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Polymorphic Data Types, Objects, Modules andFunctors, : is it too much?S. Boulm�e T. Hardin R. RiobooMarch 21, 2000AbstractAbstraction is a powerful tool for developers and it is o�ered by numerous featuressuch as polymorphism, classes, modules and functors, . . . A working programmermay be confused with this abundance. We develop a computer algebra library which isbeing certi�ed. Reporting this experience made with a language (Ocaml [7]) o�ering allthese features, we argue that they are all needed together. We compare several waysof using classes to represent algebraic concepts, trying to follow as close as possiblemathematical speci�cation. Then we show how to combine classes and modules toproduce code having very strong typing properties. Currently, this library is made ofone hundred units of functional code and behaves faster than analogous ones such asAxiom.1 IntroductionAny software engineer is aware of the importance of abstraction in the process development.This concept corresponds in fact to several di�erent methods. The �rst abstraction methodis binding : binding an identi�er in a type expression i.e. de�ning parametric polymorphism,binding an identi�er in a value expression i.e. de�ning a function, binding a signature i.e.building a functor. The second method is to give a naming mechanism for collections ofentities i.e. to o�er objects, classes or/and modules, etc. The third one is a kind of hiding :hiding de�nitions of types (abstract data types, abstract/manifest types), hiding de�nitionsof functions (interfaces/signatures), hiding names (private �elds), etc. These three aspects ofabstraction are provided by most modern languages. Some ones, as Ocaml, go a step furtherby o�ering polymorphic data types with records and unions, classes with multiple inheritance,modules and functors. Is it not too much? Faced with such a wealth of abstraction methods,which do not seem so far from each other, the programmer may be puzzled, when designingthe implementation of a somewhat intricate speci�cation.In this paper, we relate our experience in the Foc project and we would like to explainwhy all these di�erent handlings of abstraction are all needed together to satisfy the Focrequirements. In the following, we present brie
y the motivations of Foc. Then we give ashort acquaintance to its requirements, in order to justify the choices made in its conception.1



The Foc1 project, started at the fall 1997, is aimed to build a development environ-ment for certi�ed algebra, that is to say, a framework for programming algorithms, provingtheir mathematical properties and the correctness of their implementations. This aim maybe a little surprising as, by de�nition, Computer Algebra Systems (in short CAS) workon mathematical entities represented by terms of a formal language, whose rules describeexact computations and algorithms (system or user-implemented) rely upon mathematicalproofs. So little place seems to remain for bugs as, usually, implementations are carefullydone. Despite of this care, bugs are not rare[10] :algorithmic errors (hasty simpli�cations, noveri�cation of required assumptions, etc.), bugs during coding (incorrect typing, bad man-agement of inheritance, bad deallocation, etc.). As CAS tend to be more and more usedin critical systems (robotics, cryptography, physics, etc.), safety properties are required ontheir outputs. But, usual methods to guaranty a high level of safety are here rather di�cultto use for the two following reasons. First, computer algebra programs tend to be large andcomplicated, and hence di�cult to maintain. Then, testing symbolic manipulations may bedi�cult, due to the size of the data (for instance, polynomial coe�cients with several thou-sands of digits) or the time needed for veri�cation (several hours of CPU time computationsis common). Furthermore, the ouput may be non-constructive, for instance, the result thata given polynomial has no root.The Foc environment is based on a library of algebraic structures, which is providingnot only the implementation of the classical tools to manipulate algebraic structures, butalso their semantics, given by explicit veri�ed statements. The user of Foc should havethe possibility to specify a given algorithm by using together elements of this library, proveproperties of this algorithm, de�ne an implementation and prove its correctness. This needsa strong interaction between programming and proving, through user interface, which hasbeen considered from the beginning of the project.To increase safety, the gap between mathematical description of an algorithm and itsencoding in the programming language has to be reduced. This requires a syntax power-ful enough to re
ect mathematical properties, as well as a �rm semantics associated withthis syntax. That was already pointed out several years ago by Davenport[5] and, as noprogramming language was meeting these requirements, the Computer Algebra communitywas led to develop its speci�c programming languages, giving birth to powerful systems, e.g.Axiom[6], which is perharps the most achieved. But this e�ort is not yet su�cient to get ridof bugs or ambiguities (for example, on solving multiple inheritance con
icts). Indeed, thesyntax of Axiom encourages the user to follow a certain programming discipline but thereis no e�ective semantic control. We tried[1] to prove some properties of Axiom programsby interfacing it with the proof assistant Coq. The conclusion was that such a task needs aprogramming language whose semantics is fully understood (and, possibly, formalized).To decrease the distance between mathematics and code, to help carrying proofs, wemade emerging the following requirements:R1 The overall organization of the library should re
ect its mathematical counterpart, e.g.groups should be de�ned upon monoids.1(F for Formel i.e. symbolic in French + O for Ocaml + C for Coq [3])2



R2 Several levels of abstraction must be available for a given notion : the type of theoperation of a group can be accessed before any implementation of it.R3 Some notions may be de�ned by default, so that they can be shared by a whole family ofstructures, and still possibly be locally rede�ned for a speci�c inhabitant of the family.For example, is_different should be de�ned by default as the negation of is_equalin any structure built upon sets with equality but may be rede�ned within speci�cstructures.R4 Implementations of a given algebraic structure may be progressively re�ned: from anabstract view of Z=2Z, one may go to an implementation, ZI, representing the inhab-itants by integers and to another one, ZB, using booleans. Some constructions haveto be shared between ZI and ZB.R5 Di�erent implementations of an abstract algebraic structure, such that ZI and ZB,must be distinguished by typing, in order to avoid confusions or misuses.R6 The correspondance between the coding of the structures in the programming languageand the prover should be as natural as possible.R7 To have a true prototype, the library should contain a signi�cant amount of basic no-tions in Computer Algebra: big integers, modular integers, and several representationsof polynomials, at least the distributed and the recursive ones. Indeed, the problemsarising at the level of certi�cation can be visible only after a certain amount of com-plexity, both in the organization of the algebraic structures and in implementationissues, has been reached.These requirements are not all speci�c to Computer Algebra. they correspond to well-known paradigms in programming languages. The language must have a strong expressivepower to meet R1 and also to ease R7. R2 together with R5 asks for abstract data types onone hand and concrete (or manifest) types on the other hand, leading to modules. R2, R3,R4 together call for object-oriented features (classes, inheritance, late binding). A functionalprogramming style, free from assignments, but with exception handling helps for R6. R7needs also an e�cient language, with recursive types and garbage collection.Considering all these points, the language Ocaml was chosen. It has a very strong disci-pline of types, with parametric polymorphism and type inference, it provides both modulesand objects, which are powerful enough to de�ne our library. Moreover, the interaction be-tween classing and subclassing mechanism and the typing algorithm is fully described andsemantically understood.This choice being done, the development is not yet ready to start. In fact, our require-ments are in a certain sense contradictory. Indeed, R5 asks to di�erentiate ZI and ZB bytyping (module-oriented aspect), and at the same time R4 asks to share some constructionsbetween these two rings (object-oriented aspect). Thus, a design discipline for the de�nitionof our library has to be elaborated, through the understanding of the balance between theuse of module-oriented and object-oriented features. Doing that, we have also to describe3



the di�erent dependency links between the library units in a rather uniform way, to easeforthcoming proofs.To have an account of the actual di�culties arising from di�erent design choices and oftheir possible solutions, we have written several versions of the basic library described byR7. These versions have been analyzed according to three criteria: whether they �t R1-R7whether they are easy to handle both from the developer's and from the user's point of view,and whether they give rise to e�cient algorithms. This last point is important because thereis no use to pay for the proof of a program if it will be rejected, due to ine�ciency reasons.In this paper, we �rst describe the conception of Foc in section 2, we then explainbrie
y in section 3 why a �rst try based only on modules was rejected and in section 4 wecomment several ways of using the object-oriented features, focusing on their drawbacks.The retained solution is given in section 5, in a rather detailed way. The current state of thelibrary is given in section 6 and some e�ciency comparisons are done in section 7. Along thepaper, we provide examples written in Ocaml, trying to remain understandable to peoplenot acquainted with this language.2 Analysis of the FOC's conceptionIn the following sections, we are commenting several ways for implementing the Foc library.These comments are done, according to the speci�cation of this development, which is de-tailed in this section.Engineers, scientists, etc. use day-to-day CAS like Mathematica and Maple for solvingsymbolic problems such as integration or equation solving, in much the same way thatthey would use a pocket calculator for numerical calculations. However some domains(robotics, cryptography, . . . ) require very more involved computations with CAS, need-ing well-engineered and robust libraries. Foc is not intended to be an interactive computeralgebra system like Maple but only to o�er a library, which can be used by engineers to buildtheir own unit. However, a top-level system may be built upon it in the future.The job of computer algebra engineers is to implement mathematics, more precisely, toimplement tools which compute with mathematical data. Their aim is not to prove theoremswith some veri�cation tools but to produce data with algorithms built upon some theorems.The point where the approachs of engineers and mathematicians depart from each other isthe notion of representation : in mathematics, there exists a unique set of integers de�nedby some caracteristic properties, in computer algebra, there are several implementations ofintegers (BigNums, GMP, etc.), sometimes needing explicit conversions between them. Thereare several ways to link mathematical data and their representations. In the following, wegive our approach and we compare it with Axiom 'one.2.1 Our vueA CAS manipulates entities such as integers, polynomials, etc. These entities have a rep-resentation which must explicitely be stated as part of their de�nition. In our opinion it isimportant to distinguish mathematical operations performed on an entity from those per-formed on the representation. This give better control over the data being manipulated.4



These entities are characterized by properties of their operations, which rely on math-ematical properties together with representation properties. We also want to have a cleardistinction between mathematical depencies and data representation depencies.Thus, our choice is to have a neat separation between data manipulation and mathemat-ical properties handling. Data manipulation is a concern of programming languages, whichis not at all in the scope of computer algebra. For instance, lists with their tools and theirproperties are assumed to be available.2.2 Categories and domains of AxiomIn Axiom, entities belong to some domain, which is presented as their type. Domainsthemselves belong to structures called categories. Categories are also presented as types ofdomains.The membership of a domain to a category is asserted by a declaration and a domainmay belong to di�erent categories. Categories may be combined to build new categories byadding some components and by a join operation. So, categories and domains are akin toclasses and objects, with an inheritance-like mechanism. The symbol % is used to denotethe domain being described or implemented. It thus appears as the classical self of object-oriented languages. But it denotes also the abstract type of its entities. Categories exportsignatures containing names of available operations, with their prototypes written with %.These operations are not implemented at category level, but inside each of the domains ofthe category, using the representation for entities chosen in the domain. The representationof entities is always hidden outside their domain de�nition and can be manipulated onlyby the signatures of the categories the domain belongs to. Thus, with these signatures, adomain is like an abstract data type.In Axiomxl (recent versions of Axiom) the two faces (abstract/concrete) of entities isexplicited using two special functions rep : % -> Rep which gives access to the repre-sentation of the entity and per : Rep -> % which hides this representation. Rep is aconventional name to denote the representation of the entities. rep and per can be seen asconversions between abstract and manifest types.2.3 Species and collections of FocMathematical structures are here described by species, which are de�ned by a set of com-ponents, describing mathematical operations and properties available for an entity of thisspecie. So, species are roughly Axiom's categories. We detail carefully in the following theatomic steps of the introduction a new specie, as each of these steps corresponds to an atomicstage of proof correctness so needs to be easily identi�able in the source program.The representation of its entities is the �rst component of a specie. it is called the carrierof the specie. Working in a polymorphic typed framework, the simplest carrier is a typevariable T . T may progressively be instanciated by a type expression still containing othertype variables or by an explicit data type. This is a �rst way of creating a new specie, whichis called carrier instanciation.The components, called primitive, of a specie are named and described by their prototype,5



written as a type expression possibly depending on T (or by a logical statement dependingon T for components recording properties). A given specie can also have derived componentswhich receive, beside a name and a prototype, an implementation build upon the primitivecomponents (and functionalities supposed available over T ).A second way to create new species is to extend a given specie by adding primitive orderived components. For instance an additive group is an extension of an additive monoid bya primitive operation �nding the opposite of an entity and another primitive one that checksan element to 0. From these operations one can describe a derived binary subtraction andimplement equality (which was a primitive operation in the specie of monoids) in terms ofsubtraction and zero check. Sometimes, an extension adds only new properties: an abeliangroup has the same operations than a group but has new properties.Now, a primitive component of a specie can receive an implementation, de�ning a newspecie by a way usually called a re�nement (so no extension of the speci�cation, only a stepto approach a full implementation). The code has only to meet the declared properties ofthe component. Thus the re�nements of a specie share names, prototypes, some propertiesand some de�nitions.A derived component, say c, of a given specie S1 may be rede�ned, leading to a newspecie S2. As in the previous case, the new code has to meet the declared properties of thecomponent in S1. Moreover, as rede�nitions of a specie share also names, prototypes, andsome properties, if some of these properties in S1 rely upon the code of c, they have to bereproved. Rede�nition of primitive components is considered as well.Whenever every primitive component of a specie has a de�nition, this specie can only beextended by derived components. We will call collection such a specie if we don't want toextend it anymore. A collection thus appears as a terminal element of the species creationprocess.Species can receive parameters as long as those are collections or entities. Thus, aparametrized specie is a kind of \function" taking collections or entities and returning aspecie. For instance, Z=nZ, the specie of modular integers, is parametrized by the integer nand there exists a specie of univariate polynomials, parametrized by the ring R of coe�cients.All previous operations on species apply to parametrized species. Re�ning a parametrizedspecie may be also done by instanciating some parameters. For instance, instantiating n by2 builds the specie Z=2Z and R may be instantiated by Z=2Z.A specie S1 can be converted into a specie S2 by etasblihing a correspondance betweenthe primitive components of S2 and some components of S1, ensuring the same properties.A specie can always be restricted to another specie of which it is an extension. Namely a�eld can always be provided where a ring is wanted.Some operations of a specie can be renamed to create a new specie. For instance in anadditive monoid we should be able to rename the \plus" operation into a \mult" operationand the \zero" constant into a \one" constant.Summarizing, new species can be de�ned by representation instantiation, extension, re-�nement and parameter instanciation, rede�nition. Moreover, conversion and explicit re-naming are needed. These di�erent links between species de�ne a sort of hierarchy betweenthem.The introduction has described seven general requirements for Foc. Having an easy6



implementation for all these operations on species is also a major requirement. As alreadyseen for R1-R7, these operations on species correspond to module-oriented or object-orientedfeatures. Thus, we turn now to the description and the comparison of several attempts ofdesigning the discipline coding of Foc.3 Data encapsulationThe requirement R5 of the introduction concerns safety : collections must be di�erentiatedby typing, in order to avoid misuses and inconstencies. We focus �rst on this point.As well-known, a simple way to increase safety is to export only abstract types for therepresentations. Indeed, data representation often uses implicit invariants. Abstract typesforbid the user to misuse the representation by ignoring some of these invariants. Further-more, the representation can be changed without disturbing users. On the other hand, devel-opers of the units of the library need to know the exact implementation of the representation.So we �t in the very usual discussion on abstract versus manifest types and encapsulationof data representation. It �rmly corresponds to a module-oriented programming style. Our�rst try was to use modules only and we comment it brie
y.We recall that Ocaml's modules system is a simply typed lambda-calculus languagewith a subtyping relation and constraint expressions. Structures allow to package togetherde�nitions sharing a common environment, which can be referred to, outside the structure,using the dot notation. Signatures are interfaces for structures. A signature speci�es thename and the type of the components of a structure, which are available from the outside.It can be used to hide some components of a structure or to export some componentswith a restricted type. Functors are \higher-order functions" from structures to structures.So, abstract data types correspond to signatures and their implementations to structures.Species, such as ring below, are coded by module signatures and collections, such that Z=2Z,by module implementations.module type Ring =sigtype tval equal: (t*t) -> boolval plus: (t*t) -> tval mult: (t*t) -> tval opp: t -> tval one: tendmodule Z2z: Ring =structtype t=boollet equal (x,y) = (x=y)let plus (x,y) = (x || y) && not (x && y)let mult (x,y) = x && ylet opp x = x 7



let one=trueendThe type abstraction mechanism is reinforced by the use of functors that allow to obtainthe desired level of type abstraction within parameterized collections. For instance, thespecie of univariate polynomials and the parameterized collection of sparse polynomials canbe described as follows :module type FormalPoly =sigmodule Base: Ringtype tval equal: (t*t) -> boolval mult_extern: (Base.t*t)->tendmodule SparsePoly (A:Ring): (FormalPoly with module Base = A ) =structmodule Base = Atype t= (A.t * int) listlet equal = ......endThe following declaration builds the collection of sparse polynomials with coe�cients inZ=2Z.module Pol Z2z = Sp Poly (Z2z);;Pol Z2z.t and (Z2z.t*int) list are incompatible types: the structures importing thesparse polynomials do not have access to their representation.let id y = ...val id : Pol Z2z.t -> Pol Z2z.t = <fun>id [(Z2z.one,1)];;This expression has type (Z2z.t * int) listbut is here used with type Pol Z2z.t = Sp Poly(Z2z).tBut, Pol Z2z.Base.t and Z2z.t are equal types. This testi�es the correctness of thecoding with respect to the speci�cation.So, Ocaml's modules system allows for an exact description of the speci�cation and itspowerful typing algorithm helps a lot to avoid inconsistencies. But, as stated by R2, someinheritance mechanism is needed. There is no such possibility in the current version ofOcaml. We tried to micmic it by hand but it turns out to be unrealistic when it comes toreal-size attempts. Declaring inherited modules as components of heirs leads to a notationwith a painful sequence of dots. Putting by \cut and paste" the components of the inheritedmodule inside the heir is de�nitively too hard to maintain. Such a mechanism may perharpsbe automatized, but not so simply, as extending it to module structures and functors wouldrequire a semantical analysis of code. Furthermore, modules are designed to minimize thepropagation of modi�cations during code generation, allowing separate compilation : such ause of them would not respect their purpose.8



4 First runs with classesHaving a true inheritance seems to be a necessity; we are thus led to consider working withOcaml classes. As stated by requirement R3, rede�nition of certain operations is crucial,typically for optimization purposes. For instance the function mult_extern, which com-putes the product of a polynomial with a scalar number, may take advantage of the speci�crepresentation of sparse polynomials. Late binding allows to modify only those �elds thatneed to be rede�ned and these modi�cations have not to be reported in the methods usingthese �elds. So we �rmly want late binding.4.1 Entities as objectsWe �rst try to use object-oriented features as usually done in textbooks on object-orientedlanguages. Species are described by virtual classes, collections by concrete classes, andentities by objects (indeed by instance variables of objects). But this simple design does notmeet our requirements; this can be seen on the following example, where the ring specie isdescribed by:class virtual ring =object (self:'a)method virtual equal:'a -> boolmethod virtual plus:'a -> 'amethod virtual mult: 'a ->'amethod virtual opp: 'amethod virtual one: 'aendThe \unity" entity one and the \opposite" operator opp have the same type. Actually,types of components do not re
ect their arities, because they are implicitly applied to theunderlying object. For instance, binary operations become within this approach unary meth-ods, which introduces a gap between the syntax and mathematical notation. Moreover oppapplies to the underlying entity, whereas one is given by the underlying collection, thesesemantic di�erences are not re
ected.Now, instance variables, such as my_rep are private in Ocaml, insuring data encapsula-tion. However, when coding the binary operations, one needs to know the actual represen-tation, given here by my_rep, of the explicit argument. Therefore, the value of the instancevariable has to be made public by a speci�c method, called below rep. This way, the integercollection may be given by:class integers =objectinherit ringval my_rep = 0method plus x = < my_rep = my_rep + x#rep >method rep = my_repmethod one = < my_rep = 1>...end 9



We then face a new problem, coming from the fact that rep is shared by all the sub-classeshaving the same carrier. For instance, the entities of Z=2Z may be canonically coded by 0 or1, by using an implicit invariant.class z2z =objectinherit ringval my_rep = 0method rep = my_repmethod plus x = let tmp=my_rep+x#rep inif tmp=2then < my_rep = 0 >else < my_rep = tmp >method print = (string_of_int my_rep)^"[2]"....end;;It is now possible to mix integers and modular integers, as follows:# let one_z2z = (new z2z)#one ;;val one_z2z : z2z = <obj># let one = (new integers)#one ;;val one : integers = <obj>#let three = (one#plus one)#plus one ;;val three : integers = <obj># (one_z2z#plus three)#print;;- - : string = "4[2]"The implicit invariant has been broken, because the methods of z2z and integers have thesame name and the same type, and thus are considered by Ocaml's typing system to becompatible, which should not happen.In conclusion, this \object oriented" solution does not �t our requirements. There isno neat correspondance between the implementation of species and collections and theirmathematical semantics. For instance, the collection of integers is implemented by the classintegers of this model; an object of this class is the coding of an entity of the collection, butcarries within himself the unity, and all the operations of this collection and of the species ofrings. The relation object-class does actually not �t to the relation entity-collection. This isexempli�ed by the loss of arity mentioned above, which makes di�cult to express propertieslike associativity or commutativity of operations. At last, such a use of objects and classesis rather ine�cient, due to the continuous use of \rep" at running time. Remember thatdata encapsulation within modules is guaranteed by a typing mechanism without additionalcost at run-time.4.2 Classes as Abstract Data TypesWe now want to restore the correspondence between type and arity of operations by rendingexplicit the implicit argument \self". We give here to the type 'a of the object the samestatus as % in Axiom. So, binary operations correspond to binary methods and constants10



appear as true constants. In other words, the representation of a specie or a collection is anabstract data type, encoded by a class.class virtual ring =object (self :'a)method virtual equal:'a*'a->boolmethod virtual plus:'a*'a->'amethod virtual mult:'a*'a->'amethod virtual opp:'a->'amethod virtual one:'a...endclass integers =objectinherit ringval my_rep= 0method rep_ints = my_repmethod equal (x,y) = x#rep_ints=y#rep_intsmethod plus (x,y) = < my_rep=x#rep_ints+y#rep_ints>....end;;This concrete class integers may be viewed as a specie if we want still to re�ne it. Itwill be considered as a collection if the re�nement process is frozen. But, how to interpretthe values my int and zero?let my int = new integers;;val my int : integers = <obj>let zero =my int#plus(my int#one,my int#opp my int#one);;val zero : integers = <obj>my int#equal (my int,zero);;- - : bool = trueThey have the same type, they may be compared. But, zero is clearly an entity wherasmy int may be intended as a collection. Distinguishing between these two possible uses ofobjects may be di�cult at the proof level.This model has been developed up to the implementation of distributed polynomials. Wehowever rejected it as furthermore, entities are still encapsulated in objects, still paying thecost of the calls to the rep_ methods.5 Encapsulating classes within modulesTo di�erentiate species, collections and entities by static typing, we develop a new model,which also gets rid of the instance variable my_rep. The information on the carrier is nowgiven as a type parameter 'a and has the same status than Axiom's Rep. Methods havetypes depending on the carrier and not on an abstracted view of the representation. Forinstance, the ring, integers and z2z classes of the preceding models become:11



class virtual ['a] ring =objectmethod virtual equal:'a*'a->boolmethod virtual plus:'a*'a->'a...endclass integers =objectinherit [int] ringmethod equal (x,y) = (x = y)method plus (x,y) = x + y...endclass z2z =objectinherit [int] ringmethod equal (x,y) = x=ymethod plus (x,y) =let tmp=x+y in if tmp=2 then 0 else tmpmethod mult (x,y) = x*ymethod opp x = xmethod one = 1method print x =(string_of_int x)^"[2]"endThe integers class implements the mathematical integers. This class is concrete butcan still be re�ned using inheritance. We consider it �rmly as the specie of the integers.More generally, classes are considered only as implementations of species. Collections arealways created only by using the keyword new. So, they are Ocaml objects. Entities aresimply elements of the carrier of the specie specifying the collection. Applying operations toentities is sending a message to the object (collection).Whit this choice, we have a one-to-one correspondance between mathematical notionsand semantics of typing. But, the problem of carrier abstraction described above remains.It is due to the powerful mechnism of subclassing and cannot be solved within the object-oriented framework. To handle this problem, we propose the following solution.As de�ned above, the collection of integers provides access to its operations but also toits carrier. This is �ne for, for example, to pass them as actual parameters to parameterizedspecies. But, common uses of the library do not need full access to the carrier. So it is safeto add an encapsulation mechanism, building structures called E-collections.An E-collection is obtained as follows:module type E collection = sigtype abstractval a collection: abstract type classend 12



module my E collection : E collection =structtype abstract= some typelet a collection = (new a class)endFor instance, we de�ne the E-collection Z2z by :module type Ring = sigtype abstractval a ring: abstract ringendmodule Integers : Ring =structtype abstract=intlet a ring =(new integers)endmodule Z2z: Ring =structtype abstract=intlet a ring =(new z2z)endCalculations are performed using a ring and the speci�cation is type safe. A user maynow declare an object, still called integers, which allows him to use the integer collectionin a simple way:# let integers = Integers.a ring ;;val integers : Integers.abstract ring# let one = integers#one;;val one : Integers.abstract# let z2z = Z2z.a ring ;;val z2z : Z2z.abstract ring = <obj># let one_z2z = z2z#one;;val one_z2z : Z2z.abstract = <abstr># z2z#plus (one_z2z,one);;This expression has type Z2z.abstract * Integers.abstractbut is here used with type Z2z.abstract * Z2z.abstractAs shown by the previous examples, an E-collection A is represented via a module as apair (abstract, some) where abstract is the type of its entities and some is the objectthat \contains" the methods of the collection. The representation of abstract should beknown only by the species underlying A and the collections extending it, while being hiddento all users of the corresponding E-collection. This mechanism can be easily extended tohandle parameterized collections like polynomials.In this model, unlike the traditional way of programming in object-oriented style, anobject does not have an internal state, that is there is no instance variable. The main pointhere is that the class is completely described by the functionalities of the species or thecollection, in the same spirit as algebraic abstract datatypes. Note however that in thismodel, the whole functional expressiveness provided by Ocaml is exploited.13



6 Description of the libraryIn its current state the Foc library is made of about 100 Ocaml class for about 3500 lines ofOcaml code, comprising :� parameterized species by base integers, which encapsulate small and big integers. Cur-rently small integers are used to build degrees of polynomials and small modular arith-metics. Big integers are used as coe�cients rings of those polynomials. Support isprovided using two di�erent big integer packages : BigNum and GMP2.� Base species to provide monomials and ordering over those monomials. Current imple-mentation supports several variables with lexicographical ordering providing \degreearithmetic". The usual case of one variable is then seen as a special (degenerated) caseof this.� Distributed polynomial arithmetics is then provided up to exact division.This code achieves most of the functionalities of Axiom's polynomials but with increasedreusability since in Axiom univariate and distributed polynomials have di�erent (thoughsimilar) implementations.We then provide support for recursive polynomials with strictly higher generality thanthose of Axiom. In Axiom recursive polynomials are an iteration of the univariate case,viewing a polynomial in X and Y as a polynomial in X which coe�cients are polynomialsin Y . The carrier is a recursive type, the base case is given by the coe�cient ring and theinductive case uses the distributed polynomials specie. Suppose given a a ring collection Rwith carrier � (or 'a) and a degree collection D with carrier � (or 'b), then the carrier forrecursive polynomials is :type ('a,'b) rec_struct =| Base of 'a| Composed of string*((('a,'b)rec_struct* 'b) list);;The type of recursive polynomials is denoted by 
r for short. Here the parameter of typestring is used to represent the set of variable names of the multivariate polynomial and tode�ne the level ordering.Building the specie of recursive polynomials, we have to express that the collection R (orr) is a ring and that D (or d) is a degree collection. Here R and D are Ocaml object valueswith types ! (or 'r) and � (or 'd) respectively. We achieve this by writing type constraints :constraint ! = (�)#ring andconstraint � = (�)#monomial orderingNow, recursive polynomial operations usually proceed by calling univariate operations.We depart from that by calling distributed operations.We thus need a specie Dp (or distr p) for distributed polynomials (not detailled here).Let us name by Rr (or rec p) the object being de�ned in the class recursive pols. Itstype is !r (or 'rec p). We de�ne it as a collection, obtained from an instantiation of thespecie Dp, giving Rr as the actual coe�cient parameter collection and D as the actual degreecollection. We thus need Rr to be a ring with carrier 
r :2other packages are being included 14



inherit (
r)#ringand we can now hold the collection Dp(Rr; D) by de�ning a method the dp :method the dp = new Dp(Rr; D).We thus have :class ['r,'a,'d,'b] recursive_pols ((r,d):('r,'d)) =object(rec_p:'rec_p)constraint 'r = ('a)#ringconstraint 'd = ('b)#monomial_orderinginherit [('a,'b)rec_struct]ringmethod the_dp = let dp = new distr_p(rec_p,d) in dp...endThe method the dp can now be used inside other method bodies to encapsulate dis-tributed opertions. For instance the code for recursive polynomial multiplication uses theconstruction :let ( * ) p q = (rec_p#the_dp)#mult(p,q) in ...Note that late binding and open recursion is essential to this process. Current Focimplementation uses further abstraction by manipulating a function Fp = Rr ; Dp(Rr; D)and uses an e�ective collection constructor and further type parameters which abstract thee�ective Dp implementation of ditributed polynomials.7 BenchmarkingCoding with the Foc library uses functional style programming. Most of Foc's code doesnot overwrite derivated components and many operations use their default implementationwhich induces an extra cost. Representations used in Foc are close to those of Axiom thoughthey are strictly more general. It thus make sense to compare Foc with Axiom, wheras itwould not with other computer algebra systems.The benchmark consists in resultant computations (they are determinant of matricesthat are computed using polynomial arithmetics). Operations involved in the coe�cientring are addition, multiplication and exact division. The same algorithm has been codedusing Foc and Objective caml 2.04 and Axiom 2.1. The two univariate polynomials involvedare P = x30 + ax20 + 2ax10 + 3a and Q = x25 + 4bx15 + 5bx5 with a varying and b = a + 1.The results are obtained on a pentium 450Mhz machine running redhat linux 5.2. Timingsare computed by the Ocaml Sys.time function. In Axiom 2.1 time statistics are unreliablein the presence of garbage collections and we designed our own timing function from thebasic timer of the underlying Lisp system. Both timimgs take GC activity into account.The �rst bench3 in �gure 1 mesures big integers capabilities and a is an integer in therange 10100 to 10700. The result is also an integer with 4500 to 31500 digits in base 10.3dashed lines represent theoretical complexity for Karatsuba multiplication which appears not to beimplemented in either big integer packages 15



Figure 1: subresultant calculation of P and Q
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Objective Caml has the ability to produce byte or native code, in the previous computa-tion both timings cannot be distinguished since most of the time is spent inside big integercalculations. We thus can see that Axiom's big integers are less e�cient than Ocaml.In �gure 2 we change the coe�cient ring and a will be a polynomial of the formPi=ki=0 Ai.The result is a polynomial in A of degrees varying from 45 to 315. We measure this degree,the maximum size of the result's coe�cients (which are integers) together with times. Herethe size of coe�cients varies from 1 to 72 digits in base 10.Here numbers are relatively small and time spent inside big integer arithmetic is negligiblewith respect to the time spend inside polynomial arithmetics (polynomials in A). We cansee that timings compare for the byte code version of Foc, and are much better for the nativecode version of Foc.8 ConclusionThe title of this paper expresses well our questioning at the start of the Foc project. Carryingout several sizeable prototypes, we have been able to elaborate an answer, which shows thatall the abstract methods o�ered by our programming idiom are needed. Some other languageso�er a mechanism inheritance within modules. For instance, mixins[2] are modules in whichsome components are deferred i.e. their de�nition has to be provided by another module.They can be mutually dependent and their composition supports rede�nition of components.But, this is not enough as late binding, not only overidding, is also crucial.What we have done in fact is to design a framework well-adapted to the speci�cation of agiven trade : the one of the computer algebra engineer. And we think that this experience canbe redone with another trades (chemistry, physics, etc.), leadind perharps to very di�erent16



Figure 2: subresultant calculation of P and Q
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uses of abstract methods. So, as a �rst conclusion, this is indeed important to dispose of aprogramming language with rich features, but, only if they are semantically well-understoodso if they can serve to express without ambiguity the speci�cations of a given area.As a second conclusion, we may say that, to obtain a full certi�cation, the compiler ofthe programming language should itself be certi�ed. No such compiler exists for the timebeing, even if some kernels of functional languages have been formally studied. Nevertheless,it would have been completely irrealistic to try to create our own programming language.As it is a semantically well founded language, Ocamlis a good compromise. Using only afunctional style certainly will help the proofs to be done. Also, the richness of the syntaxallows to code algorithms very closely to their mathematical formulation. This will help alsoproving stages.The third conclusion may be on e�ciency. We have noted that the encapsulation of datainside objects is really costly. But, there is no need to use it. On the opposite, me may claimthat functional style is e�cient, more e�cient in this case than traditional implementationsmaking �ne tuning of pointers.As shown by the number of classes and the benches, the library has now reached thestate of a full development. Our design conception has been tested by students which haveadded some units, following it without di�culties. On the side proof, the major di�cultpoint is to de�ne the representation of species, collections and of the di�erent operations onthem. A solution, based on dependent labelled records coded in Coq is under submission.The next step of the project is to de�ne the user interface, that is, a syntax for programsand statements, well-adapted to computer algebra engineers and to extract Ocaml code andCoq code from it. 17
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