
HAL Id: hal-02548330
https://hal.science/hal-02548330

Submitted on 20 Apr 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A model checking decision procedure for sequential
recursive Petri nets

Serge Haddad, Denis Poitrenaud

To cite this version:
Serge Haddad, Denis Poitrenaud. A model checking decision procedure for sequential recursive Petri
nets. [Research Report] lip6.2000.024, LIP6. 2000. �hal-02548330�

https://hal.science/hal-02548330
https://hal.archives-ouvertes.fr


A Model Cheking Deision Proedure forSequential Reursive Petri NetsSerge Haddad1 and Denis Poitrenaud21 LAMSADE - UPRESA 7024, Universit�e Paris IX, DauphinePlae du Mar�ehal De Lattre de Tassigny, 75775 Paris edex 162 LIP6 - UMR 7606, Universit�e Paris VI, Jussieu4, Plae Jussieu, 75252 Paris edex 05Abstrat. Reursive Petri nets (RPNs) have been introdued to modelsystems with dynami struture. Whereas this model is a strit extensionof Petri nets and ontext-free grammars (w.r.t. the language riterion),reahability in RPNs remains deidable. However the kind of model hek-ing whih is deidable for Petri nets beomes undeidable for RPNs. In thiswork, we introdue a submodel of RPNs alled sequential reursive Petrinets (SRPNs) and we study its theoretial features. First we show that wean deide whether a RPN is a sequential one. Then, we analyze the lan-guage aspets proving that the SRPN languages still stritly inlude theunion of Petri nets and ontext-free languages. Moreover the family of lan-guages of SRPNs is losed under intersetion with regular languages (unlikethe one of RPNs). This property is the starting point for the model hekingof the ation-based linear time logi whih is also shown to be deidable.To the best of our knowledge, this is the �rst time suh a result is obtainedfor a model stritly inluding Petri nets and ontext-free grammars.1 IntrodutionIn the area of veri�ation theory, a great attention has been reently paid on in�nitestate systems. In ontrast to �nite state systems where theoretial and pratialdevelopments mainly fous on omplexity redution [Hol90℄, an essential topi inin�nite state systems is to �nd a trade-o� between expressivity of the models anddeidability of veri�ation [HM96℄. As the model heking of temporal logi formulais one of the most general approah for veri�ation, it has been intensively studiedin the framework of in�nite-state systems.Context-free grammars (also alled ontext-free proesses) have led to omple-mentary works. In [Wal96℄ , it is shown that the model heking of branhingtime �-alulus formula is deidable and that it is DEXPTIME-omplete. Whenrestriting the temporal logi formula to the linear time logi LTL, one obtainspolynomial time algorithms [BEM97,FWW97℄.In [Esp97℄, model heking for Petri nets has been studied. The branhing tem-poral logi as well as the state-based linear temporal logi are undeidable even forrestrited logis. Fortunately, the model heking for ation-based linear temporallogi is deidable. The ase of in�nite sequenes may be redued to the searh ofrepetitive sequenes studied in [Yen92℄ (an EXPSPACE-omplete problem) and



2 Serge Haddad, Denis Poitrenaudthe ase of �nite sequenes may be redued to the reahability problem [May81℄.Reently, in [Bou98℄ the reahability problem for Petri nets is also shown to beEXPSPACE-omplete. Thus the model heking omplexity is also EXPSPACE-omplete.It seems interesting to ombine ontext-free grammars and Petri nets and tolook for deidable properties. Indeed, for two suh models - the proess rewritesystems [May97℄ and the reursive Petri nets (RPNs) [HP99b℄ - the reahabilityproblem is deidable (and, due to [Bou98℄, EXPSPACE-omplete). However, forboth these two models, the model heking of ation-based temporal logi beomesundeidable. It remains undeidable even for restrited models suh as those pre-sented in [BH96℄. So (to the best of our knowledge) for any existing model stritlyinluding Petri nets and ontext-free grammars, the ation-based linear time modelheking is undeidable.In this work, we present a submodel of RPNs alled sequential reursive Petrinets (SRPNs) and we give some deision proedures inluding the model hek-ing. Roughly speaking, in reursive Petri nets some transitions emulate onurrentproedure alls by initiating a new token game in the net. The return mehanismis ensured by reahability onditions. A state of a RPN is then a tree of \tokengames".A reursive Petri net is sequential if there are �rable transitions only in thelast initiated token game. Suh a de�nition is behavioral and our �rst result isthat we an deide whether a RPN is a SRPN. We then study the language familyof SRPNs and we show that this family stritly inludes the union of Petri netsand ontext-free languages. Moreover, unlike RPNs, this family is losed underintersetion with regular languages.In the last part of the paper, building on this result, we fous on the modelheking for an ation-based linear time logi. The ase of �nite (maximal) se-quenes is handled by a straightforward adaptation of the losure result. The aseof in�nite sequene is more triky and requires to distinguish w.r.t. the asymptotibehavior of the depth of token games in an in�nite sequene. Based on this analysis,we obtain an EXPSPACE upper bound for the deision proedure.Due to the spae restritions, only skethes of proof are given in the paper.However in appendix, we give omplete proofs for the main propositions. Thisappendix will be omitted in the �nal version.2 Sequential Reursive Petri Nets2.1 Reursive Petri netsA RPN has the same struture as an ordinary one exept that the transitions arepartitioned into two ategories: elementary transitions and abstrat transitions.Moreover a starting marking is assoiated to eah abstrat transition and a ef-fetively semilinear set of �nal markings is de�ned. The semantis of suh a netmay be informally explained as follows. In an ordinary net, a thread plays thetoken game by �ring a transition and updating the urrent marking (its internalstate). In a RPN there is a dynamial tree of threads (denoting the fatherhood



A Model Cheking Deision Proedure for Sequential Reursive Petri Nets 3relation) where eah thread plays its own token game. The step of a RPN is thusa step of one of its threads. If the thread �res an elementary transition, then itupdates its urrent marking using the ordinary �ring rule. If the thread �res anabstrat transition, it onsumes the input tokens of the transition and generates anew hild whih begins its token game with the starting marking of the transition.If the thread reahes a �nal marking, it may terminate aborting its whole desentof threads and produing (in the token game of its father) the output tokens of theabstrat transition whih gave birth to him. In ase of the root thread, one obtainsan empty tree.De�nition 1 (Reursive Petri nets). A reursive Petri net is de�ned by a tu-ple N = hP; T;W�;W+; 
; � i where{ P is a �nite set of plaes, T is a �nite set of transitions.{ A transition of T an be either elementary or abstrat. The sets of elementaryand abstrat are respetively denoted by Tel and Tab (with T = Tel℄Tab where℄ denotes the disjoint union).{ W� and W+ are the pre and post ow funtions de�ned from P � T to IN.{ 
 is a labeling funtion whih assoiates to eah abstrat transition an ordinarymarking (i.e. an element of INP ) alled the starting marking of t.{ � is an e�etively semilinear set of �nal markings (any usual syntax an beaepted for its spei�ation).De�nition 2 (Extended marking). An extended marking tr of a reursive Petrinet N = hP; T;W�;W+; 
; � i is a labeled tree tr = hV;M;E;Ai where{ V is the set of verties,{ M is a mapping V ! INP ,{ E � V � V is the set of edges and{ A is a mapping E ! Tab.A marked reursive Petri net hN; tr0i is a reursive Petri net N assoiated to aninitial extended marking tr0.We denote by v0(tr) the root node of the extended marking tr. The empty treeis denoted by ?. Any ordinary marking m an be seen as an extended marking,denoted by dme, onsisting of a single node. For a vertex v of an extended marking,we denote by pred(v) its (unique) predeessor in the tree (de�ned only if v isdi�erent from the root) and by Su(v) the set of its diret and indiret suessorsinluding v (8v 2 V; Su(v) = fv0 2 V j (v; v0) 2 E�g where E� denotes thereexive and transitive losure of E). An elementary step of a RPN may be eithera �ring of a transition or a losing of a subtree (alled a ut step and denoted by�).De�nition 3. A transition t is enabled in a vertex v of an extended marking tr(denoted by tr t;v�!) if 8p 2 P;M(v)(p) � W�(p; t) and a ut step is enabled in v(denoted by tr �;v�!) if M(v) 2 �



4 Serge Haddad, Denis PoitrenaudDe�nition 4. The �ring of an enabled elementary step t from a vertex v ofan extended marking tr = hV;M;E;Ai leads to the extended marking tr0 =hV 0;M 0; E0; A0i (denoted by tr t;v�!tr0) depending on the type of t.{ t 2 Tel� V 0 = V , E0 = E , 8e 2 E;A0(e) = A(e), 8v0 2 V n fvg, M 0(v0) =M(v0)� 8p 2 P;M 0(v)(p) =M(v)(p)�W�(p; t) +W+(p; t){ t 2 Tab� V 0 = V [ fv0g , E0 = E [ f(v; v0)g, 8e 2 E;A0(e) = A(e) , A0((v; v0)) = t� 8v00 2 V n fvg;M 0(v00) =M(v00), 8p 2 P;M 0(v)(p) =M(v)(p)�W�(p; t)� M 0(v0) = 
(t)where v0 is a fresh identi�er absent in V{ t = �� V 0 = V n Su(v) , E0 = E \ (V 0 � V 0) , 8e 2 E0; A0(e) = A(e)� 8v0 2 V 0 n fpred(v)g;M 0(v0) =M(v0)� 8p 2 P;M 0(pred(v))(p) =M(pred(v))(p) +W+(p;A(pred(v); v))Let us notie that if v is the root of the tree then the �ring of � leads to toempty tree ?.The depth of an extended marking is reursively de�ned as 0 for ?, 1 for aunique vertex and, for the general ase, the maximum depth of the diret sub-trees of the root inremented by one. For an extended marking tr, its depthis denoted by depth(tr). A �ring sequene is de�ned as usual: a sequene � =tr0(t0; v0)tr1(t1; v1) : : : (tn�1; vn�1)trn is a �ring sequene (denoted by tr0 ��!trn)i� triti;vi�!tri+1 for i 2 [0; n� 1℄. We de�ne the depth of � as the maximal depth oftr1, tr2, . . . , trn. In the sequel, for sake of simpliity, � will be often denoted by� = t0t1 : : : tn�1
= {m | m(p    ) > 0 or m(p     ) > 0}Υ
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Fig. 2. a �ring sequenewhih the following step is �red is represented in blak. One an notie that eah�ring of abstrat transition leads to the reation of a new node in the tree whereasthe �ring of the last ut step prunes a subtree not redued to one node.2.2 Sequential Reursive Petri NetsIn a reursive Petri net, there are two kinds of parallelism between ativities: on-urrent �rings inside the same node and onurrent �rings in di�erent nodes. Inorder to model \sequential all" with abstrat transitions, the seond kind of par-allelism must be forbidden. This is the aim of the next de�nition.De�nition 5 (Sequential Reursive Petri Nets). Let hN; tr0i be a marked re-ursive Petri net. hN; tr0i is a sequential reursive Petri net if the following ondi-tions hold:{ tr0 is a tree omposed by only one node,{ Eah reahable extended marking of N from tr0 satis�es� eah node has at most one suessor,� there is no enabled step in a node di�erent to the leaf.The �rst ondition is imposed for sake of simpliity but is not a theoretialrestrition. As an example, the net of Fig. 1 is a SRPN i� n is equal to one. Weould have hosen an alternative syntatial de�nition (with an additional ontrolplae) but the present one leads to the next statement.Proposition 6 (SRPN lass belonging). Let hN; tr0i be a marked RPN, onean deide whether hN; tr0i is a SRPN.Sketh of Proof. A RPN is not a SRPN i� there is a node within a reahableextended marking where one an �re simultaneously an abstrat transition andany other step (a property de�ned by an e�etively semilinear set of markings).We proeed in two stages. We ompute all the starting markings of a node in areahable extended marking (there are only a �nite number). Then, for any suhmarking, we look in this node whether we an reah the above semilinear set.The e�etiveness of these two steps is dedued from the deision proedure for thereahability problem of RPN (see the appendix for more details).



6 Serge Haddad, Denis Poitrenaud3 Language PropertiesWe denote by L(N; tr0; T rf ) (where Trf is a �nite extended marking set) the set of�ring sequenes (mapped on (T [�)�) of N from tr0 to an extended marking of Trf .This set is alled the language of N . More generally, the languages we will onsiderare de�ned via a labeling funtion. A labeled marked reursive Petri net is a markedreursive Petri net and a labeling funtion h de�ned from the transition set T [f�gto an alphabet � plus � (the empty word). h is extended to sequenes and thento languages. The language of a labeled marked reursive Petri net hhN; tr0i; �; hifor a �nite extended marking set Trf is de�ned by h(L(N; tr0; T rf )).We now study the properties of the languages generated by labeled SRPNs.These languages are de�ned for a given �nite set of terminal extended markings.For sake of simpliity, we impose that suh sets are omposed by extended markinglimited to a single node. One an remark that this ondition is not a theoretialrestrition. The �rst result onerning the languages generated by SRPNs is abouttheir relation with Petri net and ontext-free languages.Theorem 7 (Strit inlusion). SRPN languages stritly inlude the union ofontext-free and Petri net languagesWe prove that SRPN languages are losed under intersetion with regular lan-guages. For a SRPN and an automaton (see appendix for de�nition and notation),both labeled on a same alphabet, we de�ne a produt SRPN resulting of their om-position and demonstrate that its language is the intersetion of their respetivelanguages.The produt SRPN is onstruted from the plaes of the original one by addinga plae set Q whih orresponds to the states of the automaton. As usual, theelementary transitions are synhronized with the ones of the automaton using thesenew plaes. For eah extended ar q a=)q0 (with a 2 �[f�g) of the automaton andfor eah elementary transition t suh that h(t) = a, an elementary transition t:q:q0,having W�(t) + q as pre-ondition and W+(t) + q0 as post-ondition, is added.When an abstrat transition is �red a new node appears and, due to the SRPNde�nition, the token game is limited to this node. Then, we have to predit the statereahed by the automaton when the opened branh will be losed. The abstrattransitions onstruted in the produt SRPN are denoted t:q:q0:q00 where the pre�xt:q:q0 expresses the same onditions as for the elementary transitions (exeptedthat t is an abstrat transition of the original net). For eah state q00 2 Q suh anabstrat transition is added (the predition is non deterministi). To ensure thatthe predited state is e�etively reahed when the ut step losing the branh is�red, a set of plaes Q (omplementary to Q) is used. The �ring of an abstrattransition t:q:q0:q00 leads to the reation of a new node for whih its starting markinghas the plae q00 marked. Using these plaes, the e�etively semilinear set of �nalmarkings is built in order to ensure that the predited state is e�etively reahed.Let us notie that this omposition orresponds to a weak synhronization as sometransitions of the SRPN an be labeled by �.



A Model Cheking Deision Proedure for Sequential Reursive Petri Nets 7De�nition 8 (Produt SRPN). Let A = h�;Q;�; q0i be an automaton andS = hhN; dm0ei; �; hi a labeled SRPN. The produt RPN of A and S is a labeledmarked RPN hhN 0; dm00ei; �; h0i de�ned by{ P 0 = P [Q [Q, m00 = m0 + q0{{ T 0el = ft:q:q0 j (t 2 Tel) ^ (q; q0 2 Q) ^ (q h(t)=)q0)g{ 8t:q:q0 2 T 0el,� h0(t:q:q0) = h(t), W 0�(t:q:q0) =W�(t) + q, W 0+(t:q:q0) =W+(t) + q0{ T 0ab = ft:q:q0:q00 j (t 2 Tab) ^ (q; q0; q00 2 Q) ^ (q h(t)=)q0)g{ 8t:q:q0:q00 2 T 0ab,� h0(t:q:q0:q00) = h(t)� W 0�(t:q:q0:q00) =W�(t) + q, W 0+(t:q:q0:q00) =W+(t) + q00� 
0(t:q:q0:q00) = 
(t) + q0 + q00{ � 0 = fm+ q + q0 j (m 2 � ) ^ (q; q0 2 Q) ^ (qh(�)=)q0)g{ h0(�) = h(�)It is lear that the onstruted RPN is a SRPN as the initial marking is atree limited to a single node and the pre and post onditions of the initial SRPNare preserved and enrihed by the automaton ow. In Fig. 3 of appendix, thebehavior of this produt is illustrated and ommented. The next theorem showsthe soundness of this building.Theorem 9 (SRPN produt property). Let A = h�;Q; Æ; q0i be an automa-ton, F � Q a set of �nal states, S = hhN; dm0ei; �; hi a labeled SRPN and Mf aset of terminal markings. Let hhN 0; dm00ei; �; h0i be the produt SRPN of A and Sand M 0f = fdm+ qe j dme 2Mf ^ q 2 Fg. The following equality holdsh0(L(N 0; dm00e;M 0f )) = h(L(N; dm0e;Mf )) \ L(A;F )Corollary 10 (SRPN losure). The family of SRPN languages is losed underintersetion with regular languages.The SRPN losure property gives the starting point for the deidability of themodel heking problem. Moreover, in [HP99a℄, it is demonstrated that the RPNlanguages are not losed under intersetion with regular ones leading to the nextorollary.Corollary 11 (SRPN versus RPN). The family of SRPN languages is stritlyinluded in the family of RPN languages.4 Model ChekingThe model heking that we investigate is the ation based linear-time �-alulusapplied to SRPNs. The usual veri�ation method onsists to hek the existeneof a sequene of the system ful�lling the negation of the formula. Depending onthe kind of the sequene, di�erent semantis have been de�ned. We will study themain ones: �nite sequenes, maximal �nite sequenes (leading to a deadlok), in�-nite sequenes, divergent sequenes (in�nite sequenes ended by a non observablesubsequene). As a linear-time �-alulus formula is equivalently represented by aB�uhi automaton, we limit ourselves to this representation.



8 Serge Haddad, Denis Poitrenaud4.1 Finite and maximal �nite sequenesWhen the searhed sequenes are �nite, B�uhi automata are nothing else than or-dinary automata. A slight adaptation of the produt of a SRPN and an automatonmakes possible the redution of the model-heking problem to a reahability prob-lem for the produt SRPN. In ase of maximal �nite sequenes, adaptation is stillpossible although more intriate (see the appendix for details).Theorem 12 (Aeptane of �nite sequenes). Let A = h�;Q; Æ; q0i be anautomaton, F � Q a set of �nal states and S = hhN; dm0ei; �; hi a labeled SRPN.The existene of a �nite �ring sequene � of S suh that h(�) 2 L(A;F ) is deid-able.Theorem 13 (Aeptane of maximal �nite sequenes). Let A = h�;Q; Æ;q0i be an automaton, F � Q a set of �nal states and S = hhN; dm0ei; �; hi alabeled SRPN. The existene of a �nite �ring sequene � of S suh that � leads toa deadlok of N and h(�) 2 L(A;F ) is deidable.4.2 In�nite and divergent sequenesWe are looking for an in�nite �ring sequene of the SRPN aepted by a B�uhiautomaton. We will perform two independent searhes depending on a harater-isti of the sequene: the asymptoti behavior of the depth of the sequene. Let� = dm0et1;v1�!tr1t2;v2�! : : : tri�1ti;vi�!tri : : : be an in�nite sequene, we de�ne dinf (�) =lim inf i!1 depth(tri) (de�ned by limi!1 inf j�ifdepth(trj)g). dinf (�) always ex-ists but it an be either �nite or in�nite.In ase of a �nite value, there exists a stritly inreasing sequene of indexesi1; : : : ; ik; : : : suh that:{ beyond i1 the set of indexes fi1; i2; : : : ; ik; : : :g is exatly the indexes for whihthe depth of the visited extended markings is equal to dinf (�)(8i � i1; depth(tri) = dinf (�), i 2 fi1; i2; : : : ; ik; : : :g){ beyond i1 the depth of the visited extended markings will be greater or equalthan dinf (�) (8i � i1; depth(tri) � dinf (�)){ i1 is the �rst index from whih the depth of the visited extended markings willbe no more less than dinf (�) (8i < i1; 9j � i; depth(trj) < dinf (�))So � will be deomposed as dm0e �0�!tri1 �1�! : : : trik �k�!trik+1 : : : where �0 endswith the �ring of an abstrat transition leading to an extended marking of depthdinf (�) (with the reation of a new node) and �k is either a �ring of an elementarytransition in this node or a sequene beginning by the �ring of an abstrat transitionin this node and ended by a orresponding ut step.In ase of an in�nite value, there exists a stritly inreasing sequene of indexesi1; : : : ; ik; : : : suh that:{ k is the depth of the extended marking trik (8k; depth(trik ) = k){ beyond ik the depth of the visited extended markings will be greater or equalthan k (8i � ik; depth(tri) � k)



A Model Cheking Deision Proedure for Sequential Reursive Petri Nets 9{ ik is the �rst index from whih the depth of visited extended markings will beno more less than k (8i < ik; 9j � i; depth(trj) < k)So � will be deomposed as dm0e = tri1 �1�!tri2 �2�! : : : trik �k�!trik+1 : : : where�k begins by a �ring in an extended marking of depth k, ends with the �ring of anabstrat transition leading to an extended marking of depth k + 1 and suh thatall the extended markings visited by �k have a depth greater or equal than k.In order to build in�nite sequenes from the deompositions shown above, wemust be able to hek the existene of some �nite �ring subsequenes beginningand ending in the same node of the two extended markings and orrespondingto paths of the B�uhi automaton. Moreover, we want to distinguish two asesdepending on the visit of an aepting state of the automaton. The heking of theexistene of suh �nite sequenes may be done similarly as the model-heking of�nite sequenes.We are now in position to explain the two main proedures. Looking for asequene � with dinf (�) �nite, we �rst ompute the ouples of starting markingsand automaton states reahable by a �ring sequene. We build an ordinary Petrinet representing an abstrat view of sequenes of the SRPN (reognized by theautomaton) where the suessive extended markings visited by the sequene arein�nitely often redued to a single node. Then, for eah ouple as initial markingof this Petri net, we look for an in�nite sequene visiting a subset of transitionsin�nitely often (this an be done by the algorithm of [Yen92℄).Looking for a sequene � with dinf (�) in�nite, we build a graph where the nodesare the omputed ouples of the �rst proedure and an edge denotes that one nodehas been reahed from the other one by a sequene inreasing by one the depth ofthe visited extended markings and suh that the intermediate subsequenes neverderease the depth below its initial value. The edges are partitioned depending onthe visit by the sequene of an aepting state of the B�uhi automaton. Then theexistene of an aepting in�nite sequene is equivalent to the existene of somekind of strongly onneted omponent.Although we will not prove it in the paper, the omplexity of these proedures isEXSPACE thus, due to the lower bound for Petri nets, the model-heking problemis EXSPACE-omplete. The ase of divergent sequenes is handled similarly (seethe appendix for proof of Th. 14).Theorem 14 (Aeptane of in�nite sequenes). Let A = h�;Q; Æ; q0i be anautomaton, F � Q a set of aepting states and S = hhN; dm0ei; �; hi a labeledSRPN. The existene of an in�nite sequene � of hN; dm0ei suh that h(�) is anin�nite word reognized by a path q0 a1�!q1 a2�! : : : of A satisfying jfi j qi 2 Fgj =1is deidable.Theorem 15 (Aeptane of divergent sequenes). Let A = h�;Q; Æ; q0i bean automaton, F � Q a set of aepting states and S = hhN; dm0ei; �; hi a labeledSRPN. The existene of an in�nite sequene � of hN; dm0ei suh that h(�) is a�nite word reognized by a path q0 a1�!q1 a2�! : : : an�!qn of A with qn 2 F is deidable.



10 Serge Haddad, Denis Poitrenaud5 ConlusionIn this work, we have introdued sequential reursive Petri nets and studied theirtheoretial features. At �rst we have shown how to deide whether a RPN is aSRPN. Then, we have studied the language family of SRPNs and proved that thisfamily stritly inludes the union of Petri nets and ontext-free languages. More-over, unlike RPNs, this family is losed under intersetion with regular languages.In the last part of the paper, we have foused on the model heking for an ation-based linear time logi and obtained an EXPSPACE upper bound for the deisionproedure.An important harateristi of SRPNs is their apability to generate in�nite in-degree transition systems. Suh a feature makes possible to model dynami systemswhih an be handled neither by proess algebra nor by Petri nets. So, we planto study with SRPNs fault tolerant systems and similar ones whih require thisapability.Referenes[BEM97℄ A. Bouajjani, J. Esparza, and O. Maler. Reahability analysis of pushdownautomata: Appliation to model-heking. In Pro. of CONCUR'97, 1997.[BH96℄ A. Bouajjani and P. Habermehl. Constraint properties, semi-linear systems,and Petri nets. In Pro. of CONCUR'96, volume 1119 of Leture Notes inComputer Siene. Springer Verlag, 1996.[Bou98℄ Z. Bouziane. A primitive reursive algorithm for the general Petri net. In Pro.39th IEEE Symp. Foundations of Computer Siene, 1998.[Esp97℄ J. Esparza. Deidability of model heking for in�nite-state onurrent systems.Ata Informatia, 34:85{107, 1997.[FWW97℄ A. Finkel, B. Willems, and P. Wolper. A diret symboli approah to modelheking pushdown systems. In Pro. of INFINITY'97, 1997.[HM96℄ Y. Hirshfeld and F. Moller. Deidability results in automata and proess theory.In Logis for Conurreny: Struture versus Automata, volume 1043 of LetureNotes in Computer Siene Tutorial, pages 102{148. Springer Verlag, 1996.[Hol90℄ G. J. Holzmann. Design and Validation of Computer Protools. Prentie Hall,November 1990.[HP99a℄ S. Haddad and D. Poitrenaud. Deidability and undeidability results for reur-sive Petri nets. Tehnial Report 019, LIP6, Paris VI University, Paris, Frane,September 1999.[HP99b℄ S. Haddad and D. Poitrenaud. Theoretial aspets of reursive Petri nets. InPro. 20th Int. Conf. on Appliations and Theory of Petri nets, volume 1639 ofLeture Notes in Computer Siene, pages 228{247, Williamsburg, VA, USA,June 1999. Springer Verlag.[May81℄ E.W. Mayr. An algorithm for the general Petri net reahability problem. InPro. 13th Annual Symposium on Theory of Computing, pages 238{246, 1981.[May97℄ R. Mayr. Deidability and Complexity of Model Cheking Problems for In�nite-State Systems. PhD thesis, TU-M�unhen, 1997.[Wal96℄ I. Walukiewiz. Pushdown proesses: Games and model heking. In Int. Conf.on Computer Aided Veri�ation, volume 1102 of Leture Notes in ComputerSiene, pages 62{74. Springer Verlag, 1996.[Yen92℄ H-C. Yen. A uni�ed approah for deiding the existene of ertain Petri netpaths. Information and Computation, 96:119{137, 1992.



A Model Cheking Deision Proedure for Sequential Reursive Petri Nets 11A AppendixAutomaton of Set. 3An automaton is a tuple A = h�;Q;�; q0i where � is an alphabet, Q a �nite setof states, � � Q � � � Q a transition relation and q0 2 Q an initial state. Asusual, we denote by q a�!q0 that (q; a; q0) 2 �. Moreover, the extension of �! tosequenes over � is denoted by =) and is de�ned as follows:{ 8q 2 Q; q �=)q{ 8q; q0 2 Q; q !a=)q0 , 9q00; q !=)q00 ^ q00 a�!q0For an automaton A = h�;Q;�; q0i and a state set F � Q, we denote byL(A;F ) the set of sequenes f! 2 �� j 9q 2 F; q0 !=)qg.Proof of Prop. 6 (SRPN lass belonging)Proof. Alg. A.1 deides if a given marked RPN belongs to the SRPN lass. In thisalgorithm, the ordinary net Nelem is onstruted from the RPN in the followingway: eah abstrat transition is removed and for eah losable abstrat transition,an elementary transition (having the same pre and post sets) is added. An abstrattransition t is said losable if ? is reahable from the extended marking omposedby a single node orresponding to the starting marking 
(t). An algorithm forthe omputation of the losable abstrat transitions an be found in [HP99b℄. Inthe algorithm A.1, a set " Pre(t) denotes the e�etively semilinear set of ordinarymarkings in whih the transition t is enabled (" Pre(t) = fm j 8p 2 P;m(p) �W�(p; t)g).Now, we prove the orretness of the algorithm A.1. Let (N; tr0) be a RPNwhih is not a SRPN. Then either tr0 is not an extended marking omposed with asingle node or there exists a �ring sequene � = t1:t2 : : : tn leading to an extendedmarking trn = hV;M;E;Ai suh that (8v 2 V; jSu(v)j � 1)^(9v 2 V; jSu(v)j =1 ^ (9t 2 T;8p 2 P;M(v) �W�(p; t)) _ (M(v) 2 � )).The �rst test realized by the algorithm detets that the initial extended markinghas most than one node. Then, we have to demonstrate that the seond ase is welldeteted by the remainder of the algorithm.Let � be a minimal sequene satisfying these onditions. Let ti be the abstrattransition for whih its �ring has led to the reation of the suessor node of v.Beause � is minimal, ti is the last transition �red in � at the level of v. Moreover,beause ti is an abstrat transition, this �ring only onsumes tokens in M(v). Wean dedue that either t and ti are onurrent or (M(v) + W�(tj)) 2 � . Thisondition is deteted by the algorithm if the set Examine ontains the ordinarymarking from whih the thread of v has began. This ordinary marking an be eitherthe initial marking of v0(tr0) or the starting marking assoiated to the abstrattransition for whih its �ring has led to the reation of the node v. It is lear that,by onstrution, this marking belongs to Examine . ut



12 Serge Haddad, Denis PoitrenaudAlgorithm A.1 SRPN lass belongingboolean SRPN(RPN N; extended marking tr)beginif Su(v0(tr)) 6= ; thenreturn false;�;Enable = ;;Examine = ;;ToExamine =M(v0(tr));while ToExamine 6= ; dom = Pik(ToExamine);Examine = Examine [ fmg;forall t 2 Tab n Enable doif Reahable(Nelem;m; " Pre(t)) thenEnable = Enable [ ftg;if 
(t) =2 Examine thenToExamine = ToExamine [ f
(t)g;�;�;od;od;forall m 2 Examine doif Reahable(Nelem;m;St2Tab(" Pre(t)) + (St02T (" Pre(t0)) [ � )) thenreturn false;�;od;return true ;endProof of Th. 7 (Strit inlusion)Proof. It is obvious that any PN is a SRPN. Moreover, in [HP99b℄, it is demon-strated that any ontext-free language an be simulated by a RPN. We an remarkthat the proposed onstrution of the RPN orresponding to a ontext-free lan-guage leads to a SRPN. In the same paper, it is shown that RPN languages stritlyinlude the union of ontext-free and Petri net languages. The proof of this resultexhibits a RPN for whih its language is neither PN nor ontext-free language. Wean remark that this RPN is a SRPN. Then, we an onlude that the languagefamily of SRPN stritly inludes the union of the ontext-free and PN languages.utIllustration of the produt SRPN behavior (Def. 8)The use of the omplementary plaes Q is illustrated in Fig. 3. A sequene of aSRPN and a path in an automaton as well as the sequene of the produt SRPNorresponding to the synhronization of both are presented. In the produt SRPN,we have t01 = t1:q0:q1:q3 and t02 = t2:q1:q1:q2. When an abstrat transition is �red,
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Fig. 3. synhronization of a SRPN with an automaton versus a produt SRPNthe automaton state reahes by the ut step losing the opened branh is preditedand oded in an element of Q. The e�etively semilinear set � 0 ensures that thegood predited state is e�etively reahed by the �ring of the ut step.When the abstrat transition t1 is �red the automaton moves from q0 to q1and it is predited that the opened branh will be losed by a ut step leading theautomaton to the state q3 (the plae q3 is marked in the leaf node). This preditionis realized at the end of the given sequene.From this example, it is lear that the produt SRPN an make some badpreditions. Moreover, bad preditions annot lead to terminal markings whihde�ned the language of the produt. However, the existene of a good preditioninsures that a word of the intersetion of the automaton and the SRPN languageswill be produed by a �ring sequene of the produt.Proof of Th. 9 (SRPN produt property)Proof. First, we demonstrate that to eah word ! of h0(L(N 0; dm00e;M 0f )) orre-sponds a sequene � in L(N; dm0e;Mf ) suh that h(�) = ! and ! 2 L(A;F ).Let �0 be any sequene of N 0 suh that dm00e �0�!tr0 (with tr0 = hV 0;M 0; E0; A0i)and h0(�0) = !. From the de�nition 8, it is easy to show that there exists a uniqueplae q 2 Q marked in the leaf node of tr0.We de�ne a mapping z from T 0 to T depending on there types{ 8t:q:q0 2 T 0el; z(t:q:q0) = t{ 8t:q:q0:q00 2 T 0ab; z(t:q:q0:q00) = t{ z(�) = �Moreover, we de�ne the extended marking tr = hV;M;E;Ai as follows:{ V = V 0{ 8v 2 V;M(v) =M 0(v) n (Q [Q){ E = E0



14 Serge Haddad, Denis Poitrenaud{ 8e 2 E;A(e) = z(A0(e))From the de�nition 8, it is lear that tr is an extended marking of N . Moreover,it is straightforward that z(�0) is a sequene of N from dm0e to the extendedmarking tr. Indeed, m00 is a superset of m0 and the pre and post onditions of thetransitions in T 0 are supersets of the ones in T . Finally, from the de�nition of thepre and post onditions of the transitions in T 0, we an dedue a path in A from q0to the state q and from the de�nition of h0 and z, we an onlude that this pathreognizes the word !.We an apply this proof to any word ! of h0(L(N 0; dm00e;M 0f )) and demonstratethat the extended marking reahed by the orresponding sequene in N belongs toMf .Now, we demonstrate that to eah word ! of h(L(N; dm0e;Mf )) \ L(A;F )orresponds a sequene �0 in L(N 0; dm00e;M 0f ) suh that h0(�0) = !.Let ! = a0:a1 : : : an be a word of h(L(N; dm0e;Mf )) \ L(A;F ). Then, thereexists a sequene � = dm0et1;v1�!tr1t2;v2�! : : : tm;vm�! dmfe suh that dmfe 2 Mf andh(�) = !. Moreover, there exists a path q0 a1�!q1 a2�! : : : an�!qn in A suh that qn 2F . We have to demonstrate the existene of a sequene �0 of N 0 from dm0+ q0e todmf + qne suh that dmf + qne 2M 0f and h0(�0) = !.First, we de�ne a mapping ind from [0;m℄ to [0; n℄.{ ind(0) = 0{ 8i 2 [1;m℄; h(ti) 6= � ) ind(i) = ind(i� 1) + 1{ 8i 2 [1;m℄; h(ti) = � ) ind(i) = ind(i� 1)We an remark that 8i 2 [1;m℄; h(t1 : : : ti) = a1 : : : aind(i).Then, we de�ne a mapping z0 from ft1; t2; : : : ; tmg to T 0 depending on theirtypes{ 8i 2 [1::m℄; ti 2 Tel ) z0(ti) = ti:qind(i�1):qind(i){ 8i 2 [1::m℄; ti 2 Tab ) let j be the minimal range suh that j > i^ depth(tri�1) = depth(trj); z0(ti) = ti:qind(i�1):qind(i):qind(j){ 8i 2 [1::m℄; ti = � ) z0(ti) = �We an notie that for an abstrat transition, the range j always exists be-ause the depths of the initial and �nal markings of the sequene are equal toone and beause the �rings our only in the leaf node. More generally, for anextended marking tri visited by �, we denote the range of the ut step whihloses the branh opening at the depth d by return(i; d) (i.e. 8i 2 [1::m℄;80 � d <depth(tri); return(i; d) = Min(fj > i j depth(trj) = dg)).We only have to demonstrate that z0(�) is a �ring sequene of N 0 from dm0+q0eto dmf + qne. Indeed, from the de�nition of M 0f , it is lear that dmf + qne 2M 0f .For a given range i 2 [0::m℄, we formulate some hypotheses (Hyp) on tri,�i = t1 : : : ti, !i = a1 : : : aind(i) and q0; : : : ; qind(i) in relation with tr0i and �0i =z0(t1) : : : z0(ti).
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(Hyp)8>>>>>>>>>><>>>>>>>>>>:

- z(�0i) = �i- h0(�0i) = !i- depth(tr0i) = depth(tri)- 81 � d � depth(tr0i);MjP (tr0i; d) =M(tri; d)-MjQ(tr0i; depth(tr0i)) = fqind(i)g- 81 � d < depth(tr0i);MjQ(tr0i; d) = ;-MjQ(tr0i; 1) = ;- 81 < d � depth(tr0i);MjQ(tr0i; d) = fqind(return(i;d�1))gwhere M(tr; d) denotes the ordinary marking labeling the node of depth 0 <d � depth(tr) of the extended marking tr (this node is unique beause eah nodeof a SRPN extended marking has at most one suessor).From the de�nitions of h0 and z0, we an easily dedue that h0(z0(�)) = ! andthen the two �rst hypotheses are satis�ed for any i. For the others, we reasonindutively on the size of the pre�x of z0(�). If this size is equal to zero, it is learthat (Hyp) holds. Let (Hyp) satis�ed for a pre�x of length k � 1, we demonstratethat it is veri�ed for k.{ If z0(tk) = tk:qind(k�1):qind(k) 2 T 0el. We know by the hypotheses on theextended marking tr0k�1 that the pre ondition of tk is marked in the leafnode as well as the plae qind(k�1). And then the transition t0k is enabled(W 0�(tk:qind(k�1):qind(k)) = W�(tk) + qind(k�1)). Moreover, its �ring leads toan extended marking satisfying the hypotheses (the plae qind(k) is unmarkedand the plae qind(k+1) marked and the �ring on the leaf marking projeted onP has the same e�et of the �ring of tk in �).{ If z0(tk) = tk:qind(k�1):qind(k):qind(return(k;depth(trk�1)) 2 T 0ab. Like for elemen-tary transition, we know that the transition t0k is enabled. Its �ring leads tounmark the plae qind(k�1) and to the reation of a new leaf node having
(tk) + qind(k) + qind(return(k;depth(trk�1)) as marking. It is lear that this newextended marking satis�es the hypotheses. Moreover, by the de�nition of z0and the predition of ind(return(k; depth(trk�1)), we know that the automatonmust reah the state qind(return(k;depth(trk�1)) when the branh will be losed.{ If z0(tk) = � . Knowing that the transition tk is a ut step in � and by thehypotheses on the extended marking, we know that the marking in the leafnode projeted on P belongs to � . Moreover, we know that the plae qind(k�1)is marked in this node as well as the plae qind(return(k�1;depth(trk�1)�1)). Buttk = � and then return(k�1; depth(trk�1)�1) = k. We an dedue that qind(k)is marked in the leaf node. Moreover, if h(�) 6= �, beause ! is a path of theautomaton, we have qind(k�1)aind(k)�! qind(k) and then a ut step is enabled fromtr0k�1. If h(�) = � then ind(k � 1) = ind(k) and a ut step is also enabled . Inboth ases, from the de�nition of � 0 and T 0ab, we an dedue that the hypothesesare satis�ed for the reahed extended marking. ut



16 Serge Haddad, Denis PoitrenaudProof of Th. 12 (Aeptane of �nite sequenes)Proof. Let hhN 0; dm00ei; �; h0i be the produt SRPN of A and S. We onstrut anew SRPN hN 00; dm000ei in the following way:{ N 00 = N 0 exept for � 00 = � 0 [ fm j 9q 2 F;m � qg{ m00 = m000Now, we demonstrate that the existene of a �nite �ring sequene � of S suhthat h(�) 2 L(A;F ) is equivalent to the reahability of ? by hN 00; dm000ei.Let � be a sequene of N from dm0e suh that h(�) is reognized by a path ofA from q0 to a state q 2 F . From �, we an onstrut a sequene of N 00 from dm000ewhih reahes an extended marking having the plae q marked in its leaf node andsuh that it has been predited that all the opened branhes are going to be losedin this state q (i.e. exepted for the root, all the nodes have the plae q marked).From this partiular extended marking, the marking of the leaf node belongs tothe seond part of the set � 00 and then a ut step an our. Beause this �ringmarks the plae q in the father node, again a ut step an our and so on untilthe empty tree ? is reahed.Now, let �00 be a sequene of hN 00; dm000ei suh that dm000e �00�!trn�;v0(trn)�! ?.Beause hN 00; dm000ei is a SRPN, trn is a tree limited to a single node and, byonstrution, we have 8q;M(v0(trn))(q) = 0. Then, only the seond ondition of � 00an be applied for the �ring of the last ut step and then 9q 2 F;M(v0(trn))(q) � 1.Let �f be the minimal pre�x of �00 suh that dm000e �f�!trf with a plae q 2 Fmarked in trf (neessarily in its leaf). It is lear that by de�nition of �f all theuts used in �f use the �rst part of the de�nition of � 00 and then the sequene �fis also a sequene of hN 0; dm00ei. From the theorem 9, we an dedue a sequene �in hN; dm0ei suh that h(�) is reognized by a path of A from q0 to q. utProof of Th. 13 (Aeptane of maximal �nite sequenes)Proof. We onstrut a labeled SRPN hhN b; dmb0ei; �; hbi similar to the produtSRPN.{ P b = P [Q [Q [ fb; bg{ m00 = m0 + q0{ T bel = ft:q:q0 j (t 2 Tel) ^ (q; q0 2 Q) ^ (q h(t)=)q0)g{ 8t:q:q0 2 T bel,� hb(t:q:q0) = h(t)� W b�(t:q:q0) =W�(t) + q, W b+(t:q:q0) =W+(t) + q0{ T bab = ft:q:q0:q00 j (t 2 Tab) ^ (q; q0 2 Q) ^ (q00 2 (Q [ fbg)) ^ (q h(t)=)q0)g{ 8t:q:q0:q00 2 T bab,� hb(t:q:q0:q00) = h(t)� W b�(t:q:q0:q00) =W�(t) + q,� q00 2 Q)W b+(t:q:q0:q00) =W+(t) + q00



A Model Cheking Deision Proedure for Sequential Reursive Petri Nets 17� q00 = b)W b+(t:q:q0:q00) = b� 
b(t:q:q0:q00) = 
(t) + q0 + q00{ � b = fm + q + q0 j (m 2 � ) ^ (q; q0 2 Q) ^ (qh(�)=)q0)g [ fm + q + b j m 2Dead(N) ^ q 2 Fg [ fm j m � bg [ fm+ q j m 2 Dead(N) ^ q 2 Fg{ hb(�) = h(�)where Dead(N) is the e�etive semilinear set fm 2 INP j 8t 2 T [f�g;:m t�!g.We prove that reahing the empty tree in N b is equivalent to reah a deadlokin the produt SRPN with a plae q 2 F marked in the leaf. As N b inludes thebehaviors of the produt SRPN, a deadlok sequene an be emulated. However,in order to reah ? after this sequene, we need to slightly modify this simulation.Plaes b and b are added in order to predit that after the �ring of an abstrattransition in a node, this node will beome again the leaf only when the emulationhas led to an adequate deadlok sequene. Plae b will be marked if the previousabstrat transition loses itself and makes possible to ut this leaf due to the de�-nition of � b (the iteration of this mehanism will neessary lead to ?). Plae b ismarked in the leaf \opened" by the predition and restrits the losability of thisnode to two ases: an adequate deadlok is reahed in this leaf or the deadlok hasbeen reahed before this node beomes again the leaf. The last part of the de�nitionof � b overs the ase where one reahes the deadlok in the root. The proof of theorretness of this onstrution is similar to the one used for Theorem 12. utProof of Th. 14 (Aeptane of in�nite sequenes)First, we establish the two following lemmas.Lemma 16 (Reognition). Let A = h�;Q; Æ; q0i be an automaton, and S =hhN; dm0ei; �; hi a labeled SRPN. Let Mf an e�etively semilinear marking setof N and qi; qj 2 Q be two automaton states. The existene of a sequene � ofhN; dm0ei suh that dm0e ��!dmfe where mf 2 Mf and h(�) is reognized by apath of A from qi to qj is deidable.Proof. Let hhN 0; dm00ei; �; h0i be the produt SRPN of S and h�;Q; Æ; qii. Fromthis SRPN, we de�ne the SRPN hNr; dmr0ei as follows:{ P r = P 0 [ fInitg; T r = T 0,{ W r� =W 0� ;W r+ =W 0+ ,{ 
r = 
0{ � r = � 0 [ fmf + qj + Init j mf 2Mfg{ mr0 = m00 + Init ,As in the Th. 12, we an show that a sequene required by the lemma exists i�? is reahable in Nr from mr0. Nr stritly emulates the produt SRPN exeptedthat the plae Init is added in order to allow the �ring of a ut step in the root onreahing an aepting state of the produt SRPN. utWe denote by Re(A; qi; qj ; N;m0;Mf ) the funtion whih returns true if suha sequene exists.



18 Serge Haddad, Denis PoitrenaudLemma 17 (Aeptane). Let A = h�;Q; Æ; q0i be an automaton, F � Q a setof aepting states and S = hhN; dm0ei; �; hi a labeled SRPN. LetMf an e�etivelysemilinear state set of N and qi; qj 2 Q be two automaton states. The existeneof a sequene � of hN; dm0ei suh that dm0e ��!dmfe where mf 2 Mf and h(�)is reognized by a path qi = q1 a1�!q2 : : : an�1�!qn = qj of A suh that 9k; 1 < k �n ^ qk 2 F is deidable.Proof. We onstrut a partiular SRPN produt hhN�; dm�0ei; �; h�i of S and Asatisfying:{ P � = P [Q [Q [ bQ [ bQ [ fInitg{ m�0 = m0 + qi + Init{ T �el = ft:q:q0; t:bq:bq0 j (t 2 Tel)^(q; q0 2 Q)^(q h(t)=)q0)g[ft:q:bq0 j (t 2 Tel)^(h(t) 6=�) ^ (q h(t)�!q0) ^ (q 2 F )g{ 8t:q:q0 2 T �el,� h�(t:q:q0) = h(t)� W ��(t:q:q0) =W�(t) + q, W �+(t:q:q0) =W+(t) + q0{ T �ab = ft:q:q0:q00; t:bq:bq0: bq00; t:q:q0: bq00 j (t 2 Tab) ^ (q; q0; q00 2 Q) ^ (q h(t)=)q0g [ft:q:bq0: bq00 j (t 2 Tab) ^ (q; q0; q00 2 Q) ^ (h(t) 6= �) ^ (q h(t)�!q0) ^ (q 2 F )g{ 8t:q:q0:q00 2 T 0ab,� h�(t:q:q0:q00) = h(t)� W ��(t:q:q0:q00) =W�(t) + q, W �+(t:q:q0:q00) =W+(t) + q00� 
�(t:q:q0:q00) = 
(t) + q0 + q00{ � � = fm + q + q0 j (m 2 � ) ^ (q; q0 2 Q) ^ (qh(�)=)q0)g [ fm + bq + bq0 j (m 2� )^(q; q0 2 Q)^(qh(�)=)q0)g[fm+q+ bq0 j (m 2 � )^(q 2 F )^(q0 2 Q)^(h(�) 6=�) ^ (qh(�)�!q0)g [ fmf + bqj + Init j mf 2Mfg{ h�(�) = h(�)A sequene satisfying the requirement of the lemma exists i� ? is reahablein N� from m�0. The demonstration of this equivalene is similar to the proof oflemma 16. Indeed, the only di�erene between the SRPN hN�; dm�0ei and the oneused in this lemma is that the two plaes related to an automaton state are onemore dupliated to indiate that a state of F has been \visited" by the urrentsequene. The transitions are dupliated in the same way. The reahability of ?is onditioned by the reahability of a marking of Mf at the root level (the plaeInit must be marked) in suh way that the automaton reahes the state qj havingvisited a state of F (the plae bqj must be marked). utWe denote by A(A;F; qi; qj ; N;m0;Mf ) the funtion whih returns true ifsuh a sequene exists. We are now in position to demonstrate the orretness ofthe Th. 14.



A Model Cheking Deision Proedure for Sequential Reursive Petri Nets 19Proof. The proof is divided in two parts: looking for in�nite sequenes � withdinf (�) �nite or in�nite.(dinf (�) < 1). We have seen that the sequenes of this type an be deom-posed in dm0e �0�!tri1 �1�! : : : trik �k�!trik+1 : : : (whose harateristis are desribedin setion 4.2).1st step We determine the possible ouples of starting markings in the leaf andautomaton states reahed by �0. Indeed, as the depth of suessive extendedmarkings will be greater or equal than the urrent depth, the remainder of thesequene � is only onditioned by these two informations. So, we ompute theset C of ouples of the form (q;
(t)) suh that there exists a sequene �0 of(N; dm0e) leading to an extended marking in whih the abstrat transition tan be �red (neessarily in the leaf) and suh that the word h(�0:t) is a wordreognized by a path of A from q0 to q. We have �0 = �0:t. This omputationan be done using the funtion Re iteratively starting with the ouple (q0;m0)with Mf =" Pre(t) for eah abstrat transition t until saturation (i.e. whenno new ouple is disovered). It neessarily terminates beause the number ofautomaton states as well as the number of abstrat transitions are �nite.2nd step We onstrut the ordinary net bN in the following way:{ bP = P [Q{ bT = ft:q:q0 j (t 2 Tel) ^ (q; q0 2 Q) ^ (q h(t)=)q0)g [ ft:q:q0 j (t 2 Tab) ^ (q; q0 2Q) ^ (9q1; q01 2 Q; q h(t)=)q1 ^ Re(A; q1; q01; N;
(t); � ) ^ q01h(�)=)q0)g [ ft:q:q0 j(t 2 Tab)^(q; q0 2 Q)^(9q1; q01 2 Q; q h(t)=)q1^(A(A;F; q1; q01; N;
(t); � )_fq1; q0g \ F 6= ;) ^ q01h(�)=)q0)g{ 8t:q:q0 2 bT ;W�(t:q:q0) =W�(t) + q;W+(t:q:q0) =W+(t) + q0{ 8t:q:q0 2 bT ;W�(t:q:q0) =W�(t) + q;W+(t:q:q0) =W+(t) + q0By onstrution, an in�nite sequene in h bN; (q;m)i with (q;m) 2 C[f(q0;m0)gexatly orresponds to a suÆx of an in�nite sequene in the produt SRPNwhih visits in�nitely often a node of the extended marking. This orrespon-dene is obtained sine eah transition in bN orresponds to a �nite subsequenein the produt between two onseutive visits of the same node. In order tobe an aepting sequene, an automaton state q 2 F must be in�nitely of-ten reahed and thus a transition in bN whih orresponds to a subsequenewhih enounters q must be in�nitely often �red. These transitions are exatlytransitions t:q:q0 with q0 2 F and transitions t:q:q0.3rd step So for eah ouple (q;m) in C[f(q0;m0)g, we deide whether there existsan in�nite sequene in h bN;m + qi with a transition t:q:q0 where q0 2 F �redin�nitely often or a transition t:q:q0 �red in�nitely often. This last step an bedeided using the algorithm of H.C. Yen ([Yen92℄).(dinf (�) = 1). The heking of the existene of aepted in�nite sequenes isredued to a �nite graph analysis. Indeed,we build a graph where the nodes arethe omputed ouples of the �rst proedure and an edge denotes that one nodehas been reahed from the other one by a sequene inreasing by one the depth ofthe visited extended markings and suh that the intermediate subsequenes neverderease the depth below its initial value. The edges are partitioned depending on



20 Serge Haddad, Denis Poitrenaudthe visit by the sequene of an aepting state of the B�uhi automaton. Then theexistene of an aepting in�nite sequene is equivalent to the existene of somekind of strongly onneted omponent. The di�erent steps of veri�ation are listedbelow:1st step We build two relations E and E on C [ f(q0;m0)g suh that8(q;m); (q0;m0) 2 C [ f(q0;m0)g{ ((q;m); (q0;m0)) 2 E , 9t 2 Tab; 9q01 2 Q;Re(A; q; q01; N;m; " Pre(t)) ^q01 h(t)=)q0 ^m0 = 
(t){ ((q;m); (q0;m0)) 2 E , 9t 2 Tab; 9q01 2 Q; (A(A; q; q01; N;m; " Pre(t)) _q0 2 F ) ^ q01 h(t)=)q0 ^m0 = 
(t)An aepting in�nite sequene � with dinf (�) = 1 an be deomposed as insetion 4.2. An ar of the previous graph exatly orresponds to a �nite subse-quene of this deomposition. It remains only to hek whether an automatonstate q 2 F is in�nitely often visited by the sequene but this exatly orre-sponds to the in�nite ourrene of an ar e 2 E in an in�nite path of thegraph.2nd step So we deide whether it exists a strongly onneted omponent of thegraph (R;E [ E) having an ar of E. This last step an be deided using thealgorithm of Tarjan. utProof of Th. 15 (Aeptane of divergent sequenes)The detetion of divergent sequenes is based on a lemma onerning sequeneswhih are non observable by the automaton.Lemma 18 (Non observation). Let S = hhN; dm0ei; �; hi be a labeled SRPN.Let Mf be an e�etively semilinear state set of N . The existene of a sequene �of hN; dm0ei suh that dm0e ��!dmfe where mf 2Mf and h(�) = � is deidable.Proof. Let N� be the reursive Petri net N in whih the transitions of the set ft 2T j h(t) 6= �g have been disarded and suh that if h(�) 6= � then � � = ; else � � =� . Deide if suh a sequene exists is equivalent to deide if L(N�; dm0e;Mf ) 6= ;.utWe denote by NonObs(N;m0;Mf ) the funtion whih returns true if suh asequene exists. We are now in position to demonstrate the orretness of theTh. 15.Proof. Again, two kinds of in�nite sequenes have to be deteted. The �rst kindonerns sequenes for whih the depth of the extended markings visited is bounded.Suh sequenes are deteted by the three following steps:1st step We onstrut the ordinary net eN in the following way:{ eP = P [Q



A Model Cheking Deision Proedure for Sequential Reursive Petri Nets 21{ eT = ft:q:q0 j (t 2 Tel) ^ (q; q0 2 Q) ^ (q h(t)=)q0)g [ft:q:q0 j (t 2 Tab) ^ (q 2 Q n F ) ^ (q0 2 Q) ^ Re(A; q; q0; N;
(t); � ) ^:NonObs(N;
(t); � )g [ft:q:q0 j (t 2 Tab) ^ (q 2 F ) ^ (q0 2 Q) ^ NonObs(N;
(t); � )g{ 8t:q:q0 2 eT ;fW�(t:q:q0) =W�(t) + q;fW+(t:q:q0) =W+(t) + q0{ 8t:q:q0 2 eT ;fW�(t:q:q0) =W�(t) + q;fW+(t:q:q0) =W+(t) + q02nd step We ompute the set of ouples C of the form (qi; 
(tj)) suh that thereexists a �ring sequene � of (N;m0) leading to an extended marking in whihthe abstrat transition tj an be �red (neessarily in the leaf) and suh that theword h(�:tj) is a word reognized by a path of A from q0 to qi. This omputationan be done using the funtion Re iteratively.3rd step For eah ouple (q;m) in C [ f(q0;m0)g, deide if it exists an in�nitesequene �el in h eN;m+ qi for whih the set of transitions �red in�nitely oftenis a subset of ft:q:q0; t:q:q0 2 eT j h(t) = � ^ q 2 Fg. This last step an bedeided using the algorithm of H.C. Yen (REFERENCE). If suh a sequeneexists return true else return false .The seond kind of in�nite sequenes are the ones for whih suh a bound doesnot exist and they are deteted applying the following two steps:1st step We onstrut a set R and two relations E and E suh that{ (m0; q0) 2 R{ 8(m; q) 2 R; 9t 2 Tab; q0 2 Q suh that Re(A; q; q0; N;m; " Pre(t)) )(
(t); q0) 2 R ^ ((m; q); (
(t); q0)) 2 E{ 8(m; q) 2 R; 9t 2 Tab suh that q 2 F^NonObs(N;m; " Pre(t))) (
(t); q) 2R ^ ((m; q); (
(t); q)) 2 E2nd step Deide if there exists a strongly onneted omponent of the graph(R;E [ E) using only some ars of E and having a node (q;m) suh thatq 2 F . This last step an be deide using the lassial algorithm of Tarjan. Ifsuh a omponent exists return true else return false .The demonstration of the orretness of these deision proedures is similar tothe one presented for Theorem 14. ut


