N

N

A model checking decision procedure for sequential
recursive Petri nets
Serge Haddad, Denis Poitrenaud

» To cite this version:

Serge Haddad, Denis Poitrenaud. A model checking decision procedure for sequential recursive Petri
nets. [Research Report] 1ip6.2000.024, LIP6. 2000. hal-02548330

HAL Id: hal-02548330
https://hal.science/hal-02548330
Submitted on 20 Apr 2020

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-02548330
https://hal.archives-ouvertes.fr

A Model Checking Decision Procedure for
Sequential Recursive Petri Nets

Serge Haddad! and Denis Poitrenaud?

! LAMSADE - UPRESA 7024, Université Paris IX, Dauphine
Place du Maréchal De Lattre de Tassigny, 75775 Paris cedex 16
2 LIP6 - UMR 7606, Université Paris VI, Jussieu
4, Place Jussieu, 75252 Paris cedex 05

Abstract. Recursive Petri nets (RPNs) have been introduced to model
systems with dynamic structure. Whereas this model is a strict extension
of Petri nets and context-free grammars (w.r.t. the language criterion),
reachability in RPNs remains decidable. However the kind of model check-
ing which is decidable for Petri nets becomes undecidable for RPNs. In this
work, we introduce a submodel of RPNs called sequential recursive Petri
nets (SRPNs) and we study its theoretical features. First we show that we
can decide whether a RPN is a sequential one. Then, we analyze the lan-
guage aspects proving that the SRPN languages still strictly include the
union of Petri nets and context-free languages. Moreover the family of lan-
guages of SRPNs is closed under intersection with regular languages (unlike
the one of RPNs). This property is the starting point for the model checking
of the action-based linear time logic which is also shown to be decidable.
To the best of our knowledge, this is the first time such a result is obtained
for a model strictly including Petri nets and context-free grammars.

1 Introduction

In the area of verification theory, a great attention has been recently paid on infinite
state systems. In contrast to finite state systems where theoretical and practical
developments mainly focus on complexity reduction [Hol90], an essential topic in
infinite state systems is to find a trade-off between expressivity of the models and
decidability of verification [HM96]. As the model checking of temporal logic formula
is one of the most general approach for verification, it has been intensively studied
in the framework of infinite-state systems.

Context-free grammars (also called context-free processes) have led to comple-
mentary works. In [Wal96] , it is shown that the model checking of branching
time p-calculus formula is decidable and that it is DEXPTIME-complete. When
restricting the temporal logic formula to the linear time logic LTL, one obtains
polynomial time algorithms [BEM97,FWW97].

In [Esp97], model checking for Petri nets has been studied. The branching tem-
poral logic as well as the state-based linear temporal logic are undecidable even for
restricted logics. Fortunately, the model checking for action-based linear temporal
logic is decidable. The case of infinite sequences may be reduced to the search of
repetitive sequences studied in [Yen92] (an EXPSPACE-complete problem) and

2 Serge Haddad, Denis Poitrenaud

the case of finite sequences may be reduced to the reachability problem [May81].
Recently, in [Bou98] the reachability problem for Petri nets is also shown to be
EXPSPACE-complete. Thus the model checking complexity is also EXPSPACE-
complete.

It seems interesting to combine context-free grammars and Petri nets and to
look for decidable properties. Indeed, for two such models - the process rewrite
systems [May97] and the recursive Petri nets (RPNs) [HP99b] - the reachability
problem is decidable (and, due to [Bou98], EXPSPACE-complete). However, for
both these two models, the model checking of action-based temporal logic becomes
undecidable. It remains undecidable even for restricted models such as those pre-
sented in [BH96]. So (to the best of our knowledge) for any existing model strictly
including Petri nets and context-free grammars, the action-based linear time model
checking is undecidable.

In this work, we present a submodel of RPNs called sequential recursive Petri
nets (SRPNs) and we give some decision procedures including the model check-
ing. Roughly speaking, in recursive Petri nets some transitions emulate concurrent
procedure calls by initiating a new token game in the net. The return mechanism
is ensured by reachability conditions. A state of a RPN is then a tree of “token
games”.

A recursive Petri net is sequential if there are firable transitions only in the
last initiated token game. Such a definition is behavioral and our first result is
that we can decide whether a RPN is a SRPN. We then study the language family
of SRPNs and we show that this family strictly includes the union of Petri nets
and context-free languages. Moreover, unlike RPNs, this family is closed under
intersection with regular languages.

In the last part of the paper, building on this result, we focus on the model
checking for an action-based linear time logic. The case of finite (maximal) se-
quences is handled by a straightforward adaptation of the closure result. The case
of infinite sequence is more tricky and requires to distinguish w.r.t. the asymptotic
behavior of the depth of token games in an infinite sequence. Based on this analysis,
we obtain an EXPSPACE upper bound for the decision procedure.

Due to the space restrictions, only sketches of proof are given in the paper.
However in appendix, we give complete proofs for the main propositions. This
appendix will be omitted in the final version.

2 Sequential Recursive Petri Nets

2.1 Recursive Petri nets

A RPN has the same structure as an ordinary one except that the transitions are
partitioned into two categories: elementary transitions and abstract transitions.
Moreover a starting marking is associated to each abstract transition and a ef-
fectively semilinear set of final markings is defined. The semantics of such a net
may be informally explained as follows. In an ordinary net, a thread plays the
token game by firing a transition and updating the current marking (its internal
state). In a RPN there is a dynamical tree of threads (denoting the fatherhood

A Model Checking Decision Procedure for Sequential Recursive Petri Nets 3

relation) where each thread plays its own token game. The step of a RPN is thus
a step of one of its threads. If the thread fires an elementary transition, then it
updates its current marking using the ordinary firing rule. If the thread fires an
abstract transition, it consumes the input tokens of the transition and generates a
new child which begins its token game with the starting marking of the transition.
If the thread reaches a final marking, it may terminate aborting its whole descent
of threads and producing (in the token game of its father) the output tokens of the
abstract transition which gave birth to him. In case of the root thread, one obtains
an empty tree.

Definition 1 (Recursive Petri nets). A recursive Petri net is defined by a tu-
ple N = (P, T,W~,WT 02, T) where

— P is a finite set of places, T is a finite set of transitions.

— A transition of T' can be either elementary or abstract. The sets of elementary
and abstract are respectively denoted by T, and T, (with T' = T,; W T, where
W denotes the disjoint union).

— W~ and W™ are the pre and post flow functions defined from P x T to IN.

— {2 is alabeling function which associates to each abstract transition an ordinary
marking (i.e. an element, of IN*') called the starting marking of ¢.

— 7 is an effectively semilinear set of final markings (any usual syntax can be
accepted for its specification).

Definition 2 (Extended marking). An extended marking tr of a recursive Petri
net N = (P, T,W=, W+ §.7) is a labeled tree tr = (V, M, E, A) where

— V is the set of vertices,

— M is a mapping V — NP,

— ECV xV is the set of edges and
— Ais a mapping E — Tgp.

A marked recursive Petri net (N,trg) is a recursive Petri net N associated to an
initial extended marking trq.

We denote by vo(tr) the root node of the extended marking ¢r. The empty tree
is denoted by L. Any ordinary marking m can be seen as an extended marking,
denoted by [m], consisting of a single node. For a vertex v of an extended marking,
we denote by pred(v) its (unique) predecessor in the tree (defined only if v is
different from the root) and by Succ(v) the set of its direct and indirect successors
including v (Vv € V,Succ(v) = {v' € V | (v,v') € E*} where E* denotes the
reflexive and transitive closure of E). An elementary step of a RPN may be either
a firing of a transition or a closing of a subtree (called a cut step and denoted by

7).

Definition 3. A transition ¢ is enabled in a vertex v of an extended marking tr
(denoted by tr2%) if Vp € P,M(v)(p) > W~ (p,t) and a cut step is enabled in v
(denoted by tr %) if M(v) €T

4 Serge Haddad, Denis Poitrenaud

Definition 4. The firing of an enabled elementary step ¢ from a vertex v of
an extended marking tr = (V, M, E, A) leads to the extended marking tr' =

(V',M' E', A"y (denoted by trﬂ)tr’) depending on the type of t.

—teT,
. V’l:V LE'=E ,Vec E,A'(e) = A(e), Vo' € V' \ {v}, M'(v') = M(v')
. ;{peP,M’(v)(p)= M(v)(p) =W~ (p,t) + W (p,1)

—-te€ ab

e VI=VU{'},E =EUJU{(v,v")},Veec E,A'(e) = A(e) , A'((v,v")) =
o Vo' € V\ {u}, M'(0") = M(s"), Vp € P, M'(0)(p) = M(0)(p) — W (p,1)
o M'(v') = 02¢)
where v’ is a fresh identifier absent in V'
—t=T
o V'=V\ Succ(v) , E' =EN (V' xV'),Vee€ E',A'(e) = A(e)
o Yo' € V’\{pred(v)} M(N =M®")
e Vp € P, M (pred(v))(p) = M(pred(v))(p) + W* (p, A(pred(v), v))
Let us notice that if v is the root of the tree then the firing of 7 leads to to
empty tree L.

The depth of an extended marking is recursively defined as 0 for L, 1 for a
unique vertex and, for the general case, the maximum depth of the direct sub-
trees of the root incremented by one. For an extended marking tr, its depth
is denoted by depth(tr). A firing sequence is defined as usual: a sequence o =
tro (to,vo)trl (t1,v1) ... (tn—1,VUn—1)tr, is a firing sequence (denoted by tro—Zstry)
iff tr; “”’trlﬂ for i € [0,n — 1]. We define the depth of o as the maximal depth of
try, tra, ..., try. In the sequel, for sake of simplicity, o will be often denoted by
g = totl . -tn—l

Pyt ()

1" loca pfauItO
Y ={m|m@,)>00rm(p,)>0)

Fig. 1. a simple recursive Petri net

The figure 1 shows the modeling of n similar transactions (represented by n
tokens in psiqrt). We represent an abstract transition by a double border rectangle
and its initial marking is indicated in a frame. A transaction is started by the firing
of the transition ts4,+. When initialized, the transaction may proceed locally by
firing ¢ocqar or starts a new process by firing ts.,4x. Each process may achieve by
reaching p.pq or abort since prqy: is always marked. In the latter case, the nested
processes are also stopped due to the cut mechanism.

A firing sequence of this RPN is presented in the figure 2 for n = 2. The arcs
of the trees composing the visited extended markings are labeled by the abstract
transition ty¢qr¢ for the thin ones and by ¢y, for the bold ones. The thread in

A Model Checking Decision Procedure for Sequential Recursive Petri Nets 5

2p

Poan 1t
IocaJ fork

/ AH.&

Pt P R.t PR Pt

init Tfault init Tfault init

slan gt

fault pfaJIt fault end faJIt faJIt

|n|t fault

Fig. 2. a firing sequence

which the following step is fired is represented in black. One can notice that each
firing of abstract transition leads to the creation of a new node in the tree whereas
the firing of the last cut step prunes a subtree not reduced to one node.

2.2 Sequential Recursive Petri Nets

In a recursive Petri net, there are two kinds of parallelism between activities: con-
current firings inside the same node and concurrent firings in different nodes. In
order to model “sequential call” with abstract transitions, the second kind of par-
allelism must be forbidden. This is the aim of the next definition.

Definition 5 (Sequential Recursive Petri Nets). Let (N, tro) be a marked re-
cursive Petri net. (N, trg) is a sequential recursive Petri net if the following condi-
tions hold:

— trg is a tree composed by only one node,
— Each reachable extended marking of NV from try satisfies

e cach node has at most one successor,
e there is no enabled step in a node different to the leaf.

The first condition is imposed for sake of simplicity but is not a theoretical
restriction. As an example, the net of Fig. 1 is a SRPN iff n is equal to one. We
could have chosen an alternative syntactical definition (with an additional control
place) but the present one leads to the next statement.

Proposition 6 (SRPN class belonging). Let (N,tro) be a marked RPN, one
can decide whether (N,tro) is a SRPN.

Sketch of Proof. A RPN is not a SRPN iff there is a node within a reachable
extended marking where one can fire simultaneously an abstract transition and
any other step (a property defined by an effectively semilinear set of markings).
We proceed in two stages. We compute all the starting markings of a node in a
reachable extended marking (there are only a finite number). Then, for any such
marking, we look in this node whether we can reach the above semilinear set.
The effectiveness of these two steps is deduced from the decision procedure for the
reachability problem of RPN (see the appendix for more details).

6 Serge Haddad, Denis Poitrenaud

3 Language Properties

We denote by L(N,trg,Try) (where T'ry is a finite extended marking set) the set of
firing sequences (mapped on (T'UT)*) of N from try to an extended marking of T'ry.
This set is called the language of N. More generally, the languages we will consider
are defined via a labeling function. A labeled marked recursive Petri net is a marked
recursive Petri net and a labeling function h defined from the transition set 77U {7}
to an alphabet X plus A (the empty word). h is extended to sequences and then
to languages. The language of a labeled marked recursive Petri net ((IV,tro), X, h)
for a finite extended marking set T'ry is defined by h(L(N,tro,T'ry)).

We now study the properties of the languages generated by labeled SRPNs.
These languages are defined for a given finite set of terminal extended markings.
For sake of simplicity, we impose that such sets are composed by extended marking
limited to a single node. One can remark that this condition is not a theoretical
restriction. The first result concerning the languages generated by SRPNs is about
their relation with Petri net and context-free languages.

Theorem 7 (Strict inclusion). SRPN languages strictly include the union of
context-free and Petri net languages

We prove that SRPN languages are closed under intersection with regular lan-
guages. For a SRPN and an automaton (see appendix for definition and notation),
both labeled on a same alphabet, we define a product SRPN resulting of their com-
position and demonstrate that its language is the intersection of their respective
languages.

The product SRPN is constructed from the places of the original one by adding
a place set) which corresponds to the states of the automaton. As usual, the
elementary transitions are synchronized with the ones of the automaton using these
new places. For each extended arc g=%¢' (with a € ZU{A}) of the automaton and
for each elementary transition ¢ such that h(t) = a, an elementary transition ¢.q.q',
having W~ (t) + q as pre-condition and W (t) + ¢’ as post-condition, is added.
When an abstract transition is fired a new node appears and, due to the SRPN
definition, the token game is limited to this node. Then, we have to predict the state
reached by the automaton when the opened branch will be closed. The abstract
transitions constructed in the product SRPN are denoted t.q.q’.¢"" where the prefix
t.q.q" expresses the same conditions as for the elementary transitions (excepted
that ¢ is an abstract transition of the original net). For each state ¢ € @) such an
abstract transition is added (the prediction is non deterministic). To ensure that
the predicted state is effectively reached when the cut step closing the branch is
fired, a set of places @ (complementary to @) is used. The firing of an abstract
transition ¢.q.q'.q" leads to the creation of a new node for which its starting marking
has the place ¢" marked. Using these places, the effectively semilinear set of final
markings is built in order to ensure that the predicted state is effectively reached.
Let us notice that this composition corresponds to a weak synchronization as some
transitions of the SRPN can be labeled by A.

A Model Checking Decision Procedure for Sequential Recursive Petri Nets 7

Definition 8 (Product SRPN). Let A = (¥,Q, A, q) be an automaton and
S = ((N, [mo]), X, h) alabeled SRPN. The product RPN of A and S is a labeled
marked RPN ((N', [mg]), X, h') defined by

- PP=PUQUQ,m)=mo+qo

ez—{tqq | (t € Tu) Ag,d' € Q) A (¢2Hg')}
- Vtg.q' €T}, B .

o W(tq.q") =h(t), W' (t.g.q') =W~(t) +q, W' (t.q.¢) = WH(t) +¢
T!, = {t.q.qq" | (t € Tu) A (0,7 q" € Q) A (¢28 ")}

—thq' ”ET(;
« H(taq o) = n(o) .
o W' (tqq.q") =W (t)+q, W (t.q.q.q") =WT(t)+¢"
o V(tqq'.q")=020t)+q +q"

~ T ={m+q+d | (meT)A(gq €Q)A(LZg)}

— h(r) = h(1)

It is clear that the constructed RPN is a SRPN as the initial marking is a
tree limited to a single node and the pre and post conditions of the initial SRPN
are preserved and enriched by the automaton flow. In Fig. 3 of appendix, the
behavior of this product is illustrated and commented. The next theorem shows
the soundness of this building.

Theorem 9 (SRPN product property). Let A = (¥,Q,0,q0) be an automa-
ton, F C Q a set of final states, S = ((N, [mo]), X, h) a labeled SRPN and My a
set of terminal markings. Let ((N',[m{]), X, h') be the product SRPN of A and S
and M} ={[m+q] | [m] € My Aq € F}. The following equality holds

W(L(N', [mg], M) = h(L(N, [mo], My)) N L(A, F)

Corollary 10 (SRPN closure). The family of SRPN languages is closed under
intersection with regular languages.

The SRPN closure property gives the starting point for the decidability of the
model checking problem. Moreover, in [HP99a], it is demonstrated that the RPN
languages are not closed under intersection with regular ones leading to the next
corollary.

Corollary 11 (SRPN versus RPN). The family of SRPN languages is strictly
included in the family of RPN languages.

4 Model Checking

The model checking that we investigate is the action based linear-time p-calculus
applied to SRPNs. The usual verification method consists to check the existence
of a sequence of the system fulfilling the negation of the formula. Depending on
the kind of the sequence, different semantics have been defined. We will study the
main ones: finite sequences, maximal finite sequences (leading to a deadlock), infi-
nite sequences, divergent sequences (infinite sequences ended by a non observable
subsequence). As a linear-time p-calculus formula is equivalently represented by a
Biichi automaton, we limit ourselves to this representation.

8 Serge Haddad, Denis Poitrenaud

4.1 Finite and maximal finite sequences

When the searched sequences are finite, Bilichi automata are nothing else than or-
dinary automata. A slight adaptation of the product of a SRPN and an automaton
makes possible the reduction of the model-checking problem to a reachability prob-
lem for the product SRPN. In case of maximal finite sequences, adaptation is still
possible although more intricate (see the appendix for details).

Theorem 12 (Acceptance of finite sequences). Let A = (¥,Q,0,q0) be an
automaton, F C Q a set of final states and S = ((N, [mo]), X, h) a labeled SRPN.
The existence of a finite firing sequence o of S such that h(c) € L(A, F) is decid-
able.

Theorem 13 (Acceptance of maximal finite sequences). Let A = (¥, Q,J,
qo) be an automaton, F C Q a set of final states and S = ((N, [mo]), X, h) a
labeled SRPN. The existence of a finite firing sequence o of S such that o leads to
a deadlock of N and h(o) € L(A, F) is decidable.

4.2 Infinite and divergent sequences

We are looking for an infinite firing sequence of the SRPN accepted by a Biichi
automaton. We will perform two independent searches depending on a character-
istic of the sequence: the asymptotic behavior of the depth of the sequence. Let
o= fmo]“i%trlw cootri—1 2%t . be an infinite sequence, we define dinf (o) =
liminf; o depth(tr;) (defined by lim; o inf ;> ;{depth(tr;)}). dinf(o) always ex-
ists but it can be either finite or infinite.

In case of a finite value, there exists a strictly increasing sequence of indexes
i1,...,%k, ... such that:

— beyond i; the set of indexes {i1,i2,...,i,...} is exactly the indexes for which
the depth of the visited extended markings is equal to dinf (o)
(Vl >4, depth(tri) = dmf(a) &1 € {il,ig, ey By })

— beyond 4; the depth of the visited extended markings will be greater or equal
than dinf (o) (Vi > iy, depth(tr;) > dinf (o))

— 14 is the first index from which the depth of the visited extended markings will
be no more less than dinf (o) (Vi < i1,3j > i, depth(tr;) < dinf (o))

So o will be decomposed as [mg|-Z2%try, = .. . try, —2try,,, - .. where g ends
with the firing of an abstract transition leading to an extended marking of depth
dinf (o) (with the creation of a new node) and oy, is either a firing of an elementary
transition in this node or a sequence beginning by the firing of an abstract transition
in this node and ended by a corresponding cut step.

In case of an infinite value, there exists a strictly increasing sequence of indexes
i1,...,%k, ... such that:

— k is the depth of the extended marking tr;, (Vk, depth(tr;,) = k)
— beyond iy, the depth of the visited extended markings will be greater or equal
than k (Vi > iy, depth(tr;) > k)

A Model Checking Decision Procedure for Sequential Recursive Petri Nets 9

— 14, is the first index from which the depth of visited extended markings will be
no more less than k (Vi < iy, 35 > 4, depth(tr;) < k)

So ¢ will be decomposed as [mg] = try Tstry, 225 .. try, Ztry,,, ... where
o begins by a firing in an extended marking of depth &, ends with the firing of an
abstract transition leading to an extended marking of depth k£ + 1 and such that
all the extended markings visited by o, have a depth greater or equal than k.

In order to build infinite sequences from the decompositions shown above, we
must be able to check the existence of some finite firing subsequences beginning
and ending in the same node of the two extended markings and corresponding
to paths of the Biichi automaton. Moreover, we want to distinguish two cases
depending on the visit of an accepting state of the automaton. The checking of the
existence of such finite sequences may be done similarly as the model-checking of
finite sequences.

We are now in position to explain the two main procedures. Looking for a
sequence o with dinf (o) finite, we first compute the couples of starting markings
and automaton states reachable by a firing sequence. We build an ordinary Petri
net representing an abstract view of sequences of the SRPN (recognized by the
automaton) where the successive extended markings visited by the sequence are
infinitely often reduced to a single node. Then, for each couple as initial marking
of this Petri net, we look for an infinite sequence visiting a subset of transitions
infinitely often (this can be done by the algorithm of [Yen92]).

Looking for a sequence o with dinf (o) infinite, we build a graph where the nodes
are the computed couples of the first procedure and an edge denotes that one node
has been reached from the other one by a sequence increasing by one the depth of
the visited extended markings and such that the intermediate subsequences never
decrease the depth below its initial value. The edges are partitioned depending on
the visit by the sequence of an accepting state of the Blichi automaton. Then the
existence of an accepting infinite sequence is equivalent to the existence of some
kind of strongly connected component.

Although we will not prove it in the paper, the complexity of these procedures is
EXSPACE thus, due to the lower bound for Petri nets, the model-checking problem
is EXSPACE-complete. The case of divergent sequences is handled similarly (see
the appendix for proof of Th. 14).

Theorem 14 (Acceptance of infinite sequences). Let A = (X, Q,J,q) be an
automaton, F C @ a set of accepting states and S = ((N, [mo]), X, h) a labeled
SRPN. The existence of an infinite sequence o of (N, [mg]) such that h(o) is an
infinite word recognized by a path qo-sq1 22 ... of A satisfying |{i | ¢i € F}| = 00
is decidable.

Theorem 15 (Acceptance of divergent sequences). Let A = (¥, (Q),0,qo) be
an automaton, F' C Q) a set of accepting states and S = ((N, [myg]), X, h) a labeled
SRPN. The ezistence of an infinite sequence o of (N, [myg]) such that h(o) is a
finite word recognized by a path qo-2tyq1 22 ... 2%q,, of A with q, € F is decidable.

10 Serge Haddad, Denis Poitrenaud

5 Conclusion

In this work, we have introduced sequential recursive Petri nets and studied their
theoretical features. At first we have shown how to decide whether a RPN is a
SRPN. Then, we have studied the language family of SRPNs and proved that this
family strictly includes the union of Petri nets and context-free languages. More-
over, unlike RPNs, this family is closed under intersection with regular languages.
In the last part of the paper, we have focused on the model checking for an action-
based linear time logic and obtained an EXPSPACE upper bound for the decision
procedure.

An important characteristic of SRPNs is their capability to generate infinite in-
degree transition systems. Such a feature makes possible to model dynamic systems
which can be handled neither by process algebra nor by Petri nets. So, we plan
to study with SRPNs fault tolerant systems and similar ones which require this
capability.

References

[BEM97] A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of pushdown
automata: Application to model-checking. In Proc. of CONCUR’97, 1997.

[BH96] A. Bouajjani and P. Habermehl. Constraint properties, semi-linear systems,
and Petri nets. In Proc. of CONCUR’96, volume 1119 of Lecture Notes in
Computer Science. Springer Verlag, 1996.

[Bou98] Z. Bouziane. A primitive recursive algorithm for the general Petri net. In Proc.
39th IEEE Symp. Foundations of Computer Science, 1998.

[Esp97] J. Esparza. Decidability of model checking for infinite-state concurrent systems.
Acta Informatica, 34:85-107, 1997.

[FWWO97] A. Finkel, B. Willems, and P. Wolper. A direct symbolic approach to model
checking pushdown systems. In Proc. of INFINITY 97, 1997.

[HM96] Y. Hirshfeld and F. Moller. Decidability results in automata and process theory.
In Logics for Concurrency: Structure versus Automata, volume 1043 of Lecture
Notes in Computer Science Tutorial, pages 102-148. Springer Verlag, 1996.

[Hol90] G. J. Holzmann. Design and Validation of Computer Protocols. Prentice Hall,
November 1990.

[HP99a] S.Haddad and D. Poitrenaud. Decidability and undecidability results for recur-
sive Petri nets. Technical Report 019, LIP6, Paris VI University, Paris, France,
September 1999.

[HP99b] S. Haddad and D. Poitrenaud. Theoretical aspects of recursive Petri nets. In
Proc. 20th Int. Conf. on Applications and Theory of Petri nets, volume 1639 of
Lecture Notes in Computer Science, pages 228-247, Williamsburg, VA, USA,
June 1999. Springer Verlag.

[May81] E.W. Mayr. An algorithm for the general Petri net reachability problem. In
Proc. 13th Annual Symposium on Theory of Computing, pages 238—246, 1981.

[May97] R. Mayr. Decidability and Complexity of Model Checking Problems for Infinite-
State Systems. PhD thesis, TU-Minchen, 1997.

[Wal96] I. Walukiewicz. Pushdown processes: Games and model checking. In Int. Conf.
on Computer Aided Verification, volume 1102 of Lecture Notes in Computer
Science, pages 62-74. Springer Verlag, 1996.

[Yen92] H-C. Yen. A unified approach for deciding the existence of certain Petri net
paths. Information and Computation, 96:119-137, 1992.

A Model Checking Decision Procedure for Sequential Recursive Petri Nets 11

A Appendix

Automaton of Sect. 3

An automaton is a tuple A = (¥, Q, A, qo) where X' is an alphabet, @) a finite set
of states, A C @ x X x @ a transition relation and gy €) an initial state. As
usual, we denote by ¢—23¢' that (¢,a,q’) € A. Moreover, the extension of —s to
sequences over X' is denoted by — and is defined as follows:

A
— Vg€ Q,q=q
- Vg, ¢ € Q,¢=3q" & 3¢, ¢=q" Nq¢" 24

For an automaton A = (¥,Q,A,q) and a state set F C @, we denote by
L(A, F) the set of sequences {w € X* | 3¢ € F, qo=%q}.

Proof of Prop. 6 (SRPN class belonging)

Proof. Alg. A.1 decides if a given marked RPN belongs to the SRPN class. In this
algorithm, the ordinary net N, is constructed from the RPN in the following
way: each abstract transition is removed and for each closable abstract transition,
an elementary transition (having the same pre and post sets) is added. An abstract
transition ¢ is said closable if L is reachable from the extended marking composed
by a single node corresponding to the starting marking (2(¢). An algorithm for
the computation of the closable abstract transitions can be found in [HP99b]. In
the algorithm A.1, a set 1 Pre(t) denotes the effectively semilinear set of ordinary
markings in which the transition ¢ is enabled (1 Pre(t) = {m | Vp € P,m(p) >
W=(p,1)}).

Now, we prove the correctness of the algorithm A.1. Let (N,try) be a RPN
which is not a SRPN. Then either ¢ry is not an extended marking composed with a
single node or there exists a firing sequence o = t;.t5 .. .t, leading to an extended
marking tr, = (V, M, E, A) such that (Vv € V,|Succ(v)| < 1)A(Fv € V, |Succ(v)| =
IAN(BteT,Vpe P,M(v) > W (p,t)) V(M(v) €T)).

The first test realized by the algorithm detects that the initial extended marking
has most than one node. Then, we have to demonstrate that the second case is well
detected by the remainder of the algorithm.

Let o be a minimal sequence satisfying these conditions. Let ¢; be the abstract
transition for which its firing has led to the creation of the successor node of v.
Because o is minimal, ¢; is the last transition fired in o at the level of v. Moreover,
because t; is an abstract transition, this firing only consumes tokens in M (v). We
can deduce that either ¢ and t; are concurrent or (M(v) + W™(¢;)) € Y. This
condition is detected by the algorithm if the set Eramine contains the ordinary
marking from which the thread of v has began. This ordinary marking can be either
the initial marking of wvg(trg) or the starting marking associated to the abstract
transition for which its firing has led to the creation of the node v. It is clear that,
by construction, this marking belongs to Ezamine. O

12 Serge Haddad, Denis Poitrenaud

Algorithm A.1 SRPN class belonging

boolean SRPN (RPN N, extended marking tr)
begin
if Succ(vo(tr)) # 0 then
return false;
fi;
Enable = 0;
Ezamine = 0;
ToEzamine = M (vo(tr));
while ToEzamine # () do
m = Pick(ToEzamine);
Ezamine = Ezamine U {m};
forall t € T,;, \ Enable do
if Reachable(Neiem,m,T Pre(t)) then
Enable = Enable U {t};
if £2(t) ¢ Ezamine then
ToEzamine = ToEzamine U {2(t)};
fi;
fi;
od,;
od;
forall m € Ezamine do
if Reachable(Neiem,m, UteTab (1t Pre(t)) + (Uyep (T Pre(t’)) UT)) then
return false;
fi;
od;
return true;
end

Proof of Th. 7 (Strict inclusion)

Proof. Tt is obvious that any PN is a SRPN. Moreover, in [HP99b], it is demon-
strated that any context-free language can be simulated by a RPN. We can remark
that the proposed construction of the RPN corresponding to a context-free lan-
guage leads to a SRPN. In the same paper, it is shown that RPN languages strictly
include the union of context-free and Petri net languages. The proof of this result
exhibits a RPN for which its language is neither PN nor context-free language. We
can remark that this RPN is a SRPN. Then, we can conclude that the language
family of SRPN strictly includes the union of the context-free and PN languages.

a

Ilustration of the product SRPN behavior (Def. 8)

The use of the complementary places @ is illustrated in Fig. 3. A sequence of a
SRPN and a path in an automaton as well as the sequence of the product SRPN
corresponding to the synchronization of both are presented. In the product SRPN,
we have #] = t1.90.q1.G3 and t}, = t5.q1.q1.g2. When an abstract transition is fired,

A Model Checking Decision Procedure for Sequential Recursive Petri Nets 13

mo,z t2 mo' T mo’; T o mo”
ml ml’ ml”

m2 O

moo _ 1

A b b

@O —&. qi0 ql O 20 O g3
mo+g0 O — ' mo I 2 mo ' mo i T _ 0 mo'+g3
ml+q1+£ ml’ +@ ml” +q2+;3

m2+q1+q72 @)

Fig. 3. synchronization of a SRPN with an automaton versus a product SRPN

the automaton state reaches by the cut step closing the opened branch is predicted
and coded in an element of Q). The effectively semilinear set 1’ ensures that the
good predicted state is effectively reached by the firing of the cut step.

When the abstract transition ¢1 is fired the automaton moves from g0 to gl
and it is predicted that the opened branch will be closed by a cut step leading the
automaton to the state ¢3 (the place ¢3 is marked in the leaf node). This prediction
is realized at the end of the given sequence.

From this example, it is clear that the product SRPN can make some bad
predictions. Moreover, bad predictions cannot lead to terminal markings which
defined the language of the product. However, the existence of a good prediction
insures that a word of the intersection of the automaton and the SRPN languages
will be produced by a firing sequence of the product.

Proof of Th. 9 (SRPN product property)

Proof. First, we demonstrate that to each word w of h'(L(N', [mg], M})) corre-
sponds a sequence o in L(N, [mg], My) such that h(o) = w and w € L(A4, F).

Let ¢’ be any sequence of N’ such that [mg] tr! (with tr' = (V/, M', E', A"))
and h'(0') = w. From the definition 8, it is easy to show that there exists a unique
place ¢ € @ marked in the leaf node of ¢r'.

We define a mapping z from 7" to T' depending on there types

— Vtq.q €T, 2(t.gq) =t
- Vtgq'.¢" €T, 2(tqq.q") =t
i) =

Moreover, we define the extended marking tr = (V, M, E, A) as follows:

V=V B
- YoeV,M(v) = M'(v) \ (QUQ)
~E=F

14 Serge Haddad, Denis Poitrenaud

—Vee E,Ale) = z(A'(e))

From the definition 8, it is clear that ¢r is an extended marking of N. Moreover,
it is straightforward that z(¢') is a sequence of N from [mg] to the extended
marking ¢r. Indeed, m{ is a superset of mg and the pre and post conditions of the
transitions in 7" are supersets of the ones in T'. Finally, from the definition of the
pre and post conditions of the transitions in 7", we can deduce a path in A from ¢q
to the state ¢ and from the definition of A’ and z, we can conclude that this path
recognizes the word w.

We can apply this proof to any word w of h' (L(N', [m{], M J’c)) and demonstrate
that the extended marking reached by the corresponding sequence in IV belongs to
M;.

Now, we demonstrate that to each word w of A(L(N, [mo],My)) N L(A, F)
corresponds a sequence o' in L(N', [mq], M}) such that h'(0') = w.

Let w = agp.a1...a, be a word of h(L(N, [mg], Ms)) N L(A, F). Then, there
exists a sequence o = [mg] % tr; 2% . "m% [m] such that [m;] € M; and
h(o) = w. Moreover, there exists a path gp-2tyq; 22 ... 2%q, in A such that ¢, €
F.

We have to demonstrate the existence of a sequence ¢’ of N’ from [mg + ¢o] to
[my + ¢,] such that [my + ¢,,| € M} and h'(0) = w.

First, we define a mapping ind from [0, m] to [0,n].

— ind(0) =0
- Vie[l,m],h(t;) #7 = ind(i) =ind(i—1)+1
- Vie[l,m],h(t;) =7 = ind(i) = ind(i — 1)

We can remark that Vi € [L,m], h(t1...t;) = a1 ... Gina)-
Then, we define a mapping z' from {¢1,%2,...,t,} to T' depending on their
types

= Vi€ [l.m],t; € Ty = 2'(t:i) = ti-Qind(i—1)-Tind(3)

— Vi€ [l.m],t; € Ty = let j be the minimal range such that j > i
A depth(tri—1) = depth(tr;), 2'(t:) = ti-Gina(i-1)-Tind(i)-Tind(j)

—Viel.m,t;i=7=2(t;) =7

We can notice that for an abstract transition, the range j always exists be-
cause the depths of the initial and final markings of the sequence are equal to
one and because the firings occur only in the leaf node. More generally, for an
extended marking tr; visited by o, we denote the range of the cut step which
closes the branch opening at the depth d by return(i,d) (i.e. Vi € [1.m],V0 < d <
depth(tr;), return(i,d) = Min({j > i | depth(tr;) = d})).

We only have to demonstrate that z'(¢) is a firing sequence of N’ from [rmg+qo]
to [my + gn]. Indeed, from the definition of M}, it is clear that [m; + gn] € M}

For a given range i € [0..m], we formulate some hypotheses (Hyp) on tr;,
op = t1...ti, Wi = ar... Qg and qo, ..., Qing(;) in relation with ¢r; and o} =
2'(ty) ... 2'(t;).

A Model Checking Decision Procedure for Sequential Recursive Petri Nets 15

(- 2(0;) = 0y
- W' (0}) = w;
- depth(tr]) = depth(trl)

-V1 < d < depth(tr}),

(Hyp) \ - My (tr7, depth(tr)))

M p(tr;,d) = M(tr;,d)
-V1 < d < depth(tr}), M
Mg

|P

{(hnd }
| (t’l"“ d) - 0
(- V1 <d < depth(tr}),

(t’l“;, d) = {qind(return(i,d—l))}

where M(tr,d) denotes the ordinary marking labeling the node of depth 0 <
d < depth(tr) of the extended marking ¢r (this node is unique because each node
of a SRPN extended marking has at most one successor).

From the definitions of A’ and z', we can easily deduce that h'(z'(c)) = w and
then the two first hypotheses are satisfied for any i. For the others, we reason
inductively on the size of the prefix of z'(¢). If this size is equal to zero, it is clear
that (Hyp) holds. Let (Hyp) satisfied for a prefix of length k — 1, we demonstrate
that it is verified for k.

= If 2'(tx) = tk-Qind(k—1)-%inak) € T.- We know by the hypotheses on the
extended marking ¢rj,_, that the pre condition of t; is marked in the leaf
node as well as the place Qind(k—1) . And then the transition t}g is enabled
(w' (tk -Qind(k—1)-Tind(k)) = W~ (tk) + Qind(k—1)). Moreover, its firing leads to
an extended marking satisfying the hypotheses (the place giq(x) is unmarked
and the place g q(r+1) marked and the firing on the leaf marking projected on
P has the same effect of the firing of ¢ in o).

- If Z’(tk) = tk'qind(kfl)'qind(k)'Qind(return(k,depth(trk_l)) € T(;,b' Like for elemen-
tary transition, we know that the transition ¢}, is enabled. Its firing leads to
unmark the place gpqx—1) and to the creation of a new leaf node having
Q(tk) + Qind (k) + Qind(return(k,depth(tri_1)) as marking. It is clear that this new
extended marking satisfies the hypotheses. Moreover, by the definition of z’
and the prediction of ind(return(k, depth(try—1)), we know that the automaton
must reach the state ging(return(k,depth(tr,_,)) when the branch will be closed.

— If 2/(tx) = 7. Knowing that the transition ¢ is a cut step in o and by the
hypotheses on the extended marking, we know that the marking in the leaf
node projected on P belongs to 7. Moreover, we know that the place gi,q(x—1)
is marked in this node as well as the place Gud(return(k—1,depth(tre_1)—1))- But
ty, = 7 and then return(k —1, depth(try_1) — 1) = k. We can deduce that Gq()
is marked in the leaf node. Moreover, if h(7) # A, because w is a path of the

automaton, we have ginace—1) =% ginacky and then a cut step is enabled from
tri, ;. If h(7) = A then ind(k — 1) = ind(k) and a cut step is also enabled . In
both cases, from the definition of 7" and T, we can deduce that the hypotheses
are satisfied for the reached extended marking.

a

16 Serge Haddad, Denis Poitrenaud

Proof of Th. 12 (Acceptance of finite sequences)

Proof. Let ((N',[mg]), X, k') be the product SRPN of A and S. We construct a
new SRPN (N", [m{]) in the following way:

— N" = N'"except for " =7"U{m |Jg € F,m > q}
= my

Now, we demonstrate that the existence of a finite firing sequence o of S such
that h(o) € L(A, F) is equivalent to the reachability of L by (N, [m{]).

Let o be a sequence of N from [myg] such that h(c) is recognized by a path of
A from ¢ to a state ¢ € F. From o, we can construct a sequence of N" from [my
which reaches an extended marking having the place ¢ marked in its leaf node and
such that it has been predicted that all the opened branches are going to be closed
in this state ¢ (i.e. excepted for the root, all the nodes have the place § marked).
From this particular extended marking, the marking of the leaf node belongs to
the second part of the set 7" and then a cut step can occur. Because this firing
marks the place ¢ in the father node, again a cut step can occur and so on until
the empty tree L is reached.

Now, let ¢” be a sequence of (N",[my]) such that [m{] LA IC QN
Because (N",[m{]) is a SRPN, tr, is a tree limited to a single node and, by
construction, we have Vg, M (vo(tr,))(g) = 0. Then, only the second condition of 7"
can be applied for the firing of the last cut step and then 3¢ € F, M (vo(try))(q) > 1.

Let oy be the minimal prefix of ¢” such that [mf{]-ZLtr; with a place ¢ € F
marked in try (necessarily in its leaf). It is clear that by definition of o all the
cuts used in oy use the first part of the definition of 7" and then the sequence oy
is also a sequence of (N', [m(]). From the theorem 9, we can deduce a sequence o
in (N, [mo]) such that h(o) is recognized by a path of A from g to g. |

Proof of Th. 13 (Acceptance of maximal finite sequences)

Proof. We construct a labeled SRPN ((N°, [m§]), X, h®) similar to the product
SRPN.

- PP=PUQuQu{b,b}
— mgy=mo +qo

~ Th ={t.q.q | (t € Tu) A(a,¢ € Q) A (28}
- Vt.q.q € TY,

e hi(t.q.q'") = h(t)
o WY (tq.d) =W=(t) +q, W (t.q.q) = WT(t) +¢

— T = {t.q.q'.q¢" | (t € Tu) Aa,d € Q) A (g" € (QU{BY) A (¢2Yq')}
- Vt.q.q'.q" € T?,,

o hi(t.q.q'.q") = h(t)

o« W' (t.q.q'.q") =W~ (t) +q,

° qn € Q = Wb+(t.q.q’.q”) — W+(t) + qll

A Model Checking Decision Procedure for Sequential Recursive Petri Nets 17

~ T = {m+q+q | (m e V) A(0,q € QA U{m+q+b|me
Dead(N)ANqe F}U{m |m >blU{m+q|m € Dead(N)ANq € F}
— B (r) = ()

where Dead(N) is the effective semilinear set {m € N |Vt € TU{7},~-m—t3}.

We prove that reaching the empty tree in N’ is equivalent to reach a deadlock
in the product SRPN with a place ¢ € F marked in the leaf. As N’ includes the
behaviors of the product SRPN, a deadlock sequence can be emulated. However,
in order to reach L after this sequence, we need to slightly modify this simulation.
Places b and b are added in order to predict that after the firing of an abstract
transition in a node, this node will become again the leaf only when the emulation
has led to an adequate deadlock sequence. Place b will be marked if the previous
abstract transition closes itself and makes possible to cut this leaf due to the defi-
nition of 7® (the iteration of this mechanism will necessary lead to). Place b is
marked in the leaf “opened” by the prediction and restricts the closability of this
node to two cases: an adequate deadlock is reached in this leaf or the deadlock has
been reached before this node becomes again the leaf. The last part of the definition
of T covers the case where one reaches the deadlock in the root. The proof of the
correctness of this construction is similar to the one used for Theorem 12. O

Proof of Th. 14 (Acceptance of infinite sequences)

First, we establish the two following lemmas.

Lemma 16 (Recognition). Let A = (¥,Q,6,q) be an automaton, and S =
((N,[mo]), X, h) a labeled SRPN. Let My an effectively semilinear marking set
of N and q;,q; € Q be two automaton states. The existence of a sequence o of
(N, [mo]) such that [mo]-Zs[my] where my € My and h(o) is recognized by a
path of A from q; to g; is decidable.

Proof. Let ((N',[mg]), X, h') be the product SRPN of S and (¥, Q,0,¢;). From
this SRPN, we define the SRPN (N", [m{]) as follows:

— Pr=P'U{Iit},T" =T,

—wr =W W =w

—_ =y

- =Y"U{mys+q; + Init | my € My}
— mg = myg + Init,

As in the Th. 12, we can show that a sequence required by the lemma exists iff
1 is reachable in N” from mg. N" strictly emulates the product SRPN excepted
that the place Init is added in order to allow the firing of a cut step in the root on
reaching an accepting state of the product SRPN. O

We denote by Rec(A, g;,qj, N,mo, My) the function which returns true if such
a sequence exists.

18 Serge Haddad, Denis Poitrenaud

Lemma 17 (Acceptance). Let A = (¥,0Q),0,q) be an automaton, F C Q a set
of accepting states and S = ((N, [mqo]), X, h) a labeled SRPN. Let My an effectively
semilinear state set of N and q;,q; € @ be two automaton states. The existence
of a sequence o of (N,[mg]) such that [mo]|-Zs[mys]| where my € My and h(o)
is recognized by a path ¢ = ¢1-25q2..."5q, = q; of A such that Ik, 1 < k <
nAqr € F is decidable.

Proof. We construct a particular SRPN product ((N*, [m{]), X, h*) of S and A
satisfying:

~ P*=PUQUQUQUQ U {Init}
— mg =mg + q; + Init

— T4 = {t.q.q,t.3.q | (t € Ta)A(q, ¢ € QN2 U{t.q.q | (t € Tu)A(h(t) £
A a8 A (g € F)}
- Vt.q.q e Ty,
e h*(t.q.¢") = h(t)
o W* (tqgq)=W=(t)+q W* (tgq)=W*(t)+d

— T = {tqq.q",t.3q.¢" t.q.q¢'q" | (t € Tup) A (q,q q” € Q) A (@MU
{t.0.¢-q" | (t € Tup) A0, 0" € Q) A (h(t) #) A (¢"B¢') A (g € F)}
- Vtgq.q" €T},
o h*(t.q.q".q") = h(t)
o W* (t.g.q'.¢") =W~ ()+‘17_W*+(t-CI-Q'-Q") = W) + 4"
o 2*(t.qq'.q")=02@1)+q +q"

T = {mAq+7 | mEeDA(0d € QAD)u{m+G+4q | (m

VA (0,7 € QA D) U{m+q+q | (meT)A (g€ F)A(7 € Q)A (()#
/\(qwq’)}u{mf+qj+fmt|mf€Mf}

— h*(r) = h(r)

A sequence satisfying the requirement of the lemma exists iff L is reachable
in N* from m{. The demonstration of this equivalence is similar to the proof of
lemma 16. Indeed, the only difference between the SRPN (N*, [m{]) and the one
used in this lemma is that the two places related to an automaton state are once
more duplicated to indicate that a state of F' has been “visited” by the current
sequence. The transitions are duplicated in the same way. The reachability of L
is conditioned by the reachability of a marking of M, at the root level (the place
Init must be marked) in such way that the automaton reaches the state g; having
visited a state of F' (the place ¢; must be marked). a

We denote by Acc(A, F,qi,q;, N,mg, My) the function which returns true if
such a sequence exists. We are now in position to demonstrate the correctness of
the Th. 14.

A Model Checking Decision Procedure for Sequential Recursive Petri Nets 19

Proof. The proof is divided in two parts: looking for infinite sequences ¢ with
dinf (o) finite or infinite.

(dinf (o) < 00). We have seen that the sequences of this type can be decom-
posed in [mo]| Ztry, 2 .. try, Z5try, ., ... (whose characteristics are described
in section 4.2).

15t step We determine the possible couples of starting markings in the leaf and
automaton states reached by og. Indeed, as the depth of successive extended
markings will be greater or equal than the current depth, the remainder of the
sequence ¢ is only conditioned by these two informations. So, we compute the
set C of couples of the form (g, £2(t)) such that there exists a sequence o' of
(N, [mg]) leading to an extended marking in which the abstract transition ¢
can be fired (necessarily in the leaf) and such that the word h(o'.t) is a word
recognized by a path of A from ¢y to ¢. We have o¢ = ¢’.t. This computation
can be done using the function Rec iteratively starting with the couple (qgo,mo)
with My =1 Pre(t) for each abstract transition ¢ until saturation (i.e. when
no new couple is discovered). It necessarily terminates because the number of
automaton states as well as the number of abstract transitions are finite.

and step We construct the ordinary net NV in the following way:

- P=PUQ
~ T ={tqgq | (t€Ta)A(0,d' € Q)A((EEg)}U{t.qq | (t € Tup) A(g,q' €
Q) A (Gar,d; € Qa2 A Ree(A, 1,01, N, 2(8),7) A gt 22q")} U g |
(t € Tab)/\(qaq’ € Q)/\(qu;qi € Q;qh:(t;ql/\(Acc(AaFa fh;‘li;N; .Q(t),T)\/
{a,d}NF £ 0) A gi)} N
—Vtqq €T, W (tqq) =W~ () + ¢, WF(t.g.q) = W) +¢
—Vtq.q € T,W=(t.q.q)=W=(t)+q, Wt (tqq)=W*tE) +¢
By construction, an infinite sequence in (N, (¢, m)) with (g, m) € CU{(q0,m0)}
exactly corresponds to a suffix of an infinite sequence in the product SRPN
which visits infinitely often a node of the extended marking. This correspon-
dence is obtained since each transition in IV corresponds to a finite subsequence
in the product between two consecutive visits of the same node. In order to
be an accepting sequence, an automaton state ¢ € F' must be infinitely of-
ten reached and thus a transition in N which corresponds to a subsequence
which encounters ¢ must be infinitely often fired. These transitions are exactly
transitions ¢.q.q" with ¢’ € F' and transitions t.q.q".

374 step So for each couple (g, m) in CU{(qo,m0)}, we decide whether there exists
an infinite sequence in (J\Af ,m + ¢) with a transition t.q.q" where ¢' € F' fired
infinitely often or a transition t.q.¢’ fired infinitely often. This last step can be
decided using the algorithm of H.C. Yen ([Yen92]).

(dinf (o) = 00). The checking of the existence of accepted infinite sequences is
reduced to a finite graph analysis. Indeed,we build a graph where the nodes are
the computed couples of the first procedure and an edge denotes that one node
has been reached from the other one by a sequence increasing by one the depth of
the visited extended markings and such that the intermediate subsequences never
decrease the depth below its initial value. The edges are partitioned depending on

20 Serge Haddad, Denis Poitrenaud

the visit by the sequence of an accepting state of the Blichi automaton. Then the
existence of an accepting infinite sequence is equivalent to the existence of some
kind of strongly connected component. The different steps of verification are listed
below:

1%t step We build two relations E and E on C U {(qo, mg)} such that

V(q, m)7 (qla ml) eCu {(qo’ mo)}
- ((g;m),(¢',m")) € E & 3t € Ta,3q} € Q,Rec(A,q,q;,N,m,T Pre(t)) A
g2y Am' = 2(t)
— ((g,m),(¢",m") € E & 3t € Ty,3¢) € Q,(Acc(4,q,q1, N,m,T Pre(t)) v
¢ € F)Ag Mg Am' = (1)
An accepting infinite sequence o with dinf (o) = oo can be decomposed as in
section 4.2. An arc of the previous graph exactly corresponds to a finite subse-
quence of this decomposition. It remains only to check whether an automaton
state ¢ € F' is infinitely often visited by the sequence but this exactly corre-
sponds to the infinite occurrence of an arc e € E in an infinite path of the
graph.

274 step So we decide whether it exists a strongly connected component of the
graph (R, E U E) having an arc of E. This last step can be decided using the
algorithm of Tarjan.

O

Proof of Th. 15 (Acceptance of divergent sequences)

The detection of divergent sequences is based on a lemma concerning sequences
which are non observable by the automaton.

Lemma 18 (Non observation). Let S = ((N, [mg]), X, h) be a labeled SRPN.
Let My be an effectively semilinear state set of N. The existence of a sequence o
of (N, [mg]) such that [mo]—Zs[mys] where my € My and h(c) = X is decidable.

Proof. Let N be the recursive Petri net N in which the transitions of the set {t €
T | h(t) # A} have been discarded and such that if h(7) # X then T* = @ else T =
7. Decide if such a sequence exists is equivalent to decide if L(N*, [mo], My) # 0.

a

We denote by NonObs(N,mg, My) the function which returns true if such a
sequence exists. We are now in position to demonstrate the correctness of the
Th. 15.

Proof. Again, two kinds of infinite sequences have to be detected. The first kind
concerns sequences for which the depth of the extended markings visited is bounded.
Such sequences are detected by the three following steps:

1%t step We construct the ordinary net N in the following way:
- P=PUQ

A Model Checking Decision Procedure for Sequential Recursive Petri Nets 21

~ T={tqq | (t€Ta)A u¢eQ)<¢“¢»u
{taq | (t € Tup) AN(g € Q\F) A (¢ € Q) A Rec(A,q,q4',N,2(t), 1) A
- NonObs(N, 2(t),T)} U
{t.q.q" | (t € Tup) A (g € F) A (' € Q) A NonObs(N, 2(t),7)}

—Vtqqd € T,W(t.qq)=W=(t) +q, WH(t.q.q) =WH(t) +¢

— Viqq €T, W~ (tqq) = W(t) + ¢, WH({tqq) = WH(t) + ¢

27 step We compute the set of couples C' of the form (g;, £2(¢;)) such that there
exists a firing sequence o of (N, mp) leading to an extended marking in which
the abstract transition t; can be fired (necessarily in the leaf) and such that the
word h(o.t;) is a word recognized by a path of A from g to ¢;. This computation
can be done using the function Rec iteratively.

37? step For each couple (g,m) in C U {(go,m0)}, decide if it exists an infinite
sequence o in (]\7 ,m + q) for which the set of transitions fired infinitely often
is a subset of {t.q.¢,t.q.¢ € T | h(t) = XA q € F}. This last step can be
decided using the algorithm of H.C. Yen (REFERENCE). If such a sequence
exists return true else return false.

The second kind of infinite sequences are the ones for which such a bound does
not exist and they are detected applying the following two steps:

1%t step We construct a set R and two relations E and E such that
— (mo,q0) € R
—V(m,q) € R,3t € Tup,q € @ such that Rec(A,q,q',N,m,t Pre(t)) =
(2(6),¢) € RA((m, q), (2(1),) € E
— V(m,q) € R,3t € Ty such that ¢ € FANonObs(N,m, T Pre(t)) = (£2(t),q) €
RA((m,q),(2(t),q)) € E
2nd step Decide if there exists a strongly connected component of the graph
(R,E U E) using only some arcs of E and having a node (g,m) such that
q € F. This last step can be decide using the classical algorithm of Tarjan. If
such a component exists return true else return false.

The demonstration of the correctness of these decision procedures is similar to
the one presented for Theorem 14. O

