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A Model Che
king De
ision Pro
edure forSequential Re
ursive Petri NetsSerge Haddad1 and Denis Poitrenaud21 LAMSADE - UPRESA 7024, Universit�e Paris IX, DauphinePla
e du Mar�e
hal De Lattre de Tassigny, 75775 Paris 
edex 162 LIP6 - UMR 7606, Universit�e Paris VI, Jussieu4, Pla
e Jussieu, 75252 Paris 
edex 05Abstra
t. Re
ursive Petri nets (RPNs) have been introdu
ed to modelsystems with dynami
 stru
ture. Whereas this model is a stri
t extensionof Petri nets and 
ontext-free grammars (w.r.t. the language 
riterion),rea
hability in RPNs remains de
idable. However the kind of model 
he
k-ing whi
h is de
idable for Petri nets be
omes unde
idable for RPNs. In thiswork, we introdu
e a submodel of RPNs 
alled sequential re
ursive Petrinets (SRPNs) and we study its theoreti
al features. First we show that we
an de
ide whether a RPN is a sequential one. Then, we analyze the lan-guage aspe
ts proving that the SRPN languages still stri
tly in
lude theunion of Petri nets and 
ontext-free languages. Moreover the family of lan-guages of SRPNs is 
losed under interse
tion with regular languages (unlikethe one of RPNs). This property is the starting point for the model 
he
kingof the a
tion-based linear time logi
 whi
h is also shown to be de
idable.To the best of our knowledge, this is the �rst time su
h a result is obtainedfor a model stri
tly in
luding Petri nets and 
ontext-free grammars.1 Introdu
tionIn the area of veri�
ation theory, a great attention has been re
ently paid on in�nitestate systems. In 
ontrast to �nite state systems where theoreti
al and pra
ti
aldevelopments mainly fo
us on 
omplexity redu
tion [Hol90℄, an essential topi
 inin�nite state systems is to �nd a trade-o� between expressivity of the models andde
idability of veri�
ation [HM96℄. As the model 
he
king of temporal logi
 formulais one of the most general approa
h for veri�
ation, it has been intensively studiedin the framework of in�nite-state systems.Context-free grammars (also 
alled 
ontext-free pro
esses) have led to 
omple-mentary works. In [Wal96℄ , it is shown that the model 
he
king of bran
hingtime �-
al
ulus formula is de
idable and that it is DEXPTIME-
omplete. Whenrestri
ting the temporal logi
 formula to the linear time logi
 LTL, one obtainspolynomial time algorithms [BEM97,FWW97℄.In [Esp97℄, model 
he
king for Petri nets has been studied. The bran
hing tem-poral logi
 as well as the state-based linear temporal logi
 are unde
idable even forrestri
ted logi
s. Fortunately, the model 
he
king for a
tion-based linear temporallogi
 is de
idable. The 
ase of in�nite sequen
es may be redu
ed to the sear
h ofrepetitive sequen
es studied in [Yen92℄ (an EXPSPACE-
omplete problem) and
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ase of �nite sequen
es may be redu
ed to the rea
hability problem [May81℄.Re
ently, in [Bou98℄ the rea
hability problem for Petri nets is also shown to beEXPSPACE-
omplete. Thus the model 
he
king 
omplexity is also EXPSPACE-
omplete.It seems interesting to 
ombine 
ontext-free grammars and Petri nets and tolook for de
idable properties. Indeed, for two su
h models - the pro
ess rewritesystems [May97℄ and the re
ursive Petri nets (RPNs) [HP99b℄ - the rea
habilityproblem is de
idable (and, due to [Bou98℄, EXPSPACE-
omplete). However, forboth these two models, the model 
he
king of a
tion-based temporal logi
 be
omesunde
idable. It remains unde
idable even for restri
ted models su
h as those pre-sented in [BH96℄. So (to the best of our knowledge) for any existing model stri
tlyin
luding Petri nets and 
ontext-free grammars, the a
tion-based linear time model
he
king is unde
idable.In this work, we present a submodel of RPNs 
alled sequential re
ursive Petrinets (SRPNs) and we give some de
ision pro
edures in
luding the model 
he
k-ing. Roughly speaking, in re
ursive Petri nets some transitions emulate 
on
urrentpro
edure 
alls by initiating a new token game in the net. The return me
hanismis ensured by rea
hability 
onditions. A state of a RPN is then a tree of \tokengames".A re
ursive Petri net is sequential if there are �rable transitions only in thelast initiated token game. Su
h a de�nition is behavioral and our �rst result isthat we 
an de
ide whether a RPN is a SRPN. We then study the language familyof SRPNs and we show that this family stri
tly in
ludes the union of Petri netsand 
ontext-free languages. Moreover, unlike RPNs, this family is 
losed underinterse
tion with regular languages.In the last part of the paper, building on this result, we fo
us on the model
he
king for an a
tion-based linear time logi
. The 
ase of �nite (maximal) se-quen
es is handled by a straightforward adaptation of the 
losure result. The 
aseof in�nite sequen
e is more tri
ky and requires to distinguish w.r.t. the asymptoti
behavior of the depth of token games in an in�nite sequen
e. Based on this analysis,we obtain an EXPSPACE upper bound for the de
ision pro
edure.Due to the spa
e restri
tions, only sket
hes of proof are given in the paper.However in appendix, we give 
omplete proofs for the main propositions. Thisappendix will be omitted in the �nal version.2 Sequential Re
ursive Petri Nets2.1 Re
ursive Petri netsA RPN has the same stru
ture as an ordinary one ex
ept that the transitions arepartitioned into two 
ategories: elementary transitions and abstra
t transitions.Moreover a starting marking is asso
iated to ea
h abstra
t transition and a ef-fe
tively semilinear set of �nal markings is de�ned. The semanti
s of su
h a netmay be informally explained as follows. In an ordinary net, a thread plays thetoken game by �ring a transition and updating the 
urrent marking (its internalstate). In a RPN there is a dynami
al tree of threads (denoting the fatherhood
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ursive Petri Nets 3relation) where ea
h thread plays its own token game. The step of a RPN is thusa step of one of its threads. If the thread �res an elementary transition, then itupdates its 
urrent marking using the ordinary �ring rule. If the thread �res anabstra
t transition, it 
onsumes the input tokens of the transition and generates anew 
hild whi
h begins its token game with the starting marking of the transition.If the thread rea
hes a �nal marking, it may terminate aborting its whole des
entof threads and produ
ing (in the token game of its father) the output tokens of theabstra
t transition whi
h gave birth to him. In 
ase of the root thread, one obtainsan empty tree.De�nition 1 (Re
ursive Petri nets). A re
ursive Petri net is de�ned by a tu-ple N = hP; T;W�;W+; 
; � i where{ P is a �nite set of pla
es, T is a �nite set of transitions.{ A transition of T 
an be either elementary or abstra
t. The sets of elementaryand abstra
t are respe
tively denoted by Tel and Tab (with T = Tel℄Tab where℄ denotes the disjoint union).{ W� and W+ are the pre and post 
ow fun
tions de�ned from P � T to IN.{ 
 is a labeling fun
tion whi
h asso
iates to ea
h abstra
t transition an ordinarymarking (i.e. an element of INP ) 
alled the starting marking of t.{ � is an e�e
tively semilinear set of �nal markings (any usual syntax 
an bea

epted for its spe
i�
ation).De�nition 2 (Extended marking). An extended marking tr of a re
ursive Petrinet N = hP; T;W�;W+; 
; � i is a labeled tree tr = hV;M;E;Ai where{ V is the set of verti
es,{ M is a mapping V ! INP ,{ E � V � V is the set of edges and{ A is a mapping E ! Tab.A marked re
ursive Petri net hN; tr0i is a re
ursive Petri net N asso
iated to aninitial extended marking tr0.We denote by v0(tr) the root node of the extended marking tr. The empty treeis denoted by ?. Any ordinary marking m 
an be seen as an extended marking,denoted by dme, 
onsisting of a single node. For a vertex v of an extended marking,we denote by pred(v) its (unique) prede
essor in the tree (de�ned only if v isdi�erent from the root) and by Su

(v) the set of its dire
t and indire
t su

essorsin
luding v (8v 2 V; Su

(v) = fv0 2 V j (v; v0) 2 E�g where E� denotes there
exive and transitive 
losure of E). An elementary step of a RPN may be eithera �ring of a transition or a 
losing of a subtree (
alled a 
ut step and denoted by�).De�nition 3. A transition t is enabled in a vertex v of an extended marking tr(denoted by tr t;v�!) if 8p 2 P;M(v)(p) � W�(p; t) and a 
ut step is enabled in v(denoted by tr �;v�!) if M(v) 2 �



4 Serge Haddad, Denis PoitrenaudDe�nition 4. The �ring of an enabled elementary step t from a vertex v ofan extended marking tr = hV;M;E;Ai leads to the extended marking tr0 =hV 0;M 0; E0; A0i (denoted by tr t;v�!tr0) depending on the type of t.{ t 2 Tel� V 0 = V , E0 = E , 8e 2 E;A0(e) = A(e), 8v0 2 V n fvg, M 0(v0) =M(v0)� 8p 2 P;M 0(v)(p) =M(v)(p)�W�(p; t) +W+(p; t){ t 2 Tab� V 0 = V [ fv0g , E0 = E [ f(v; v0)g, 8e 2 E;A0(e) = A(e) , A0((v; v0)) = t� 8v00 2 V n fvg;M 0(v00) =M(v00), 8p 2 P;M 0(v)(p) =M(v)(p)�W�(p; t)� M 0(v0) = 
(t)where v0 is a fresh identi�er absent in V{ t = �� V 0 = V n Su

(v) , E0 = E \ (V 0 � V 0) , 8e 2 E0; A0(e) = A(e)� 8v0 2 V 0 n fpred(v)g;M 0(v0) =M(v0)� 8p 2 P;M 0(pred(v))(p) =M(pred(v))(p) +W+(p;A(pred(v); v))Let us noti
e that if v is the root of the tree then the �ring of � leads to toempty tree ?.The depth of an extended marking is re
ursively de�ned as 0 for ?, 1 for aunique vertex and, for the general 
ase, the maximum depth of the dire
t sub-trees of the root in
remented by one. For an extended marking tr, its depthis denoted by depth(tr). A �ring sequen
e is de�ned as usual: a sequen
e � =tr0(t0; v0)tr1(t1; v1) : : : (tn�1; vn�1)trn is a �ring sequen
e (denoted by tr0 ��!trn)i� triti;vi�!tri+1 for i 2 [0; n� 1℄. We de�ne the depth of � as the maximal depth oftr1, tr2, . . . , trn. In the sequel, for sake of simpli
ity, � will be often denoted by� = t0t1 : : : tn�1
= {m | m(p    ) > 0 or m(p     ) > 0}Υ
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start Fig. 1. a simple re
ursive Petri netThe �gure 1 shows the modeling of n similar transa
tions (represented by ntokens in pstart). We represent an abstra
t transition by a double border re
tangleand its initial marking is indi
ated in a frame. A transa
tion is started by the �ringof the transition tstart. When initialized, the transa
tion may pro
eed lo
ally by�ring tlo
al or starts a new pro
ess by �ring tfork. Ea
h pro
ess may a
hieve byrea
hing pend or abort sin
e pfault is always marked. In the latter 
ase, the nestedpro
esses are also stopped due to the 
ut me
hanism.A �ring sequen
e of this RPN is presented in the �gure 2 for n = 2. The ar
sof the trees 
omposing the visited extended markings are labeled by the abstra
ttransition tstart for the thin ones and by tfork for the bold ones. The thread in
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Fig. 2. a �ring sequen
ewhi
h the following step is �red is represented in bla
k. One 
an noti
e that ea
h�ring of abstra
t transition leads to the 
reation of a new node in the tree whereasthe �ring of the last 
ut step prunes a subtree not redu
ed to one node.2.2 Sequential Re
ursive Petri NetsIn a re
ursive Petri net, there are two kinds of parallelism between a
tivities: 
on-
urrent �rings inside the same node and 
on
urrent �rings in di�erent nodes. Inorder to model \sequential 
all" with abstra
t transitions, the se
ond kind of par-allelism must be forbidden. This is the aim of the next de�nition.De�nition 5 (Sequential Re
ursive Petri Nets). Let hN; tr0i be a marked re-
ursive Petri net. hN; tr0i is a sequential re
ursive Petri net if the following 
ondi-tions hold:{ tr0 is a tree 
omposed by only one node,{ Ea
h rea
hable extended marking of N from tr0 satis�es� ea
h node has at most one su

essor,� there is no enabled step in a node di�erent to the leaf.The �rst 
ondition is imposed for sake of simpli
ity but is not a theoreti
alrestri
tion. As an example, the net of Fig. 1 is a SRPN i� n is equal to one. We
ould have 
hosen an alternative synta
ti
al de�nition (with an additional 
ontrolpla
e) but the present one leads to the next statement.Proposition 6 (SRPN 
lass belonging). Let hN; tr0i be a marked RPN, one
an de
ide whether hN; tr0i is a SRPN.Sket
h of Proof. A RPN is not a SRPN i� there is a node within a rea
hableextended marking where one 
an �re simultaneously an abstra
t transition andany other step (a property de�ned by an e�e
tively semilinear set of markings).We pro
eed in two stages. We 
ompute all the starting markings of a node in area
hable extended marking (there are only a �nite number). Then, for any su
hmarking, we look in this node whether we 
an rea
h the above semilinear set.The e�e
tiveness of these two steps is dedu
ed from the de
ision pro
edure for therea
hability problem of RPN (see the appendix for more details).



6 Serge Haddad, Denis Poitrenaud3 Language PropertiesWe denote by L(N; tr0; T rf ) (where Trf is a �nite extended marking set) the set of�ring sequen
es (mapped on (T [�)�) of N from tr0 to an extended marking of Trf .This set is 
alled the language of N . More generally, the languages we will 
onsiderare de�ned via a labeling fun
tion. A labeled marked re
ursive Petri net is a markedre
ursive Petri net and a labeling fun
tion h de�ned from the transition set T [f�gto an alphabet � plus � (the empty word). h is extended to sequen
es and thento languages. The language of a labeled marked re
ursive Petri net hhN; tr0i; �; hifor a �nite extended marking set Trf is de�ned by h(L(N; tr0; T rf )).We now study the properties of the languages generated by labeled SRPNs.These languages are de�ned for a given �nite set of terminal extended markings.For sake of simpli
ity, we impose that su
h sets are 
omposed by extended markinglimited to a single node. One 
an remark that this 
ondition is not a theoreti
alrestri
tion. The �rst result 
on
erning the languages generated by SRPNs is abouttheir relation with Petri net and 
ontext-free languages.Theorem 7 (Stri
t in
lusion). SRPN languages stri
tly in
lude the union of
ontext-free and Petri net languagesWe prove that SRPN languages are 
losed under interse
tion with regular lan-guages. For a SRPN and an automaton (see appendix for de�nition and notation),both labeled on a same alphabet, we de�ne a produ
t SRPN resulting of their 
om-position and demonstrate that its language is the interse
tion of their respe
tivelanguages.The produ
t SRPN is 
onstru
ted from the pla
es of the original one by addinga pla
e set Q whi
h 
orresponds to the states of the automaton. As usual, theelementary transitions are syn
hronized with the ones of the automaton using thesenew pla
es. For ea
h extended ar
 q a=)q0 (with a 2 �[f�g) of the automaton andfor ea
h elementary transition t su
h that h(t) = a, an elementary transition t:q:q0,having W�(t) + q as pre-
ondition and W+(t) + q0 as post-
ondition, is added.When an abstra
t transition is �red a new node appears and, due to the SRPNde�nition, the token game is limited to this node. Then, we have to predi
t the staterea
hed by the automaton when the opened bran
h will be 
losed. The abstra
ttransitions 
onstru
ted in the produ
t SRPN are denoted t:q:q0:q00 where the pre�xt:q:q0 expresses the same 
onditions as for the elementary transitions (ex
eptedthat t is an abstra
t transition of the original net). For ea
h state q00 2 Q su
h anabstra
t transition is added (the predi
tion is non deterministi
). To ensure thatthe predi
ted state is e�e
tively rea
hed when the 
ut step 
losing the bran
h is�red, a set of pla
es Q (
omplementary to Q) is used. The �ring of an abstra
ttransition t:q:q0:q00 leads to the 
reation of a new node for whi
h its starting markinghas the pla
e q00 marked. Using these pla
es, the e�e
tively semilinear set of �nalmarkings is built in order to ensure that the predi
ted state is e�e
tively rea
hed.Let us noti
e that this 
omposition 
orresponds to a weak syn
hronization as sometransitions of the SRPN 
an be labeled by �.
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ursive Petri Nets 7De�nition 8 (Produ
t SRPN). Let A = h�;Q;�; q0i be an automaton andS = hhN; dm0ei; �; hi a labeled SRPN. The produ
t RPN of A and S is a labeledmarked RPN hhN 0; dm00ei; �; h0i de�ned by{ P 0 = P [Q [Q, m00 = m0 + q0{{ T 0el = ft:q:q0 j (t 2 Tel) ^ (q; q0 2 Q) ^ (q h(t)=)q0)g{ 8t:q:q0 2 T 0el,� h0(t:q:q0) = h(t), W 0�(t:q:q0) =W�(t) + q, W 0+(t:q:q0) =W+(t) + q0{ T 0ab = ft:q:q0:q00 j (t 2 Tab) ^ (q; q0; q00 2 Q) ^ (q h(t)=)q0)g{ 8t:q:q0:q00 2 T 0ab,� h0(t:q:q0:q00) = h(t)� W 0�(t:q:q0:q00) =W�(t) + q, W 0+(t:q:q0:q00) =W+(t) + q00� 
0(t:q:q0:q00) = 
(t) + q0 + q00{ � 0 = fm+ q + q0 j (m 2 � ) ^ (q; q0 2 Q) ^ (qh(�)=)q0)g{ h0(�) = h(�)It is 
lear that the 
onstru
ted RPN is a SRPN as the initial marking is atree limited to a single node and the pre and post 
onditions of the initial SRPNare preserved and enri
hed by the automaton 
ow. In Fig. 3 of appendix, thebehavior of this produ
t is illustrated and 
ommented. The next theorem showsthe soundness of this building.Theorem 9 (SRPN produ
t property). Let A = h�;Q; Æ; q0i be an automa-ton, F � Q a set of �nal states, S = hhN; dm0ei; �; hi a labeled SRPN and Mf aset of terminal markings. Let hhN 0; dm00ei; �; h0i be the produ
t SRPN of A and Sand M 0f = fdm+ qe j dme 2Mf ^ q 2 Fg. The following equality holdsh0(L(N 0; dm00e;M 0f )) = h(L(N; dm0e;Mf )) \ L(A;F )Corollary 10 (SRPN 
losure). The family of SRPN languages is 
losed underinterse
tion with regular languages.The SRPN 
losure property gives the starting point for the de
idability of themodel 
he
king problem. Moreover, in [HP99a℄, it is demonstrated that the RPNlanguages are not 
losed under interse
tion with regular ones leading to the next
orollary.Corollary 11 (SRPN versus RPN). The family of SRPN languages is stri
tlyin
luded in the family of RPN languages.4 Model Che
kingThe model 
he
king that we investigate is the a
tion based linear-time �-
al
ulusapplied to SRPNs. The usual veri�
ation method 
onsists to 
he
k the existen
eof a sequen
e of the system ful�lling the negation of the formula. Depending onthe kind of the sequen
e, di�erent semanti
s have been de�ned. We will study themain ones: �nite sequen
es, maximal �nite sequen
es (leading to a deadlo
k), in�-nite sequen
es, divergent sequen
es (in�nite sequen
es ended by a non observablesubsequen
e). As a linear-time �-
al
ulus formula is equivalently represented by aB�u
hi automaton, we limit ourselves to this representation.



8 Serge Haddad, Denis Poitrenaud4.1 Finite and maximal �nite sequen
esWhen the sear
hed sequen
es are �nite, B�u
hi automata are nothing else than or-dinary automata. A slight adaptation of the produ
t of a SRPN and an automatonmakes possible the redu
tion of the model-
he
king problem to a rea
hability prob-lem for the produ
t SRPN. In 
ase of maximal �nite sequen
es, adaptation is stillpossible although more intri
ate (see the appendix for details).Theorem 12 (A

eptan
e of �nite sequen
es). Let A = h�;Q; Æ; q0i be anautomaton, F � Q a set of �nal states and S = hhN; dm0ei; �; hi a labeled SRPN.The existen
e of a �nite �ring sequen
e � of S su
h that h(�) 2 L(A;F ) is de
id-able.Theorem 13 (A

eptan
e of maximal �nite sequen
es). Let A = h�;Q; Æ;q0i be an automaton, F � Q a set of �nal states and S = hhN; dm0ei; �; hi alabeled SRPN. The existen
e of a �nite �ring sequen
e � of S su
h that � leads toa deadlo
k of N and h(�) 2 L(A;F ) is de
idable.4.2 In�nite and divergent sequen
esWe are looking for an in�nite �ring sequen
e of the SRPN a

epted by a B�u
hiautomaton. We will perform two independent sear
hes depending on a 
hara
ter-isti
 of the sequen
e: the asymptoti
 behavior of the depth of the sequen
e. Let� = dm0et1;v1�!tr1t2;v2�! : : : tri�1ti;vi�!tri : : : be an in�nite sequen
e, we de�ne dinf (�) =lim inf i!1 depth(tri) (de�ned by limi!1 inf j�ifdepth(trj)g). dinf (�) always ex-ists but it 
an be either �nite or in�nite.In 
ase of a �nite value, there exists a stri
tly in
reasing sequen
e of indexesi1; : : : ; ik; : : : su
h that:{ beyond i1 the set of indexes fi1; i2; : : : ; ik; : : :g is exa
tly the indexes for whi
hthe depth of the visited extended markings is equal to dinf (�)(8i � i1; depth(tri) = dinf (�), i 2 fi1; i2; : : : ; ik; : : :g){ beyond i1 the depth of the visited extended markings will be greater or equalthan dinf (�) (8i � i1; depth(tri) � dinf (�)){ i1 is the �rst index from whi
h the depth of the visited extended markings willbe no more less than dinf (�) (8i < i1; 9j � i; depth(trj) < dinf (�))So � will be de
omposed as dm0e �0�!tri1 �1�! : : : trik �k�!trik+1 : : : where �0 endswith the �ring of an abstra
t transition leading to an extended marking of depthdinf (�) (with the 
reation of a new node) and �k is either a �ring of an elementarytransition in this node or a sequen
e beginning by the �ring of an abstra
t transitionin this node and ended by a 
orresponding 
ut step.In 
ase of an in�nite value, there exists a stri
tly in
reasing sequen
e of indexesi1; : : : ; ik; : : : su
h that:{ k is the depth of the extended marking trik (8k; depth(trik ) = k){ beyond ik the depth of the visited extended markings will be greater or equalthan k (8i � ik; depth(tri) � k)
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ursive Petri Nets 9{ ik is the �rst index from whi
h the depth of visited extended markings will beno more less than k (8i < ik; 9j � i; depth(trj) < k)So � will be de
omposed as dm0e = tri1 �1�!tri2 �2�! : : : trik �k�!trik+1 : : : where�k begins by a �ring in an extended marking of depth k, ends with the �ring of anabstra
t transition leading to an extended marking of depth k + 1 and su
h thatall the extended markings visited by �k have a depth greater or equal than k.In order to build in�nite sequen
es from the de
ompositions shown above, wemust be able to 
he
k the existen
e of some �nite �ring subsequen
es beginningand ending in the same node of the two extended markings and 
orrespondingto paths of the B�u
hi automaton. Moreover, we want to distinguish two 
asesdepending on the visit of an a

epting state of the automaton. The 
he
king of theexisten
e of su
h �nite sequen
es may be done similarly as the model-
he
king of�nite sequen
es.We are now in position to explain the two main pro
edures. Looking for asequen
e � with dinf (�) �nite, we �rst 
ompute the 
ouples of starting markingsand automaton states rea
hable by a �ring sequen
e. We build an ordinary Petrinet representing an abstra
t view of sequen
es of the SRPN (re
ognized by theautomaton) where the su

essive extended markings visited by the sequen
e arein�nitely often redu
ed to a single node. Then, for ea
h 
ouple as initial markingof this Petri net, we look for an in�nite sequen
e visiting a subset of transitionsin�nitely often (this 
an be done by the algorithm of [Yen92℄).Looking for a sequen
e � with dinf (�) in�nite, we build a graph where the nodesare the 
omputed 
ouples of the �rst pro
edure and an edge denotes that one nodehas been rea
hed from the other one by a sequen
e in
reasing by one the depth ofthe visited extended markings and su
h that the intermediate subsequen
es neverde
rease the depth below its initial value. The edges are partitioned depending onthe visit by the sequen
e of an a

epting state of the B�u
hi automaton. Then theexisten
e of an a

epting in�nite sequen
e is equivalent to the existen
e of somekind of strongly 
onne
ted 
omponent.Although we will not prove it in the paper, the 
omplexity of these pro
edures isEXSPACE thus, due to the lower bound for Petri nets, the model-
he
king problemis EXSPACE-
omplete. The 
ase of divergent sequen
es is handled similarly (seethe appendix for proof of Th. 14).Theorem 14 (A

eptan
e of in�nite sequen
es). Let A = h�;Q; Æ; q0i be anautomaton, F � Q a set of a

epting states and S = hhN; dm0ei; �; hi a labeledSRPN. The existen
e of an in�nite sequen
e � of hN; dm0ei su
h that h(�) is anin�nite word re
ognized by a path q0 a1�!q1 a2�! : : : of A satisfying jfi j qi 2 Fgj =1is de
idable.Theorem 15 (A

eptan
e of divergent sequen
es). Let A = h�;Q; Æ; q0i bean automaton, F � Q a set of a

epting states and S = hhN; dm0ei; �; hi a labeledSRPN. The existen
e of an in�nite sequen
e � of hN; dm0ei su
h that h(�) is a�nite word re
ognized by a path q0 a1�!q1 a2�! : : : an�!qn of A with qn 2 F is de
idable.



10 Serge Haddad, Denis Poitrenaud5 Con
lusionIn this work, we have introdu
ed sequential re
ursive Petri nets and studied theirtheoreti
al features. At �rst we have shown how to de
ide whether a RPN is aSRPN. Then, we have studied the language family of SRPNs and proved that thisfamily stri
tly in
ludes the union of Petri nets and 
ontext-free languages. More-over, unlike RPNs, this family is 
losed under interse
tion with regular languages.In the last part of the paper, we have fo
used on the model 
he
king for an a
tion-based linear time logi
 and obtained an EXPSPACE upper bound for the de
isionpro
edure.An important 
hara
teristi
 of SRPNs is their 
apability to generate in�nite in-degree transition systems. Su
h a feature makes possible to model dynami
 systemswhi
h 
an be handled neither by pro
ess algebra nor by Petri nets. So, we planto study with SRPNs fault tolerant systems and similar ones whi
h require this
apability.Referen
es[BEM97℄ A. Bouajjani, J. Esparza, and O. Maler. Rea
hability analysis of pushdownautomata: Appli
ation to model-
he
king. In Pro
. of CONCUR'97, 1997.[BH96℄ A. Bouajjani and P. Habermehl. Constraint properties, semi-linear systems,and Petri nets. In Pro
. of CONCUR'96, volume 1119 of Le
ture Notes inComputer S
ien
e. Springer Verlag, 1996.[Bou98℄ Z. Bouziane. A primitive re
ursive algorithm for the general Petri net. In Pro
.39th IEEE Symp. Foundations of Computer S
ien
e, 1998.[Esp97℄ J. Esparza. De
idability of model 
he
king for in�nite-state 
on
urrent systems.A
ta Informati
a, 34:85{107, 1997.[FWW97℄ A. Finkel, B. Willems, and P. Wolper. A dire
t symboli
 approa
h to model
he
king pushdown systems. In Pro
. of INFINITY'97, 1997.[HM96℄ Y. Hirshfeld and F. Moller. De
idability results in automata and pro
ess theory.In Logi
s for Con
urren
y: Stru
ture versus Automata, volume 1043 of Le
tureNotes in Computer S
ien
e Tutorial, pages 102{148. Springer Verlag, 1996.[Hol90℄ G. J. Holzmann. Design and Validation of Computer Proto
ols. Prenti
e Hall,November 1990.[HP99a℄ S. Haddad and D. Poitrenaud. De
idability and unde
idability results for re
ur-sive Petri nets. Te
hni
al Report 019, LIP6, Paris VI University, Paris, Fran
e,September 1999.[HP99b℄ S. Haddad and D. Poitrenaud. Theoreti
al aspe
ts of re
ursive Petri nets. InPro
. 20th Int. Conf. on Appli
ations and Theory of Petri nets, volume 1639 ofLe
ture Notes in Computer S
ien
e, pages 228{247, Williamsburg, VA, USA,June 1999. Springer Verlag.[May81℄ E.W. Mayr. An algorithm for the general Petri net rea
hability problem. InPro
. 13th Annual Symposium on Theory of Computing, pages 238{246, 1981.[May97℄ R. Mayr. De
idability and Complexity of Model Che
king Problems for In�nite-State Systems. PhD thesis, TU-M�un
hen, 1997.[Wal96℄ I. Walukiewi
z. Pushdown pro
esses: Games and model 
he
king. In Int. Conf.on Computer Aided Veri�
ation, volume 1102 of Le
ture Notes in ComputerS
ien
e, pages 62{74. Springer Verlag, 1996.[Yen92℄ H-C. Yen. A uni�ed approa
h for de
iding the existen
e of 
ertain Petri netpaths. Information and Computation, 96:119{137, 1992.
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ursive Petri Nets 11A AppendixAutomaton of Se
t. 3An automaton is a tuple A = h�;Q;�; q0i where � is an alphabet, Q a �nite setof states, � � Q � � � Q a transition relation and q0 2 Q an initial state. Asusual, we denote by q a�!q0 that (q; a; q0) 2 �. Moreover, the extension of �! tosequen
es over � is denoted by =) and is de�ned as follows:{ 8q 2 Q; q �=)q{ 8q; q0 2 Q; q !a=)q0 , 9q00; q !=)q00 ^ q00 a�!q0For an automaton A = h�;Q;�; q0i and a state set F � Q, we denote byL(A;F ) the set of sequen
es f! 2 �� j 9q 2 F; q0 !=)qg.Proof of Prop. 6 (SRPN 
lass belonging)Proof. Alg. A.1 de
ides if a given marked RPN belongs to the SRPN 
lass. In thisalgorithm, the ordinary net Nelem is 
onstru
ted from the RPN in the followingway: ea
h abstra
t transition is removed and for ea
h 
losable abstra
t transition,an elementary transition (having the same pre and post sets) is added. An abstra
ttransition t is said 
losable if ? is rea
hable from the extended marking 
omposedby a single node 
orresponding to the starting marking 
(t). An algorithm forthe 
omputation of the 
losable abstra
t transitions 
an be found in [HP99b℄. Inthe algorithm A.1, a set " Pre(t) denotes the e�e
tively semilinear set of ordinarymarkings in whi
h the transition t is enabled (" Pre(t) = fm j 8p 2 P;m(p) �W�(p; t)g).Now, we prove the 
orre
tness of the algorithm A.1. Let (N; tr0) be a RPNwhi
h is not a SRPN. Then either tr0 is not an extended marking 
omposed with asingle node or there exists a �ring sequen
e � = t1:t2 : : : tn leading to an extendedmarking trn = hV;M;E;Ai su
h that (8v 2 V; jSu

(v)j � 1)^(9v 2 V; jSu

(v)j =1 ^ (9t 2 T;8p 2 P;M(v) �W�(p; t)) _ (M(v) 2 � )).The �rst test realized by the algorithm dete
ts that the initial extended markinghas most than one node. Then, we have to demonstrate that the se
ond 
ase is welldete
ted by the remainder of the algorithm.Let � be a minimal sequen
e satisfying these 
onditions. Let ti be the abstra
ttransition for whi
h its �ring has led to the 
reation of the su

essor node of v.Be
ause � is minimal, ti is the last transition �red in � at the level of v. Moreover,be
ause ti is an abstra
t transition, this �ring only 
onsumes tokens in M(v). We
an dedu
e that either t and ti are 
on
urrent or (M(v) + W�(tj)) 2 � . This
ondition is dete
ted by the algorithm if the set Examine 
ontains the ordinarymarking from whi
h the thread of v has began. This ordinary marking 
an be eitherthe initial marking of v0(tr0) or the starting marking asso
iated to the abstra
ttransition for whi
h its �ring has led to the 
reation of the node v. It is 
lear that,by 
onstru
tion, this marking belongs to Examine . ut



12 Serge Haddad, Denis PoitrenaudAlgorithm A.1 SRPN 
lass belongingboolean SRPN(RPN N; extended marking tr)beginif Su

(v0(tr)) 6= ; thenreturn false;�;Enable = ;;Examine = ;;ToExamine =M(v0(tr));while ToExamine 6= ; dom = Pi
k(ToExamine);Examine = Examine [ fmg;forall t 2 Tab n Enable doif Rea
hable(Nelem;m; " Pre(t)) thenEnable = Enable [ ftg;if 
(t) =2 Examine thenToExamine = ToExamine [ f
(t)g;�;�;od;od;forall m 2 Examine doif Rea
hable(Nelem;m;St2Tab(" Pre(t)) + (St02T (" Pre(t0)) [ � )) thenreturn false;�;od;return true ;endProof of Th. 7 (Stri
t in
lusion)Proof. It is obvious that any PN is a SRPN. Moreover, in [HP99b℄, it is demon-strated that any 
ontext-free language 
an be simulated by a RPN. We 
an remarkthat the proposed 
onstru
tion of the RPN 
orresponding to a 
ontext-free lan-guage leads to a SRPN. In the same paper, it is shown that RPN languages stri
tlyin
lude the union of 
ontext-free and Petri net languages. The proof of this resultexhibits a RPN for whi
h its language is neither PN nor 
ontext-free language. We
an remark that this RPN is a SRPN. Then, we 
an 
on
lude that the languagefamily of SRPN stri
tly in
ludes the union of the 
ontext-free and PN languages.utIllustration of the produ
t SRPN behavior (Def. 8)The use of the 
omplementary pla
es Q is illustrated in Fig. 3. A sequen
e of aSRPN and a path in an automaton as well as the sequen
e of the produ
t SRPN
orresponding to the syn
hronization of both are presented. In the produ
t SRPN,we have t01 = t1:q0:q1:q3 and t02 = t2:q1:q1:q2. When an abstra
t transition is �red,
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Fig. 3. syn
hronization of a SRPN with an automaton versus a produ
t SRPNthe automaton state rea
hes by the 
ut step 
losing the opened bran
h is predi
tedand 
oded in an element of Q. The e�e
tively semilinear set � 0 ensures that thegood predi
ted state is e�e
tively rea
hed by the �ring of the 
ut step.When the abstra
t transition t1 is �red the automaton moves from q0 to q1and it is predi
ted that the opened bran
h will be 
losed by a 
ut step leading theautomaton to the state q3 (the pla
e q3 is marked in the leaf node). This predi
tionis realized at the end of the given sequen
e.From this example, it is 
lear that the produ
t SRPN 
an make some badpredi
tions. Moreover, bad predi
tions 
annot lead to terminal markings whi
hde�ned the language of the produ
t. However, the existen
e of a good predi
tioninsures that a word of the interse
tion of the automaton and the SRPN languageswill be produ
ed by a �ring sequen
e of the produ
t.Proof of Th. 9 (SRPN produ
t property)Proof. First, we demonstrate that to ea
h word ! of h0(L(N 0; dm00e;M 0f )) 
orre-sponds a sequen
e � in L(N; dm0e;Mf ) su
h that h(�) = ! and ! 2 L(A;F ).Let �0 be any sequen
e of N 0 su
h that dm00e �0�!tr0 (with tr0 = hV 0;M 0; E0; A0i)and h0(�0) = !. From the de�nition 8, it is easy to show that there exists a uniquepla
e q 2 Q marked in the leaf node of tr0.We de�ne a mapping z from T 0 to T depending on there types{ 8t:q:q0 2 T 0el; z(t:q:q0) = t{ 8t:q:q0:q00 2 T 0ab; z(t:q:q0:q00) = t{ z(�) = �Moreover, we de�ne the extended marking tr = hV;M;E;Ai as follows:{ V = V 0{ 8v 2 V;M(v) =M 0(v) n (Q [Q){ E = E0



14 Serge Haddad, Denis Poitrenaud{ 8e 2 E;A(e) = z(A0(e))From the de�nition 8, it is 
lear that tr is an extended marking of N . Moreover,it is straightforward that z(�0) is a sequen
e of N from dm0e to the extendedmarking tr. Indeed, m00 is a superset of m0 and the pre and post 
onditions of thetransitions in T 0 are supersets of the ones in T . Finally, from the de�nition of thepre and post 
onditions of the transitions in T 0, we 
an dedu
e a path in A from q0to the state q and from the de�nition of h0 and z, we 
an 
on
lude that this pathre
ognizes the word !.We 
an apply this proof to any word ! of h0(L(N 0; dm00e;M 0f )) and demonstratethat the extended marking rea
hed by the 
orresponding sequen
e in N belongs toMf .Now, we demonstrate that to ea
h word ! of h(L(N; dm0e;Mf )) \ L(A;F )
orresponds a sequen
e �0 in L(N 0; dm00e;M 0f ) su
h that h0(�0) = !.Let ! = a0:a1 : : : an be a word of h(L(N; dm0e;Mf )) \ L(A;F ). Then, thereexists a sequen
e � = dm0et1;v1�!tr1t2;v2�! : : : tm;vm�! dmfe su
h that dmfe 2 Mf andh(�) = !. Moreover, there exists a path q0 a1�!q1 a2�! : : : an�!qn in A su
h that qn 2F . We have to demonstrate the existen
e of a sequen
e �0 of N 0 from dm0+ q0e todmf + qne su
h that dmf + qne 2M 0f and h0(�0) = !.First, we de�ne a mapping ind from [0;m℄ to [0; n℄.{ ind(0) = 0{ 8i 2 [1;m℄; h(ti) 6= � ) ind(i) = ind(i� 1) + 1{ 8i 2 [1;m℄; h(ti) = � ) ind(i) = ind(i� 1)We 
an remark that 8i 2 [1;m℄; h(t1 : : : ti) = a1 : : : aind(i).Then, we de�ne a mapping z0 from ft1; t2; : : : ; tmg to T 0 depending on theirtypes{ 8i 2 [1::m℄; ti 2 Tel ) z0(ti) = ti:qind(i�1):qind(i){ 8i 2 [1::m℄; ti 2 Tab ) let j be the minimal range su
h that j > i^ depth(tri�1) = depth(trj); z0(ti) = ti:qind(i�1):qind(i):qind(j){ 8i 2 [1::m℄; ti = � ) z0(ti) = �We 
an noti
e that for an abstra
t transition, the range j always exists be-
ause the depths of the initial and �nal markings of the sequen
e are equal toone and be
ause the �rings o

ur only in the leaf node. More generally, for anextended marking tri visited by �, we denote the range of the 
ut step whi
h
loses the bran
h opening at the depth d by return(i; d) (i.e. 8i 2 [1::m℄;80 � d <depth(tri); return(i; d) = Min(fj > i j depth(trj) = dg)).We only have to demonstrate that z0(�) is a �ring sequen
e of N 0 from dm0+q0eto dmf + qne. Indeed, from the de�nition of M 0f , it is 
lear that dmf + qne 2M 0f .For a given range i 2 [0::m℄, we formulate some hypotheses (Hyp) on tri,�i = t1 : : : ti, !i = a1 : : : aind(i) and q0; : : : ; qind(i) in relation with tr0i and �0i =z0(t1) : : : z0(ti).
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(Hyp)8>>>>>>>>>><>>>>>>>>>>:

- z(�0i) = �i- h0(�0i) = !i- depth(tr0i) = depth(tri)- 81 � d � depth(tr0i);MjP (tr0i; d) =M(tri; d)-MjQ(tr0i; depth(tr0i)) = fqind(i)g- 81 � d < depth(tr0i);MjQ(tr0i; d) = ;-MjQ(tr0i; 1) = ;- 81 < d � depth(tr0i);MjQ(tr0i; d) = fqind(return(i;d�1))gwhere M(tr; d) denotes the ordinary marking labeling the node of depth 0 <d � depth(tr) of the extended marking tr (this node is unique be
ause ea
h nodeof a SRPN extended marking has at most one su

essor).From the de�nitions of h0 and z0, we 
an easily dedu
e that h0(z0(�)) = ! andthen the two �rst hypotheses are satis�ed for any i. For the others, we reasonindu
tively on the size of the pre�x of z0(�). If this size is equal to zero, it is 
learthat (Hyp) holds. Let (Hyp) satis�ed for a pre�x of length k � 1, we demonstratethat it is veri�ed for k.{ If z0(tk) = tk:qind(k�1):qind(k) 2 T 0el. We know by the hypotheses on theextended marking tr0k�1 that the pre 
ondition of tk is marked in the leafnode as well as the pla
e qind(k�1). And then the transition t0k is enabled(W 0�(tk:qind(k�1):qind(k)) = W�(tk) + qind(k�1)). Moreover, its �ring leads toan extended marking satisfying the hypotheses (the pla
e qind(k) is unmarkedand the pla
e qind(k+1) marked and the �ring on the leaf marking proje
ted onP has the same e�e
t of the �ring of tk in �).{ If z0(tk) = tk:qind(k�1):qind(k):qind(return(k;depth(trk�1)) 2 T 0ab. Like for elemen-tary transition, we know that the transition t0k is enabled. Its �ring leads tounmark the pla
e qind(k�1) and to the 
reation of a new leaf node having
(tk) + qind(k) + qind(return(k;depth(trk�1)) as marking. It is 
lear that this newextended marking satis�es the hypotheses. Moreover, by the de�nition of z0and the predi
tion of ind(return(k; depth(trk�1)), we know that the automatonmust rea
h the state qind(return(k;depth(trk�1)) when the bran
h will be 
losed.{ If z0(tk) = � . Knowing that the transition tk is a 
ut step in � and by thehypotheses on the extended marking, we know that the marking in the leafnode proje
ted on P belongs to � . Moreover, we know that the pla
e qind(k�1)is marked in this node as well as the pla
e qind(return(k�1;depth(trk�1)�1)). Buttk = � and then return(k�1; depth(trk�1)�1) = k. We 
an dedu
e that qind(k)is marked in the leaf node. Moreover, if h(�) 6= �, be
ause ! is a path of theautomaton, we have qind(k�1)aind(k)�! qind(k) and then a 
ut step is enabled fromtr0k�1. If h(�) = � then ind(k � 1) = ind(k) and a 
ut step is also enabled . Inboth 
ases, from the de�nition of � 0 and T 0ab, we 
an dedu
e that the hypothesesare satis�ed for the rea
hed extended marking. ut



16 Serge Haddad, Denis PoitrenaudProof of Th. 12 (A

eptan
e of �nite sequen
es)Proof. Let hhN 0; dm00ei; �; h0i be the produ
t SRPN of A and S. We 
onstru
t anew SRPN hN 00; dm000ei in the following way:{ N 00 = N 0 ex
ept for � 00 = � 0 [ fm j 9q 2 F;m � qg{ m00 = m000Now, we demonstrate that the existen
e of a �nite �ring sequen
e � of S su
hthat h(�) 2 L(A;F ) is equivalent to the rea
hability of ? by hN 00; dm000ei.Let � be a sequen
e of N from dm0e su
h that h(�) is re
ognized by a path ofA from q0 to a state q 2 F . From �, we 
an 
onstru
t a sequen
e of N 00 from dm000ewhi
h rea
hes an extended marking having the pla
e q marked in its leaf node andsu
h that it has been predi
ted that all the opened bran
hes are going to be 
losedin this state q (i.e. ex
epted for the root, all the nodes have the pla
e q marked).From this parti
ular extended marking, the marking of the leaf node belongs tothe se
ond part of the set � 00 and then a 
ut step 
an o

ur. Be
ause this �ringmarks the pla
e q in the father node, again a 
ut step 
an o

ur and so on untilthe empty tree ? is rea
hed.Now, let �00 be a sequen
e of hN 00; dm000ei su
h that dm000e �00�!trn�;v0(trn)�! ?.Be
ause hN 00; dm000ei is a SRPN, trn is a tree limited to a single node and, by
onstru
tion, we have 8q;M(v0(trn))(q) = 0. Then, only the se
ond 
ondition of � 00
an be applied for the �ring of the last 
ut step and then 9q 2 F;M(v0(trn))(q) � 1.Let �f be the minimal pre�x of �00 su
h that dm000e �f�!trf with a pla
e q 2 Fmarked in trf (ne
essarily in its leaf). It is 
lear that by de�nition of �f all the
uts used in �f use the �rst part of the de�nition of � 00 and then the sequen
e �fis also a sequen
e of hN 0; dm00ei. From the theorem 9, we 
an dedu
e a sequen
e �in hN; dm0ei su
h that h(�) is re
ognized by a path of A from q0 to q. utProof of Th. 13 (A

eptan
e of maximal �nite sequen
es)Proof. We 
onstru
t a labeled SRPN hhN b; dmb0ei; �; hbi similar to the produ
tSRPN.{ P b = P [Q [Q [ fb; bg{ m00 = m0 + q0{ T bel = ft:q:q0 j (t 2 Tel) ^ (q; q0 2 Q) ^ (q h(t)=)q0)g{ 8t:q:q0 2 T bel,� hb(t:q:q0) = h(t)� W b�(t:q:q0) =W�(t) + q, W b+(t:q:q0) =W+(t) + q0{ T bab = ft:q:q0:q00 j (t 2 Tab) ^ (q; q0 2 Q) ^ (q00 2 (Q [ fbg)) ^ (q h(t)=)q0)g{ 8t:q:q0:q00 2 T bab,� hb(t:q:q0:q00) = h(t)� W b�(t:q:q0:q00) =W�(t) + q,� q00 2 Q)W b+(t:q:q0:q00) =W+(t) + q00
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ursive Petri Nets 17� q00 = b)W b+(t:q:q0:q00) = b� 
b(t:q:q0:q00) = 
(t) + q0 + q00{ � b = fm + q + q0 j (m 2 � ) ^ (q; q0 2 Q) ^ (qh(�)=)q0)g [ fm + q + b j m 2Dead(N) ^ q 2 Fg [ fm j m � bg [ fm+ q j m 2 Dead(N) ^ q 2 Fg{ hb(�) = h(�)where Dead(N) is the e�e
tive semilinear set fm 2 INP j 8t 2 T [f�g;:m t�!g.We prove that rea
hing the empty tree in N b is equivalent to rea
h a deadlo
kin the produ
t SRPN with a pla
e q 2 F marked in the leaf. As N b in
ludes thebehaviors of the produ
t SRPN, a deadlo
k sequen
e 
an be emulated. However,in order to rea
h ? after this sequen
e, we need to slightly modify this simulation.Pla
es b and b are added in order to predi
t that after the �ring of an abstra
ttransition in a node, this node will be
ome again the leaf only when the emulationhas led to an adequate deadlo
k sequen
e. Pla
e b will be marked if the previousabstra
t transition 
loses itself and makes possible to 
ut this leaf due to the de�-nition of � b (the iteration of this me
hanism will ne
essary lead to ?). Pla
e b ismarked in the leaf \opened" by the predi
tion and restri
ts the 
losability of thisnode to two 
ases: an adequate deadlo
k is rea
hed in this leaf or the deadlo
k hasbeen rea
hed before this node be
omes again the leaf. The last part of the de�nitionof � b 
overs the 
ase where one rea
hes the deadlo
k in the root. The proof of the
orre
tness of this 
onstru
tion is similar to the one used for Theorem 12. utProof of Th. 14 (A

eptan
e of in�nite sequen
es)First, we establish the two following lemmas.Lemma 16 (Re
ognition). Let A = h�;Q; Æ; q0i be an automaton, and S =hhN; dm0ei; �; hi a labeled SRPN. Let Mf an e�e
tively semilinear marking setof N and qi; qj 2 Q be two automaton states. The existen
e of a sequen
e � ofhN; dm0ei su
h that dm0e ��!dmfe where mf 2 Mf and h(�) is re
ognized by apath of A from qi to qj is de
idable.Proof. Let hhN 0; dm00ei; �; h0i be the produ
t SRPN of S and h�;Q; Æ; qii. Fromthis SRPN, we de�ne the SRPN hNr; dmr0ei as follows:{ P r = P 0 [ fInitg; T r = T 0,{ W r� =W 0� ;W r+ =W 0+ ,{ 
r = 
0{ � r = � 0 [ fmf + qj + Init j mf 2Mfg{ mr0 = m00 + Init ,As in the Th. 12, we 
an show that a sequen
e required by the lemma exists i�? is rea
hable in Nr from mr0. Nr stri
tly emulates the produ
t SRPN ex
eptedthat the pla
e Init is added in order to allow the �ring of a 
ut step in the root onrea
hing an a

epting state of the produ
t SRPN. utWe denote by Re
(A; qi; qj ; N;m0;Mf ) the fun
tion whi
h returns true if su
ha sequen
e exists.
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eptan
e). Let A = h�;Q; Æ; q0i be an automaton, F � Q a setof a

epting states and S = hhN; dm0ei; �; hi a labeled SRPN. LetMf an e�e
tivelysemilinear state set of N and qi; qj 2 Q be two automaton states. The existen
eof a sequen
e � of hN; dm0ei su
h that dm0e ��!dmfe where mf 2 Mf and h(�)is re
ognized by a path qi = q1 a1�!q2 : : : an�1�!qn = qj of A su
h that 9k; 1 < k �n ^ qk 2 F is de
idable.Proof. We 
onstru
t a parti
ular SRPN produ
t hhN�; dm�0ei; �; h�i of S and Asatisfying:{ P � = P [Q [Q [ bQ [ bQ [ fInitg{ m�0 = m0 + qi + Init{ T �el = ft:q:q0; t:bq:bq0 j (t 2 Tel)^(q; q0 2 Q)^(q h(t)=)q0)g[ft:q:bq0 j (t 2 Tel)^(h(t) 6=�) ^ (q h(t)�!q0) ^ (q 2 F )g{ 8t:q:q0 2 T �el,� h�(t:q:q0) = h(t)� W ��(t:q:q0) =W�(t) + q, W �+(t:q:q0) =W+(t) + q0{ T �ab = ft:q:q0:q00; t:bq:bq0: bq00; t:q:q0: bq00 j (t 2 Tab) ^ (q; q0; q00 2 Q) ^ (q h(t)=)q0g [ft:q:bq0: bq00 j (t 2 Tab) ^ (q; q0; q00 2 Q) ^ (h(t) 6= �) ^ (q h(t)�!q0) ^ (q 2 F )g{ 8t:q:q0:q00 2 T 0ab,� h�(t:q:q0:q00) = h(t)� W ��(t:q:q0:q00) =W�(t) + q, W �+(t:q:q0:q00) =W+(t) + q00� 
�(t:q:q0:q00) = 
(t) + q0 + q00{ � � = fm + q + q0 j (m 2 � ) ^ (q; q0 2 Q) ^ (qh(�)=)q0)g [ fm + bq + bq0 j (m 2� )^(q; q0 2 Q)^(qh(�)=)q0)g[fm+q+ bq0 j (m 2 � )^(q 2 F )^(q0 2 Q)^(h(�) 6=�) ^ (qh(�)�!q0)g [ fmf + bqj + Init j mf 2Mfg{ h�(�) = h(�)A sequen
e satisfying the requirement of the lemma exists i� ? is rea
hablein N� from m�0. The demonstration of this equivalen
e is similar to the proof oflemma 16. Indeed, the only di�eren
e between the SRPN hN�; dm�0ei and the oneused in this lemma is that the two pla
es related to an automaton state are on
emore dupli
ated to indi
ate that a state of F has been \visited" by the 
urrentsequen
e. The transitions are dupli
ated in the same way. The rea
hability of ?is 
onditioned by the rea
hability of a marking of Mf at the root level (the pla
eInit must be marked) in su
h way that the automaton rea
hes the state qj havingvisited a state of F (the pla
e bqj must be marked). utWe denote by A

(A;F; qi; qj ; N;m0;Mf ) the fun
tion whi
h returns true ifsu
h a sequen
e exists. We are now in position to demonstrate the 
orre
tness ofthe Th. 14.



A Model Che
king De
ision Pro
edure for Sequential Re
ursive Petri Nets 19Proof. The proof is divided in two parts: looking for in�nite sequen
es � withdinf (�) �nite or in�nite.(dinf (�) < 1). We have seen that the sequen
es of this type 
an be de
om-posed in dm0e �0�!tri1 �1�! : : : trik �k�!trik+1 : : : (whose 
hara
teristi
s are des
ribedin se
tion 4.2).1st step We determine the possible 
ouples of starting markings in the leaf andautomaton states rea
hed by �0. Indeed, as the depth of su

essive extendedmarkings will be greater or equal than the 
urrent depth, the remainder of thesequen
e � is only 
onditioned by these two informations. So, we 
ompute theset C of 
ouples of the form (q;
(t)) su
h that there exists a sequen
e �0 of(N; dm0e) leading to an extended marking in whi
h the abstra
t transition t
an be �red (ne
essarily in the leaf) and su
h that the word h(�0:t) is a wordre
ognized by a path of A from q0 to q. We have �0 = �0:t. This 
omputation
an be done using the fun
tion Re
 iteratively starting with the 
ouple (q0;m0)with Mf =" Pre(t) for ea
h abstra
t transition t until saturation (i.e. whenno new 
ouple is dis
overed). It ne
essarily terminates be
ause the number ofautomaton states as well as the number of abstra
t transitions are �nite.2nd step We 
onstru
t the ordinary net bN in the following way:{ bP = P [Q{ bT = ft:q:q0 j (t 2 Tel) ^ (q; q0 2 Q) ^ (q h(t)=)q0)g [ ft:q:q0 j (t 2 Tab) ^ (q; q0 2Q) ^ (9q1; q01 2 Q; q h(t)=)q1 ^ Re
(A; q1; q01; N;
(t); � ) ^ q01h(�)=)q0)g [ ft:q:q0 j(t 2 Tab)^(q; q0 2 Q)^(9q1; q01 2 Q; q h(t)=)q1^(A

(A;F; q1; q01; N;
(t); � )_fq1; q0g \ F 6= ;) ^ q01h(�)=)q0)g{ 8t:q:q0 2 bT ;
W�(t:q:q0) =W�(t) + q;
W+(t:q:q0) =W+(t) + q0{ 8t:q:q0 2 bT ;
W�(t:q:q0) =W�(t) + q;
W+(t:q:q0) =W+(t) + q0By 
onstru
tion, an in�nite sequen
e in h bN; (q;m)i with (q;m) 2 C[f(q0;m0)gexa
tly 
orresponds to a suÆx of an in�nite sequen
e in the produ
t SRPNwhi
h visits in�nitely often a node of the extended marking. This 
orrespon-den
e is obtained sin
e ea
h transition in bN 
orresponds to a �nite subsequen
ein the produ
t between two 
onse
utive visits of the same node. In order tobe an a

epting sequen
e, an automaton state q 2 F must be in�nitely of-ten rea
hed and thus a transition in bN whi
h 
orresponds to a subsequen
ewhi
h en
ounters q must be in�nitely often �red. These transitions are exa
tlytransitions t:q:q0 with q0 2 F and transitions t:q:q0.3rd step So for ea
h 
ouple (q;m) in C[f(q0;m0)g, we de
ide whether there existsan in�nite sequen
e in h bN;m + qi with a transition t:q:q0 where q0 2 F �redin�nitely often or a transition t:q:q0 �red in�nitely often. This last step 
an bede
ided using the algorithm of H.C. Yen ([Yen92℄).(dinf (�) = 1). The 
he
king of the existen
e of a

epted in�nite sequen
es isredu
ed to a �nite graph analysis. Indeed,we build a graph where the nodes arethe 
omputed 
ouples of the �rst pro
edure and an edge denotes that one nodehas been rea
hed from the other one by a sequen
e in
reasing by one the depth ofthe visited extended markings and su
h that the intermediate subsequen
es neverde
rease the depth below its initial value. The edges are partitioned depending on
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e of an a

epting state of the B�u
hi automaton. Then theexisten
e of an a

epting in�nite sequen
e is equivalent to the existen
e of somekind of strongly 
onne
ted 
omponent. The di�erent steps of veri�
ation are listedbelow:1st step We build two relations E and E on C [ f(q0;m0)g su
h that8(q;m); (q0;m0) 2 C [ f(q0;m0)g{ ((q;m); (q0;m0)) 2 E , 9t 2 Tab; 9q01 2 Q;Re
(A; q; q01; N;m; " Pre(t)) ^q01 h(t)=)q0 ^m0 = 
(t){ ((q;m); (q0;m0)) 2 E , 9t 2 Tab; 9q01 2 Q; (A

(A; q; q01; N;m; " Pre(t)) _q0 2 F ) ^ q01 h(t)=)q0 ^m0 = 
(t)An a

epting in�nite sequen
e � with dinf (�) = 1 
an be de
omposed as inse
tion 4.2. An ar
 of the previous graph exa
tly 
orresponds to a �nite subse-quen
e of this de
omposition. It remains only to 
he
k whether an automatonstate q 2 F is in�nitely often visited by the sequen
e but this exa
tly 
orre-sponds to the in�nite o

urren
e of an ar
 e 2 E in an in�nite path of thegraph.2nd step So we de
ide whether it exists a strongly 
onne
ted 
omponent of thegraph (R;E [ E) having an ar
 of E. This last step 
an be de
ided using thealgorithm of Tarjan. utProof of Th. 15 (A

eptan
e of divergent sequen
es)The dete
tion of divergent sequen
es is based on a lemma 
on
erning sequen
eswhi
h are non observable by the automaton.Lemma 18 (Non observation). Let S = hhN; dm0ei; �; hi be a labeled SRPN.Let Mf be an e�e
tively semilinear state set of N . The existen
e of a sequen
e �of hN; dm0ei su
h that dm0e ��!dmfe where mf 2Mf and h(�) = � is de
idable.Proof. Let N� be the re
ursive Petri net N in whi
h the transitions of the set ft 2T j h(t) 6= �g have been dis
arded and su
h that if h(�) 6= � then � � = ; else � � =� . De
ide if su
h a sequen
e exists is equivalent to de
ide if L(N�; dm0e;Mf ) 6= ;.utWe denote by NonObs(N;m0;Mf ) the fun
tion whi
h returns true if su
h asequen
e exists. We are now in position to demonstrate the 
orre
tness of theTh. 15.Proof. Again, two kinds of in�nite sequen
es have to be dete
ted. The �rst kind
on
erns sequen
es for whi
h the depth of the extended markings visited is bounded.Su
h sequen
es are dete
ted by the three following steps:1st step We 
onstru
t the ordinary net eN in the following way:{ eP = P [Q
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ision Pro
edure for Sequential Re
ursive Petri Nets 21{ eT = ft:q:q0 j (t 2 Tel) ^ (q; q0 2 Q) ^ (q h(t)=)q0)g [ft:q:q0 j (t 2 Tab) ^ (q 2 Q n F ) ^ (q0 2 Q) ^ Re
(A; q; q0; N;
(t); � ) ^:NonObs(N;
(t); � )g [ft:q:q0 j (t 2 Tab) ^ (q 2 F ) ^ (q0 2 Q) ^ NonObs(N;
(t); � )g{ 8t:q:q0 2 eT ;fW�(t:q:q0) =W�(t) + q;fW+(t:q:q0) =W+(t) + q0{ 8t:q:q0 2 eT ;fW�(t:q:q0) =W�(t) + q;fW+(t:q:q0) =W+(t) + q02nd step We 
ompute the set of 
ouples C of the form (qi; 
(tj)) su
h that thereexists a �ring sequen
e � of (N;m0) leading to an extended marking in whi
hthe abstra
t transition tj 
an be �red (ne
essarily in the leaf) and su
h that theword h(�:tj) is a word re
ognized by a path of A from q0 to qi. This 
omputation
an be done using the fun
tion Re
 iteratively.3rd step For ea
h 
ouple (q;m) in C [ f(q0;m0)g, de
ide if it exists an in�nitesequen
e �el in h eN;m+ qi for whi
h the set of transitions �red in�nitely oftenis a subset of ft:q:q0; t:q:q0 2 eT j h(t) = � ^ q 2 Fg. This last step 
an bede
ided using the algorithm of H.C. Yen (REFERENCE). If su
h a sequen
eexists return true else return false .The se
ond kind of in�nite sequen
es are the ones for whi
h su
h a bound doesnot exist and they are dete
ted applying the following two steps:1st step We 
onstru
t a set R and two relations E and E su
h that{ (m0; q0) 2 R{ 8(m; q) 2 R; 9t 2 Tab; q0 2 Q su
h that Re
(A; q; q0; N;m; " Pre(t)) )(
(t); q0) 2 R ^ ((m; q); (
(t); q0)) 2 E{ 8(m; q) 2 R; 9t 2 Tab su
h that q 2 F^NonObs(N;m; " Pre(t))) (
(t); q) 2R ^ ((m; q); (
(t); q)) 2 E2nd step De
ide if there exists a strongly 
onne
ted 
omponent of the graph(R;E [ E) using only some ar
s of E and having a node (q;m) su
h thatq 2 F . This last step 
an be de
ide using the 
lassi
al algorithm of Tarjan. Ifsu
h a 
omponent exists return true else return false .The demonstration of the 
orre
tness of these de
ision pro
edures is similar tothe one presented for Theorem 14. ut


