entity", which is defined in that same way as
UML, i.e. the thing of the real world.

The figure 8 shows the relationships between RM-
ODP, the MOF and UML.

Fig 8: RM-ODP and UML in the four layer

architecture

4.2 Object, Instance and Class in RM-ODP

The RM-ODP standard defines the concepts of

instance, object and class.
Before defining them, in order to help the

understanding, let us first introduce the concepts of entity
and type:

• A RM-ODP entity is any concrete or abstract thing
of interest. It is something to be modelled, it
belongs to the M0 layer.

• A RM-ODP type is a predicate. RM-ODP deals
with type of an <X> when an X can satisfy a type.

Then RM-ODP defines the concepts of instance, object

and class.
An object is a model of an entity. Objects belong to the

M1 layer.
A class is a set of elements that satisfy the same type.

More precisely, RM-ODP deals with classes of <X>
where <X> are elements satisfying a same type T.

An element satisfying a type is called an instance of the
type.

To sum up, RM-ODP classes, instances and objects

belong to the M1 layer (Figure 9).

Layer Term

M0 Entity

M1 Class, Instance, Object

Fig 9: RM-ODP terms in the four layer architecture

We can now present our example using RM-ODP as

meta-model (fig 10). This example shows the differences
between RM-ODP concepts and MOF concepts. For sake
of simplicity, it only deals with classes of object and types
of object. Actually, the concepts of class, type and
instance are not reduced to objects. As already mentioned,
they can be applied to an <X> where <X> can be an
action, or interfaces or other elements defined in RM-
ODP. Thus classes of actions or classes of interfaces
could be found. It should be noted that an instance of a
type of object is an object.

The concept of association is not defined in RM-ODP.
We have chosen to express it with a role. This choice has
not impact on the comparison of instances, objects and
classes.

MOF Model

UML
Meta-

UML
Model

 Data Data

M3 Layer

M2 Layer

M1 Layer

M0 Layer

UML
Model

RM-ODP
Meta-

RM-ODP
Model RM-ODP

Model

 Data

Fig 10: example of the cat with the RM-ODP meta-

model

5. Java and CORBA

Java is one of the most popular programming language

[7]. It is an oriented-object language that makes use of the
concepts of instance, object and class.

CORBA (Common Object Request Broker
Architecture) is a middleware useful for building
heterogeneous DO applications [8]. Although CORBA
applications are written in a programming language, there
are CORBA definitions for Objects and Interfaces.

It then would seem interesting to study how these
concepts are defined in such standards used in an
implementation purpose rather than a modelling one.
Moreover, Java programs and IDL interfaces frequently
can be automatically generated from modelling languages,
especially UML. Including Java and CORBA in our
comparison could then provide some feedback on the
concepts mapping between modelling and implementation
viewpoints.

5.1 Java and CORBA in the four layer

architecture

Java and CORBA are not modelling languages. So we

face a problem when applying the previous classification
based on the MOF architecture to a Java program and IDL

interfaces. We have to determine what concerns the real
world, what concerns the model and so on. We assume
that the runtime is an element of the real world, it belongs
to the M0 layer.

A Java program, either the source or the bytecode,
describes the runtime. It belongs to the M1 layer. For
CORBA, IDL interfaces are used to describe the runtime;
this description is completed with a programming
language (Java for example). IDL interfaces belong to the
M1 layer.

The Java specification describes the structure of all
Java programs. We can assume that the Java meta-model,
if it would exist, would belong to the M2 layer. The
CORBA specification includes the IDL grammar that
describes the structure of all IDL interfaces. We can
assume that the CORBA meta-model, if it would exist,
would belong to the M2 layer.

The figure 11 shows Java and CORBA in the four layer
architecture. It should be noted that Java sources and
bytecode are considered to be equivalent.

Fig 11: Java and CORBA in the four layer architecture

5.2 Object, Instance and Class in Java and

CORBA

The Java specification is not so clear as the other

standards for the concepts of class, instance and object.
However, there is a definition commonly agreed of them.
From this definition, a Java program is composed of
classes while objects belong to the runtime, i.e., they are
instances of classes.

The CORBA specification defines an Object as an
element of the program. CORBA also uses the term

MOF
instantiatio
n

RM-ODP
instance

MOF Concepts
RM-ODP Concepts

 is on

Object
the cat

Object
the carpet

Class
Object

Class
Role

Class
Class

Meta-Class

Class
cat

Class
carpet

MOF Model

Java
Meta-Model

Java Source

Runtime

M3 Layer

M2 Layer

M1 Layer

M0 Layer

Java ByteCode

IDL Interfaces

Runtime

Corba
Meta-Model

"servant"1 . Although the goal of this article is just to
compare the concepts of "instance", "object" and "class",
it should be noted that we introduce IDL interfaces as they
model CORBA objects.

This is illustrated in Figure 12 with the example of the
cat.

Fig 12: Example of the cat with Java and CORBA

Another point of view can be considered and then leads

to other definitions of Java classes and objects. Let us
consider a line of code that can be found in a Java
program such as:

 String _text = new String(“text”);
In this line of code, there is an identifier named "_text"

and its type is "String". This identifier can be considered
as a model of something and consequently, it belongs to
the M1 layer. In the Java language, this identifier is also
called an object. This means that objects can be found in
the M1 layer as well as objects can be found in the M0
layer.

On the other hand, in the Java virtual machine, when
an object is built, an image of the class is also built. This
image is also called a class. This means that classes
belong to the M0 layer as well as M1 layer.

The figure 13 shows this ambiguity. There are no
strong definitions of Class, Instance and Object. Here, the
same terms are used to define M0 or M1 concepts.

Layer Term

M0 Java Object, Java Class, CORBA Object
M1 Java Object, Java Class, CORBA Interface

Fig 13: Java and CORBA terms in four layer

architecture. Word in bold represents the usual meaning.

1 A "servant" is an CORBA object linked to a POA

(Portable Object Adapter)

6. Classification and Comparison

Figure 14 summarises all the terms presented in this

paper. We can then compare them.
• Objects:

There are several different meanings for objects
according to the standards. It is clear that MOF
objects cannot be compared to UML and RM-
ODP ones. We will admit that, using the common
definition of Java, Java objects are equivalent to
MOF objects. UML and RM-ODP have quite the
same definition for objects.

• Classes:
Again, there are several different meanings for
classes according to the standards. MOF classes
belong to the M2 layer and they are not
comparable to anything. UML, Java and RM-ODP
are comparable. RM-ODP and UML classes are
quite equivalent even if RM-ODP classes are more
general. Java classes are more oriented
programming, but they are close to UML classes.

• Instances:
Once again there are several different meanings
for instances. For the MOF, instantiation is a
relationship, so an instance can belong to any
layers. UML and RM-ODP instances are different.
UML instances are linked to UML Class on the
contrary RM-ODP instances are linked to RM-
ODP type. A Java instance belongs to M0, it is a
Java object.

Fig 14: Used terms in MOF, UML, RM-ODP, Java and

CORBA

7. Conclusion

DO applications development is more and more

complex. From modelling to implementation, several
teams are involved in the same project, and each of them
refers to standards devoted to its area.

The project development success is based on the
mutual interaction of the involved teams and the required

Standard

Layer

MOF UML RM-ODP Java
CORBA

M0 Object Entity Entity Object,
Class

M1 Meta-
object

Class,
Object,
Instance

Class,
Object,
Instance

Object,
Class

M2 Class
M3 Meta-

class

Class
or Interface
cat

Class
carpet

M0

M1

Object
or Servant
The cat

condition of a common understanding. Thus a traceability
of concepts must be ensured between the various
meanings of the same terms defined in different standards.
We could argue that, as well as most of these standards
deal with interoperability, the terms they use should be
interoperable too.

This paper highlights the existing heterogeneity in DO
standards that frequently leads to misunderstanding and
confusion between people. It contributes to cross over the
gap between the various meanings of concepts used in DO
standards. Once the comparison achieved, it seems
necessary to be rigorous when using these concepts in
order to build DO applications in an effective manner. An
easy way to be very clear and precise and to be well
understood is to prefix the concept with the standard
name. Speaking of a UML object or a CORBA object
rather than an object enables the interlocutor to know
exactly what the discussion is about. In this way,
communication between development teams should gain
in efficiency.

8. References

[1] ISO/IEC IS 10746-x — ITU-T Rec. X90x, ODP

Reference Model Part x, 1995.

[2] ISO/IEC JTC1/SC7 CD 15414, ODP Reference
Model : Enterprise Viewpoint, January 2000.

[3] P. Linington, Options for Expressing ODP

Enterprise Communities and their Policies by Using
UML, In Proceedings of the 3rd International Enterprise
Distributing Object Computing Conference (EDOC'99),
IEEE Press, Mannheim, Germany, September 1999,
pp72-82.

[4] OMG: UML Specification v1.3 June 1999.

www.omg.org 99-06-09

[5] G. Booch, J. Rumbauch and I. Jacobson, The

Unified Modelling Language User Guide, Addison
Wesley

[6] OMG, MOF Specification v1.3, July 1999

www.omg.org.

[7] J. Gosling, B. Joy and G. Steele, The Java

Specification, Addison Wesley
java.sun.com

[8] OMG, CORBA 2.3.1 Specification, OMG TC

Document formal/99-10-07.

