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Polymorphic Data Types, Objects, Modules and
Functors, : is it too much?

S. Boulmé T. Hardin R. Rioboo
March 21, 2000

Abstract

Abstraction is a powerful tool for developers and it is offered by numerous features
such as polymorphism, classes, modules and functors, ... A working programmer
may be confused with this abundance. We develop a computer algebra library which is
being certified. Reporting this experience made with a language (Ocaml [7]) offering all
these features, we argue that they are all needed together. We compare several ways
of using classes to represent algebraic concepts, trying to follow as close as possible
mathematical specification. Then we show how to combine classes and modules to
produce code having very strong typing properties. Currently, this library is made of
one hundred units of functional code and behaves faster than analogous ones such as
Axiom.

1 Introduction

Any software engineer is aware of the importance of abstraction in the process development.
This concept corresponds in fact to several different methods. The first abstraction method
is binding : binding an identifier in a type expression i.e. defining parametric polymorphism,
binding an identifier in a value expression i.e. defining a function, binding a signature i.e.
building a functor. The second method is to give a naming mechanism for collections of
entities i.e. to offer objects, classes or/and modules, etc. The third one is a kind of hiding :
hiding definitions of types (abstract data types, abstract/manifest types), hiding definitions
of functions (interfaces/signatures), hiding names (private fields), etc. These three aspects of
abstraction are provided by most modern languages. Some ones, as Ocaml, go a step further
by offering polymorphic data types with records and unions, classes with multiple inheritance,
modules and functors. Is it not too much? Faced with such a wealth of abstraction methods,
which do not seem so far from each other, the programmer may be puzzled, when designing
the implementation of a somewhat intricate specification.

In this paper, we relate our experience in the Foc project and we would like to explain
why all these different handlings of abstraction are all needed together to satisfy the Foc
requirements. In the following, we present briefly the motivations of Foc. Then we give a
short acquaintance to its requirements, in order to justify the choices made in its conception.



The Foc! project, started at the fall 1997, is aimed to build a development environ-
ment for certified algebra, that is to say, a framework for programming algorithms, proving
their mathematical properties and the correctness of their implementations. This aim may
be a little surprising as, by definition, Computer Algebra Systems (in short CAS) work
on mathematical entities represented by terms of a formal language, whose rules describe
exact computations and algorithms (system or user-implemented) rely upon mathematical
proofs. So little place seems to remain for bugs as, usually, implementations are carefully
done. Despite of this care, bugs are not rare[10] :algorithmic errors (hasty simplifications, no
verification of required assumptions, etc.), bugs during coding (incorrect typing, bad man-
agement of inheritance, bad deallocation, etc.). As CAS tend to be more and more used
in critical systems (robotics, cryptography, physics, etc.), safety properties are required on
their outputs. But, usual methods to guaranty a high level of safety are here rather difficult
to use for the two following reasons. First, computer algebra programs tend to be large and
complicated, and hence difficult to maintain. Then, testing symbolic manipulations may be
difficult, due to the size of the data (for instance, polynomial coefficients with several thou-
sands of digits) or the time needed for verification (several hours of CPU time computations
is common). Furthermore, the ouput may be non-constructive, for instance, the result that
a given polynomial has no root.

The Foc environment is based on a library of algebraic structures, which is providing
not only the implementation of the classical tools to manipulate algebraic structures, but
also their semantics, given by explicit verified statements. The user of Foc should have
the possibility to specify a given algorithm by using together elements of this library, prove
properties of this algorithm, define an implementation and prove its correctness. This needs
a strong interaction between programming and proving, through user interface, which has
been considered from the beginning of the project.

To increase safety, the gap between mathematical description of an algorithm and its
encoding in the programming language has to be reduced. This requires a syntax power-
ful enough to reflect mathematical properties, as well as a firm semantics associated with
this syntax. That was already pointed out several years ago by Davenport[5] and, as no
programming language was meeting these requirements, the Computer Algebra community
was led to develop its specific programming languages, giving birth to powerful systems, e.g.
Axiom][6], which is perharps the most achieved. But this effort is not yet sufficient to get rid
of bugs or ambiguities (for example, on solving multiple inheritance conflicts). Indeed, the
syntax of Axiom encourages the user to follow a certain programming discipline but there
is no effective semantic control. We tried[1] to prove some properties of Axiom programs
by interfacing it with the proof assistant Coq. The conclusion was that such a task needs a
programming language whose semantics is fully understood (and, possibly, formalized).

To decrease the distance between mathematics and code, to help carrying proofs, we
made emerging the following requirements:

R1 The overall organization of the library should reflect its mathematical counterpart, e.g.
groups should be defined upon monoids.

L(F for Formel i.e. symbolic in French + O for Ocaml + C for Coq [3])



R2 Several levels of abstraction must be available for a given notion : the type of the
operation of a group can be accessed before any implementation of it.

R3 Some notions may be defined by default, so that they can be shared by a whole family of
structures, and still possibly be locally redefined for a specific inhabitant of the family.
For example, is_different should be defined by default as the negation of is_equal
in any structure built upon sets with equality but may be redefined within specific
structures.

R4 Implementations of a given algebraic structure may be progressively refined: from an
abstract view of Z/2Z, one may go to an implementation, ZI, representing the inhab-
itants by integers and to another one, ZB, using booleans. Some constructions have
to be shared between ZI and ZB.

R5 Different implementations of an abstract algebraic structure, such that ZI and ZB,
must be distinguished by typing, in order to avoid confusions or misuses.

R6 The correspondance between the coding of the structures in the programming language
and the prover should be as natural as possible.

R7 To have a true prototype, the library should contain a significant amount of basic no-
tions in Computer Algebra: big integers, modular integers, and several representations
of polynomials, at least the distributed and the recursive ones. Indeed, the problems
arising at the level of certification can be visible only after a certain amount of com-
plexity, both in the organization of the algebraic structures and in implementation
issues, has been reached.

These requirements are not all specific to Computer Algebra. they correspond to well-
known paradigms in programming languages. The language must have a strong expressive
power to meet R1 and also to ease R7. R2 together with R5 asks for abstract data types on
one hand and concrete (or manifest) types on the other hand, leading to modules. R2, R3,
R4 together call for object-oriented features (classes, inheritance, late binding). A functional
programming style, free from assignments, but with exception handling helps for R6. R7
needs also an efficient language, with recursive types and garbage collection.

Considering all these points, the language Ocaml was chosen. It has a very strong disci-
pline of types, with parametric polymorphism and type inference, it provides both modules
and objects, which are powerful enough to define our library. Moreover, the interaction be-
tween classing and subclassing mechanism and the typing algorithm is fully described and
semantically understood.

This choice being done, the development is not yet ready to start. In fact, our require-
ments are in a certain sense contradictory. Indeed, R5 asks to differentiate ZI and ZB by
typing (module-oriented aspect), and at the same time R4 asks to share some constructions
between these two rings (object-oriented aspect). Thus, a design discipline for the definition
of our library has to be elaborated, through the understanding of the balance between the
use of module-oriented and object-oriented features. Doing that, we have also to describe



the different dependency links between the library units in a rather uniform way, to ease
forthcoming proofs.

To have an account of the actual difficulties arising from different design choices and of
their possible solutions, we have written several versions of the basic library described by
R7. These versions have been analyzed according to three criteria: whether they fit R1-R7
whether they are easy to handle both from the developer’s and from the user’s point of view,
and whether they give rise to efficient algorithms. This last point is important because there
is no use to pay for the proof of a program if it will be rejected, due to inefficiency reasons.

In this paper, we first describe the conception of Foc in section 2, we then explain
briefly in section 3 why a first try based only on modules was rejected and in section 4 we
comment several ways of using the object-oriented features, focusing on their drawbacks.
The retained solution is given in section 5, in a rather detailed way. The current state of the
library is given in section 6 and some efficiency comparisons are done in section 7. Along the
paper, we provide examples written in Ocaml, trying to remain understandable to people
not acquainted with this language.

2 Analysis of the FOC’s conception

In the following sections, we are commenting several ways for implementing the Foc library.
These comments are done, according to the specification of this development, which is de-
tailed in this section.

Engineers, scientists, etc. use day-to-day CAS like Mathematica and Maple for solving
symbolic problems such as integration or equation solving, in much the same way that
they would use a pocket calculator for numerical calculations. However some domains
(robotics, cryptography, ...) require very more involved computations with CAS, need-
ing well-engineered and robust libraries. Foc is not intended to be an interactive computer
algebra system like Maple but only to offer a library, which can be used by engineers to build
their own unit. However, a top-level system may be built upon it in the future.

The job of computer algebra engineers is to implement mathematics, more precisely, to
implement tools which compute with mathematical data. Their aim is not to prove theorems
with some verification tools but to produce data with algorithms built upon some theorems.
The point where the approachs of engineers and mathematicians depart from each other is
the notion of representation : in mathematics, there exists a unique set of integers defined
by some caracteristic properties, in computer algebra, there are several implementations of
integers (BigNums, GMP, etc.), sometimes needing explicit conversions between them. There
are several ways to link mathematical data and their representations. In the following, we
give our approach and we compare it with Axiom ’one.

2.1 Our vue

A CAS manipulates entities such as integers, polynomials, etc. These entities have a rep-
resentation which must explicitely be stated as part of their definition. In our opinion it is
important to distinguish mathematical operations performed on an entity from those per-
formed on the representation. This give better control over the data being manipulated.
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These entities are characterized by properties of their operations, which rely on math-
ematical properties together with representation properties. We also want to have a clear
distinction between mathematical depencies and data representation depencies.

Thus, our choice is to have a neat separation between data manipulation and mathemat-
ical properties handling. Data manipulation is a concern of programming languages, which
is not at all in the scope of computer algebra. For instance, lists with their tools and their
properties are assumed to be available.

2.2 Categories and domains of Axiom

In Axiom, entities belong to some domain, which is presented as their type. Domains
themselves belong to structures called categories. Categories are also presented as types of
domains.

The membership of a domain to a category is asserted by a declaration and a domain
may belong to different categories. Categories may be combined to build new categories by
adding some components and by a join operation. So, categories and domains are akin to
classes and objects, with an inheritance-like mechanism. The symbol % is used to denote
the domain being described or implemented. It thus appears as the classical self of object-
oriented languages. But it denotes also the abstract type of its entities. Categories export
signatures containing names of available operations, with their prototypes written with %.
These operations are not implemented at category level, but inside each of the domains of
the category, using the representation for entities chosen in the domain. The representation
of entities is always hidden outside their domain definition and can be manipulated only
by the signatures of the categories the domain belongs to. Thus, with these signatures, a
domain is like an abstract data type.

In Axiomxl (recent versions of Axiom) the two faces (abstract/concrete) of entities is
explicited using two special functions rep : % -> Rep which gives access to the repre-
sentation of the entity and per : Rep -> 7% which hides this representation. Rep is a
conventional name to denote the representation of the entities. rep and per can be seen as
conversions between abstract and manifest types.

2.3 Species and collections of Foc

Mathematical structures are here described by species, which are defined by a set of com-
ponents, describing mathematical operations and properties available for an entity of this
specie. So, species are roughly Axiom’s categories. We detail carefully in the following the
atomic steps of the introduction a new specie, as each of these steps corresponds to an atomic
stage of proof correctness so needs to be easily identifiable in the source program.

The representation of its entities is the first component of a specie. it is called the carrier
of the specie. Working in a polymorphic typed framework, the simplest carrier is a type
variable 1. T" may progressively be instanciated by a type expression still containing other
type variables or by an explicit data type. This is a first way of creating a new specie, which
is called carrier instanciation.

The components, called primitive, of a specie are named and described by their prototype,



written as a type expression possibly depending on 7' (or by a logical statement depending
on T for components recording properties). A given specie can also have derived components
which receive, beside a name and a prototype, an implementation build upon the primitive
components (and functionalities supposed available over T').

A second way to create new species is to extend a given specie by adding primitive or
derived components. For instance an additive group is an extension of an additive monoid by
a primitive operation finding the opposite of an entity and another primitive one that checks
an element to 0. From these operations one can describe a derived binary subtraction and
implement equality (which was a primitive operation in the specie of monoids) in terms of
subtraction and zero check. Sometimes, an extension adds only new properties: an abelian
group has the same operations than a group but has new properties.

Now, a primitive component of a specie can receive an implementation, defining a new
specie by a way usually called a refinement (so no extension of the specification, only a step
to approach a full implementation). The code has only to meet the declared properties of
the component. Thus the refinements of a specie share names, prototypes, some properties
and some definitions.

A derived component, say ¢, of a given specie S; may be redefined, leading to a new
specie Sy. As in the previous case, the new code has to meet the declared properties of the
component in §;. Moreover, as redefinitions of a specie share also names, prototypes, and
some properties, if some of these properties in S; rely upon the code of ¢, they have to be
reproved. Redefinition of primitive components is considered as well.

Whenever every primitive component of a specie has a definition, this specie can only be
extended by derived components. We will call collection such a specie if we don’t want to
extend it anymore. A collection thus appears as a terminal element of the species creation
process.

Species can receive parameters as long as those are collections or entities. Thus, a
parametrized specie is a kind of “function” taking collections or entities and returning a
specie. For instance, Z/nZ, the specie of modular integers, is parametrized by the integer n
and there exists a specie of univariate polynomials, parametrized by the ring R of coefficients.

All previous operations on species apply to parametrized species. Refining a parametrized
specie may be also done by instanciating some parameters. For instance, instantiating n by
2 builds the specie Z2Z and R may be instantiated by Z/2Z.

A specie 8§; can be converted into a specie S, by etasblihing a correspondance between
the primitive components of Sy and some components of &), ensuring the same properties.
A specie can always be restricted to another specie of which it is an extension. Namely a
field can always be provided where a ring is wanted.

Some operations of a specie can be renamed to create a new specie. For instance in an
additive monoid we should be able to rename the “plus” operation into a “mult” operation
and the “zero” constant into a “one” constant.

Summarizing, new species can be defined by representation instantiation, extension, re-
finement and parameter instanciation, redefinition. Moreover, conversion and explicit re-
naming are needed. These different links between species define a sort of hierarchy between
them.

The introduction has described seven general requirements for Foc. Having an easy



implementation for all these operations on species is also a major requirement. As already
seen for R1-R7, these operations on species correspond to module-oriented or object-oriented
features. Thus, we turn now to the description and the comparison of several attempts of
designing the discipline coding of Foc.

3 Data encapsulation

The requirement R5 of the introduction concerns safety : collections must be differentiated
by typing, in order to avoid misuses and inconstencies. We focus first on this point.

As well-known, a simple way to increase safety is to export only abstract types for the
representations. Indeed, data representation often uses implicit invariants. Abstract types
forbid the user to misuse the representation by ignoring some of these invariants. Further-
more, the representation can be changed without disturbing users. On the other hand, devel-
opers of the units of the library need to know the exact implementation of the representation.
So we fit in the very usual discussion on abstract versus manifest types and encapsulation
of data representation. It firmly corresponds to a module-oriented programming style. Our
first try was to use modules only and we comment it briefly.

We recall that Ocaml’s modules system is a simply typed lambda-calculus language
with a subtyping relation and constraint expressions. Structures allow to package together
definitions sharing a common environment, which can be referred to, outside the structure,
using the dot notation. Signatures are interfaces for structures. A signature specifies the
name and the type of the components of a structure, which are available from the outside.
It can be used to hide some components of a structure or to export some components
with a restricted type. Functors are “higher-order functions” from structures to structures.
So, abstract data types correspond to signatures and their implementations to structures.
Species, such as ring below, are coded by module signatures and collections, such that Z/2Z,
by module implementations.

module type Ring =
sig
type t
val equal: (t*t) -> bool
val plus: (t*t) -> ¢t
val mult: (t*t) -> ¢t
val opp: t -> t
val one: t
end

module Z2z: Ring =
struct
type t=bool
let equal (x,y) = (x=y)
let plus (x,y) = (x || y) && not (x && y)
let mult (x,y) = x & y
let opp x = x



let one=true
end

The type abstraction mechanism is reinforced by the use of functors that allow to obtain
the desired level of type abstraction within parameterized collections. For instance, the
specie of univariate polynomials and the parameterized collection of sparse polynomials can
be described as follows :

module type FormalPoly =
sig

module Base: Ring

type t

val equal: (t*t) -> bool

val mult_extern: (Base.t*t)->t
end

module SparsePoly (A:Ring)
(FormalPoly with module Base = A ) =
struct
module Base = A
type t= (A.t * int) list
let equal = ...

end

The following declaration builds the collection of sparse polynomials with coefficients in
Z27.
module Pol Z2z = Sp_Poly (Z2z);;

Pol Z2z.t and (Z2z.t*int) list are incompatible types: the structures importing the
sparse polynomials do not have access to their representation.
let idy = ...
val id : Pol Z2z.t -> Pol_ Z2z.t = <fun>

id [(Z2z.one,1)]1;;
This expression has type (Z2z.t * int) list
but is here used with type Pol Z2z.t = Sp_Poly(Z2z).t

But, Pol_Z2z.Base.t and Z2z.t are equal types. This testifies the correctness of the
coding with respect to the specification.

So, Ocaml’s modules system allows for an exact description of the specification and its
powerful typing algorithm helps a lot to avoid inconsistencies. But, as stated by R2, some
inheritance mechanism is needed. There is no such possibility in the current version of
Ocaml. We tried to micmic it by hand but it turns out to be unrealistic when it comes to
real-size attempts. Declaring inherited modules as components of heirs leads to a notation
with a painful sequence of dots. Putting by “cut and paste” the components of the inherited
module inside the heir is definitively too hard to maintain. Such a mechanism may perharps
be automatized, but not so simply, as extending it to module structures and functors would
require a semantical analysis of code. Furthermore, modules are designed to minimize the
propagation of modifications during code generation, allowing separate compilation : such a
use of them would not respect their purpose.



4 First runs with classes

Having a true inheritance seems to be a necessity; we are thus led to consider working with
Ocaml classes. As stated by requirement R3, redefinition of certain operations is crucial,
typically for optimization purposes. For instance the function mult_extern, which com-
putes the product of a polynomial with a scalar number, may take advantage of the specific
representation of sparse polynomials. Late binding allows to modify only those fields that
need to be redefined and these modifications have not to be reported in the methods using
these fields. So we firmly want late binding.

4.1 Entities as objects

We first try to use object-oriented features as usually done in textbooks on object-oriented
languages. Species are described by virtual classes, collections by concrete classes, and
entities by objects (indeed by instance variables of objects). But this simple design does not

meet our requirements; this can be seen on the following example, where the ring specie is
described by:

class virtual ring =

object (self:’a)
method virtual equal:’a -> bool
method virtual plus:’a -> ’a
method virtual mult: ’a ->’a
method virtual opp: ’a
method virtual one: ’a

end

The “unity” entity one and the “opposite” operator opp have the same type. Actually,
types of components do not reflect their arities, because they are implicitly applied to the
underlying object. For instance, binary operations become within this approach unary meth-
ods, which introduces a gap between the syntax and mathematical notation. Moreover opp
applies to the underlying entity, whereas one is given by the underlying collection, these
semantic differences are not reflected.

Now, instance variables, such as my_rep are private in Ocaml, insuring data encapsula-
tion. However, when coding the binary operations, one needs to know the actual represen-
tation, given here by my_rep, of the explicit argument. Therefore, the value of the instance
variable has to be made public by a specific method, called below rep. This way, the integer
collection may be given by:

class integers =
object
inherit ring
val my_rep = 0
method plus x = < my_rep = my_rep + x#rep >
method rep = my_rep
method one = < my_rep = 1>

end



We then face a new problem, coming from the fact that rep is shared by all the sub-classes
having the same carrier. For instance, the entities of Z/2Z may be canonically coded by 0 or
1, by using an implicit invariant.

class z2z =
object
inherit ring
val my_rep = 0
method rep = my_rep
method plus x = let tmp=my_rep+x#rep in
if tmp=2
then < my_rep = 0 >
else < my_rep = tmp >
method print = (string_of_int my_rep)~"[2]"

end; ;

It is now possible to mix integers and modular integers, as follows:

# let one_z2z = (new z2z)#one ;;

val one_z2z : z2z = <obj>

# let one = (new integers)#one ;;

val one : integers = <obj>

#let three = (one#plus one)#plus one ;;

val three : integers = <obj>

# (one_z2z#plus three)#print;;

- - : string = "4[2]"

The implicit invariant has been broken, because the methods of z2z and integers have the
same name and the same type, and thus are considered by Ocaml’s typing system to be
compatible, which should not happen.

In conclusion, this “object oriented” solution does not fit our requirements. There is
no neat correspondance between the implementation of species and collections and their
mathematical semantics. For instance, the collection of integers is implemented by the class
integers of this model; an object of this class is the coding of an entity of the collection, but
carries within himself the unity, and all the operations of this collection and of the species of
rings. The relation object-class does actually not fit to the relation entity-collection. This is
exemplified by the loss of arity mentioned above, which makes difficult to express properties
like associativity or commutativity of operations. At last, such a use of objects and classes
is rather inefficient, due to the continuous use of “rep” at running time. Remember that
data encapsulation within modules is guaranteed by a typing mechanism without additional
cost at run-time.

4.2 Classes as Abstract Data Types

We now want to restore the correspondence between type and arity of operations by rending
explicit the implicit argument “self”. We give here to the type ’a of the object the same
status as % in Axiom. So, binary operations correspond to binary methods and constants
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appear as true constants. In other words, the representation of a specie or a collection is an
abstract data type, encoded by a class.

class virtual ring =

object (self :’a)
method virtual equal:’a*x’a->bool
method virtual plus:’ax’a->’a
method virtual mult:’ax’a->’a
method virtual opp:’a->’a
method virtual one:’a

end

class integers =
object
inherit ring
val my_rep= 0
method rep_ints = my_rep
method equal (x,y) = x#frep_ints=y#rep_ints
method plus (x,y) = < my_rep=x#rep_ints+y#rep_ints>

end; ;

This concrete class integers may be viewed as a specie if we want still to refine it. It
will be considered as a collection if the refinement process is frozen. But, how to interpret
the values my_int and zero?
let my_int = new integers;;
val my_int : integers = <obj>
let zero =

my_int#plus (my_int#one ,my_int#opp my_int#one);;
val zero : integers = <obj>
my_int#equal (my_int,zero);;
- - : bool = true
They have the same type, they may be compared. But, zero is clearly an entity wheras
my_int may be intended as a collection. Distinguishing between these two possible uses of
objects may be difficult at the proof level.

This model has been developed up to the implementation of distributed polynomials. We
however rejected it as furthermore, entities are still encapsulated in objects, still paying the
cost of the calls to the rep_ methods.

5 Encapsulating classes within modules

To differentiate species, collections and entities by static typing, we develop a new model,
which also gets rid of the instance variable my_rep. The information on the carrier is now
given as a type parameter ’a and has the same status than Axiom’s Rep. Methods have
types depending on the carrier and not on an abstracted view of the representation. For
instance, the ring, integers and z2z classes of the preceding models become:
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class virtual [’al] ring =

object
method virtual equal:’ax’a->bool
method virtual plus:’a*’a->’a

end

class integers =

object
inherit [int] ring
method equal (x,y) = (x = y)
method plus (x,y) =x +y

end

class z2z =
object
inherit [int] ring
method equal (x,y) = x=y
method plus (x,y) =
let tmp=x+y in if tmp=2 then 0 else tmp
method mult (x,y) = x*y
method opp x = x
method one = 1
method print x =
(string_of_int x)~"[2]"
end

The integers class implements the mathematical integers. This class is concrete but
can still be refined using inheritance. We consider it firmly as the specie of the integers.
More generally, classes are considered only as implementations of species. Collections are
always created only by using the keyword new. So, they are Ocaml objects. Entities are
simply elements of the carrier of the specie specifying the collection. Applying operations to
entities is sending a message to the object (collection).

Whit this choice, we have a one-to-one correspondance between mathematical notions
and semantics of typing. But, the problem of carrier abstraction described above remains.
It is due to the powerful mechnism of subclassing and cannot be solved within the object-
oriented framework. To handle this problem, we propose the following solution.

As defined above, the collection of integers provides access to its operations but also to
its carrier. This is fine for, for example, to pass them as actual parameters to parameterized
species. But, common uses of the library do not need full access to the carrier. So it is safe
to add an encapsulation mechanism, building structures called E-collections.

An E-collection is obtained as follows:

module type E_collection = sig

type abstract

val a_collection: abstract type_class
end
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module my_E_collection : E_collection =

struct
type abstract= some_type
let a._collection = (new a_class)
end

For instance, we define the E-collection Z2z by :
module type Ring = sig
type abstract
val a_ring: abstract ring
end
module Integers : Ring =
struct
type abstract=int
let a_ring =(new integers)
end

module Z2z: Ring =
struct

type abstract=int

let aring =(new z2z)
end

Calculations are performed using a_ring and the specification is type safe. A user may
now declare an object, still called integers, which allows him to use the integer collection
in a simple way:

# let integers = Integers.aring ;;

val integers : Integers.abstract ring

# let one = integers#one;;

val one : Integers.abstract

# let z2z = Z2z.aring ;;

val z2z : Z2z.abstract ring = <obj>

# let one_z2z = z2z#one;;

val one_z2z : Z2z.abstract = <abstr>

# z2z#plus (one_z2z,one);;

This expression has type Z2z.abstract * Integers.abstract
but is here used with type Z2z.abstract * Z2z.abstract

As shown by the previous examples, an E-collection A is represented via a module as a
pair (abstract, some) where abstract is the type of its entities and some is the object
that “contains” the methods of the collection. The representation of abstract should be
known only by the species underlying A and the collections extending it, while being hidden
to all users of the corresponding E-collection. This mechanism can be easily extended to
handle parameterized collections like polynomials.

In this model, unlike the traditional way of programming in object-oriented style, an
object does not have an internal state, that is there is no instance variable. The main point
here is that the class is completely described by the functionalities of the species or the
collection, in the same spirit as algebraic abstract datatypes. Note however that in this
model, the whole functional expressiveness provided by Ocaml is exploited.
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6 Description of the library

In its current state the Foc library is made of about 100 Ocaml class for about 3500 lines of
Ocaml code, comprising :

e parameterized species by base integers, which encapsulate small and big integers. Cur-
rently small integers are used to build degrees of polynomials and small modular arith-
metics. Big integers are used as coefficients rings of those polynomials. Support is
provided using two different big integer packages : BigNum and GMP2.

e Base species to provide monomials and ordering over those monomials. Current imple-
mentation supports several variables with lexicographical ordering providing “degree
arithmetic”. The usual case of one variable is then seen as a special (degenerated) case
of this.

e Distributed polynomial arithmetics is then provided up to exact division.

This code achieves most of the functionalities of Axiom’s polynomials but with increased
reusability since in Axiom univariate and distributed polynomials have different (though
similar) implementations.

We then provide support for recursive polynomials with strictly higher generality than
those of Axiom. In Axiom recursive polynomials are an iteration of the univariate case,
viewing a polynomial in X and Y as a polynomial in X which coefficients are polynomials
in Y. The carrier is a recursive type, the base case is given by the coefficient ring and the
inductive case uses the distributed polynomials specie. Suppose given a a ring collection R
with carrier « (or ’a) and a degree collection D with carrier 5 (or ’b), then the carrier for
recursive polynomials is :
type (’a,’b) rec_struct =

| Base of ’a
| Composed of stringx(((’a,’b)rec_struct* ’b) list);;

The type of recursive polynomials is denoted by ~, for short. Here the parameter of type
string is used to represent the set of variable names of the multivariate polynomial and to
define the level ordering.

Building the specie of recursive polynomials, we have to express that the collection R (or
r) is a ring and that D (or d) is a degree collection. Here R and D are Ocaml object values
with types w (or ’r) and ¢ (or ’d) respectively. We achieve this by writing type constraints :

constraint w = («)#ring and
constraint § = ((3)#monomial ordering

Now, recursive polynomial operations usually proceed by calling univariate operations.
We depart from that by calling distributed operations.

We thus need a specie D, (or distr_p) for distributed polynomials (not detailled here).

Let us name by R, (or rec_p) the object being defined in the class recursive pols. Its
type is w, (or ’rec_p). We define it as a collection, obtained from an instantiation of the
specie Dy, giving R, as the actual coefficient parameter collection and D as the actual degree
collection. We thus need R, to be a ring with carrier -, :

Zother packages are being included
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inherit (7, )#ring
and we can now hold the collection D,(R,, D) by defining a method the_dp :
method the_dp = new D,(R,, D).
We thus have :

class [’r,’a,’d,’b] recursive_pols ((r,d):(’r,’d)) =
object (rec_p:’rec_p)

constraint ’r = (’a)#ring

constraint ’d = (’b)#monomial_ordering

inherit [(’a,’b)rec_structlring
method the_dp = let dp = new distr_p(rec_p,d) in dp

end

The method the_dp can now be used inside other method bodies to encapsulate dis-
tributed opertions. For instance the code for recursive polynomial multiplication uses the
construction :

let ( * ) p q = (rec_p#the_dp)#mult(p,q) in ...

Note that late binding and open recursion is essential to this process. Current Foc
implementation uses further abstraction by manipulating a function F, = R, ~ D,(R,, D)
and uses an effective collection constructor and further type parameters which abstract the
effective D, implementation of ditributed polynomials.

7 Benchmarking

Coding with the Foc library uses functional style programming. Most of Foc’s code does
not overwrite derivated components and many operations use their default implementation
which induces an extra cost. Representations used in Foc are close to those of Axiom though
they are strictly more general. It thus make sense to compare Foc with Axiom, wheras it
would not with other computer algebra systems.

The benchmark consists in resultant computations (they are determinant of matrices
that are computed using polynomial arithmetics). Operations involved in the coefficient
ring are addition, multiplication and exact division. The same algorithm has been coded
using Foc and Objective caml 2.04 and Axiom 2.1. The two univariate polynomials involved
are P = 23 + az?® + 202" + 3a and Q = x? + 4bx'® + 5bx® with a varying and b = a + 1.
The results are obtained on a pentium 450Mhz machine running redhat linux 5.2. Timings
are computed by the Ocaml Sys.time function. In Axiom 2.1 time statistics are unreliable
in the presence of garbage collections and we designed our own timing function from the
basic timer of the underlying Lisp system. Both timimgs take GC activity into account.

The first bench? in figure 1 mesures big integers capabilities and a is an integer in the
range 10°° to 107, The result is also an integer with 4500 to 31500 digits in base 10.

3dashed lines represent theoretical complexity for Karatsuba multiplication which appears not to be
implemented in either big integer packages
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Figure 1: subresultant calculation of P and @)
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Objective Caml has the ability to produce byte or native code, in the previous computa-
tion both timings cannot be distinguished since most of the time is spent inside big integer
calculations. We thus can see that Axiom’s big integers are less efficient than Ocaml.

In figure 2 we change the coefficient ring and a will be a polynomial of the form Ezj Al
The result is a polynomial in A of degrees varying from 45 to 315. We measure this degree,
the maximum size of the result’s coefficients (which are integers) together with times. Here
the size of coeflicients varies from 1 to 72 digits in base 10.

Here numbers are relatively small and time spent inside big integer arithmetic is negligible
with respect to the time spend inside polynomial arithmetics (polynomials in A). We can
see that timings compare for the byte code version of Foc, and are much better for the native
code version of Foc.

8 Conclusion

The title of this paper expresses well our questioning at the start of the Foc project. Carrying
out several sizeable prototypes, we have been able to elaborate an answer, which shows that
all the abstract methods offered by our programming idiom are needed. Some other languages
offer a mechanism inheritance within modules. For instance, mixins[2] are modules in which
some components are deferred i.e. their definition has to be provided by another module.
They can be mutually dependent and their composition supports redefinition of components.
But, this is not enough as late binding, not only overidding, is also crucial.

What we have done in fact is to design a framework well-adapted to the specification of a
given trade : the one of the computer algebra engineer. And we think that this experience can
be redone with another trades (chemistry, physics, etc.), leadind perharps to very different
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Figure 2: subresultant calculation of P and @)
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uses of abstract methods. So, as a first conclusion, this is indeed important to dispose of a
programming language with rich features, but, only if they are semantically well-understood
so if they can serve to express without ambiguity the specifications of a given area.

As a second conclusion, we may say that, to obtain a full certification, the compiler of
the programming language should itself be certified. No such compiler exists for the time
being, even if some kernels of functional languages have been formally studied. Nevertheless,
it would have been completely irrealistic to try to create our own programming language.
As it is a semantically well founded language, Ocamlis a good compromise. Using only a
functional style certainly will help the proofs to be done. Also, the richness of the syntax
allows to code algorithms very closely to their mathematical formulation. This will help also
proving stages.

The third conclusion may be on efficiency. We have noted that the encapsulation of data
inside objects is really costly. But, there is no need to use it. On the opposite, me may claim
that functional style is efficient, more efficient in this case than traditional implementations
making fine tuning of pointers.

As shown by the number of classes and the benches, the library has now reached the
state of a full development. Our design conception has been tested by students which have
added some units, following it without difficulties. On the side proof, the major difficult
point is to define the representation of species, collections and of the different operations on
them. A solution, based on dependent labelled records coded in Coq is under submission.
The next step of the project is to define the user interface, that is, a syntax for programs
and statements, well-adapted to computer algebra engineers and to extract Ocaml code and
Coq code from it.
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