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Philippe Côte1 and Yann Capdeville3
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S U M M A R Y
The potential of experimental seismic modelling at reduced scale provides an intermediate step
between numerical tests and geophysical campaigns on field sites. Recent technologies such as
laser interferometers offer the opportunity to get data without any coupling effects. This kind
of device is used in the Mesures Ultrasonores Sans Contact (MUSC) measurement bench for
which an automated support system makes possible to generate multisource and multireceivers
seismic data at laboratory scale. Experimental seismic modelling would become a great
tool providing a value-added stage in the imaging process validation if (1) the experimental
measurement chain is perfectly mastered, and thus if the experimental data are perfectly
reproducible with a numerical tool, as well as if (2) the effective source is reproducible along
the measurement setup. These aspects for a quantitative validation concerning devices with
piezoelectrical sources and a laser interferometer have not been yet quantitatively studied
in published studies. Thus, as a new stage for the experimental modelling approach, these
two key issues are tackled in the proposed paper in order to precisely define the quality of
the experimental small-scale data provided by the bench MUSC, which are available in the
scientific community. These two steps of quantitative validation are dealt apart any imaging
techniques in order to offer the opportunity to geophysicists who want to use such data
(delivered as free data) of precisely knowing their quality before testing any imaging technique.
First, in order to overcome the 2-D–3-D correction usually done in seismic processing when
comparing 2-D numerical data with 3-D experimental measurement, we quantitatively refined
the comparison between numerical and experimental data by generating accurate experimental
line sources, avoiding the necessity of geometrical spreading correction for 3-D point-source
data. The comparison with 2-D and 3-D numerical modelling is based on the Spectral Element
Method. The approach shows the relevance of building a line source by sampling several source
points, except the boundaries effects on later arrival times. Indeed, the experimental results
highlight the amplitude feature and the delay equal to π/4 provided by a line source in the
same manner than numerical data. In opposite, the 2-D corrections applied on 3-D data showed
discrepancies which are higher on experimental data than on numerical ones due to the source
wavelet shape and interferences between different arrivals. The experimental results from
the approach proposed here show that discrepancies are avoided, especially for the reflected
echoes. Concerning the second point aiming to assess the experimental reproducibility of the
source, correlation coefficients of recording from a repeated source impact on a homogeneous
model are calculated. The quality of the results, that is, higher than 0.98, allow to calculate
a mean source wavelet by inversion of a mean data set. Results obtained on a more realistic
model simulating clays on limestones, confirmed the reproducibility of the source impact.

Key words: Body waves; Controlled source seismology; Surface waves and free oscillations;
Wave propagation.
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1 I N T RO D U C T I O N

Since the early developments of seismic imaging methods in the
middle of 20th century, several approaches and algorithms have
been proposed. The improvements of this last decade have fo-
cused on both qualitative imaging techniques such as migration
(e.g. Berkhout et al. 2012; Guofeng et al. 2013), novel applications
of quantitative imaging methods such as first arrival tomography
(e.g. Bohm et al. 2015), and even more recent approaches like
Full Waveform Inversion (FWI; e.g. Perez Solano et al. 2014), see
Virieux & Operto (2009) for a review of the last decade). These
refinements are proposed at different scales of application, from
near-surface civil engineering structures to global crustal imag-
ing, and include oil prospection. Validation is generally done using
well-known shared benchmarks like the Marmousi model (Martin
et al. 2006). However, the synthetic data are generally computed us-
ing the same wave propagation modelling engine used in the inverse
problem process. This approach is particularly useful for validating
an algorithm in its early development stage but does not take into
account the artefacts associated with the assumptions of the for-
ward problem. On the other hand, it is often challenging to assess
the accuracy of a given method on the basis of real experiments,
in which precise information on the Earth’s interior is absent and
possibly leads to geological misinterpretation (Morozov 2004). In
this context, controlled experimental measurements appear to be a
powerful intermediate step, provided they are capable of producing
accurate data.

Small-scale physical modelling methods have been used for sev-
eral decades to study the propagation of waves in media presenting
different levels of complexity, ranging from acoustic wave propa-
gation in homogeneous media to elastic wave propagation in 3-D
heterogeneous anisotropic media. This experimental approach was
first used to describe the phenomenology of propagating waves
(for example Rieber 1936; Howes et al. 1953; Oliver et al. 1954;
Angona 1960; O’Brien & Symes 1971). Small-scale physical mod-
elling was then used to test imaging processes (e.g. Hilterman 1970;
French 1974; Bishop et al. 1985; Pratt 1999; Mo et al. 2015),
and validate numerical tools (Favretto-Cristini et al. 2014). The
technology used for these different works has become increas-
ingly sophisticated (see Bretaudeau et al. (2011) or Valensi et al.
(2015) for a more detailed review). Nowadays, most experimental
benches include piezoelectric transducers to simulate multisources
and multireceivers (Wong et al. 2009) or immersed zero-offset pro-
files (Favretto-Cristini et al. 2014). Laser interferometry is a re-
cent alternative, providing seismic records free of coupling effects
in solid media (Bodet et al. 2005; Van Wijk 2005; Bretaudeau
et al. 2011, 2013) and in gel (De Cacqueray et al. 2011). All the
above studies have shown the relevance of experimental seismic
data obtained under controlled conditions. However, key points need
to be addressed in order to quantitatively simulate seismic surface
measurements generated with a hammer fall source: first, modelling
surface waves prevents the use of immersed media (in which case
it would be interface waves), and second, the omni-directionality
of the radiation pattern of P-waves implies a physical source point.
To this end, the Mesures Ultrasonores Sans Contact (MUSC) sys-
tem has been designed (Bretaudeau et al. 2011) to simulate: (1)
wide-angle on-shore acquisitions, modelling both body waves and
surface waves; (2) automatic multisource–multireceiver measure-
ments with high-productivity, (3) high-precision source–receiver
positioning; and (4) high-precision recording of absolute surface
displacement without coupling effects. This type of experimental
seismic modelling setup can become a great tool providing a value-

added stage in the imaging process validation if the experimental
measurement chain is perfectly mastered. This condition is fully
met if (1) the experimental data are perfectly reproducible with a
numerical tool, as well as if (2) the effective source is reproducible
along the measurement setup. However, experimental works above
cited, which use piezoelectric sources and a laser interferometer, do
not propose any very fine quantitative analysis of numerical com-
parison of the data nor effective source shape reproducibility. For
this reason these two aspects correspond to the objectives of the two
studies presented here. The results will define the capacity of using
a set of data carried out in MUSC as a universal reference usable
for any imaging process by different geophysics research teams.

In the case of MUSC data, the abilities of the system have been
first validated experimentally on a small-scale model containing a
cavity (Bretaudeau et al. 2011). The comparison with 2-D numerical
modelling showed close similarities on the diffracted and converted
arrivals, after accounting for the experimental source waveform.
However, since the numerical source was simulated in 2-D, some
corrections were required to compare the resulting amplitudes, leav-
ing moderate discrepancies that are discussed in Bretaudeau et al.
(2011).

In order to quantitatively tackle this issue, we suggest in a first
study to continue further the approach through two progressive
stages: first of all we test a recent 2-D-3-D correction that allows
the comparison between the 2-D-numerical and 3-D-experimental
data, then we propose to compare 2-D numerical data with experi-
mental 2-D data provided by a sampled line source. This last process
makes possible to avoid any correction of the experimental data be-
fore the comparison. Indeed, although real media are rarely 2-D,
so far, 3-D elastic wave propagation modelling methods are com-
putationally expensive (Etienne et al. 2010; Borisov et al. 2013;
Brossier et al. 2013; Butzer et al. 2013; Borisov & Singh 2015)
and imaging methods are used mainly for 2-D structures (Brossier
et al. 2009; Romdhane et al. 2011; Bretaudeau et al. 2013; Groos
et al. 2014). Added to the need due to the computational cost of 3-D
modelling, the natural process of numerical developments needs
gradual stages from 1D to 3-D, including the 2-D case (see e.g.
Capdeville et al. 2010). Therefore the majority of forward prob-
lems are processed in the 2-D case and implicitly use line sources
in 2-D-space while field and experimental data are acquired us-
ing punctual sources that provide 3-D wavefields. Thus, in order to
adapt the experimental results to 2-D numerical data, a widely used
method consists in spreading transformations of 3-D-wavefields for
2-D-media as a pre-processing step (Crase et al. 1990; Shipp &
Singh 2002; Ravaut et al. 2004; Wang & Rao 2009; Bretaudeau
et al. 2013). For that, several 3-D-to-2-D transformation techniques
have been proposed, each under the assumption that the medium is
either 1-D, or 2-D but invariant along the axis perpendicular to the
direction of the receiver-profile. Recently, Forbriger et al. (2014)
and Schafer et al. (2014) proposed the hybrid method which makes
it possible to correct geometrical spreading with good accuracy for
both near- and far-field data, as recalled further on, but it is still an
approximation and this method is known to fail to retrieve backscat-
tered wavefield. Thus, an ideal way to validate imaging methods is
to work with 2-D experimental dataset in controlled environment,
that is, generated by a 2-D source. We propose here to generate this
kind of data through an alternative path that consists in carrying
out measurements from a source-line and making comparisons be-
tween numerical and experimental data following correction using
the hybrid method.

The second study presented here consists in identifying the re-
producibility of the source impact and thus data repeatability and in
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Figure 1. Photograph of the MUSC ultrasonic laboratory (from Bretaudeau
et al. 2013) with its four components: (1) a small-scale model of a subsurface
zone, (2) a piezoelectric ultrasonic source to generate ultrasonic waves in
the model, (3) a laser interferometer to record ultrasonic wave propagation
on the model surface and (4) an optical table with two mobile automated
arms above the model.

estimating source time functions usable for 2-D imaging methods.
The knowledge of the source time function is actually a critical
point for high-resolution imaging methods, generally tackled as an
unknown parameter in the case of field data. It can be also a critical
issue when using a piezoelectric source, as mentioned by (Köhn
et al. 2016) who process data with a “Full Waveform Inversion”
method and need strategies for overcoming the possible variation
of the source coupling impact on the medium surface. In opposite a
good approximation of the source excitation allows avoiding source
wavelet estimation during the inversion process and facilitating the
validation of the imaging method. That is the reason why we pro-
pose here to quantify its reproducibility in the measurement bench
by comparing results of the inverted source waveforms. This source
time function is estimated easily from experimental data, if all the
other parameters are mastered, further supporting the use of small-
scale physical modelling method for validating seismic imaging
methods.

All the experimental tests will be proposed here on realistic mod-
els in terms of velocity ratio, attenuation and dispersion of surface
waves velocities, in order to study realistic data. The resin models
used here for the experimental tests are presented in the first part
below with the summary of the specifics of the MUSC laboratory.
Afterwards, the numerical characteristics of the code used for pro-
viding the simulated data are described before the two last parts
where are developed the two coupled studies on experimental data,
dealing with the waveform simulation of the propagated signals and
the stability of the source wavelet shape.

2 M E T H O D S

2.1 Physical modelling: MUSC laboratory

The MUSC laboratory (Bretaudeau et al. 2008, 2011, 2013) has
been built to experimentally reproduce low noise field seismic data
on reduced scale models. Fig. 1 shows the measurement bench and
its components: it is composed of a honeycomb tab and two arms

that control the source and the receiver positions with a precision
of 10 µm.

The receiving system of the MUSC laboratory is a laser inter-
ferometer based on the phase shift of the reflected laser signal due
to the particular displacement at the surface of the model during
seismic wave propagation in the medium. The diameter of the laser
beam on the model surface is 20 µm for a focal distance of 40 mm
and makes it possible to detect a vertical displacement of the order
of a nanometre in the frequency range of 10 kHz to 20 MHz. The
laser interferometer constitutes a non-coupled receiver which avoids
complicated modelling of coupling effects on measurements.

The seismic source in the MUSC laboratory is simulated by a
piezoelectric transducer linked to a launching and synchronization
system. It allows choosing the source function, that is, a waveform
like a Gauss or Ricker function, for a central frequency f0 and a time
delay t0. To do this, the source is generated by a waveform generator
and then amplified before being transmitted to the reduced-scale-
model. The piezoelectric transducers used are built to be adapted to
the impedance of the resin model described in the next part. Thus
the emitted signal is not resonant but the sensor response combined
with the coupling effect to the model behaves as a filter for the
source shape, which depends on the frequency. It is possible to
assess this effect by taking into account the entire waveform of the
pulse as already presented in (Bretaudeau et al. 2011) where this
crucial point has been tackled in a first approach with an assumption
of 2-D propagation.

In case of small scale modelling, different authors propose an
alternative way to only tackle the 2-D phenomena through a 2-D
laboratory device which uses guided waves propagation in 2-D-
plates (Oliver et al. 1954; Angona 1960; Mo et al. 2015). This
principle has several advantages compared to 3-D laboratory: (1)
the variety of materials which can be anisotropic and which are
less expansive and easier to handle contrary to sometime huge
3-D epoxy-resin models or (2) much less source energy require-
ment (Oliver et al. 1954; Mo et al. 2015). However, this method is
based on the propagation of pseudo-longitudinal waves which are,
in fact, non-dispersive Lamb waves while 3-D methods propagate
the full wavefield through the model without proxy for propaga-
tion velocities and wave types More, 3-D methods are best suited
to reflection, refraction and diffraction problems than 2-D methods
(Angona 1960) which are critical in high-resolution seismic imag-
ing. In order to avoid these limits, the MUSC laboratory is based
on the principle of seismic waves propagation in 3-D blocks.

In this context and for spatial considerations of seismic physical
modelling, the coupling part of the piezoelectric transducers must
be as close as possible to a point source in order to simulate the
spatial energy radiation pattern of a weight drop on the surface, that
is, with an omni-directional emitted P-wave. Actually, as explained
in (Bretaudeau et al. 2011), classical piezoelectrical transducers
sizes are generally large compared to the emitted wavelength and
provide a directional emission pattern for P-waves whereas a ham-
mer fall source used in subsurface field measurements behaves as
a punctual impact and provides an omni-directional emission pat-
tern of P-waves. For this reason, in the MUSC laboratory, two
adapted sources have been tested in term of directivity pattern by
(Bretaudeau et al. 2011) who showed their capacity to simulate a
thin piston effect. For the spectral band [20 kHz; 200 kHz], a com-
mercial piezoelectric transducer is used without any coupling gel.
For the spectral band [300 kHz; 800 kHz], the piezoelectric source
is coupled through a conical adapter stuck to the transducer to ob-
tain the expected impact surface. The resulting radiation patterns
of the sources are constantly quasi-omni-directional for P-waves in
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Table 1. Physical properties of the two kinds of materials used to build
the presented small scale models. VP, VS and VR are the P-wave velocity,
S-wave and the Rayleigh wave velocity, respectively. ρ is the density and Q
is the quality factor.

Material VP (m s−1) VS (m s−1) VR (m s−1) ρ (kg m−3) Q

F50 pure 2300 1030 965 1300 30
LAB1000 2850 1400 1310 1500 75

the range of the frequencies recorded (see Bretaudeau et al. 2011,
for details).

These two frequency bands, called here ‘lower frequency band’
and ‘higher frequency band’, have been chosen to allow both com-
plying with the feasibility of machining the heterogeneities in the
medium and the dimensional scale ratio. That means : the het-
erogeneities should be not too small (1 mm of minimal size) and
the total model size should not be too big or too heavy (1 m2 and
270 Kg max) for the supporting table. The resulting scale dimen-
sions associated to the propagating parameters of the resins used in
this study are presented in the following part.

2.2 Characteristics of the scale models tested

In this study, we consider two different reduced scale models. The
first is homogeneous whereas the second one, called BiAlt, contains
a deeper layer with a geometrical variation of the interface along the
profile. The top layer, as well as the entire first model, is made of
epoxy-resin called F50 pure. The deeper layer is built with a denser
resin called LAB1000. The specific properties of these two kinds of
resins are summarized in Table 1.

For the linearized wave equation, the change of scale must con-
serve the relationship between observables, that is, amplitudes and
time arrivals. Regarding the amplitude, the quality factor Q is cho-
sen to be in the same range as the materials of the near surface as
shown in Table 1. The key parameter for the time scaling is the ratio
between the propagated seismic wavelength and the spatial dimen-
sions of the experiment, which include the model’s geometry, the
spatial increment between the sources and the receiver positions, as
well as the dimensions of the source impact.

For simulating seismic experiments applied to the near surface,
we use preferentially the low frequency band described above which
allows a dominant wavelength (at 100 kHz) about 13 mm for the
Rayleigh waves and 28 mm for the P waves, by taking into account
the velocity in the models described in Table 1. The scale ratio
rules used are summarized in Table 2: the scale factor is equal to 2

Table 2. Example of possible scale ratios between field experiments (FEx)
and MUSC experiments (MEx) when considering a ratio equal to 1 for the
density and quality factors.

FEx scale MEx scale Scale ratios

P-wave velocity Vp0 Vp0 1
S-wave velocity Vs0 Vs0 1
Time T0 0.001 T0 0.001
frequency F0 1000 F0 1000
Distance D0 0.001 D0 0.001
Wavelength D0 0.001 D0 0.001

between real and reduced model velocities. Thus a central frequency
of 100 kHz in the laboratory corresponds to a central frequency of
50 HZ in the field, which is realistic for simulating a hammer impact
on a surface. In this case, the distance scale ratio is 1000, so a
distance of 1 mm in the laboratory experiment corresponds to a
distance of 1 m in reality.

As mentioned before, the laser beam diameter used for record-
ing the propagating waves is 20 µm wide. In the presented study,
considering the dominant wavelength (at 100 kHz) equals about
13 mm for the Rayleigh waves and 28 mm for the P waves, the laser
beam respectively equals λ/650 and λ/1400. At the field scale, and
following the rules in Table 2, those correspond to measurement
surfaces of 20 mm and 2 mm respectively. These dimensions are
lower or equivalent to the possibilities available by geophones holds.
Thus, at the laboratory scale in MUSC, the measurement accuracy
in term of the size of the recording surface is respected.

In parallel, the position accuracy of the receiving system is
10 µm. This value is lower to the focal beam. It corresponds to
the centre position of the laser beam, which is 20 µm large. In prac-
tice, the incremental displacement between two receivers positions
used generally equals 1 mm. It is higher than the focal beam size.

Furthermore, as shown on Fig. 2, even if the emission properties
of a piezoelectric transducer is narrow-band, the spectral bandwidth
of the pulse emitted by the piezoelectric transducer is large enough
to simulate a seismic pulse emitted by a hammer fall in subsurface
media, through the scale ratio used in Table 2: the frequency of
100 kHz in MUSC corresponds to 50 kHz at field scale and 150 kHz
corresponds to 75 Hz.

In the next section, the recorded signals will be analysed for a
maximum offset equal to 60 mm in the case of the homogeneous
model and 100 mm for the BiAlt model. Thus the resin models
have to be wide enough to accommodate this receiver-source dis-
tance without creating boundary echoes that could interfere with
direct arrivals. To do this, the homogeneous model is 500 mm long,
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Figure 2. (a) Examples of multireceiver records in the MUSC laboratory for a two-layer model (BiAlt model). Zero-value data correspond to the diameter of
the source. (b) Normalized amplitude spectrum of a recorded trace (red line in (a)).
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(b)

(a)

Figure 3. Schematic representation of (a) the homogeneous model used in
this study and (b) the BiAlt model.

504 mm large and 115 mm high. The BiAlt model is 540 mm long,
300 mm large and 203 mm high. The geometry is presented in Fig. 3
and simulates an interface between a 3 m thick layer of clay over
a limestone layer. Thus, the BiAlt model can be seen as a realistic
model providing realistic data.

These two resin blocks and their corresponding numerical models
will be used for generating seismic data with punctual sources and
line sources for the homogeneous model, in order to study the
effective source excitation emitted on the MUSC bench and its
reproducibility.

2.3 Numerical modelling: Spectral Element Method

For this study we need a numerical modelling method whose spatial
discretization is suitable for representing complex environments
and which provides both high precision results and low numerical
dispersion. Thus we use the Spectral Element Method (SEM) for
2-D and 3-D elastic wave propagation modelling (Komatitsch &
Vilotte 1998; Komatitsch et al. 1999, 2005; Festa & Vilotte 2005).

SEM is a variant of the Finite Element Method (FEM) (Lysmer
& Drake 1972; Seron et al. 1990; Hulbert & Hughes 1990; Tromp
et al. 2008) based on a high-order piecewise polynomial approxima-
tion of the weak formulation of the wave equation which leads to a
spectral convergence ratio as the interpolation order increases. Con-
sidering near-surface experiments, one advantage of SEM is that the
weak formulation naturally satisfies the free-surface condition used
to simulate surface wave propagation with considerable accuracy
(Komatitsch & Vilotte 1998; Komatitsch et al. 1999, 2005). Con-
trary to FEM, which calls on a wide range of available element
geometry (Dhatt & Touzot 1984), SEM is limited to quadrilateral
elements in 2-D and hexahedral elements in 3-D. Note that although
SEM with tetrahedral elements exists (Komatitsch et al. 2001)
it leads to theoretical complications. However, quadrangles and

hexahedras are well suited for handling complex geometries and
interface matching conditions (Cristini & Komatitsch 2012).

In SEM, the wave-field is expressed in terms of high-degree
Lagrange interpolants and the calculations of integrals are based on
the quadrature of Gauss–Lobatto–Legendre (GLL). Each element
is discretized with Lagrange polynomials of degree nl and contains
nl + 1 GLL points that form its local mesh. This combination of
high-degree Lagrange interpolants with the GLL integration leads
to a perfectly diagonal mass matrix which in turn provides a fully
explicit time scheme suitable for numerical simulations on parallel
computers (Komatitsch & Vilotte 1998; Komatitsch et al. 1999).

The spatial resolution of SEM is controlled by the typical size of
an element (�h) and the polynomial degree in use on an element
(nl). Typically, a polynomial degree nl = 4 is optimal for seismic
wave propagation modelling (Moczo et al. 2011) although nl = 8
remains numerically affordable in 2-D. To obtain accurate results,
the required �h is of the order of λmin/2 < �h < λmin for nl = 4 and
λmin < �h < 2λmin for nl = 8, λmin being the smallest wavelength
of the waves propagated in the model. The time marching scheme
is governed by the CFL stability condition:

�t < C �h

cmax
(1)

where C is the Courant constant and cmax is the maximum wave
velocity, typically the P-wave velocity. The Courant constant C is
determined empirically, depending on the application, and is fixed
at a maximum of 0.30 for this study.

The numerical meshing required for the numerical simulations
involves cell dimensions of about es < 3.43 mm for the F50 ma-
terial and es < 4.66 mm for the LAB1000 material, considering
a polynomial degree nl = 4 and a slightly over-estimated maxi-
mum frequency of fmax = 300 kHz for f0 = 100 kHz. In our study,
the models are meshed with quadrangles (2-D) and hexahedra
(3-D) using the GMSH open-source software package (Geuzaine
& Remacle 2009).

3 F RO M P O I N T - S O U RC E
T O L I N E - S O U RC E R E S P O N S E

The approach described here consists in generating experimental
data with a line source as well as a 3-D point source and analysing
the similarity with numerical results under the same conditions.
This is done to respond to two needs: (1) the quantitative refined
validation of the reduced scale data, (2) the capacity of the reduced
scale bench to generate 2-D data sets that are intermediate between
numerical simulation and field data suitable for the 2-D imagery
tests. Indeed, in the framework of wave propagation modelling and
imaging methods, although 3-D acoustic algorithms exists (Ben-
Hadj-Ali et al. 2008; Plessix et al. 2010) and 3-D elastic algo-
rithms are still being developed (Castellanos et al. 2011; Borisov
& Singh 2015), most available algorithms are limited to 2-D elastic
and 3-D acoustic approximation, mostly due to reasons of com-
putational cost. Furthermore, validation of the inversion process is
often limited to processing made with synthetic data using the same
model for computing both predicted and estimated measurement,
while the validity of applications on real datasets is conditioned by
good a priori and poor knowledge of the target. All of these lead
to a limited validation of the efficiency of imaging methods to re-
cover parameter models. Thus accurately correcting the difference
between 2-D and 3-D geometrical spreading is critical for the 2-D
inversion of field data.
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Figure 4. Schematic representation of the acquisition geometry used to
generate an experimental line source, that is, an equivalent of cylindrical
source use in 2-D modelling. The black triangles and red circles represent
receivers and sources, respectively.

Many strategies exist to correct geometrical spreading effect dif-
ferences between 3-D and 2-D data, the two widely used are (1)
data convolution with

√
t−1 together with the application of a

√
t

taper function (Crase et al. 1990; Shipp & Singh 2002; Ravaut
et al. 2004) and (2) data tapering (

√
t) and inference of a source func-

tion by linear inversion to estimate the correct the phase (Pratt 1999;
Bretaudeau et al. 2013). However, these strategies are used to
transform data which contains essentially body waves (except Bre-
taudeau et al. 2013) and the first one is known to produce artefacts
which can be significant (Auer et al. 2013). To overpass these limi-
tation and transform near-surface data dominated by surface wave,
Forbriger et al. (2014) have recently developed the hybrid method
and validate it through numerical tests (Schafer et al. 2014).

The hybrid method summarized in the Appendix is an efficient
spreading transform which makes it possible to reconstruct veloc-
ity models with the 2-D-FWI method using 3-D-data. However,
this method is derived from a far-field acoustic approximation of
Green’s functions and is known to fail for back-scattered surface
waves (Schafer et al. 2014; Groos et al. 2014). Moreover, the cor-
rect smooth transition between so-called single-velocity and direct-
wave transformations, which are the two components of the hybrid
method, is not easy to determine without 2-D reference data. This
is the case for all experimental data and the spreading transfor-
mation results become strongly dependent on the user’s attempts,
expertise and know-how. Thus the missing step between purely nu-
merical validation and real data applications should be addressed
by an alternative approach that consists in recording experimental
seismograms generated by line sources under controlled conditions.
Here, we take advantage of the experimental framework to explore
this alternative approach specific to the MUSC laboratory, that is, by
carrying out 2-D measurements from 3-D constructed line source.
Fig. 4 shows a schematic representation of the principle of this kind
of experiment. The line source is composed of a finely sampled line
of point sources and a line of receivers for each offset considered,
as explained below.

For practical reasons in the MUSC laboratory, the experiment
is carried out through the principle of reciprocity in the case of

recording a vertical source and a vertical component, with one
source position and a set of receiver positions spread out along the
invariant direction. For each source position (i.e. for each offset),
all traces of each set of receivers are then stacked together to obtain
the 3-D constructed line source response. Note that 3-D constructed
line-source response corresponds to the wavefield generate by a line
source in a 3-D space. In order to apply this protocol, we choose
a suitable sampling interval �s between each point source consti-
tuting the 3-D constructed line source to ensure the applicability
of Huygens principle. Given the material properties of F50 pure
epoxy-resin, we choose an interval �s = λmin/10=̃0.5 mm over a
line of 300 mm long which leads to 601 point-source positions.

Four receiver positions are available: 45, 50, 55 and 60 mm offset.
The source time function (for the numerical simulation as well as
for the experimental test) is a Ricker wavelet, the second derivative
of a Gaussian function:

s(t) = (1 − 2(π f0(t − t0))2) e−(π f0(t−t0))2
, (2)

where f0 is the central frequency and t0 is the peak time. Here, we
take a central frequency f0 = 100 kHz and t0 = 0.03 ms. The data
sets obtained are filtered using a low-pass Butterworth filter with
a cut-off frequency ωc = 250 kHz to remove noise and tapered at
the beginning using a cosine taper function of width w = 0.03 ms
on the time signal. The 3-D constructed line-source data is ob-
tained through a weighted stack over the common offset traces.
Fig. 5 shows the results for both the numerical simulation and the
experimental data. The signals emitted by a line of point sources
and recorded at the first receiver position (45 mm) are presented in
Figs 5(a) and (c) for the numerical and experimental tests, respec-
tively. Note that no attenuation is accounted for in the numerical
modelling, so we do not compare, in Fig. 5, the numerical and ex-
perimental results directly. Moreover, all the resulting traces are nor-
malized to be comparable to the experimental tests. The numerical
result (Fig. 5a) clearly shows the attempted direct P- and Rayleigh
(non-dispersive Rayleigh in homogeneous media) wave fronts and
the reflected PP and P–SV wave fronts, as mentioned previously
(labels 1, 2, 3, 4 in Fig. 5). These similarities between the numerical
simulation and the experimental data are altered by multiple echoes
visible on the experimental data (labelled E in Fig. 5b), as a ring-
ing effect on the source wavelet due to the piezoelectric transducer
coupling on the model surface. This point will be addressed in the
next section which focuses on source reproducibility.

Figs 5(b) and (d) present the comparisons of 3-D point-source
(red line) and 3-D constructed line-source (green line) data at the
first receiver position (45 mm offset) for the numerical and ex-
perimental tests, respectively. To complete the comparison, a 2-D
modelling result is added in Fig. 5(b) (bold grey line) as a reference.

Fig. 5(b) shows that the 3-D constructed line-source data (green
line) provided with a set of punctual sources is perfectly superim-
posed on the 2-D reference data (bold grey line) until 0.18 ms.
Afterwards, the P–SV amplitude (i.e. the last arrival) is abnormally
high for the sampled line-source data. As shown in eq. (A6), a line
source is a sum of an infinite number of point sources along an axis.
Here, the finite dimensions in space of the experimental 3-D setup
can cause boundary effects and thus this difference in amplitude.

For the earlier arrival, the global fit between the numerical data
highlights the validity of sampling a finite line source by a set of
point sources. Concerning both the numerical (Fig. 5b) and exper-
imental (Fig. 5c) cases, the comparison of 3-D point-source and
3-D constructed line-source data shows the expected phase shift of
π/4 (see eq. A7). Similar comparisons for the four source–receiver
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Figure 5. (a,b) Numerical modelling. (a) The resulting seismogram at one receiver position for the experimental line source. (b) Comparison between 3-D
point-source response in red (central trace of (a)), 3-D constructed line-source response of (a) in green and 2-D line-source response from 2-D modelling in
grey. (c,d) The same as (a) and (b) but for experimental modelling.

offsets are shown in Figs 6(a) and (c) for numerical and experimental
data, respectively.

To test the improvement of our approach to provide line-source
data in comparison to spreading transformation methods, our results
are compared to data obtained using the hybrid method. Figs 6(b)
and (d) present the comparison between the 3-D constructed line-
source data acquired from a set of punctual sources (green line) and
transformed 3-D point-source data (blue line). The comparison of
numerical results (Fig. 6b) shows that the hybrid method is able to
produce equivalent line-source data with very good agreement in
terms of both amplitude and phase for direct arrivals. However, PP
and P–SV reflected waves (back-scattered wave) remain different.
The same comparison is made for the experimental data in Fig. 6(d).
This last result also shows good agreement between line-source
and transformed point-source data up to 0.12 ms (mainly direct-
waves). However, discrepancies occur for the reflected waves. The
first reflected wave is marked by a red line in Figs 6(b) and (d).

These disagreements are more marked than in the numerical case:
the correction of the geometrical spreading with the hybrid method
seems unable to correctly scale the amplitude due to interference

from the echoes of the source and reflected wave. Consequently,
a 3-D constructed line source should be recommended instead of
the hybrid correction of data to take into account all the seismic
arrivals. Concerning the signal recorded at the 55 mm offset, the
largest difference in amplitude can be explained by a weaker signal-
to-noise ratio than for the three other offsets in the experimental
data.

These results obtained using our approach to generate 3-D ex-
perimentally constructed line-source data show that the MUSC lab-
oratory is efficient and can produce reliable experimental 2-D data
suitable for migration-based methods such as 2-D-FWI. Thus it
plays the role of an intermediate tool capable of providing 3-D
point-source and 3-D constructed line-source data without the need
for geometrical spreading corrections.

4 E X P E R I M E N TA L S O U RC E T I M E
F U N C T I O N

In the framework of high-resolution imaging, such as FWI, the first
validations of the method are generally performed with synthetic
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Figure 6. Numerical model. (a) Comparison between synthetic seismograms for a 3-D point source (red) and for a 2-D line source (green), for 45, 50, 55 and
60 mm source–receiver offsets respectively. (b) Comparison between synthetic seismograms for a 2-D line source (green), and a 3-D point-source response
corrected from geometrical spreading (blue) for the same source–receiver offsets as (a) using the hybrid method with ratios r = 0.35, r = 0.40, r = 0.45 and
r = 0.50 for offsets 45, 50, 55 and 60 mm, respectively. (c,d) the same as (a) and (b) for experimental modelling. The light-purple dotted lines depict the peak
P–SV-wave front.

data generated with the same modelling engine than the one used
for inversion. In these cases, the source waveform is known and
the initial model m0 is generally a smoothed version of a known
true model used in the forward problem to obtain synthetic ob-
served data. Consequently, no source wavelet estimation is nec-
essary. However, obtaining knowledge of the original source time
function is an important task when real data are inverted. The solu-
tion of the source is obtained using a linear source wavelet estima-
tion (Pratt 1999; Virieux & Operto 2009) which can integrate all the
data from multisource/multireceiver acquisition and the estimated
source excitation is given by

Sest(ω) =
NS∑
i=1

NR∑
j=1

Hi j (ω)Gi j (ω)∗

Hi j (ω)Hi j (ω)∗
S(ω) , (3)

where ω is the angular frequency, Sest is the real Fourier transform
of the estimated source, G(ω) is the real Fourier transform of the
observed signal, H(ω) is the real Fourier transform of the signal
calculated in the synthetic model, S(ω) is the synthetic source used
to compute H(ω), NS is the number of sources, NR is the number
of receivers and ∗ denotes the conjugate. The main issue of this
method is that inaccuracies in the synthetic model, and consequently
in the calculated data, are integrated in the estimated source. The
resulting distortion of the estimated source wavelet can lead to

inaccuracies in the updated models during data inversion and then
in the recovered parameters of the final model. Moreover, for a
given data set, one or more specific sources need to be estimated,
depending on whether the source is considered stable enough from
one shot to another or not. However, estimating the source for each
shot in the case of numerous multisource/multireceiver data can
lead to significant additional numerical cost. Thus knowledge of
the source time function and its stability are two crucial key points
in modelling experimental data for testing imaging processes.

We showed in the previous section that the MUSC laboratory
is able to generate high quality experimental 3-D constructed line-
source seismograms. If the source waveform is constant during a
multisource/multireceiver experiment, it will be very efficient for
validating the imaging method. As shown by Bretaudeau et al.
(2011), the source waveform injected into the reduced-scale model
by the piezoelectric source is different from the selected theoretical
one. Indeed, Figs 5(c) and (d) show multiple wave fronts following
that of the first arrival. These multiple echoes are due to the coupling
of the piezoelectric source on the material. This can depend on the
material as well as the force applied on the transducer and naturally
raises the question of the ability of the MUSC laboratory to provide
reproducible sources during a complete multisource/multireceiver
experiment. In order to evaluate the reproducibility of the source
impact, several numerical and physical models described below
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Figure 7. Schematic representation of the acquisition geometry used to
assess data reproducibility using the MUSC laboratory. The black triangles
and red circles represent receivers and sources, respectively.

were applied to the same F50 pure homogeneous epoxy-resin block
as in the previous section.

In the first step, ten events were acquired for this model with a sim-
ilar geometrical setup: 120 receiver positions with an increment of
�r = 1 mm and a minimum source–receiver offset of r = 10 mm (see
Fig. 7). The numerical wavelet sent to the piezoelectric transducer
source is a Ricker function with a central frequency of 100 kHz
and t0 = 0.03 ms. Each data set is filtered using a low-pass Butter-
worth filter with a cut-off frequency of ωc = 250 kHz to remove
noise and tapered at the beginning using a cosine taper function of
width w = 0.03 ms. Then, a 3-D/2-D geometrical spreading correc-
tion is applied using the hybrid method. As shown previously, this
correction is well adapted for correcting direct arrivals which are
preferentially taken into account to determine the source wavelet.
Fig. 8 shows the resulting central trace (r = 70 mm) of each realiza-
tion (red line signals) compared to a reference central trace resulting
from the average of traces for the same offset (signal indicated by a
green line). The good agreement between the central traces and the
reference signal is the first validation of the reproducibility of the
source in the same experiment. This agreement is strengthened by a
correlation coefficient higher than 0.98 in each case. To go further
in this comparison, a mean correlation coefficient, for all the traces,
is calculated for P-, Rayleigh and PP-waves. The mean correlation
coefficients for Rayleigh and PP-waves are close to the maximum
(0.99) and confirm the good agreement between traces for these
phases. For the P-wave, the mean correlation coefficient is smaller
(0.84) but still good. This last can be relied to the signal-to-noise
ratio which can vary from an experiment to another and impact
mostly the P-wave as it can be seen on shot 10 (Fig. 8).

In the second step, a unique source wavelet is estimated using
eq. (3). As done previously, the signals are normalized to avoid
the intrinsic attenuation effects on the direct arrivals. The source
wavelet estimation takes into account the vertical components of
the ten experiments together and allows obtaining a mean effective
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Figure 8. Central trace for each of the 10 analogical experiments compared
to a mean central trace (green). cc gives the correlation coefficient between
the traces compared for the whole signal while cc gives the mean correlation
coefficient between the traces compared for a given phase (P, Rayleigh, PP).

source time function (Fig. 9). This effective source is very different
from the theoretical one, with strong asymmetry around the main
peak at t0 and a long sequence of source echoes from t = 0.04 ms
to the end of the time window. This source wavelet, convolved
with all the synthetic signals, should reproduce the experimental
data if the real source wavelet is the same for all the experiments.
The resulting traces are presented in Fig. 9(b), which shows that the
corrected synthetic seismograms are in good agreement with the
experimental ones, with a correlation coefficient higher than 0.92
in each case. These correlation coefficients are not as good as the
previous ones. This can be explained first by the fact that the 3-D-
2-D geometrical spreading correction applied to the experimental
traces is not fully efficient for later arrivals, and second because we
neglected the effects of quality factors. Consequently, the estimated
source is close to the real one but contains the inaccuracies from both
the numerical modelling and the geometrical spreading correction.
Again, we estimate mean correlation coefficients for P-, Rayleigh
and PP-wave and note the good agreement for Rayleigh and PP-
waves. However, the mean correlation coefficient for the P-wave is
quite low (0.64). Indeed, in addition of the signal-to-noise ratio, the
potential inaccuracies of the numerical model (P-wave and S-wave
velocity) and the absence of intrinsic attenuation strongly impact
the source estimation.

However, these latter results based on an average estimated source
wavelet show that the source time function emitted by the trans-
ducer in the MUSC laboratory measurement bench is stable enough
to ensure robust source reproducibility for a complete physical ex-
periment with multiple source and receiver positions. Therefore,
concerning the key issue of source data, the experimental data ac-
quired in the MUSC laboratory can be efficiently processed by
imaging methods such as FWI with only one estimation step for all
the multisource and multireceiver data.

5 A P P L I C AT I O N T O C O M P L E X M O D E L

In the previous approaches developed for the geometrical spread-
ing correction calibration and the source estimation, the studies
were performed on a homogeneous block of F50 epoxy-resin. This

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/211/1/637/4056331 by guest on 17 June 2021



646 D. Pageot et al.

0 0.05 0.10 0.15 0.20
Time (ms)

1

2

3

4

5

6

7

8

9

10

S
ho

t (
#)

0 0.05 0.10 0.15 0.20
Time (ms)

1

2

3

4

5

6

7

8

9

10

S
ho

t (
#)

0 0.05 0.10 0.15 0.20
Time (ms)

-1.0
-0.5

0
0.5
1.0

N
or

m
. A

m
p.

0 0.05 0.10 0.15 0.20
Time (ms)

-1.0
-0.5

0
0.5
1.0

(a)

(b)

Figure 9. (a) Comparison between the theoretical Ricker source
(f0 = 100 kHz, t0 = 0.03 ms) transmitted to the piezoelectric transducer
(dashed red line) and the effective source for the homogeneous F50 pure
model (blue line). (b) Comparison between experimental central and numer-
ical traces using the effective source instead of the theoretical one. cc gives
the correlation coefficient between the traces compared for the whole signal
while cc gives the mean correlation coefficient between the traces compared
for a given phase (P, Rayleigh, PP).

approach facilitates developments and applications but limits the
validation to a simple medium with a simple acquisition geometry.
Thus here we consider a more complex model called BiAlt (see
Section 2.2 for description). The acquisition setup is composed of
shots with 241 receivers spaced by �r = 0.5 mm. The receiver
line 120 mm long is centred on the medium axis, where the to-
pography of the two-layer interface provides a valley-shape curve
layout for which 25 source positions are considered, ranging from
0 to 241 mm with a spacing of �s = 10 mm. The source wavelets
are modelled by a Ricker function with a central frequency equal to
f0 = 75 kHz and parameter t0 = 0.03 ms. A low-pass Butterworth fil-
ter (ωc = 200 kHz) and a cosine taper are applied to the data. Given
that the top layer of the model is made of the same epoxy-resin
as for the homogeneous block, we applied the hybrid geometrical
spreading correction with the same parameters. The correspond-
ing synthetic data were generated using a 2-D SEM algorithm.
Again, the quality factor is not taken into account. Fig. 10(a) shows
the effective source wavelet estimated from the 241 × 25 traces
compared to the theoretical one. In this case, the estimated source
wavelet seems more symmetrical than those recovered for the pre-
vious experiment. Moreover, few and very low amplitude multiple
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Figure 10. (a) Comparison between the theoretical Ricker source
(f0 = 75 kHz, t0 = 0.03 ms) transmitted to the piezoelectric transducer
(dashed red line) and the effective source for the BiAlt model (blue line).
(b) Comparison between experimental central (black) and numerical traces
using theoretical source (red) and numerical traces using the effective source
(blue). cc gives the correlation coefficient between experimental traces and
numerical traces using the effective source.

echoes occurred compared to the previous estimated wavelet. This
could be related to the lower central frequency of the source which
may generate fewer multiple reflections at the interface between the
piezoelectric source and the surface of the material surface. Once
again, this estimated source is convolved with the synthetic data and
the resulting traces for the first source are shown in Fig. 10(b) (blue
line). The comparison between the experimental traces (black) and
numerical traces computed with the Ricker source wavelet (red)
shows that the relative amplitude between the P and Rayleigh wave
fronts are very different, in particular between the intermediate and
far offset. The convolution with the estimated source provides good
agreement between the experimental data and the numerical data
and highlights the relevance of the source inversion for the imaging
process. The residual discrepancies were due to the estimation of
the quality factor of the epoxy resin LAB1000 that will be refined
in further studies. Moreover, given that the effective source is es-
timated using a realistic multisource/multireceiver design with 25
source positions, these results confirm the stability of the source
during large experimental campaigns.

6 C O N C LU S I O N S

High-resolution seismic imaging methods are mostly developed
with 2-D approximation and require real data to complete the val-
idation of the inversion process often limited to processing made
with synthetic data using the same model for computing both pre-
dicted and estimated measurement. We demonstrated here that the
geometrical spreading and amplitude corrections usually used to
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transform 3-D in 2-D real seismic data are limited and can be re-
placed by accurate experimental 2-D data recorded in a controlled
environment. This alternative process was shown to be more ac-
curate when taking into account all the arrivals, especially when
ringing interfere with the direct arrivals.

In the second step, the effective source wavelet emitted in the
material after the coupling effect of the transducer and its possi-
ble variability were studied. Given that knowledge of the source is
an important aspect for certain seismic data inversion algorithms,
source estimation is performed using the linear source wavelet es-
timation method which integrates the entire signal and is strongly
dependent on the accuracy of the initial numerical model. It is
preferable to have the same source wavelet throughout a complete
experiment. Thus we studied the experimental source and validated
its good reproducibility for multisource/multireceiver experiments
in the case of a homogeneous medium and for a two-layer model
having an internal interface with varied topography. The good re-
peatability of the source wavelet recovered and the high correlation
coefficient of the simulated data in comparison to the experimental
data, demonstrated the quality of the experimental data obtained
using the MUSC reduced scale measurement bench. Thus these
studies successfully improved the capacity of the physical model
designed for seismic experiment simulation.

Further studies will focus on quality factor estimation to avoid
the normalization calculation in the process and provide several sets
of perfectly controlled experimental data to the scientific commu-
nity. Moreover, the study of effective source reproducibility will
be extended to the horizontal component that has become available
recently in the MUSC laboratory (Valensi et al. 2015).
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A P P E N D I X : 3 - D / 2 - D D I F F E R E N C E S

In this appendix we shall describe 3-D-2-D spreading corrections
proposed by Forbriger et al. (2014): single velocity, direct wave and
hybrid methods.

The displacement field u can be evaluated at position (x =
(x, y, z)) and time (t) by (Aki & Richards 2002):

u(x, t) =
∫ +∞

−∞
dτ

∫ ∫ ∫
V

G(ξ , t − τ ; x, 0) f (ξ , τ )dV (ξ ), (A1)

where G(ξ , t − τ ; x, 0) is the Green’s function between the source
location (ξ ) and the observation point (x), and f (ξ , τ ) is the seismic
source function. The body force distribution for a point source (fP)
and a line source (fL), located at positions xs = (xs, ys, zs) and
xs2D = (xs, zs), respectively, in a 2-D structure invariant along the
y-axis are as follows:

fP (x, t ; xs) = F(t)δx (x − xs)δx (y − ys)δx (z − zs) , (A2)

fL (x, t ; xs2D) = F(t)Cδx (x − xs)δx (z − zs), (A3)

where C is a constant, (F(t)) is the wavelet time function and (δ) is
the Dirac function. Substituting eq. (A2) into eq. (A1) and eq. (A3)
into eq. (A1) leads to the wave motion due to a point source uP and
the wave motion due to a line source uL

u P (x, t ; xs) =
∫ +∞

−∞
G (xs, t − τ ; x) F(τ )dτ, (A4)

uL

(
x, t ; x2D

s

) =
∫ +∞

−∞

∫ +∞

−∞
G

(
x2D

s , t − τ ; x
)

F(τ )Cdy′dτ.

(A5)

The equivalent displacement uL for a line source can be obtained by
the displacement field uP generated by a point source by integration
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along y:

uL (x, y, z, t ; xs, zs) =
∫ +∞

−∞
u P (x, y, z, t − τ ; xs, y′, zs, 0)Cdy′ .

(A6)

Eq. (A6) shows that in terms of amplitude, the displacement gen-
erated by a line source is greater than the displacement generated
by a point source. Taking g3D

k (r ) and g2D
k (r ), the Fourier transform

of the 3-D and 2-D Green’s function in the acoustic approxima-
tion, respectively, with k being the wavenumber and r = |x − xs|
the source–receiver offset. In the far-field approximation, Forbriger
et al. (2014) demonstrate:

lim
r→∞

g2D
k (r )

g3D
k (r )

≈
√

2πr

k
.ei π

4 . (A7)

Replacing the wavenumber k = ω/vph, where ω is the angular
frequency and vph is the phase velocity, results in

√
2πrvph.

√
π

ω
ei π

4 = Famp.F̃√
t−1 , (A8)

where Famp = √
2πrvph is the amplitude factor and F̃√

t−1 applies
the phase shift. It results in

uL (r, ω) = u P (r, ω).Famp.F̃√
t−1 . (A9)

This correction is called the single-velocity transformation which is
recommended, after numerical tests (Forbriger et al. 2014; Schafer
et al. 2014), for small offsets. For a larger offset, by stating that
the offset is almost equal to the propagation distance, Schafer et al.
(2014) propose to replace the previous amplitude factor with

Famp = r

√
2π

t
. (A10)

The resulting correction is called the direct-wave transformation.
Finally, the hybrid method proposed by Forbriger et al. (2014) and
Schafer et al. (2014) consists in using the two previous transforma-
tions with a smoothly offset conditioned transition from the near-
field to the far-field.

The hybrid method was successfully validated by Schafer et al.
(2014) in numerical modelling and reconstruction tests with a 2-D
FWI method and 3-D numerical data generated in a 2-D structure.

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/211/1/637/4056331 by guest on 17 June 2021


