
HAL Id: hal-02548305
https://hal.science/hal-02548305

Submitted on 20 Apr 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Specifying in Coq inheritance used in Computer Algebra
Libraries

Sylvain Boulmé

To cite this version:
Sylvain Boulmé. Specifying in Coq inheritance used in Computer Algebra Libraries. [Research Report]
lip6.2000.013, LIP6. 2000. �hal-02548305�

https://hal.science/hal-02548305
https://hal.archives-ouvertes.fr

Speifying in Coqinheritane used in Computer Algebra LibrariesSylvain Boulm�eLaboratoire d'Informatique de Paris 6 (LIP6),Universit�e Pierre et Marie Curie (Paris 6),8, rue du Capitaine Sott, 75015 Paris, Frane.Sylvain.Boulme�lip6.frAbstrat. This paper is part of FOC[3℄ a projet for developing Computer Algebra libraries, erti�edin Coq [2℄. FOC has developed a methodology for programming Computer Algebra libraries, usingmodules and objets in Oaml. In order to speify modularity features used by FOC in Oaml, weare oding in Coq a theory for extensible reords with dependent �elds. This theory intends to expressespeially the kind of inheritane with method rede�nition and late binding, that FOC uses in its Oamlprograms.The unit of FOC are oded as reords. As we want to enode semanti information on units, the �eldsof our reords may be proofs. Thus, our �elds may depend on eah others. We alled them Dreords.Then, we introdue a new datatype, alled mixDre, to represent FOC lasses. Atually, mixDres areuseful for desribing a hierarhy of Dreords in a inremental way. In mixDres, �elds an be onlydelared or they an be rede�ned. MixDres an be extended by inheritane.1 IntrodutionThis work lies within the sope of FOC, a projet for developing a library for Computer Algebra, writtenin Oaml and erti�ed in Coq. Units of suh a library are aimed to o�er di�erent views of mathematialalgebrai strutures, from the purely abstrat one, very lose to mathematis to some fully implementedones, where the arrier and the ode for the operators are ompletely �xed. For example, there exists a unitU1 desribing the (abstrat) notion of ring, a seond one U2 for the integral domains and a third one U3giving the implementation of Z=2Z on the booleans. So a unit provides delarations of identi�ers, possiblysome ode for ertain identi�ers, and, as this library is to be erti�ed, some assertions on identi�ers andode. A unit is rarely built independently of the others and there are usually several kinds of dependenebetween units. For example, the unit of integral domains U2 is built upon U1 and U3 gives an instantiationof the abstrat representation of the arrier of U2. Therefore, our library is a hierarhy | or a graph | ofunits.We fae up the question: how to proeed to the erti�ation of this library, in order to ensure that theassertions put in the units are orret? As a unit U is built upon some other units Ui, the assertions (so theirproofs) of U may depend of some assertions of the Ui. These dependenies may be handled ase by ase, bya method just driven by the assertions in U . Evidently, this is not a good solution as some sharing of thetreatment of dependenies an be done. The onstrution of the library must be able to be done in an inre-mental way. In partiular, one must be able to build the units the ones from the others, by expressing only thedi�erenes between them. We propose in this paper a desription in Coq of suh a library onstrution system.How to represent a unit? A unit introdues a ertain number of funtions, whih ould be alled by otherunits of the library. Thus, one must provide a non-ambiguous name for the funtion of a given library. Butat the same time, it is onvenient that two funtions \having the same meaning" in di�erent units sharethe same name. We hoose to represent the units of our library via reords (with the \." notation) whiho�er at the same time a non-ambiguous way to indiate a funtion of a library (it is not for example by thease, in approahes with overloading), and at the same time the possibility of sharing �eld names betweenreords: and thus to indiate by a same name of the di�erent funtions.Thus, roughly speaking, a unit will be oded as a reord. As our units will ontains types, programs,proofs, in a spirit �a la Curry-Howard, our reords will have dependent �elds. We alled them Dreord.

In order to desribe Dreords in a inremental way, we introdue a new datatype, alled mixDre. Aslasses in objet-oriented language, mixDres are generators of Dreords. In mixDres, �elds an be onlydelared or they an be rede�ned. MixDres an be extended by inheritane. Thus, mixDres desribe afamily of Dreords.Our requirements on reords are the following: a same name ould be shared between any reords types;�elds may depends on other �elds; we want a notion of subtyping between reords type, with its assoiateoerion. We want de�nes operation on reords (oerions, inheritane, ...).2 Reords with dependent �elds in CoqIn this setion, we present quikly the reords of the urrent version of Coq, explaining why they do notmeet these requirements. Then, we introdue our proper de�nition of reords, alled Dreords.2.1 Reords in Coq V6.3.1In Coq V6.3.1, reords are oded via indutive de�nitions. A type reord S is simply an indutive type withone onstrutor, alled Build S by default. Field aess is oded as projetions assoiated to this indutivetype. For instane the following de�nition of the type reord pair introdues the name pair and the twolabels fst and snd. The onstrutor Build pair is assoiated to this type and the labels are used to reatethe aess funtions to the �elds of the reord:Struture pair[A,B:Set℄: Set := f fst: A; snd: B g.is atually a maro for:Indutive pair[A,B:Set℄:Set :=Build_pair: A->B->(pair A B).Definition fst := [A,B:Set; x:(pair A B)℄Cases x of (Build_pair fst _) => fst end.Definition snd := [A,B:Set; x:(pair A B)℄Cases x of (Build_pair _ snd) => snd end.There is an important restrition on labels, whih must not be shared by di�erent reord types. Withthe mehanism of oerion, this restrition an be partially raised. Moreover, enoding reords via a maromehanism and oerions operate at the level of reord types. So this implementation does not meet ourrequirements on reords, and we have to introdue our own notion. We do that step by step, �rst introduingsome notations and the oding of �eld aess.2.2 A �rst sight of DreordsRoughly speaking, a Dreord an be seen as a funtion from a given �nite set of labels to a set of �elds.Applying this funtion to a given label performs �eld aess. As the types of these �elds may di�er, a notionof Dreord signature assoiating its type to eah �eld is therefore needed.Notations A is a type parameter (of sort Set) of the theory, whih denotes the type of the labels. Theequality of A is assumed to be deidable.Let L and L1 be lists of labels and a a given label. We suppose given the following de�nitions:2: (a 2 L) is true if a belongs to L.�: (L � L1) is true if L ontains L1.6 \: (L 6 \ L1) is true if L and L1 have no ommon labelsb: : bL is true if L does not ontain two ourrenes of the same label.n : (L n L1) is a funtion whih returns the list of labels in L whih do not belong to L1.The ode Coq given here is in \impliit arguments mode": some arguments of funtions are left impliitbut, if needed, they an be given with the notation n! where n is the position of the argument.

Field aess We suppose given a type alled sign of sort Type whih is the type of Dreord signatures anda funtion Dreord of type sign!Type. They will be de�ned further.A Dreord is, by de�nition, a term of type (Dreord s), where s is a term of type sign. The funtionsign l returns the list of labels of a Dreord and will also be de�ned further. In the following, expressions(sign l s) are denoted by jsj.Field aess is de�ned by two funtions, field and fieldT, whih takes a Dreord D and a label a asarguments. (field D a) is the �eld assoiated with a in D and fieldT returns the type of (field D a).fieldT: (s:sign) (Dreord s)->A->Typefield:(s:sign ; i:(Dreord S) ; a:A ; H:(a2jsj))(fieldT i a)Note that the expression (fieldT D a) makes sense only if the label a �gures in D. So, fieldT is notsupposed to be used diretly.We turn now to the oding of sign and Dreord. The diÆulty is to express the dependenies betweenthe �elds. So, we make an intermediary step by introduing telesopes.2.3 TelesopesIn [8℄, the onept of telesope is used to express dependenies between �elds of reord-like strutures. Thisnotion was �rst introdued by [6℄ to express dependenies between ontexts.We introdue here telesopes with labels whih implementation departs from those of [8℄ but we stillname this new version telesopes.Pair with dependent �elds A pair with dependent �elds is a Cartesian-produt-like type. As usual, it isoded by a dependent sum upon two anonial injetions:Struture dpair[T2:Type; T1:T2->Type℄ : Type:= fx2: T2; x1: (T1 x2)g.Let us remark that the di�erent ourrenes of Type in this de�nition denote di�erent Type n where n is animpliit level of universe. The preedent de�nition is atually:Struture dpair[T2:Type i; T1:T2->Type j℄: Type k:=fx2: T2; x1: (T1 x1)g.where i < k and j < k. This mehanism (invisible for the user) prevents the onstrution of paradoxes (f.[9℄ and [4℄).In this denotation �2 represents a onstrutor of binary existential type, and ;T is a type with oneelement: ;, alled here empty telesope.Telesopes are de�ned by an iteration of this type dpair on itself (see below). Moreover, eah �eld willbe labelled. These labels may be used for example to de�ne notions of �eld aess, subsignature,... They are�rmly attahed to the �elds and may be onsidered as a part of the de�nition of the telesope: for example,they are not submitted to �-onversion. Now, the ontent of a �eld may depend on the preeding ones in thestruture. As onsidered in [7℄ and [5℄, in a high order ontext, dependenies annot be expressed by labels,beause of variable aptures. Dependenies have to be expressed by bound variables.Thus, informally, a labelled telesope an be denoted as a term of type�n[xn : T ann ; : : : ; x1 : (T a11 xn : : : x2)℄;Twhere �n denotes a dependent sum type build upon n anonial injetions; where Ti are funtions with valuesin types, labelled by ai, themselves independent of xi variables; and, ;T is a type with a single element: theempty telesope.Formally, telesopes are de�ned through two types: sigtel, the type of \telesope signatures", andimpltel the type of \telesope implementations". The sort of sigtel and impltel id Type, as �elds may liein Set or Prop or even in Type. But, beause of universe onstraints, �elds of a telesope leave in a universebelow the one of this telesope.

Telesope signatures The type of telesope signatures, sigtel, is de�ned by reurrene on lists. It usestwo base types: EsigT the type having only one element whih represents the type of the empty signature,and (FunIn a T) the type, labelled by a, of funtions with values in T.Indutive EsigT: Type := Esig_: EsigT.Struture FunIn[a:A; T:Type℄: Type:=fdom: Type; fun:> (dom->T)g. Fixpoint sigtel[l:(list A)℄:Type :=Cases l ofnil => EsigT| (ons a m) => (FunIn a (sigtel m))end.The \>" on fun in FunIn delares the fun projetion as a Coq oerion. Without it, if s a term of type(FunIn a T) and x a term of type (dom s), the term (s x) does not typehek, beause (FunIn a T) is nota funtion type. With this oerion, this term typeheks, and mean ((fun s) x) (see below in impltel).Telesope implementations Telesope implementations are de�ned in the same way, by an iteration ondependent pairs:Indutive EimplT: Type := Eimpl_: EimplT.Struture dpairT[T:Type,f:T->Type; a:A℄: Type:=fdprojT1: T; dprojT2: (f dprojT1) g. Fixpoint impltel[l:(list A)℄:(sigtel l)->Type:=<[l:(list A)℄(sigtel l)->Type>Cases l ofnil => [_℄EimplT| (ons a m) =>[s℄(dpairT [x:(dom s)℄(impltel (s x)) a)end.These two reursive types sigtel and impltel ould alternatively be de�ned by using indutive typesof Coq. For instane, sigtel ould be write as:Indutive sigtel: (list A)->Type :=Esig: (sigtel (nil A))| Csig: (a:A; l:(list A); dom:Type)(dom->(sigtel l))->(sigtel (ons a l)).But, if reursive types (de�ned by �xpoint) are less general than indutive ones, they are more onvenientto handle in some situation. Inversion lemmas on indutive types are not well automatially generated whenusing dependent types, whereas they simply orrespond to redution on reursive types.Also, de�ning impltel by an indutive type requires to type it in a higher universe than sigtel, whihis against intuition. With the reursive de�nition, imptel lies in a lower universe than sigtel. Thus, in allthis implementation, we use only \not-reursive" indutive types (exept for de�ning ontO and subsig, seebelow). For that, we pass the reursive alls as an argument of the indutive type (like in ontinuations):for example, FunIn orresponds to the Csig onstrutor, with T as parameter, to apture the reursive all.Then we use a �xpoint, to express the reursive alls. The ounterpart of this method is that suh reursivede�nitions of type are harder to establish and to understand.Field aess Field aess is done by two funtions, fieldsig whih returns the type of the �eld, andfiedimpl whih returns this �eld. These two funtions are not totally de�ned. The type Dummy with a singleonstrutor foo is used to express this partiality.Indutive Dummy: Type := foo: Dummy.Hypothesis eqA_de:(x, y:A)fx=yg+f~x=yg.Fixpoint fieldsig[a:A; l:(list A)℄:(s:(sigtel l))(impltel s)->Type :=<[l:(list A)℄(s:(sigtel l))(impltel s)->Type>Cases l ofnil => [_;_℄Dummy| (ons b m) => [s;i℄if (eqA_de a b) then[_℄(dom s)else[_℄(fieldsig a (dprojT2 i))end.Fixpoint fieldimpl[a:A; l:(list A)℄:(s:(sigtel l); i:(impltel s))(fieldsig a i):=<[l:(list A)℄(s:(sigtel l); i:(impltel s))(fieldsig a i)>Cases l ofnil => [_;_℄foo

| (ons b m) =>[s;i℄<[H:a=b+~a=b℄if H then [_℄(dom s) else [_℄(fieldsig a (dprojT2 i))>if (eqA_de a b) then[_℄(dprojT1 i)else[_℄(fieldimpl a (dprojT2 i))end.From telesopes to Dreords A Dreord is a telesope whih labels (ai in the informal de�nition) arepairwised distint. This is only a \semanti" property: the aess to a �eld has to be non ambiguous. All theoperations on Dreords may be built independently of this ondition: they are �rstly de�ned on telesopes.In a �rst attempt, we oded Dreords by onsidering at the same time operational and semanti aspets. Itbeame quikly unmanageable beause semanti onsiderations polutted the ode.This semanti property is enoded by putting guards in order to restrit the use of the telesopes. Theseguards are the prediate denoted by 2, �, 6 \ and b. They are deidable (under the assumption of thedeidability of labels equality), and they an be disharged by the Coq typeheker.Coding the guards on the lists To express the fat that guards express only that the \Dreord semanti"is ful�lled, they are put into Prop. As they are deidable, their values may be: the type True or the typeFalse. They are implemented as instantiations of the two prediates AllD and ExD below.Variable P:A->(list A)->Prop.Hypothesis P_de: (x:A; l:(list A))f(P x l)g+f~(P x l)g.Fixpoint AllD[l:(list A)℄: Prop :=Cases l ofnil => True| (ons a m) => if (P_de a m) then [_℄(AllD m) else [_℄False end.Fixpoint ExD[l:(list A)℄: Prop :=Cases l ofnil => False| (ons a m) => if (P_de a m) then [_℄True else [_℄(ExD m) end.De�nition 1. Signatures of Dreord are a triple: a list sign l, a proof sign l df that this list is double-free(guard instantiating AllD above), and a sigtel sign p built on sign l.Struture sign: Type := fsign_l: (list A);sign_l_df: \sign l;sign_p:> (sigtel sign_l) g.Let us remark here, that sign p is a Coq oerion, from sign to sigtel.De�nition 2. Dreords are simply telesopes, built upon a Dreord signature:Definition Dreord[s:sign℄:=(impltel s).The transformation of telesope into a Dreord is thus only a type oerion.De�nition 3. Funtions for aessing �elds are:Definition fieldT:(s:sign)(Dreord s)->A->Type:=[s;i;a℄(fieldsig eqA_de a i).Definition field:(s:sign; i:(Dreord s); a:A; H:(a2jsj))(fieldT i a):=[s;i;a;H℄(fieldimpl eqA_de a i).3 Operations and relations between Dreord signaturesThis setion presents operators and properties of Dreords. They are �rst informally introdued, then theoperators and properties on the underlying telesopes are desribed.

3.1 Subsignature relation and oerion between DreordsProperties Between Dreord signatures, there is a natural relation, subsign, of subsignature: s1 is asubsignature of s2 (we will informally write s1 :> s2), if s1 an be transformed into s2 by forgetting orpermuting some �elds. Internally, this onept of subsignature is implemented as an indutive type subsigon telesope signatures, whih allow to reason by indution on \proofs" of subsignatures (f. below).Theorem 1. The relation subsign of type sign->sign->Type is a preorder, whose assoiated relation ofequivalene an be easily de�ned: it orresponds to subsign on signatures of equal length.Proof This has been proved in Coq:(* Preorder properties*)Lemma subsign_refl:(s:sign)(subsign s s).Lemma subsign_trans:(s1,s2,s3:sign)(subsign s1 s2)->(subsign s2 s3)->(subsign s1 s3).(* Properties of the assoiated equivalene *)Lemma subsign_antisym:(s1,s2:sign)(subsign s1 s2)->(subsign s2 s1)->(length js1j)=(length js2j).Lemma subsign_sym:(s1,s2:sign)(subsign s1 s2)->(length js1j)=(length js2j)->(subsign s2 s1).Assoiated with this onept of subsignature, there is a funtion oere for onverting Dreords, whihpreserves the extensional behavior of Dreords (equality of the �elds aessed via the same labels). Theseoerions will orrespond to oerions on objets in the FOC projet.Theorem 2. Let s1 and s2 two signatures suh that s1 :> s2. Then the funtion oere of type(Dreord s1)->(Dreord s2) has the following property (alled subsign ext):Let i be a (Dreord s1), then for any label a in js2j,the aess to a via field on i is equal to the one on(oere i). S1 S2
subsign

coercei

field fieldProof Let us assume the de�nition of eqT dep1, the dependent equality over types. The theorem subsign exthas been proved in Coq:Lemma subsign_ont:(s1,s2:sign)(subsign s1 s2)->js1j�js2j.Lemma subsign_ext_T: (s1,s2:sign; H:(subsign s1 s2); i:(Dreord s1); a:A)(a2jsj)->(fieldT i a)==(fieldT (oere H i) a).Theorem subsign_ext: (s1,s2:sign; H1:(subsign s1 s2); i:(Dreord s1); a:A; H2:(a2js2j))(eqT_dep 2![T:Type℄T (field i (ont_inl (subsign_ont H1) H2)2)(field (oere H1 i) H2)).This last property (shown in Coq) guarantees the orretion of the implementation of subsignaturewith respet to its semantis. In partiular, for every \proof" of subsignature between two signatures, theassoiated oerions at Dreords level are equivalent (with respet to �eld aess).1 With the following de�nition with impliit arguments on:Indutive eqT dep[U:Type; P:U->Type; p:U; x:(P p)℄: (q:U)(P q)->Prop:=eqT dep intro: (eqT dep x x).2 proof of a2js1j

Implementation The subsign relation from s1 to s2 is de�ned as a suession of elementary transforma-tions on signatures (forgetting �elds, permuting �elds, ...). More formally, it is divided in two parts. First,subsign ontO gives the skeleton these elementary transformations to pass from js1j to js2j. And then thesesuession of transformations is expressed at the level of sigtels by subsign p:Struture subsign[s1,s2:sign℄: Type :=f subsign_ontO: (ontO js1j js2j);subsign_p:> (subsig subsign_ontO s1 s2)g.ontO is de�ned by:Indutive ontO:(list A)->(list A)->Set :=ontO_nil: (l:(list A))(ontO l (nil A))| ontO_ons: (a1,a2:A)(l1,l2:(list A))a1=a2->(ontO l1 l2)->(ontO (ons a1 l1) (ons a2 l2))| ontO_lift:(a:A; l,m:(list A))(ontO l m)->(ontO (ons a l) m)| ontO_swap:(a1,a2:A; l1,l2:(list A))(ontO l1 l2)->(ontO (ons a1 (ons a2 l1)) (ons a2 (ons a1 l2)))| ontO_trans: (l1,l2,l3:(list A))(ontO l1 l2)->(ontO l2 l3)->(ontO l1 l3).Then subsig is de�ned as follows:Indutive subsig: (l1, l2:(list A))(ontO l1 l2)->(sigtel l1)->(sigtel l2)->Type :=subsig_E: (l:(list A); s:(sigtel l))(subsig (ontO_nil l) s Esig)| subsig_C: (a:A; l1, l2:(list A); T:Type; f:T ->(sigtel l1); g:T ->(sigtel l2);H:(ontO l1 l2))((x:T)(subsig H (f x) (g x)))->(subsig (ontO_ons (refl_equal A a) H)(Csig a f) (Csig a g))| subsig_lift: (a:A; l1, l2:(list A); T:Type; f:T ->(sigtel l1); s:(sigtel l2);H:(ontO l1 l2))((x:T)(subsig H (f x) s))->(subsig (ontO_lift a H) (Csig a f) s)| subsig_swap:(a1, a2:A; l1, l2:(list A); T1, T2:Type;f:T1 -> T2 ->(sigtel l1); g:T2 -> T1 ->(sigtel l2))(H:(ontO l1 l2))((x:T1; y:T2)(subsig H (f x y) (g y x))) ->(subsig (ontO_swap a1 a2 H)(Csig a1 [x:T1℄(Csig a2 [y:T2℄(f x y)))(Csig a2 [y:T2℄(Csig a1 [x:T1℄(g y x))))| subsig_trans:(l1, l2, l3:(list A); s1:(sigtel l1); s2:(sigtel l2); s3:(sigtel l3);H1:(ontO l1 l2); H2:(ontO l2 l3))(subsig H1 s1 s2) -> (subsig H2 s2 s3) -> (subsig (ontO_trans H1 H2) s1 s3).whereDefinition Esig: (sigtel (nil A)) := Esig_.Definition Csig: (a:A; l:(list A); T:Type)(T->(sigtel l))->(sigtel (ons a l)):=[a,l,T,f℄(Build_FunIn a f).If we would have not de�ned ontO, but diretly subsig, it would not be possible to have a right notion of\suession of transformations". This notion is however neessary to de�ne the merge of signature (f. 3.3),beause the use of permutation rule will have an inuene on the order of the label list in the result signature.The funtion of oerions between impltels, oere impltel, is then a trivial indution of a proof ofsubsig. Here is its type :Definition oere_impltel: (l1, l2:(list A); s1:(sigtel l1); s2:(sigtel l2);H:(ontO (eq A) l1 l2))(subsig H s1 s2) -> (impltel s1) -> (impltel s2).Thus,Definition oere: (s1,s2:(sign))(subsign s1 s2)->(Dreord s1)->(Dreord s2):=[s1,s2;H;i℄(oere_impltel H i).

3.2 Extending a Dreord signature some �eldsDesription A simple extension of signature, flatsign, onsists to add some new �elds at the end of agiven signature s. But these new �elds may depend on the �elds of s. So, this new part of signature mustbe expressed in a ontext ontaining the �elds of s i.e. a Dreord of signature s.3 The part of signature maythus be expressed by a funtion of the type (Dreord s)->(sigtel l), where l is a double-free list of thenew labels.Theorem 3. The simple extension of a signature s, is a subsignature of s.Proof This has been proved in Coq:Variable s:sign.Variable l:(list A)).Hypothesis H1:bl.Hypothesis H2:(l 6 \jsj). Definition flatsign: ((Dreord s)->(sigtel l))->sign.Theorem flatsign_subsign:(f:(Dreord s)->(sigtel l))(subsign (flatsign f) s).By onstrution jflatsignj is the onatenation of jsj and from l. As a partiular ase of extension ofsignatures, one derive the onatenation of signatures:Variables s1,s2:sign.Hypothesis H:(js2j6\js1j). Definition onatsign:=(flatsign (sign_l_df s2)4 H [_:(Dreord s1)℄(sign_p s2)).Lemma subsign_onatsign_1: (subsign onatsign s1).Lemma subsign_onatsign_2: (subsign onatsign s2).Implementation Atually, flatsign orresponds to the flatsig operation on telesopes. For readabilityreasons, we will now denote (impltel s) by s and (oere impltel H i) by ijH . flatsig is a trivialindution on l1, whih type is:flatsig: (l1,l2:(list A))(s1:(sigtel l1))s1->(sigtel l2))->(sigtel (l1^l2)).Here are some important properties of flatsig used to build merging of signatures. The terms \ontO"are here hidden with \..."� The extension of a signature s1 by s2 that does not depend on s1 is a subsignature of s2.Lemma flatsig_onstant: (l1,l2:(list A); s1:(sigtel l1); s2:(sigtel l2))(subsig ... (flatsig [_:s1℄s2) s2).� Subsignature is ompatible with extensionLemma subsig_flatsig_oere: (l1,l2:(list A); s1:(sigtel l1); s2:(sigtel l2); ...;H:(subsig ... s2 s1); l3:(list A); f:s1->(sigtel l3))(subsig ... (flatsig [i℄(f ijH)) (flatsig [i℄(f i))).Lemma subsig_flatsig: (l1,l2,l3:(list A); s:(sigtel l1); f:s->(sigtel l2);g:s->(sigtel l3); ...)((i:s)(subsig ... (f i) (g i)))->(subsig ... (flatsig f) (flatsig g)).� Subsignature is ompatible with the permutation of a �eld with a paket of �elds:Lemma subtel_Csig_flatsig :(l1:(list A); s:(sigtel l1); a:A; l2,l3:(list A); T:Type;f:T->s->(sigtel l2); g:T->(sigtel l3); ...)((x:T)(subsig ... (flatsig [i℄(f x i)) (g x)))->(subsig ... (flatsig [i℄(Csig a [x℄(f x i))) (Csig a g)).3.3 Merging signaturesA more deliate point is to de�ne an operation for merging signatures. The onatenation of signaturespreviously de�ned an only be applied to signatures having no ommon label. On the ontrary, the mergeoperation allows signatures to share some labels. But it imposes that these shared labels orrespond toompatible �elds.3 Do not forget that telesopes were introdued to formalize the onept of ontext4 proof of djs2j

Desription This onstraint on sharing requires the existene of a subsignature (possibly empty) ommonto these two signatures and ontaining all labels present in both signatures. This onstraint on signaturesbeing not deidable, the user is asked to disharge it ompletely. Later on, it is planed to write a tati(heuristi) whih sueeds in disharging sometimes this onstraint.A way to implement the merging operation, is �rst to write the inverse of flatsign, i.e., a funtionapsign suh that given two signatures s1 and s2 with s1 :> s2, apsign fatorizes s2 in s1, by expressing the�elds of s1 whih do not belong to s2 in funtion of those of s2.apsign: (s1,s2:sign)(subsign s1 s2)->(Dreord s2)->sign.apsign_subsign_l:(s1,s2:sign; H:(subsign s1 s2))(subsign (flatsign ... [i:(Dreord s2)℄(apsign H i)) s1).apsign_subsign_r:(s1,s2:sign; H:(subsign s1 s2))(subsign s1 (flatsign ... [i:(Dreord s2)℄(apsign H i))).With apsign de�ned, mergesign is quite simple:Variables s,s1,s2:sign.Hypothesis H1: (subsign s1 s).Hypothesis H2: (subsign s2 s).Hypothesis H3: (js2jnjsj) 6 \(js1jnjsj).Definition mergesign :=(flatsign ... [i:(Dreord s)℄(onatsign 1!(apsign H1 i) 2!(apsign H2 i) H3)).Theorem 4. The merge of two signatures is both a subsignature of these two signatures.Proof In Coq, we proved the following lemmas:Lemma subsign_mergesign_1: (subsign mergesign s1).Lemma subsign_mergesign_2: (subsign mergesign s2).By onstrution jmergesignj is the onatenation of three lists: jsj, (js1jnjsj) and (js2jnjsj).Implementation This funtion apsign is de�ned at the telesope level, by strutural indution on the proofthat s1 :> s2. The main diÆulty of this de�nition (and even of all this development) omes at subsig transase.Informally, assuming that apsig with the type(s1 :> s2)! (s2 ! (sigtel js1j n js2j))for s1 and s2 sigtels, we are de�ning it by indution on the proof that s1 :> s2. The subsig trans aseorresponds to : H1 : s1 :> s2f : s2 ! (sigtel js1j n js2j)H2 : s2 :> s3g : s3 ! (sigtel js2j n js3j)���� s3 ! (sigtel js1j n js3j)The idea is to give the following term for this goal :[i : s3℄(apsig (flatsig [j : (flatsig g)℄(f jjs2)) i)In order to write \[j : (flatsig g)℄(f jjs2)" (expression alled h below), apsign subsign l has to beproved in the same time than apsig is build.Also, unfortunately, apsig is not appliable to flatsig h beause apsig is being de�ned by struturalindution. Fortunately, one an that prove flatsig h is a signature signature whose s3 is a pre�x (in the same

sense than pre�x on words). Thus, we introdue this pre�x relation between telesopes signatures (showingfor instane that if s2 is a pre�x of s1 then s1 :> s2). Then, we de�ne the funtion apsig pre orrespondingto apsig for the pre�x relation.Finally, apsig will be de�ned as the �rst projetion of apsig dpair, whih type is :Definition apsig_dpair:(l1,l2:(list A); s1:(sigtel l1); s2:(sigtel l2);H:(ontO l1 l2); H1:(subsig H s1 s2))(dpair [f:(impltel s2)->(sigtel (extratO H))℄(subsig (ontO_app_extratO H) (flatsig [i℄(f i)) s1)).where extratO is here a funtion whih takes a proof H of (ontO l1 l2) and whih returns a list \l1without the element of l2". The order of the elements in this list depends on H (or more espeially, of thepermutations in H). Atually what we abusively denote in all this paper by l1 n l2 is (extratO H).apsig dpair is de�ned by the indution desribed above. And the term orresponding to the subsig transase is �nally : [i : s3℄(apsig pre (flatsig h) i)3.4 RenamingRenaming has not yet been implemented. We just present whih renaming operations we intend to have.A partial funtion f from labels to labels is a renaming on labels, a partial funtion f if it is injetive onits de�nition domain, Df . Suh funtions form a group for the omposition law (DfÆg = g�1(Ig \Df) andDf�1 = If).Given a renaming on labels f , the assoiated renaming on lists of labels is the map extension of f fromlist of labels to list of labels (thus, its domain is the set of lists whose elements are in Df).By extension, a renaming on Dreord signatures (resp. Dreords) is the orresponding mapping on Dreordsignatures (resp. Dreords).We an now de�ne a notion of subsignature modulo renaming. A signature S1 is a subsignature of anothersignature S2 modulo renaming, if there exists two renamings on signatures f and g suh that (f S1) is asubsignature of (g S2).If suh f and g exist, then f(jS1j) � g(jS2j). Then (gjS2j) � Df�1 , and jS2j � Df�1Æg. Thus, thisde�nition is equivalent to the following one: A signature S1 is a subsignature of another signature S2 modulorenaming, if there exist a renaming on signatures f suh that S1 is a subsignature of (fS2).Let S1 a subsignature of (f S2), we all the assoiated oerion from Dreords of signature S1 to Dreordsof signature (f S2). We an de�ne a oerion from Dreords of signature S1 to Dreords of signature S2 asthe funtion f�1 Æ .4 Example of use of this theoryIn our example, we start by de�ning the type of the labels, as a (very simple) �nite enumerated type, alledLabel, whih ontains all the labels needed.Indutive Label: Set := T: Label | EQ : Label | EQ_refl: Label | EQ_sym: Label| EQ_trans: Label | OP: Label | OP_EQ_l: Label.Lemma eqLabel_de : (x,y:Label)fx=yg+f~x=yg.Intros x y; Case x; Case y; Auto; Right; Disriminate.Defined.We build setoid sig, the setoid signature, and then the Dreord type setoid. We use extensible grammarsof Coq to mask the mehanisms of guard on the lists: the system heks that the list of the labels ofsetoid sig is double-free (the user has no proof to do). failure ours:Definition setoid_sig:=(<eqLabel_de>SignT:Type;EQ: T->T->Prop;EQ_refl: (x:T)(EQ x x);EQ_sym: (x,y:T)(EQ x y)->(EQ y x);EQ_trans: (x,y,z:T)(EQ x y)->(EQ y z)->(EQ x z)).Definition setoid:=(Dreord setoid_sig).

Thanks to a funtion Build of our Dreords theory, we make a funtion for building a setoid by giving all its�elds in the order where they appear in the signature. For example, types themselves form a setoid de�nedby:Definition Build_setoid:=(Build setoid_sig).Definition Type_setoid: setoid :=(Build_setoid (refl_eqT Type) (sym_eqT Type) (trans_eqT Type)).The �elds of Dreords are aessed via the binary operator �. It masks the hek that the required �eldbelongs atually to the Dreord:Definition arrier: setoid->Type:=[s℄(s � T).The type semigroup is build by using the extension of signature on setoids, adding a binary law, assoiative,and ompatible with the equivalene relation:Definition semigroup_on:=[s:setoid℄(SigtelOP:((s � T)->(s � T)->(s � T)) ;OP_EQ_l: (x,y,z:(s � T))((s � EQ) x y)->((s � EQ) (OP x z) (OP y z)) ;OP_EQ_r: (x,y,z:(s � T)) ((s � EQ) x y)->((s � EQ) (OP z x) (OP z y)) ;OP_ass : (x,y,z:(s � T))((s � EQ) (OP (OP x y) z) (OP x (OP y z)))).Definition semigroup_sig:=(Flat [s℄(semigroup_on s)).Definition semigroup:=(Dreord semigroup_sig).We bene�t then from onversions of the theory, to transform them into Coq oerions.Definition sgp_setoid: semigroup -> setoid := (oere (FlatSub [s℄(semigroup_on s))).Coerion sgp_setoid: semigroup >-> setoid.Then, the type order of ordered setoids is built on the same model than semigroup. Merging semigroup sigand order sig (with setoid sig as shared subsignature) enables us to reate a Dreord type ordsg whihan be extended for desribing the ordered semigroups (it is neessary to add assumptions of ompatibilitybetween the order relation and the operation of the semigroup). Unfortunately, these omputations on typesare too large for the urrent implementation of Coq. That is due at least in a partial way to the fat thatthe Dreord are not primitive. For instane, the omplexity for aessing �elds of a Dreord seems to beexponential in funtion of its length.5 MixDresFor managing meanisms for delaring deferred �elds or rede�ning �elds, we introdue a new data type,alled mixDre, orresponding to lasses in objet oriented languages. The signature of Dreord gives aninterfae for speifying how it an be used. MixDres are a way to speify how Dreords an be build.5.1 MotivationsWe introdue the notion of mixDre an example in a virtual syntax, inspired from Coq. The proofs are�-terms. We use the fat that :P , where P is a proposition, is de�ned as P ! False.The mixDre of setoids may be de�ned as follows (for onision of the example, eq is only supposedreexive), where the �elds pre�xed by del are only delared, and the �elds pre�xed by def are de�ned.
setoid := 8>>>>>>>>>>>><>>>>>>>>>>>>:

del T : Typedel eq : T ! T ! Propdel eq refl : 8(x : T)(eq x x)def neq : T ! T ! Prop:= �[x; y : T ℄:(eq x y)def neq spe : 8(x; y : T)(neq x y)! :(eq x y):= �[x; y : T ;H : :(eq x y)℄Hdef neq nrefl : 8(x : T):(neq x x):= �[x : T ;H : (neq x x)℄(neq spe x x H (eq refl x))
9>>>>>>>>>>>>=>>>>>>>>>>>>;

Dependenes between �elds appear in �elds signatures or de�nitions, and there are of two kinds like in Coq.The dependene of a �eld m2 on a �eld m1 is said opaque if expressing the signature or the de�nition of m2requires to know the signature of m1, but not its de�nition. The dependene is said transparent if expressingthe de�nition of m2 requires to know the de�nition of m1.For instane, there are opaque dependenies of neq nrefl with every other �elds in setoid (by transitivelosure). But the dependene of neq spe on neq is transparent, and dependenies of neq spe on eq and Tare opaque.These notions of dependenies give a suÆient ondition to ensure the oherene of the rede�nition of�elds. Indeed, the only requirements for the (re)de�nition of a �eld m to be valid, is to respet the type ofm, if this one has been preedently be delared (or de�ned). When building a mixtel B by rede�ning some�eld m of a mixtel A, the �elds of A that depends opaquely on m have not to be rede�ned, beause theirde�nition will still be oherent with their type. But the de�nition of the �elds of A depending transparentlyon m are lost, beause they may beome inoherent.In setoid, we may rede�ne neq without having to rede�ne neq nrefl (so, we freely inherit it). But, if werede�ne neq, the de�nition of neq spe is lost. It is a kind of proof obligation, the user has to rede�ne them.The user will have to arefully manage these kinds of dependenies: opaque dependenies will expressgeneri properties, but transparent ones will express fundamental spei�ations.5.2 Informal desriptionRoughly speaking, mixDres ontain both de�ned �elds, and delared (but not yet de�ned) �elds. Thereis thus a orrespondene between Dreord implementations and mixDres whose all �elds are de�ned. Anddually, there is a orrespondene between Dreord signatures and mixDres whose all �elds are delared.As for Dreords, we de�ne a type, alled mixtel, on sigtel. Then a mixDre is a well-formed mixtel, whoselist of labels is double-free.Unlike telesopes signatures whih have a linear struture, mixtels have a tree struture with two kindsof internal nodes: nodes known as \abstrat" whih represent roughly speaking delared �elds, and thoseknown as \manifest" whih represent de�ned �elds. \Abstrat" nodes orrespond to the \nodes" of telesopesignatures: they ontain the same information, in partiular, they have a unique son. \Manifest" nodes ontainseveral informations: the name of the �eld, its type, its implementation, and two sons: a mixtel whih dependsin an opaque way on this �eld (as in telesope signatures) and a mixtel whih depends in a transparent wayon this �eld (as in telesope implementations).Mixtel orresponding to the setoid mixDre above

E E E E

...M M

M

MA

A

A

[x : T ;H : (eq x x)! False℄(H (eq refl x))[x : T ;H : (neq x x)℄(neq spe x x H (eq refl x))neq nrefl neq nrefl
(x : T)(eq x x)neqeqeq reflT ! T ! Prop[x; y : T ℄:(eq x y)neq spe neq spe[x; y : T ;H : :(eq x y)℄H(x; y : T)(neq x y)! :(eq x y)T ! T ! Prop

[x : T ℄::(eq x x)(x : T):(neq x x)A :abstrat nodes ; M : manifest nodes ; E : leafs (empty mixtel).In a manifest node, the two sons represent the same mixtel: the left son (opaque) represents this mixtel ifone forgets (or hanges) the implementation assoiated with the node, the right son (transparent) represents

this mixtel when this implementation is preserved. A well-formed mixtel is suh that the right son of everymanifest nodes is a more-de�ned view of the left son mixtel.At last, let us preise a little the onepts of delared and de�ned �eld in a well-formed mixtel. A �eldwill be de�ned in a well-formed mixtel when in the rightest branh, the node arrying its label is manifest.On the ontrary, a �eld will be delared, when in this branh, this node is abstrat. In this ase, all the mixtelnodes whih arry this label will be abstrat (under the assumption of mixtel well-formness). When all the�elds of a mixtel are de�ned, a telesope implementation may be built diretly: it is the rightest branh.5.3 ImplementationThe type mixtel is de�ned by two parts: �rst, the struture of trees is expressed only on lists of labels (viaa prediate on lists pre whih gives whih labels are \Abstrat" or \Manifest"), and then the dependeniesbetween �elds are expressed in mixtel. As for telesopes, pre and mixtel are reursive types instead ofindutive types. Thus, we introdue respetively flag and mix whih ontains the \indutive part" of thesede�nitions.Indutive UnitS:Set:= unitS:UnitS.Indutive flag[U:Set℄:Set :=Abs: U->(flag U)| Man: U->U->(flag U).Fixpoint pre[l:(list A)℄: Set :=Cases l ofnil => UnitS| (ons a m) => (flag (pre m))end.Definition abs_of:=[U:Set;x:(flag U)℄Cases x of (Abs p) => p| (Man p _) => pend.
Variable T:Type.Variable U:Set.Variable F:T->U->Type.Struture dpair[f:T->Type℄:Type :=fdproj1:T;dproj2:(f dproj1)g.Definition option:(flag U)->Type:=[p℄Cases p of(Abs _)=>UnitT| (Man _ p2)=>(dpair [x:T℄(F x p2))end.Struture mix[p:(flag U);a:A℄:Type:=fmix_spe:(x:T)(F x (abs_of p));mix_val:(option p) g.Fixpoint mixtel[l:(list A)℄:(sigtel l)->(pre l)->Type :=<[l:(list A)℄(sigtel l)->(pre l)->Type>Cases l ofnil => [_;_℄EsigT| (ons a m) => [s;p℄(mix [x:(dom s)℄(mixtel (s x)) p a)end.5.4 Properties and operationsThe prediate is all def tests if all labels in a pre are de�ned. The funtion new whih generates an impltelfrom a mixtel, whose all labels are de�ned.Definition new:(l:(list A); s:(sigtel l); p:(pre l))(is_all_def p)->(mixtel s p)->(impltel s).De�nition 4. Then, given a signature s, and two mixtels m1 and m2, (math mix m1 m2) is a proof thatthe �elds of m1 are a more-de�ned view (with the same de�nition) of their equivalent in m2 (math pre isthe orrespondent notion on pre).l:(list A)s:(sigtel l)p1,p2:(pre l) Definition math_mix:(math_pre p1 p2)->(mixtel s p1)->(mixtel s p2)->Type.math mix is a transitive relation, but not reexive (nor anti-reexive).Theorem 5. We have then the following property: if all the labels of m2 are de�ned, then all the labels of m1are also (is all def math property), and the telesope implementation generated, via new, by m2 is equalto the one generated by m1.m1:(mixtel s p1)m2:(mixtel s p2) Theorem math_mix_new:(H1:(is_all_def p2);H2:(math_pre p1 p2))(math_mix H2 m1 m2)->(new H1 m2)===(new (is_all_def_math H1 H2) m1).

De�nition 5. A well-formed mixtel is a mixtel that heks the reexivity of math mix.Definition wellmixed:=[p:(pre l);H:(wellpre p);m:(mixtel s p)℄(math_mix H m m).We have then two operations on mixtels: merge mix for merging two mixtels of same signatures, andlift mix for lifting a mixtel in a subsignature.Definition merge_mix:(l:(list A); s:(sigtel l); p1,p2:(pre l))(mixtel s p1)->(mixtel s p2)->(mixtel s (merge_pre p1 p2)).Definition lift_mix:(l1,l2:(list A); H:(l1 � l2);s1:(sigtel l1); s2:(sigtel l2))(subsig H s1 s2)->(p:(pre l2))(mixtel s2 p)->(mixtel s1 (lift_pre H p)).The following properties are urrently in way to be proved (but there are some diÆulties to handlebig terms). wellmix merge says that merge mix transforms wellformed mixtels in a wellformed mixtel. Andmath mix merge 1 says that merge mix m1 m2 mathes m1. As merging on mixtels is not ommutative(beause, when �elds of same name have di�erent de�nitions, you have to hoose one), it gives a ontrol ofwhat de�nition will be hoosen by the system in ase of onit: the left will always win.Lemma wellmix merge: (wellmixed H1 m1) -> (wellmixed H2 m2)->(wellmixed (wellpre merge H1 H2) (merge mix m1 m2)).Lemma math mix merge 1: (wellmixed H1 m1) -> (wellmixed H2 m2)->(math mix (math pre merge 1 H1 H2) (merge mix m1 m2) m1).That's the point where the urrent implementation stops. There are some lemmas left to write in orderto hek the orretness of lift mix. But we will need to extend the notion of math mix for mixtels ofdi�erent signatures.5.5 Using mixtelsThe orretness of the operations merge mix and lift mix are not totally proved. But semanti aspets aresuÆiently disjoint of operational ones to allow to use them already. We have tried a little example that wedesribe now, without giving the soures beause the syntax is too muh ugly. We keep here the informalsyntax given for setoid.First, we have oded the setoid mixtel mentioned before. Then, we have de�ne Bool base as follow, wherebool is an indutive type with two onstrutors, negb the negation on booleans, and Is true, the onversionfrom booleans to Prop:
Bool base :=

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:
def T : Type:= booldef eq : T ! T ! Prop:= �[b1; b2 : bool℄(Is true (if b1 then b2 else (negb b2)))def eq refl : 8(x : T)(eq x x):= �[b : bool℄if b then I else I:def neq : T ! T ! Prop:= �[b1; b2 : bool℄(Is true (if (negb b1) then (negb b2) else b2))def neq spe : 8(x; y : T)(neq x y)! :(eq x y):= �[b1; b2 : bool℄if b1 then if b2 then �[H; ℄H else �[; H ℄Helse if b2 then �[; H ℄H else �[H; ℄H

9>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>;The aim of the operation is to merge setoid and Bool base. As neq nrefl is a �eld of setoid but not inBool base, we must �rst lift Bool base by the signature of setoid. It makes from Bool base a mixtel with adelared �eld neq nrefl. Then, we an make the merge. But, the merge is not ommutative, beause neqdi�ers in the two mixtels. We tried the two possibilities. Results are omputed with a reasonable eÆieny.

5.6 From mixtels to mixDresMixDres are wellformed mixtels, on a signature of Dreords (double-free signature of telesope). Wellform-ness an be disharged via a tati (whih fails when the underlying mixtel is not wellformed). Thus, oneould imagine, that the user enters its mixtels, and a maro (whih may fail) transform them into mixDres.The problem is now to give a syntax to the user.Currently, the syntax is very bad, beause, the user is obliged to desribe the tree-like struture ofthe above �gure. With a semantial analysis, it may be possible to parse "mixtels" in the informal syntaxpresented here, to put them into the tree-like struture. But it is generally not a good idea to make semantianalysis while parsing: here, the user will not see easily in the ode the kind of dependenes between �elds.But these dependenies are fundamental for its understanding of the ode.A good solution, is maybe to mark syntatialy �eld identi�ers, whose de�nition is needed, by puttingthem between delimitors. From this syntax, it should be possible to generate the tree-like struture withouttyping, but only syntati manipulation...6 ConlusionThis paper presents an enoding in Coq of a framework aimed to be used for speifying and implementing aomputer algebra library. This framework rests upon a notion of strutures, whih share some features withobjet-oriented language: espeially, strutures an be desribed the one from the others, by di�erenes.This enoding is based on a reord desription in Coq (Dreords), enrihed with a lass-like notion, alsooded in Coq: mixDres. They allow to desribe a hierarhy of Dreords in a inremental way. In mixDres,�elds may only be delared, or may be rede�ned. MixDres may be extended by inheritane.There are some features left to be implemented. Mainly, renaming, mixtel \semantial aspets" and a\user interfae" for mixtels.However, in the urrent implementation of Coq, this enoding annot really be used on interestingexamples, beause of eÆieny limitations.In futures works, we will try to give a more abstrated presentation of this framework, free from the Coqdesription.Referenes1. B. Barras. Auto-validation d'un syst�eme de preuves ave familles indutives. Th�ese de Dotorat, Universit�e Paris7, 1999.2. B. Barras, S. Boutin, C. Cornes, J. Courant, , Y. Cosoy, D. Delahaye, D. de Rauglaudre, J.-C. Filliâtre,E. Gim�enez, H. Herbelin, G. Huet, H. Laulh�ere, C. Mu~noz, C. Murthy, C. Parent-Vigouroux, P. Loiseleur,C. Paulin-Mohring, A. Sa��bi, and B. Werner. The Coq Proof Assistant Referene Manual. Projet Coq, INRIA-Roquenourt { CNRS-ENS Lyon, january 1999.3. S. Boulm�e, T. Hardin, D. Hirshko�, V. M�enissier-Morain, and R. Rioboo. On the way to ertify omputer algebrasystems. In Calulemus 99 Systems for Integrated Computation and Dedution, volume 23 of ENTCS. Elsevier,1999.4. Th. Coquand. An analysis of girard's paradox. In Symposium on Logi in Computer Siene. Cambridge, MA.IEEE PRESS, 1986.5. J. Courant. Un alul de modules pour les syst�emes de types purs. Th�ese de Dotorat, Eole Normale Sup�erieurede Lyon, 1998.6. N. G. de Bruijn. Telesoping mapping in typed lambda alulus. Information and Computation, pages 189{204,April 1991.7. R. Harper and M. Lillibridge. A type-theoreti approah to higher-order modules with sharing. In 21st Symposiumon Priniples of Programming Languages, pages 123{137. ACM PRESS, 1994.8. L. Pottier. T�elesopes : des reords g�en�eralis�es d�e�nis dans Coq lui-même. Communiation personnelle, souresdisponibles sur http://www-sop.inria.fr/roap/CFC/Tel/index.html, 1999.9. B. Werner. Une Th�eorie des Construtions Indutives. Th�ese de dotorat, Universit�e de Paris 7, 1994.

