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1. INTRODUCTION

Two philosophies are proposed for computing the Galois group of a univari-
ate polynomial: the algebraic one and the numerical one. The numerical
methods provide efficient algorithms even with a high degree of precision
(see [19], [7], [13]); the algebraic methods guarantee an exact result in
reasonable time (see [21], [6]) and the work undertaken in [3] and [4] is
deterministic.

We propose two algebraic methods for computing the Galois group of an
irreducible polynomial f which we call the Hacque method (in [12]) and the
complete GI-method. We start by introducing the Hacque method: we give
in section 2 a system of characteristic equations of the Galois group as a
subgroup of the linear algebraic group. The complete GI-method is intro-
duced in section 3. It computes the Galois group thanks to an algorithm of
computation of the decomposition group of the ideal of relations (see [20]).

Throughout this article £ indicates a field of characteristic zero and f an
univariate polynomial irreducible over k. The Hacque method for comput-
ing the Galois group of f cannot be used without preliminary computation:
in fact, a minimal polynomial of a primitive element of the Galois extension
must be computed. Thus, section 4 is devoted to transform the Hacque
method into an implementable form. For this, we combine the Hacque
method with the first steps of the complete GI-method and we finally com-
pare this two methods.

* Notes Informelles de Calcul Formel numéro 2000-08, présentation orale a AAECC’13
en Novembre 1999
TSupported by the projet Galois of the UMS MEDICIS, Palaiseau, France.
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2 I. ABDELJAOUAD AND A. VALIBOUZE

2. GALOIS GROUP AS A SUBGROUP OF GLxN(K)

Let K be a finite extension field over k of degree n > 1. Let us fix
e = (ep,€1,.-.,6m), a basis of the k-vector space K, such that e¢g = 1
and m=n — 1.

2.1. Notations and Definitions

The ring of k-endomorphisms over K is denoted by L (K) and the group
of the invertible elements of L4 (K) by GL;(K). The Galois group of the
extension k | K is, by definition, the group of k-automorphisms over K. It
is denoted by Galy(K).

We set M, (k) to be the ring of n x n matrices with coefficients in k. We

denote by M].,e] the isomorphism of algebra which associates with any
k-endomorphism of £y (K) its matrix in the basis e:

M].,e] D LK) — M, (k)

f = M(f,e]

We denoted by GLy (k) the group of the invertible matrices of M, (k).
Then

GL,(k) =~ GLk(K) . (1)
For all A € K, we denote by X the multiplicative endomorphism of A
over K defined by A(z) = zA, for all z in K. Remark that the field
K ={\e€ L;(K) | X € K} is isomorphic to K.
Let K = {M[\e] € My(k) | A € K}. The field K is naturally isomorphic
to the field K. Thus, we obtain the following isomorphisms:
K~K~K . (2)
The group of the invertible elements of K (resp. of K ) is labeled by K*

(resp. I?*) The group K* is isomorphic to K* and, it is a subset of
GL(K):

K*={\eGLy(K) | Ae K*} . (3)
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We set K* = {M[\e] € My,(k)| A € K*}. Then K* C GL,(k) and we
have the following isomorphisms:

K*~K*~K* . (4)

Let G and H be two groups such that H C G. The normalizer of H in G,
denoted by Nor[G; H], is equal to :

Nor[G;H)={a € G |aHa ' = H} .
DErFINITION 2.1.  Let ¢ € GLi(K). The application g is called K -semi-

linear if for all z € K and A € K, there exists an s € Galy(K) such that
g9(zA) = g(x)s(A).

2.2. Properties of the Galois group Gal,(K) as a subgroup of
GLn (k)

PROPOSITION 2.1. The Galois group Gal,(K) is the set of the K-semi-
linear applications g of GLy(K) such that g(1) = 1.

Gal,(K) ={g € GLy(K) | gis K — semi—linear andg(1) = 1} . (5)

Proof. We note that for all g € Gal,(K), g is K-semi-linear and g(1) =
1. Conversely, let g be a K-semi-linear application such that g(1) = 1,
we have to show that Vz € k, s(z) = z. For any x € k, there exists

s € Galy(K) such that g(z) = s(x).g(1) = s(x) = . So, g € Gal,(K). 1

The following proposition is a consequence of lemma 2.1 of [11], and we
give here a direct proof:

PROPOSITION 2.2. The normalizer of K* in GLi(K) is equal to a set
containing all the K-semi-linear applications of GLi(K).

Nor[GLy(K); K*] = {g € GLy(K) | g is K—semi—linear} .  (6)

Proof. Let g € Nor[GLk(K);IA(*] be a k-endomorphism, then for all
ANE K" g oxog_1 € K*. For all A € K*, there exist p € K* verifying
goA=Jiog;let s be an application from K* to K* such that s(\) = pu
; s is a bijection of K™ because it is a surjection of K*. To prove that g

is K-semi-linear, we can only prove that g verifies g(Az) = g(x)s(\) where
s € Galy(K).
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—

(i) For A € K*, we have goX = s(A) o g ; then for any x € K,
go X(m) = s(\) o g(z) and thus go X(w) = g(z)) = g(x)s(N).

(ii) Let us verify that the bijection s is a k-morphism of K. We set A,
p € K and z € K then, according to (i), g(z(A+p)) = g(z)s(A+p). In addi-
tion, g(z(A+p)) = g(aA)+g(zpn) = g(x)s(A\)+g(z)s(p) = g(x)(s(A)+s(n)).
Thus, like g # 0, s(A + ) = s(A) + s(p).

In the same way, g(z(Ap)) = g(z)s(An) and g(z(Aw)) = g(zA)s(n) =
g(x)s(A)s(p). Since g # 0, we obtain s(Ap) = s(A)s(u). Lastly, g(1) =
g9(1)s(1) and thus s(1) = 1.

So, s € Galy(K) and the application g is K-semi-linear.

Conversely, let g be a K-semi-linear application. Let prove that for all
AeK* gologte K™

By definition, for A € K and x € K there exists s € Galg(K) such that
g(Az) = g(x)s(\). Particularly, for each A € K* and z € K, goxogfl(az) =
goAg~H(x)) = g(g~H(@)A) = g(g(2))s(A) = 25(}). Sogorog™ =s(A).
Since A € K* and s € Gali(K), the element s(A) is invertible (i.e. s(\) €
K*) and we deduce that the application g o Xo gte K. |

THEOREM 2.1. According to the propositions 2.1 and 2.2, we have :
Galy(K) = {g € Nor[GLy(K);; K] | g(1) =1} . (")

Thanks to the isomorphism (1), the Galois group as a subgroup of GL, (k)
is expressed in the following form:

Galy(K) ={A € Nor[GL,(k); K*] | Aeo) =eo} . (8)

2.3. Characterization of Gali(K) with a system of equations

We seek a system of equations which characterizes the Galois group G L, (k).
For that, in all this part, we fix A a matrix of GL, (k).

LEMMA 2.1. If the matriz A of GL, (k) verifies A(eg) = eo then we write
it in the form:

1 aro --- Amo
0 arlr - Gl

A= A : 9)

0 Alm --- Omm
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where a; ; € k for (i,j) € [L,m] x [0,m] and det(ai;); ;cpy y # 0

Proof. Obvious. |

2.8.1. Characterization of the field I*

For j € [0,m], let set M; = M][é;, e] the matrix of €; in the basis e (€; is
the multiplicative endomorphism of e;). Let A € K and X°,...,\™ € k
such that A = Y272 (Me;.

The writing

M\, €] = Z;n:o/\ij (10)

gives a characterization of the elements of the field K. Furthermore, A\ be-
longs to the field K* if and only if M (j € [0,m]) are not all zero.

Thus, (Mo, M1, ..., M,,) is a basis of K*.

2.3.2.  Characterization of Nor|GL,(k); ¥

The matrix A belongs to Nor[GL,(k);K*] if it verifies AK*A~! = K*.
This is equivalent to:

Vie [].,’ITL] , 3 (,ui,O; s uu‘i7m) € k" - {(07 . 70)} AM; = ijoui7ijA '
(11)

COROLLARY 2.1. Let A € GL, (k) and (12) the linear system of equations
deduced from (11):

AMi = Zj:oxi’j MJA, Z € [l,m] , (]‘2)

where x;; are unknown. The matriz A belongs to Nor[GLy(k);K*] if
and only if the system of equations (12) admits at least one solution p =

(ij)ielt,m].jefo,m] in k™3™

2.3.8.  Characterization of the Galois group

THEOREM 2.2. The matriz A of GL,, (k) belongs to the Galois group Galy(K)
if and only if
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(a)it is written in the form (9),
(b)the system (12) admits at least one solution.

Proof. According to the theorem 2.1, the lemma 2.1 and the section 2.3. |

DEFINITION 2.2. Let B = (b;)ijen,n) be a matrix of My (k) where
b;j are unknown. Let us put X = (2;;)ic[1,m],je[o,m] Where z;; are also
unknown entries. The following system of equations:

Bleo)=eo and  BM;=Y m; M;B,i€[l,m] (13)
J:

is called the system of equations of the Galois group Galy(K) in the basis
e.

COROLLARY 2.2. A matriz A belongs to the Galois group Galy(K) if and
only if the system (13) of equation of Galois group in the basis e admits a
solution B = A and X = p for a certain p € k™>".

2.4. Simplification of the system of equations of Gal,(K) -
Hacque system
Let u € K be a primitive element of the extension k | K (i.e. k(u) = K)
and let u™ — (@pu™ + ... 4+ a1u + ag) be its minimal polynomial over k.
For j € [0,m], we can put e; = u/. We denote by My the matrix identity.

In the basis (1, u, - .., u™), the matrix M; of the endomorphism u is written
by:
00. 0 ap
10...0 a1
]\41 — 01...0 a2
00...1anm

And for j € [0,m], we set M; = M;’

LEMMA 2.2. The system (13) of equations of Galois group in the basis
(L,u,...,u™) is equivalent to:

m
B(eo) =€y and BM,; = ijofﬂj MjB ) (14)
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where x; € k for all j € [0, m]

Proof. It is obvious that the system (13) involves the system (14). Recip-
rocally, let ¢ € [2,m] and suppose that (14) is verified. Then

= Z;nzoijj :

where y; belongs to k[zo, ..., 2] because (Mo, M, ..., Mp,) is a basis of

SN |

i

BM;B™' = (BMB™")" = (ijoijj)

LEMMA 2.3. If a matriv A € GL,(k) and pp = (po, - - ., tm) verifies the
system (14), (i.e. B = A and (zo,...,z,m) = 1 are solutions), then A is
written in the form (9) and p; = a1,; for j € [0,m].

Proof. To be convinced, it is enough to express AM; and Mf Aforj e
[0,m], in the basis (1,u,...,u™). |

THEOREM 2.3 (Hacque). A matriz A belongs to the Galois group Galy (K)
if and only if the matriz A is invertible and

1 aro --- QAmo
0 0171 e Oémyl m

A= : - . such that AM1 = ijo aq,j M]A
0 Alm - Amm

where a; j € k for (i,j) € [1,m] x [0,m].

DEFINITION 2.3.  The system of the theorem 2.3 is called Hacque system.

2.5. Example of Hacque system

Let F'=T%+108 and A € GLg(Q) such that A(eg) = eg, where (e, . . .,e5)
is the canonical basis of GLg(Q). The Hacque system for the Galois ex-
tension over Q of the polynomial F(T) = T + 108 is equal to:

AM1 = CUL()M()A+C¥171M1A+OégyleA-F043’1M3A+a471M4A+a571M5A y
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where:

and  M; = M; for i€[0,5] .

o oo o = O
O O O = O O
o o= O O O
o = O O O O
= O o o o o

o O o o o

—108

Thus the Hacque system is equivalent to the following system of 30 equa-
tions and 30 unknowns:

a3,0 — aroaz0 =0, 4,0 —aroa30 =0, as,0 — 0040 =0
—108&5,0 — 1,0005,0 = 0, Q21 — 20(17004171 = 0, Q2.0 — aio =0
@31 — i oa21 —ai1a2,0 =0, Q4,1 — a1, 0031 —ar1az =0
as,1 —1,004,1 — a1,104,0 = 0, —108as,1 — a1,05,1 — 1,150 =0
Q22 — 2a1,002,1 — a%,1 =0, Q2,3 — Q10022 — Q11021 — az1020 =0
Q24 — Q10023 — 11031 — az1030 = 0,
Q2,5 — Q1 002,4 — Q110041 — Q21040 = 0
—108a2,5 — a1,0025 — 1,151 — 2,150 = 0,
Q32 — 2041,0113,1 - 2041,1042,1 =0
3,3 — Q100032 — QV1,1Q02,2 — a%,l —asz,1002,0 =0,
Q3,4 — 01,0033 — Q11023 — Q21031 — 31030 =0
Q35 —Qr1,0003,4 — (1,1002,4 — 210041 — 3,1040 = 0,
Q4,2 — 2001,004,1 — 2001,1003,1 — 06%,1 =0
—108az,5 — a1,00035 — 1,125 — Q2,15,1 — 3,1005,0 = 0,
Q4,3 — Q1,0004,2 — Q1,1Q3,2 — Q2,102,2 — Q2,103,1 — Q1020 = 0
Q4 — 10043 — Q11033 — Q21023 — @31 — aq1a30 = 0,
Q4,5 — 01,0004,4 — Q1110034 — (02,1002, 4 — (3,1004,1 — 0iq,1040 = 0
—108as,5 — 100045 — 110035 — Q21025 — 3,105,1 — Q41050 = 0 .

as2—aioas1—or (a1 —108as1) —a2 1 (@31 —108a4,1+11664a5,1) — a3 1 (2,1 —
108&3,1 +11664O¢471 —1259712&5,1)—04471 (a1,1—108a2,1 +11664O¢371 —1259712&4,1 =+
1360488960v5.1 ) — cvs.1 (1,0 — 10811 + 11664cvs 1 — 125971203, + 136048896041 —
1469328076805,1 ) = 0

as3—aioas2—ar (a2 —108as52) —a2 1 (a3 2—108a4,24+11664a5 2) — a3 1 (2,2 —
108&33—}-116640&472 —1259712&5,2)—04471 (a2,1—108a2,2+11664a372 —1259712&434—
136048896052 ) — cvs.1 (2,0 — 108as. + 11664cvs 2 — 1259712032 + 136048896014, —
1469328076852 ) = 0

asa—ayoas3—ar (a3 —108as3) —az1 (3,3 —108cs,3+11664aus 3) — 3,1 (2,3 —
108&3,3—%1166404473—1259712&5,3)—04471 (a3,1—108a2,3+11664a3,3—1259712044,34—
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136048896015.3) — cvs 1 (ov3,0 — 108xs, 1 + 116640ra 3 — 12597120v3 3 + 136048896014 3 —
146932807680:5,3) = 0

ass—o100,4—a11 (0,4 —108as,4) —a2,1 (3,4 —108ta,4 +116640u5 4) — 3,1 (02,4 —
108cvs.4+116640vs 4 — 1259712054 ) — a1 (va,1 —108as, 4+ 1166403 4 — 1259712004 4 +
13604880605.4) — cvs.1 (cva.0 — 108cra,, + 116640z, 4 — 1259712034 + 13604889604 4 —
1469328076854 ) = 0

—108&5,5 — 1,0005,5 — a171(a4,5 - 1080&575) - a2,1(a375 - 1086!4,5 + 11664&5,5) -
a3l (az,s — 108&3,5 =+ 11664&4,5 — 1259712&5,5) — a4,1(a5,1 — 1080(275 =+ 11664&3,5 —
1259712&4,5 =+ 13604889604575) — 04571(CY5,0 — 108&5,1 =+ 116640(275 — 12597120(375 =+
136048896u4.5 — 1469328076855 ) = 0

The Galois group of F(T') = T%+ 108 is the set of matrices A verifying the
Hacque system. After the identification of this system with subgroups of
GLg(Q), we deduce that the regular representation of the Galois group of
F over Q is isomorphic to Ss.

We will see, in section 4, that the identification process of Galois group
using Hacque system is accelerated when we use the result of the first steps
of GI-method.

3. THE COMPLETE GI-METHOD

Let f be a polynomial over k of degree n and €1y be a n-tuple of n roots
of f in an algebraic closure k of k. We propose an algorithm which com-
putes the decomposition group of a given ideal and we prove that, applied
to the ideal of Qs-relations Iq,, the algorithm computes the Galois group
Galk(K) = GQf.

3.1. Notations and definitions

We denoted by S,, the symmetric group of degree n and Z,, the identity
group of S;,. For o € S, and 8 = (f1,-.-,8,) a n-tuple in 12;, we put
0.8 = (Bs),--->Be(n))- Wedenote by k[z1,...,x,] the ring of polynomial
in the variable 1, ..., x, over the field k and k[T'] the ring of polynomial
in the variable T over the field .

The action of the permutation group of degree n on k[xy,...,x,] is defined
by:
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Sp X k[x1,...,xn] —  K[z1,...,2y)
(o, P) = 0.P(xy,..., 1) = P(Toa),- -, To(n)) -

For 0 € Sp, 8 a n-tuple in k and P € klz1,...,z,], we have: 0.P(8) =
P(oof). Let J be a subset of k[z1,...,z,] and o € S,, then o(J) = {o.P |
PeJ}.

DEFINITION 3.1.  Let L be a subgroup of S,, and H a subgroup of L. The
polynomial © € k[zy,...,z,] is an L-primitive H-invariant if

H={c€eL|0c.O=0}.

DEFINITION 3.2.  The ideal of the Qg-relations, denoted by Iq,, is defined
by:

Io, ={P € klz1,...,2,] | P(Q) =0} .

DerINITION 3.3.  The Galois group of Q¢ is defined by:

Go, ={0 €8, |VP € Iy, , 0.P(Qy) =0} .

3.2. Galois Ideal and decomposition group
Let @ = (a4, -..,a,) be a n-tuple in k. A polynomial P € k[xy,...,x,] is
an a-relation if P(a) = 0.

DEFINITION 3.4.  Let L be a subgroup of S,,. The ideal I of L-invariant
a-relations defined by:

I ={Reklx,...,z,) | Vo €L)o.R(a)=0},
is called an (L, a)-Galois ideal.
The ideal IS~ is called the ideal of symmetric relations and, according to

definition 3.2, IZ» = I,,, the ideal of a-relations.

ExXAaMPLE 3.1. Let f be a polynomial over k£ of degree n and Q be a
n-tuple of ne roots of f in an algebraic closure of k. If ey, ..., e, represents
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the n elementary symmetric functions, then the polynomials e; — e1(€y),
.. en —en(Qy), called Cauchy modulus of f, form a Grobner basis of Ig;

DEFINITION 3.5.  The decomposition group Gr(I) of an ideal I C k[xy, ..., zp]
is defined by:

Gr(l)={o €8, |a(I) =1} .

Remark 3. 1. Gr(I) is a group and it verifies the following equality:

Gr(I)={o €S, |o(I) C I} .

Remark 3. 2. According to the definition 3.3, the Galois group of €2y is
the decomposition group of the ideal Ig, of g-relations:

Go, ={0 €S, |o(la,) =1Iq,} =Gr(ly,) .

G
Remark 3. 3. We have IQfo = Ig, and if H is a subgroup of Gg, then

IH =1Io,.

3.3. Computation of the Decomposition group of an ideal

THEOREM 3.1. Let ¢1,...,9s be generators of an ideal I in k[xy,...,x,].
The decomposition group Gr(I) of I is the biggest subgroup G of S,, veri-

fying:

Viell,s] and Vje[l,r] 75.9,€1 , (15)
where T, ...,7,. are generators of G.
Proof. Let gq,...,9gs be a generating system of the ideal I in k[z1,...,z,].
Let 0 € Gr(I) then o(I) = I, in particular for each generator g; of I we

have o(g;) € I. Thus, Gr(I) verifies the condition (15).
In addition let prove that Gr(I) is the biggest subgroup verifying (15): Let
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T € S, such that:
Vie[l,s|]Tg; €T . (16)

Let g € I then, g1,...,9s are generators of I so, there exist t1,...,t5 in
k[zi1,...,z,] such that g = t191+...+¢s9s. Thus 7.g is also a linear combi-
nation of 7.g1,...7.gs over k[z1,...,2,]. Thus, using identity (16), we have

T.g €I forall g€ l. Then 7 e Gr(l). |

We propose an algorithm called IDG which computes the decomposition
group of an ideal I defined by a Grébner basis of I. It also needs a list of
groups which contains the Decomposition group of I. This list is called a
Candidate List and it can contains the symmetric group S,.

The function return(G) gives us the decomposition group G of the ideal
I and the function Add(G,g) adds the permutation g to the set G. Let
g1, - --,9s be a Grobner basis of the ideal I and L a set of all the generators
of the groups in the Candidate List.

AvcoriTeM 1 (IDG(< g1,...,9s >, L)).

begin
for fel do
= {}
forge L do
ifg.f €I then Add(G,g); end if
end for
L:=G
end for
return(G)
end.

The group G is the decomposition group Gr(I) of the ideal I.

Proof. In each step of the algorithm, the group L decreases. In fact,
this group converges towards the decomposition group of the ideal I and
according to theorem 3.1, the algorithm IDG switches off in a finished
number of steps.

The step 5. of the algorithm is possible when we take a Grébner basis of .
In fact, g.f € I if and only if the remainder of the reduction of g.f under
the ideal I is equal to zero.

Let g be an element of L that does not verify the step 5. The optimization



COMPUTING THE GALOIS GROUP 13

of the algorithm can be done by removing all the factors of the elements g
in L.

3.4. Determination of the generators of I, for the
computation of Gq;,

The algorithm IDG applied to the ideal of Qf-relations gives the Ga-
lois group of Ggq,. So, in order to compute the Gq, using the complete
GI-method, we initially have to compute a Groébner basis of the ideal of
)y-relations.

A first method, due to N. Yokoyama (see [16]), consists on given a factor of
the polynomial f in some successive extension of k until the field of decom-
position of f. The disadvantage of this method, applied to our problem, is
that its cost is very high.

The GI-method is closely related to the computation of G, (see Algorithm
4.2 in [20]). It consists on computing the generators of Galois ideals using
relative resolvents. It is the method exposed in this paragraph in order to
compute the ideal of relations.

DEFINITION 3.6.  Let © € k[z1,...,z4n] and L a subgroup of S,, contain-
ing Gq,. The L-relative resolvent of 1y by © is the univariate polynomial
over k given by:

Coopn=]],., o@ =) .

When L = S, this resolvent, denoted by Le,y¢, is called the absolute resol-
vent of f by © .

DEFINITION 3.7. Let H and L be two subgroups of S,, such that H C L
and let ©® be an L-primitive H-invariant. The invariant © is L-separable

for Q; if and only if ©(Qy) is a square-free root of the resolvent Lo o, .
When L =S, O is called separable for Q.

Let E C k[z1,...,®y,]. The ideal generated by E in k[z1,...,zy] is denoted
by < E >.

THEOREM 3.2 (Valibouze). Let H and L be two subgroups of S,, such
that H C L and G, C L. Let © be an L-primitive H -invariant L-separable
for Qf and let F' be a minimal polynomial of ©(Q¢) over k. Then Igf =
I§,+ < F(0) >.
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By assumption, the polynomial F is a square-free factor, irreducible over
k, of the resolvent Lo a, L-

Proof.  See theorem 3.27 in [20]. 1

Now, first steps of the GI-method produces (like for the Hacque method) a
group L containing the Galois group Ggq,, it also gives I{;f and Candidate
List a list of subgroups of L candidate to be the Galois group. We compute
a polynomial F' square-free factor, irreducible over k, of the L-resolvent
Loy 0,1, where H and © verify the conditions of theorem 3.2 and H can
be an element of Candidate List. So, we reduce the Candidate List using
theorem 3.2. If moreover H is a subgroup of G, then, by remark 3.3, we
have: Ig, = Iéf + < F(Og) >, it is in particular the case of H = Z,,. If the
Candidate List contains one element then it is the Galois group, otherwise,
we compute a Grobner basis for the lexicographic order of I, using a very
fast algorithm developed by J. C. Faugre (see FGB in [8] or [9] for more
details on Grobner basis) and we apply the algorithm IDG to this Grobner
basis and to Candidate List in order to compute the Galois group Ggq, of

f-

4. THE CONSTRUCTIVE HACQUE METHOD

Let f be a square-free univariate polynomial over k of degree d and let K
be its decomposition field over k. The field K is of degree n as supposed
in the preceding section.

We see in section 2.4 that the Hacque system, cannot be implementable
without the minimal polynomial of a primitive element of the Galois ex-
tension of k.

The Galois resolvent allows us to compute a minimal polynomial of a prim-
itive element of &k | K, but as we will see in this section, its computation
is practically impossible. Furthermore, to be effective, the Hacque method
should not have impracticable preconditions. Thus, we search to take a
particular factor of the Galois resolvent to determine a minimal polyno-
mial of a primitive element of the Galois extension.

4.1. Minimal polynomial of a primitive element of k | K
In order to compute a primitive element of the extension field k£ | K or,
more exactly, its minimal polynomial on k, the historical method consists
on the computation and the factorization of the Galois resolvent of the



COMPUTING THE GALOIS GROUP 15

polynomial f (see [21]). In fact, any square-free factor, irreducible over k,
of this resolvent is the minimal polynomial of a primitive element of the
extension k | K. This resolvent being of degree d!, it is quite obvious that
its computation is doomed to failure over the degree d = 6.

The idea, presented here, is to compute only one factor in &k of the Galois
resolvent in order to reduce the complexity of the problem. For this, we
will use relative resolvents defined below.

DEFINITION 4.1.  Let V € k[z1,...,24]. A resolvent Ly, ¢ is called Galois
resolvent if

e it has only square-free roots,
e I is an Sy-primitive Zg-invariant.

PROPOSITION 4.1. There always exist many polynomials V' such that the
resolvent Ly, ¢ is a Galois resolvent. For such a V', each root of the Galois
resolvent is a primitive element of the algebraic extension k | K.

Proof. Since k is a perfect infinite field and f is square-free, see [10]. |

Remark 4. 1. With the assumptions of definition 3.6 and for ©® an L-
primitive H-invariant (H C L), the L-relative resolvent Lo o 5L 1S of degree
[H : L] and it is a factor of the absolute resolvent Leg, ;.

Let us consider a polynomial V' € k[z1,...,xq] such that Ly ¢ be a Galois
resolvent and let F one of its square-free factor irreducible over k. Without
loss of informations, we can suppose that V(§f) is one of the roots of F
and thus, F'is his minimal polynomial over k.

If L is a subgroup of Sy containing the Galois group Ggq, then by remark
4.1 the degree of the resolvent Ly q, 1 is the order of L and Ly, 1 is a
factor over k of the Galois resolvent Ly, ;.

If the order of the group L is sufficiently small, it is possible to compute the
resolvent Ly,o, 1. (see [15], [18] and the GI-method in [20]). Thus, to find
such group L it is necessary to apply first steps of the complete GI-method
until the computation of the Galois ideal 1§ .

4.2, Comparing Hacque method and Complete GI-method

Recall that the GI-method is the algorithm of [20] which produces the
ideal of 1y-relations and a list, called Candidate List, containing groups
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candidate to be the Galois group (see section 3.4). If the Candidate List
contains only one element, it is the Galois group Gg;, .

As the Hacque method requires the first steps of GI-method to compute
some group L, it is natural to compare the Hacque method and the complete
GI-method (see section 3). In fact, suppose that first steps of GI-method
computes a Galois ideal I{;f and a Candidate List which contains a group
L verifying conditions of section 4.1.

Let set V an L-primitive Z,-invariant. For the Hacque method, we first
must compute and factorize the resolvent Ly o, 1. Next, we identify the
Hacque system (see theorem 2.3) with some group of Candidate List to
have the Galois group.

Besides, the complete GI-method (see section 3) computes the resolvent
Lvq, L. After that, we give a Grébner basis of the ideal of 2g-relations:
Io, = I{;f—l— < F(V) > where F, a minimal polynomial of V({2¢) over k,
is a square-free factor, irreducible over k, of Ly o, . But, we prefer to
compute and factorize the resolvent Lo, o +.L where O is an L-primitive
H-invariant and H a subgroup of L contained in Gg, (the group H may
be found using Candidate List see also theorem 3.2 and section 3.4). So,
here, we compute relative resolvents of degree smaller than the degree of
the resolvent Ly o +.L computed in the Hacque method.

Furthermore, after the computation of the ideal of {¢-relations, we must
compute a Grébner basis of it in order to apply the algorithm IDG.

5. EXAMPLE OF COMPUTATION OF THE GALOIS
GROUP FOR N =6

For n = 6, let f = 2% 4+ 2. The GI-method applied to f gives a list of
groups candidate to be Galois group of f (this list contains some subgroups

of PGL(2,5)), it also gives the ideal IgfL(2’5) (see [20]):

PGL(2,5 3.3 3.2 2 3. .3 3 4
IQ,- @5 = < 24x¢ + r3xox1 + 8x3T5x) 4+ 63222 + DX3T, +
2 3 2 2 2 3 2 4 3.3
8xr3xrxr] + 4xzrrx] + 8xrzwex + 6x3TrT] +

81’33:31"11 — 4w3w2w? + 1223 + 5:L*ga:‘11 + 1222 + 14z,

3 4 3 3 3.2 2 3 3
24x5 — bayry — Trazxsxy — 16x3252] — Tx3T22)

3. 4 2 4 2.3 2 2.2 3
—dx3x] — 8r3xo71 — 122320521 — 1223252
2 4 4 2 3.3 2 4
—8x3rox] — 12x3x50] — 1632507 — 12032057
4.3 3 4
+8x3 — dbxox] — bxyw; — 2x2 — 211,

3 4 3 3 3.2 2 33
24x4 + bx3Ts + 632521 + X351 + T3T2TY



COMPUTING THE GALOIS GROUP 17

2 4 2 3 2 2 2 3
+8x3xox1 + dx3xre] + 8xr3wrw] +
4 2 3.3 2 4 5
12x3x5x] + 10x3xs2] + 4dxsrsx; + 4wsxax] +
4 3

4xs + droxy + 14xs + 1224,

4 3 3 2 2 2 2 2
Tr3 + T3T2 + 321 + T3T5 + r3x201 + T3] +

3 2 2 3 4 3

3Ty + T3xox1 + T3x2x] + 3T +To + 371 +

2 2 3 4
Trx] + 22wy + 1,

5 4 3 2 2 3 4 5
Ty + Tox1 + Tox] + x5T] + T2y + 27,

x?+2>

the Hacque method
Let V = z3 + 222 + 321 be a PGL(2, 5)-primitive Zg-invariant computed
with the algorithm PrimitiveInvariant in [1] (see [2] and [14] for the
computation of primitive invariants). The relative resolvent of f by V is
computed with the generalization of algorithm in [17] (see [5]):

Ly, panes = (T'7+ 15444 T° + 343064484)(T"* — 21164 T° + 188183524)
(T'? — 572 T° + 470596)(T° — 3456)° (T'°® + 128)°
(T° +2)*(T*? +1012T° 4 19307236)* (T° — 54)* .

The resolvent Ly, par(z,s) of degree 120 is a factor of the Galois resol-

vent Ly, of degree 6! = 720. The computation time and the factorization
of the resolvent CVVthGL@;)) is immediate (less than two seconds). Let
F =T'2 —572T° + 470596 be a square-free factor, irreducible over Q, of
Lyv,a,; Par(2,5)- S0, the Galois group is a transitive group of order 12 and
Gq, C PGL(2,5).
The Hacque system of F' is a system of 122 = 144 equations and as much
unknowns. By identification in the list of candidate containing all sub-
groups of PGL(2,5), the Galois group of F' and for f is isomorphic to Dg
the dihedral group of Ss.

the Complete GI-method

It is sufficient to compute a discriminant resolvent of degree 20 instead of
the resolvent of degree 120 for Hacque. In fact, we compute the PGL(2, 5)-
resolvent associated to O¢, a PGL(2,5)-relative Cg-invariant, where Cy is
a cyclic group of order 6 in Sg. We also compute a Grébner basis of
Io, = IgfL(2’5)+ < F(O©¢,) >, where F' is a square-free factor, irreducible
over Q, of the PGL(2, 5)-resolvent associated to Oc¢,.
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6. CONCLUSION

The Hacque method is a new approach of the Galois theory and it charac-
terizes it with a system of equations. To be efficient, this method can be
used in the final step of the complete GI-method.

The complete GI-method mirrors the descent method of Stauduhar and we
can say that the difference is that the test for rationality of an evaluated
invariant is replaced by a test for invariance of an ideal. It is necessary to
compute a Grobner basis of the ideal of relations to obtain the Galois group.
In this case, if the degree of the Galois group is reasonable, it would be
preferable to use Hacque method (the Hacque system will not be so large).
Otherwise, like the example of section 5, it is sometimes more efficient to
compute a discriminating resolvent that will reduce the list Candidate List
to one element : the Galois group.

The complete GI-Method is also used to compute the ideal of relations
which allows us to make algebraic computations on the splitting field of
the polynomial. So, if we want to compute on the splitting field, the com-
plete GI-method is the best method.
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