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The Haque method and the omplete GI-method for omputingthe Galois group*Ines Abdeljaouad and Annik ValibouzeyCalFor - LIP6, Universit Paris VI,4 Plae Jussieu, F-75252 PARIS CEDEX 05E-mail: abdeljao�mediis.polytehnique.fr; avb�mediis.polytehnique.fr1. INTRODUCTIONTwo philosophies are proposed for omputing the Galois group of a univari-ate polynomial: the algebrai one and the numerial one. The numerialmethods provide eÆient algorithms even with a high degree of preision(see [19℄, [7℄, [13℄); the algebrai methods guarantee an exat result inreasonable time (see [21℄, [6℄) and the work undertaken in [3℄ and [4℄ isdeterministi.We propose two algebrai methods for omputing the Galois group of anirreduible polynomial f whih we all the Haque method (in [12℄) and theomplete GI-method. We start by introduing the Haque method: we givein setion 2 a system of harateristi equations of the Galois group as asubgroup of the linear algebrai group. The omplete GI-method is intro-dued in setion 3. It omputes the Galois group thanks to an algorithm ofomputation of the deomposition group of the ideal of relations (see [20℄).Throughout this artile k indiates a �eld of harateristi zero and f anunivariate polynomial irreduible over k. The Haque method for omput-ing the Galois group of f annot be used without preliminary omputation:in fat, a minimal polynomial of a primitive element of the Galois extensionmust be omputed. Thus, setion 4 is devoted to transform the Haquemethod into an implementable form. For this, we ombine the Haquemethod with the �rst steps of the omplete GI-method and we �nally om-pare this two methods.*Notes Informelles de Calul Formel num�ero 2000-08, pr�esentation orale �a AAECC'13en Novembre 1999y Supported by the projet Galois of the UMS MEDICIS, Palaiseau, Frane.1



2 I. ABDELJAOUAD AND A. VALIBOUZE2. GALOIS GROUP AS A SUBGROUP OF GLN(K)Let K be a �nite extension �eld over k of degree n > 1. Let us �xe = (e0; e1; : : : ; em), a basis of the k-vetor spae K, suh that e0 = 1and m = n� 1. 2.1. Notations and De�nitionsThe ring of k-endomorphisms over K is denoted by Lk(K) and the groupof the invertible elements of Lk(K) by GLk(K). The Galois group of theextension k j K is, by de�nition, the group of k-automorphisms over K. Itis denoted by Galk(K).We set Mn(k) to be the ring of n� n matries with oeÆients in k. Wedenote by M [:; e℄ the isomorphism of algebra whih assoiates with anyk-endomorphism of Lk(K) its matrix in the basis e:M [:; e℄ : Lk(K) �! Mn(k)f 7! M [f; e℄ .We denoted by GLn(k) the group of the invertible matries of Mn(k).Then GLn(k) ' GLk(K) : (1)For all � 2 K, we denote by b� the multipliative endomorphism of �over K de�ned by b�(x) = x�, for all x in K. Remark that the �eldbK = fb� 2 Lk(K) j � 2 Kg is isomorphi to K.Let K = fM [b�; e℄ 2 Mn(k) j � 2 Kg. The �eld K is naturally isomorphito the �eld bK. Thus, we obtain the following isomorphisms:K ' bK ' K : (2)The group of the invertible elements of K (resp. of bK) is labeled by K�(resp. bK�). The group bK� is isomorphi to K� and, it is a subset ofGLk(K): bK� = fb� 2 GLk(K) j � 2 K�g : (3)



COMPUTING THE GALOIS GROUP 3We set K� = fM [b�; e℄ 2 Mn(k) j � 2 K�g. Then K� � GLn(k) and wehave the following isomorphisms:K� ' bK� ' K� : (4)Let G and H be two groups suh that H � G. The normalizer of H in G,denoted by Nor[G;H ℄, is equal to :Nor[G;H ℄ = fa 2 G j aHa�1 = Hg :Definition 2.1. Let g 2 GLk(K). The appliation g is alled K-semi-linear if for all x 2 K and � 2 K, there exists an s 2 Galk(K) suh thatg(x�) = g(x)s(�).2.2. Properties of the Galois group Galk(K) as a subgroup ofGLn(k)Proposition 2.1. The Galois group Galk(K) is the set of the K-semi-linear appliations g of GLk(K) suh that g(1) = 1.Galk(K) = fg 2 GLk(K) j g is K � semi�linear and g(1) = 1g : (5)Proof. We note that for all g 2 Galk(K), g is K-semi-linear and g(1) =1. Conversely, let g be a K-semi-linear appliation suh that g(1) = 1,we have to show that 8x 2 k, s(x) = x. For any x 2 k, there existss 2 Galk(K) suh that g(x) = s(x):g(1) = s(x) = x. So, g 2 Galk(K).The following proposition is a onsequene of lemma 2.1 of [11℄, and wegive here a diret proof:Proposition 2.2. The normalizer of bK� in GLk(K) is equal to a setontaining all the K-semi-linear appliations of GLk(K).Nor[GLk(K); bK�℄ = fg 2 GLk(K) j g is K�semi�linearg : (6)Proof. Let g 2 Nor[GLk(K); bK�℄ be a k-endomorphism, then for all� 2 K�, g Æ b� Æ g�1 2 bK�. For all � 2 K�, there exist � 2 K� verifyingg Æ b� = b� Æ g ; let s be an appliation from K� to K� suh that s(�) = �; s is a bijetion of K� beause it is a surjetion of K�. To prove that gis K-semi-linear, we an only prove that g veri�es g(�x) = g(x)s(�) wheres 2 Galk(K).



4 I. ABDELJAOUAD AND A. VALIBOUZE(i) For � 2 K�, we have g Æ b� = ds(�) Æ g ; then for any x 2 K,g Æ b�(x) = ds(�) Æ g(x) and thus g Æ b�(x) = g(x�) = g(x)s(�).(ii) Let us verify that the bijetion s is a k-morphism of K. We set �,� 2 K and x 2 K then, aording to (i), g(x(�+�)) = g(x)s(�+�). In addi-tion, g(x(�+�)) = g(x�)+g(x�) = g(x)s(�)+g(x)s(�) = g(x)(s(�)+s(�)).Thus, like g 6= 0, s(�+ �) = s(�) + s(�).In the same way, g(x(��)) = g(x)s(��) and g(x(��)) = g(x�)s(�) =g(x)s(�)s(�). Sine g 6= 0, we obtain s(��) = s(�)s(�). Lastly, g(1) =g(1)s(1) and thus s(1) = 1.So, s 2 Galk(K) and the appliation g is K-semi-linear.Conversely, let g be a K-semi-linear appliation. Let prove that for all� 2 K�, g Æ b� Æ g�1 2 bK�.By de�nition, for � 2 K and x 2 K,there exists s 2 Galk(K) suh thatg(�x) = g(x)s(�). Partiularly, for eah � 2 K� and x 2 K, gÆb�Æg�1(x) =gÆb�(g�1(x)) = g(g�1(x)�) = g(g�1(x))s(�) = xs(�). So gÆb�Æg�1 = ds(�).Sine � 2 K� and s 2 Galk(K), the element s(�) is invertible (i.e. s(�) 2K�) and we dedue that the appliation g Æ b� Æ g�1 2 K�.Theorem 2.1. Aording to the propositions 2.1 and 2.2, we have :Galk(K) = fg 2 Nor[GLk(K); bK�℄ j g(1) = 1g : (7)Thanks to the isomorphism (1), the Galois group as a subgroup of GLn(k)is expressed in the following form:Galk(K) = fA 2 Nor[GLn(k);K�℄ j A(e0) = e0g : (8)2.3. Charaterization of Galk(K) with a system of equationsWe seek a system of equations whih haraterizes the Galois groupGLn(k).For that, in all this part, we �x A a matrix of GLn(k).Lemma 2.1. If the matrix A of GLn(k) veri�es A(e0) = e0 then we writeit in the form: A = 0BBB� 1 �1;0 : : : �m;00 �1;1 : : : �m;1... ... . . . ...0 �1;m : : : �m;m 1CCCA (9)



COMPUTING THE GALOIS GROUP 5where �i;j 2 k for (i; j) 2 [1;m℄� [0;m℄ and det(�i;j)i;j2[1;m℄ 6= 0 .Proof. Obvious.2.3.1. Charaterization of the �eld K�For j 2 [0;m℄, let set Mj = M [ bej ; e℄ the matrix of bej in the basis e ( bej isthe multipliative endomorphism of ej). Let � 2 K and �0; : : : ; �m 2 ksuh that � =Pmj=0�jej .The writing M [b�; e℄ =Xmj=0�jMj (10)gives a haraterization of the elements of the �eld K. Furthermore, � be-longs to the �eld K� if and only if �j (j 2 [0;m℄) are not all zero.Thus, (M0;M1; : : : ;Mm) is a basis of K�.2.3.2. Charaterization of Nor[GLn(k);K�℄The matrix A belongs to Nor[GLn(k);K�℄ if it veri�es AK�A�1 = K�.This is equivalent to:8i 2 [1;m℄ ; 9 (�i;0; : : : ; �i;m) 2 kn � f(0; : : : ; 0)g AMi =Xmj=0�i;jMjA :(11)Corollary 2.1. Let A 2 GLn(k) and (12) the linear system of equationsdedued from (11):AMi =Xmj=0xi;j MjA ; i 2 [1;m℄ ; (12)where xi;j are unknown. The matrix A belongs to Nor[GLn(k);K�℄ ifand only if the system of equations (12) admits at least one solution � =(�i;j)i2[1;m℄;j2[0;m℄ in km�n.2.3.3. Charaterization of the Galois groupTheorem 2.2. The matrix A of GLn(k) belongs to the Galois group Galk(K)if and only if



6 I. ABDELJAOUAD AND A. VALIBOUZE(a)it is written in the form (9),(b)the system (12) admits at least one solution.Proof. Aording to the theorem 2.1, the lemma 2.1 and the setion 2.3.Definition 2.2. Let B = (bi;j)i;j2[1;n℄ be a matrix of Mn(k) wherebi;j are unknown. Let us put X = (xi;j)i2[1;m℄;j2[0;m℄ where xi;j are alsounknown entries. The following system of equations:B(e0) = e0 and BMi =Xmj=0xi;j MjB ; i 2 [1;m℄ (13)is alled the system of equations of the Galois group Galk(K) in the basise.Corollary 2.2. A matrix A belongs to the Galois group Galk(K) if andonly if the system (13) of equation of Galois group in the basis e admits asolution B = A and X = � for a ertain � 2 km�n.2.4. Simpli�ation of the system of equations of Galk(K) -Haque systemLet u 2 K be a primitive element of the extension k j K (i.e. k(u) = K)and let un � (amum + : : :+ a1u+ a0) be its minimal polynomial over k.For j 2 [0;m℄, we an put ej = uj . We denote by M0 the matrix identity.In the basis (1; u; : : : ; um), the matrixM1 of the endomorphism bu is writtenby: M1 = 0BBBBB� 0 0 : : : 0 a01 0 : : : 0 a10 1 : : : 0 a2... ... . . . ... ...0 0 : : : 1 am
1CCCCCAAnd for j 2 [0;m℄, we set Mj =M1j .Lemma 2.2. The system (13) of equations of Galois group in the basis(1; u; : : : ; um) is equivalent to:B(e0) = e0 and BM1 =Xmj=0xj MjB ; (14)



COMPUTING THE GALOIS GROUP 7where xj 2 k for all j 2 [0;m℄ .Proof. It is obvious that the system (13) involves the system (14). Reip-roally, let i 2 [2;m℄ and suppose that (14) is veri�ed. ThenBMiB�1 = (BM1B�1)i = (Xmj=0xjMj)i =Xmj=0yjMj ;where yj belongs to k[x0; : : : ; xm℄ beause (M0;M1; : : : ;Mm) is a basis ofK�.Lemma 2.3. If a matrix A 2 GLn(k) and � = (�0; : : : ; �m) veri�es thesystem (14), (i.e. B = A and (x0; : : : ; xm) = � are solutions), then A iswritten in the form (9) and �j = �1;j for j 2 [0;m℄.Proof. To be onvined, it is enough to express AM1 and M j1A for j 2[0;m℄, in the basis (1; u; : : : ; um).Theorem 2.3 (Haque). A matrix A belongs to the Galois group Galk(K)if and only if the matrix A is invertible andA = 0BBB� 1 �1;0 : : : �m;00 �1;1 : : : �m;1... ... . . . ...0 �1;m : : : �m;m 1CCCA suh that AM1 =Xmj=0 �1;j MjAwhere �i;j 2 k for (i; j) 2 [1;m℄� [0;m℄.Definition 2.3. The system of the theorem 2.3 is alled Haque system.2.5. Example of Haque systemLet F = T 6+108 and A 2 GL6(Q) suh that A(e0) = e0, where (e0; : : : ; en)is the anonial basis of GL6(Q). The Haque system for the Galois ex-tension over Q of the polynomial F (T ) = T 6 + 108 is equal to:AM1 = �1;0M0A+�1;1M1A+�2;1M2A+�3;1M3A+�4;1M4A+�5;1M5A ;



8 I. ABDELJAOUAD AND A. VALIBOUZEwhere:M1 = 26666664 0 0 0 0 0 01 0 0 0 0 00 1 0 0 0 00 0 1 0 0 00 0 0 1 0 00 0 0 0 1 �108
37777775 and Mi = M i1 for i 2 [0; 5℄ :Thus the Haque system is equivalent to the following system of 30 equa-tions and 30 unknowns:�3;0 � �1;0�2;0 = 0, �4;0 � �1;0�3;0 = 0, �5;0 � �1;0�4;0 = 0�108�5;0 � �1;0�5;0 = 0, �2;1 � 2�1;0�1;1 = 0, �2;0 � �21;0 = 0�3;1 � �1;0�2;1 � �1;1�2;0 = 0, �4;1 � �1;0�3;1 � �1;1�3;0 = 0�5;1 � �1;0�4;1 � �1;1�4;0 = 0, �108�5;1 � �1;0�5;1 � �1;1�5;0 = 0�2;2 � 2�1;0�2;1 � �21;1 = 0, �2;3 � �1;0�2;2 � �1;1�2;1 � �2;1�2;0 = 0�2;4 � �1;0�2;3 � �1;1�3;1 � �2;1�3;0 = 0,�2;5 � �1;0�2;4 � �1;1�4;1 � �2;1�4;0 = 0�108�2;5 � �1;0�2;5 � �1;1�5;1 � �2;1�5;0 = 0,�3;2 � 2�1;0�3;1 � 2�1;1�2;1 = 0�3;3 � �1;0�3;2 � �1;1�2;2 � �22;1 � �3;1�2;0 = 0,�3;4 � �1;0�3;3 � �1;1�2;3 � �2;1�3;1 � �3;1�3;0 = 0�3;5 � �1;0�3;4 � �1;1�2;4 � �2;1�4;1 � �3;1�4;0 = 0,�4;2 � 2�1;0�4;1 � 2�1;1�3;1 � �22;1 = 0�108�3;5 � �1;0�3;5 � �1;1�2;5 � �2;1�5;1 � �3;1�5;0 = 0,�4;3 � �1;0�4;2 � �1;1�3;2 � �2;1�2;2 � �2;1�3;1 � �4;1�2;0 = 0�4;4 � �1;0�4;3 � �1;1�3;3 � �2;1�2;3 � �23;1 � �4;1�3;0 = 0,�4;5 � �1;0�4;4 � �1;1�3;4 � �2;1�2;4 � �3;1�4;1 � �4;1�4;0 = 0�108�4;5 � �1;0�4;5 � �1;1�3;5 � �2;1�2;5 � �3;1�5;1 � �4;1�5;0 = 0 :�5;2��1;0�5;1��1;1(�4;1�108�5;1)��2;1(�3;1�108�4;1+11664�5;1)��3;1(�2;1�108�3;1+11664�4;1�1259712�5;1)��4;1(�1;1�108�2;1+11664�3;1�1259712�4;1+136048896�5;1 )��5;1(�1;0�108�1;1+11664�2;1�1259712�3;1+136048896�4;1�14693280768�5;1 ) = 0�5;3��1;0�5;2��1;1(�4;2�108�5;2)��2;1(�3;2�108�4;2+11664�5;2)��3;1(�2;2�108�3;2+11664�4;2�1259712�5;2)��4;1(�2;1�108�2;2+11664�3;2�1259712�4;2+136048896�5;2 )��5;1(�2;0�108�2;1+11664�2;2�1259712�3;2+136048896�4;2�14693280768�5;2 ) = 0�5;4��1;0�5;3��1;1(�4;3�108�5;3)��2;1(�3;3�108�4;3+11664�5;3)��3;1(�2;3�108�3;3+11664�4;3�1259712�5;3)��4;1(�3;1�108�2;3+11664�3;3�1259712�4;3+



COMPUTING THE GALOIS GROUP 9136048896�5;3 )��5;1(�3;0�108�3;1+11664�2;3�1259712�3;3+136048896�4;3�14693280768�5;3 ) = 0�5;5��1;0�5;4��1;1(�4;4�108�5;4)��2;1(�3;4�108�4;4+11664�5;4)��3;1(�2;4�108�3;4+11664�4;4�1259712�5;4)��4;1(�4;1�108�2;4+11664�3;4�1259712�4;4+136048896�5;4 )��5;1(�4;0�108�4;1+11664�2;4�1259712�3;4+136048896�4;4�14693280768�5;4 ) = 0�108�5;5 � �1;0�5;5 � �1;1(�4;5 � 108�5;5)� �2;1(�3;5 � 108�4;5 + 11664�5;5)��3;1(�2;5�108�3;5+11664�4;5�1259712�5;5)��4;1(�5;1�108�2;5+11664�3;5�1259712�4;5 +136048896�5;5)��5;1(�5;0 � 108�5;1 +11664�2;5 � 1259712�3;5 +136048896�4;5 � 14693280768�5;5 ) = 0The Galois group of F (T ) = T 6+108 is the set of matries A verifying theHaque system. After the identi�ation of this system with subgroups ofGL6(Q), we dedue that the regular representation of the Galois group ofF over Q is isomorphi to S3.We will see, in setion 4, that the identi�ation proess of Galois groupusing Haque system is aelerated when we use the result of the �rst stepsof GI-method. 3. THE COMPLETE GI-METHODLet f be a polynomial over k of degree n and 
f be a n-tuple of n rootsof f in an algebrai losure k̂ of k. We propose an algorithm whih om-putes the deomposition group of a given ideal and we prove that, appliedto the ideal of 
f -relations I
f , the algorithm omputes the Galois groupGalk(K) = G
f . 3.1. Notations and de�nitionsWe denoted by Sn the symmetri group of degree n and In the identitygroup of Sn. For � 2 Sn and � = (�1; : : : ; �n) a n-tuple in k̂, we put�:� = (��(1); : : : ; ��(n)). We denote by k[x1; : : : ; xn℄ the ring of polynomialin the variable x1; : : : ; xn over the �eld k and k[T ℄ the ring of polynomialin the variable T over the �eld k.The ation of the permutation group of degree n on k[x1; : : : ; xn℄ is de�nedby:



10 I. ABDELJAOUAD AND A. VALIBOUZESn � k[x1; : : : ; xn℄ �! k[x1; : : : ; xn℄(�; P ) 7! �:P (x1; : : : ; xn) = P (x�(1); : : : ; x�(n)) :For � 2 Sn, � a n-tuple in k̂ and P 2 k[x1; : : : ; xn℄, we have: �:P (�) =P (� Æ�). Let J be a subset of k[x1; : : : ; xn℄ and � 2 Sn then �(J) = f�:P jP 2 Jg.Definition 3.1. Let L be a subgroup of Sn and H a subgroup of L. Thepolynomial � 2 k[x1; : : : ; xn℄ is an L-primitive H-invariant ifH = f� 2 L j �:� = �g :Definition 3.2. The ideal of the 
f -relations, denoted by I
f , is de�nedby: I
f = fP 2 k[x1; : : : ; xn℄ j P (
f ) = 0 g :Definition 3.3. The Galois group of 
f is de�ned by:G
f = f� 2 Sn j 8P 2 I
f ; �:P (
f ) = 0g :3.2. Galois Ideal and deomposition groupLet � = (�1; : : : ; �n) be a n-tuple in k̂. A polynomial P 2 k[x1; : : : ; xn℄ isan �-relation if P (�) = 0.Definition 3.4. Let L be a subgroup of Sn. The ideal IL� of L-invariant�-relations de�ned by:IL� = fR 2 k[x1; : : : ; xn℄ j (8� 2 L) �:R(�) = 0 g ;is alled an (L; �)-Galois ideal.The ideal ISn� is alled the ideal of symmetri relations and, aording tode�nition 3.2, IIn� = I�, the ideal of �-relations.Example 3.1. Let f be a polynomial over k of degree n and 
f be an-tuple of ne roots of f in an algebrai losure of k. If e1; : : : ; en represents



COMPUTING THE GALOIS GROUP 11the n elementary symmetri funtions, then the polynomials e1 � e1(
f ),. . . ,en� en(
f ), alled Cauhy modulus of f , form a Gr�obner basis of ISn
f .Definition 3.5. The deomposition group Gr(I) of an ideal I � k[x1; : : : ; xn℄is de�ned by: Gr(I) = f� 2 Sn j �(I) = Ig :Remark 3. 1. Gr(I) is a group and it veri�es the following equality:Gr(I) = f� 2 Sn j �(I) � Ig :Remark 3. 2. Aording to the de�nition 3.3, the Galois group of 
f isthe deomposition group of the ideal I
f of 
f -relations:G
f = f� 2 Sn j �(I
f ) = I
f g = Gr(I
f ) :Remark 3. 3. We have IG
f
f = I
f and if H is a subgroup of G
f thenIH
f = I
f .3.3. Computation of the Deomposition group of an idealTheorem 3.1. Let g1; : : : ; gs be generators of an ideal I in k[x1; : : : ; xn℄.The deomposition group Gr(I) of I is the biggest subgroup G of Sn veri-fying: 8 i 2 [1; s℄ and 8 j 2 [1; r℄ �j : gi 2 I ; (15)where �1; : : : ; �r are generators of G.Proof. Let g1; : : : ; gs be a generating system of the ideal I in k[x1; : : : ; xn℄.Let � 2 Gr(I) then �(I) = I , in partiular for eah generator gi of I wehave �(gi) 2 I . Thus, Gr(I) veri�es the ondition (15).In addition let prove that Gr(I) is the biggest subgroup verifying (15): Let



12 I. ABDELJAOUAD AND A. VALIBOUZE� 2 Sn suh that: 8i 2 [1; s℄ �:gi 2 I : (16)Let g 2 I then, g1; : : : ; gs are generators of I so, there exist t1; : : : ; ts ink[x1; : : : ; xn℄ suh that g = t1g1+ : : :+tsgs. Thus �:g is also a linear ombi-nation of �:g1; : : : �:gs over k[x1; : : : ; xn℄. Thus, using identity (16), we have�:g 2 I for all g 2 I . Then � 2 Gr(I).We propose an algorithm alled IDG whih omputes the deompositiongroup of an ideal I de�ned by a Gr�obner basis of I . It also needs a list ofgroups whih ontains the Deomposition group of I . This list is alled aCandidate List and it an ontains the symmetri group Sn.The funtion return(G) gives us the deomposition group G of the idealI and the funtion Add(G,g) adds the permutation g to the set G. Letg1; : : : ; gs be a Gr�obner basis of the ideal I and L a set of all the generatorsof the groups in the Candidate List.Algorithm 1 (IDG(< g1; : : : ; gs >, L)).1. begin2. for f 2 I do3. G := fg4. for g 2 L do5. if g:f 2 I then Add(G,g); end if6. end for7. L := G8. end for9. return(G)10. end.The group G is the deomposition group Gr(I) of the ideal I .Proof. In eah step of the algorithm, the group L dereases. In fat,this group onverges towards the deomposition group of the ideal I andaording to theorem 3.1, the algorithm IDG swithes o� in a �nishednumber of steps.The step 5. of the algorithm is possible when we take a Gr�obner basis of I .In fat, g:f 2 I if and only if the remainder of the redution of g:f underthe ideal I is equal to zero.Let g be an element of L that does not verify the step 5. The optimization



COMPUTING THE GALOIS GROUP 13of the algorithm an be done by removing all the fators of the elements gin L. 3.4. Determination of the generators of I
f for theomputation of G
fThe algorithm IDG applied to the ideal of 
f -relations gives the Ga-lois group of G
f . So, in order to ompute the G
f using the ompleteGI-method, we initially have to ompute a Gr�obner basis of the ideal of
f -relations.A �rst method, due to N. Yokoyama (see [16℄), onsists on given a fator ofthe polynomial f in some suessive extension of k until the �eld of deom-position of f . The disadvantage of this method, applied to our problem, isthat its ost is very high.The GI-method is losely related to the omputation of G
f (see Algorithm4.2 in [20℄). It onsists on omputing the generators of Galois ideals usingrelative resolvents. It is the method exposed in this paragraph in order toompute the ideal of relations.Definition 3.6. Let � 2 k[x1; : : : ; xdn℄ and L a subgroup of Sn ontain-ing G
f . The L-relative resolvent of 
f by � is the univariate polynomialover k given by: L�;
f ;L =Y 2L:�(T �  (
f )) :When L = Sn, this resolvent, denoted by L�;f , is alled the absolute resol-vent of f by � .Definition 3.7. Let H and L be two subgroups of Sn suh that H � Land let � be an L-primitive H-invariant. The invariant � is L-separablefor 
f if and only if �(
f ) is a square-free root of the resolvent L�;
f ;L.When L = Sn, � is alled separable for 
f .Let E � k[x1; : : : ; xn℄. The ideal generated by E in k[x1; : : : ; xn℄ is denotedby < E >.Theorem 3.2 (Valibouze). Let H and L be two subgroups of Sn suhthat H � L and G
f � L. Let � be an L-primitive H-invariant L-separablefor 
f and let F be a minimal polynomial of �(
f ) over k. Then IH
f =IL
f+ < F (�) >.



14 I. ABDELJAOUAD AND A. VALIBOUZEBy assumption, the polynomial F is a square-free fator, irreduible overk, of the resolvent L�;
f ;L.Proof. See theorem 3.27 in [20℄.Now, �rst steps of the GI-method produes (like for the Haque method) agroup L ontaining the Galois group G
f , it also gives IL
f and CandidateList a list of subgroups of L andidate to be the Galois group. We omputea polynomial F square-free fator, irreduible over k, of the L-resolventL�H ;
f ;L, where H and � verify the onditions of theorem 3.2 and H anbe an element of Candidate List. So, we redue the Candidate List usingtheorem 3.2. If moreover H is a subgroup of G
f then, by remark 3.3, wehave: I
f = IL
f+ < F (�H) >, it is in partiular the ase of H = In. If theCandidate List ontains one element then it is the Galois group, otherwise,we ompute a Gr�obner basis for the lexiographi order of I
f using a veryfast algorithm developed by J. C. Faugre (see FGB in [8℄ or [9℄ for moredetails on Gr�obner basis) and we apply the algorithm IDG to this Gr�obnerbasis and to Candidate List in order to ompute the Galois group G
f off . 4. THE CONSTRUCTIVE HACQUE METHODLet f be a square-free univariate polynomial over k of degree d and let Kbe its deomposition �eld over k. The �eld K is of degree n as supposedin the preeding setion.We see in setion 2.4 that the Haque system, annot be implementablewithout the minimal polynomial of a primitive element of the Galois ex-tension of k.The Galois resolvent allows us to ompute a minimal polynomial of a prim-itive element of k j K, but as we will see in this setion, its omputationis pratially impossible. Furthermore, to be e�etive, the Haque methodshould not have impratiable preonditions. Thus, we searh to take apartiular fator of the Galois resolvent to determine a minimal polyno-mial of a primitive element of the Galois extension.4.1. Minimal polynomial of a primitive element of k j KIn order to ompute a primitive element of the extension �eld k j K or,more exatly, its minimal polynomial on k, the historial method onsistson the omputation and the fatorization of the Galois resolvent of the



COMPUTING THE GALOIS GROUP 15polynomial f (see [21℄). In fat, any square-free fator, irreduible over k,of this resolvent is the minimal polynomial of a primitive element of theextension k j K. This resolvent being of degree d!, it is quite obvious thatits omputation is doomed to failure over the degree d = 6.The idea, presented here, is to ompute only one fator in k of the Galoisresolvent in order to redue the omplexity of the problem. For this, wewill use relative resolvents de�ned below.Definition 4.1. Let V 2 k[x1; : : : ; xd℄. A resolvent LV;f is alled Galoisresolvent if� it has only square-free roots,� V is an Sd-primitive Id-invariant.Proposition 4.1. There always exist many polynomials V suh that theresolvent LV;f is a Galois resolvent. For suh a V , eah root of the Galoisresolvent is a primitive element of the algebrai extension k j K.Proof. Sine k is a perfet in�nite �eld and f is square-free, see [10℄.Remark 4. 1. With the assumptions of de�nition 3.6 and for � an L-primitiveH-invariant (H � L), the L-relative resolvent L�;
f ;L is of degree[H : L℄ and it is a fator of the absolute resolvent L�;f .Let us onsider a polynomial V 2 k[x1; : : : ; xd℄ suh that LV;f be a Galoisresolvent and let F one of its square-free fator irreduible over k. Withoutloss of informations, we an suppose that V (
f ) is one of the roots of Fand thus, F is his minimal polynomial over k.If L is a subgroup of Sd ontaining the Galois group G
f then by remark4.1 the degree of the resolvent LV;
f ;L is the order of L and LV;
f ;L is afator over k of the Galois resolvent LV;f .If the order of the group L is suÆiently small, it is possible to ompute theresolvent LV;
f ;L (see [15℄, [18℄ and the GI-method in [20℄). Thus, to �ndsuh group L it is neessary to apply �rst steps of the omplete GI-methoduntil the omputation of the Galois ideal IL
f .4.2. Comparing Haque method and Complete GI-methodReall that the GI-method is the algorithm of [20℄ whih produes theideal of 
f -relations and a list, alled Candidate List, ontaining groups



16 I. ABDELJAOUAD AND A. VALIBOUZEandidate to be the Galois group (see setion 3.4). If the Candidate Listontains only one element, it is the Galois group G
f .As the Haque method requires the �rst steps of GI-method to omputesome group L, it is natural to ompare the Haque method and the ompleteGI-method (see setion 3). In fat, suppose that �rst steps of GI-methodomputes a Galois ideal IL
f and a Candidate List whih ontains a groupL verifying onditions of setion 4.1.Let set V an L-primitive In-invariant. For the Haque method, we �rstmust ompute and fatorize the resolvent LV;
f ;L. Next, we identify theHaque system (see theorem 2.3) with some group of Candidate List tohave the Galois group.Besides, the omplete GI-method (see setion 3) omputes the resolventLV;
f ;L. After that, we give a Gr�obner basis of the ideal of 
f -relations:I
f = IL
f+ < F (V ) > where F , a minimal polynomial of V (
f ) over k,is a square-free fator, irreduible over k, of LV;
f ;L. But, we prefer toompute and fatorize the resolvent L�H ;
f ;L where �H is an L-primitiveH-invariant and H a subgroup of L ontained in G
f (the group H maybe found using Candidate List see also theorem 3.2 and setion 3.4). So,here, we ompute relative resolvents of degree smaller than the degree ofthe resolvent LV;
f ;L omputed in the Haque method.Furthermore, after the omputation of the ideal of 
f -relations, we mustompute a Gr�obner basis of it in order to apply the algorithm IDG.5. EXAMPLE OF COMPUTATION OF THE GALOISGROUP FOR N = 6For n = 6, let f = x6 + 2. The GI-method applied to f gives a list ofgroups andidate to be Galois group of f (this list ontains some subgroupsof PGL(2; 5)), it also gives the ideal IPGL(2;5)
f (see [20℄):IPGL(2;5)
f = < 24x6 + x33x32x1 + 8x33x22x21 + 6x33x2x31 + 5x33x41 +8x23x32x21 + 4x23x22x31 + 8x23x2x41 + 6x3x32x31 +8x3x22x41 � 4x3x2x51 + 12x3 + 5x32x41 + 12x2 + 14x1;24x5 � 5x33x42 � 7x33x32x1 � 16x33x22x21 � 7x33x2x31�5x33x41 � 8x23x42x1 � 12x23x32x21 � 12x23x22x31�8x23x2x41 � 12x3x42x21 � 16x3x32x31 � 12x3x22x41+8x3 � 5x42x31 � 5x32x41 � 2x2 � 2x1;24x4 + 5x33x42 + 6x33x32x1 + 8x33x22x21 + x33x2x31



COMPUTING THE GALOIS GROUP 17+8x23x42x1 + 4x23x32x21 + 8x23x22x31 +12x3x42x21 + 10x3x32x31 + 4x3x22x41 + 4x3x2x51 +4x3 + 5x42x31 + 14x2 + 12x1;x43 + x33x2 + x33x1 + x23x22 + x23x2x1 + x23x21 +x3x32 + x3x22x1 + x3x2x21 + x3x31 + x42 + x32x1 +x22x21 + x2x31 + x41;x52 + x42x1 + x32x21 + x22x31 + x2x41 + x51;x61 + 2 > :the Haque methodLet V = x3 + 2x2 + 3x1 be a PGL(2; 5)-primitive I6-invariant omputedwith the algorithm PrimitiveInvariant in [1℄ (see [2℄ and [14℄ for theomputation of primitive invariants). The relative resolvent of f by V isomputed with the generalization of algorithm in [17℄ (see [5℄):LV;
f ;PGL(2;5) = (T 12 + 15444 T 6 + 343064484)(T 12 � 21164 T 6 + 188183524)(T 12 � 572 T 6 + 470596)(T 6 � 3456)2(T 6 + 128)2(T 6 + 2)2(T 12 + 1012T 6 + 19307236)2(T 6 � 54)4 :The resolvent LV;
f ;PGL(2;5) of degree 120 is a fator of the Galois resol-vent LV;f of degree 6! = 720. The omputation time and the fatorizationof the resolvent LV;
f ;PGL(2;5) is immediate (less than two seonds). LetF = T 12 � 572T 6 + 470596 be a square-free fator, irreduible over Q, ofLV;
f ;PGL(2;5). So, the Galois group is a transitive group of order 12 andG
f � PGL(2; 5).The Haque system of F is a system of 122 = 144 equations and as muhunknowns. By identi�ation in the list of andidate ontaining all sub-groups of PGL(2; 5), the Galois group of F and for f is isomorphi to D6the dihedral group of S6.the Complete GI-methodIt is suÆient to ompute a disriminant resolvent of degree 20 instead ofthe resolvent of degree 120 for Haque. In fat, we ompute the PGL(2; 5)-resolvent assoiated to �C6 a PGL(2; 5)-relative C6-invariant, where C6 isa yli group of order 6 in S6. We also ompute a Gr�obner basis ofI
f = IPGL(2;5)
f + < F (�C6) >, where F is a square-free fator, irreduibleover Q, of the PGL(2; 5)-resolvent assoiated to �C6 .



18 I. ABDELJAOUAD AND A. VALIBOUZE6. CONCLUSIONThe Haque method is a new approah of the Galois theory and it hara-terizes it with a system of equations. To be eÆient, this method an beused in the �nal step of the omplete GI-method.The omplete GI-method mirrors the desent method of Stauduhar and wean say that the di�erene is that the test for rationality of an evaluatedinvariant is replaed by a test for invariane of an ideal. It is neessary toompute a Gr�obner basis of the ideal of relations to obtain the Galois group.In this ase, if the degree of the Galois group is reasonable, it would bepreferable to use Haque method (the Haque system will not be so large).Otherwise, like the example of setion 5, it is sometimes more eÆient toompute a disriminating resolvent that will redue the list Candidate Listto one element : the Galois group.The omplete GI-Method is also used to ompute the ideal of relationswhih allows us to make algebrai omputations on the splitting �eld ofthe polynomial. So, if we want to ompute on the splitting �eld, the om-plete GI-method is the best method.REFERENCES1. I. Abdeljaouad. Pakage PrimitiveInvariant sous GAP. pub/gap/gap-3.4.4/deposit/gap/priminv.g, 1997.2. I. Abdeljaouad. Caluls d'Invariants Primitifs de groupes �nis. RAIRO - Informa-tique Thorique et Programmation, EDP-Siene, 33(1), 1999.3. J.M. Arnaudi�es and A. Valibouze. Lagrange resolvents. Rapport Interne LITP,93-61, Deember 1993.4. J.M. Arnaudi�es and A. Valibouze. Computation of the Galois group of the ResolventFators for the Diret and Inverse Galois problem. AAECC'95 Conferene. LNCS948, Paris, pages 456{468, July 1995.5. P. Aubry and A. Valibouze. Computing harateristi polynomials assoiated tosome quotient ring. MEGA'98, 1998.6. E.H. Berwik. On soluble sexti equations. Pro. London Math. So., 2(29), 1929.7. Y. Eihenlaub and M. Olivier. Computation of Galois groups for polynomial withdegree up to eleven. Preprint, Universit�e Bordeaux 1, 1995.8. J.C. Faug�ere. New generations of Gr�obner bases algorithms. Colloque MEGA'98, toappear in Workshop Solving Systems of Equations, MSRI, Berkeley, 1998.9. R. Fr�oberg. An Introdution to Gr�obner bases. Pure and Applied Mathematis, AWiley-Intersiene Series of Texts, Monographs, and Trats, 1998.10. E. Galois. Oeuvres Mathmatiques. publies sous les auspies de la SMF, GauthierVillard, 1879.11. M. Haque. Thorie de Galois des anneaux presque-simples. Journal of Algebra, 108,1987.
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