
HAL Id: hal-02548305
https://hal.science/hal-02548305v1

Submitted on 20 Apr 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Specifying in Coq inheritance used in Computer Algebra
Libraries

Sylvain Boulmé

To cite this version:
Sylvain Boulmé. Specifying in Coq inheritance used in Computer Algebra Libraries. [Research Report]
lip6.2000.013, LIP6. 2000. �hal-02548305�

https://hal.science/hal-02548305v1
https://hal.archives-ouvertes.fr

Spe
ifying in Coqinheritan
e used in Computer Algebra LibrariesSylvain Boulm�eLaboratoire d'Informatique de Paris 6 (LIP6),Universit�e Pierre et Marie Curie (Paris 6),8, rue du Capitaine S
ott, 75015 Paris, Fran
e.Sylvain.Boulme�lip6.frAbstra
t. This paper is part of FOC[3℄ a proje
t for developing Computer Algebra libraries,
erti�edin Coq [2℄. FOC has developed a methodology for programming Computer Algebra libraries, usingmodules and obje
ts in O
aml. In order to spe
ify modularity features used by FOC in O
aml, weare
oding in Coq a theory for extensible re
ords with dependent �elds. This theory intends to expressespe
ially the kind of inheritan
e with method rede�nition and late binding, that FOC uses in its O
amlprograms.The unit of FOC are
oded as re
ords. As we want to en
ode semanti
 information on units, the �eldsof our re
ords may be proofs. Thus, our �elds may depend on ea
h others. We
alled them Dre
ords.Then, we introdu
e a new datatype,
alled mixDre
, to represent FOC
lasses. A
tually, mixDre
s areuseful for des
ribing a hierar
hy of Dre
ords in a in
remental way. In mixDre
s, �elds
an be onlyde
lared or they
an be rede�ned. MixDre
s
an be extended by inheritan
e.1 Introdu
tionThis work lies within the s
ope of FOC, a proje
t for developing a library for Computer Algebra, writtenin O
aml and
erti�ed in Coq. Units of su
h a library are aimed to o�er di�erent views of mathemati
alalgebrai
 stru
tures, from the purely abstra
t one, very
lose to mathemati
s to some fully implementedones, where the
arrier and the
ode for the operators are
ompletely �xed. For example, there exists a unitU1 des
ribing the (abstra
t) notion of ring, a se
ond one U2 for the integral domains and a third one U3giving the implementation of Z=2Z on the booleans. So a unit provides de
larations of identi�ers, possiblysome
ode for
ertain identi�ers, and, as this library is to be
erti�ed, some assertions on identi�ers and
ode. A unit is rarely built independently of the others and there are usually several kinds of dependen
ebetween units. For example, the unit of integral domains U2 is built upon U1 and U3 gives an instantiationof the abstra
t representation of the
arrier of U2. Therefore, our library is a hierar
hy | or a graph | ofunits.We fa
e up the question: how to pro
eed to the
erti�
ation of this library, in order to ensure that theassertions put in the units are
orre
t? As a unit U is built upon some other units Ui, the assertions (so theirproofs) of U may depend of some assertions of the Ui. These dependen
ies may be handled
ase by
ase, bya method just driven by the assertions in U . Evidently, this is not a good solution as some sharing of thetreatment of dependen
ies
an be done. The
onstru
tion of the library must be able to be done in an in
re-mental way. In parti
ular, one must be able to build the units the ones from the others, by expressing only thedi�eren
es between them. We propose in this paper a des
ription in Coq of su
h a library
onstru
tion system.How to represent a unit? A unit introdu
es a
ertain number of fun
tions, whi
h
ould be
alled by otherunits of the library. Thus, one must provide a non-ambiguous name for the fun
tion of a given library. Butat the same time, it is
onvenient that two fun
tions \having the same meaning" in di�erent units sharethe same name. We
hoose to represent the units of our library via re
ords (with the \." notation) whi
ho�er at the same time a non-ambiguous way to indi
ate a fun
tion of a library (it is not for example by the
ase, in approa
hes with overloading), and at the same time the possibility of sharing �eld names betweenre
ords: and thus to indi
ate by a same name of the di�erent fun
tions.Thus, roughly speaking, a unit will be
oded as a re
ord. As our units will
ontains types, programs,proofs, in a spirit �a la Curry-Howard, our re
ords will have dependent �elds. We
alled them Dre
ord.

In order to des
ribe Dre
ords in a in
remental way, we introdu
e a new datatype,
alled mixDre
. As
lasses in obje
t-oriented language, mixDre
s are generators of Dre
ords. In mixDre
s, �elds
an be onlyde
lared or they
an be rede�ned. MixDre
s
an be extended by inheritan
e. Thus, mixDre
s des
ribe afamily of Dre
ords.Our requirements on re
ords are the following: a same name
ould be shared between any re
ords types;�elds may depends on other �elds; we want a notion of subtyping between re
ords type, with its asso
iate
oer
ion. We want de�nes operation on re
ords (
oer
ions, inheritan
e, ...).2 Re
ords with dependent �elds in CoqIn this se
tion, we present qui
kly the re
ords of the
urrent version of Coq, explaining why they do notmeet these requirements. Then, we introdu
e our proper de�nition of re
ords,
alled Dre
ords.2.1 Re
ords in Coq V6.3.1In Coq V6.3.1, re
ords are
oded via indu
tive de�nitions. A type re
ord S is simply an indu
tive type withone
onstru
tor,
alled Build S by default. Field a

ess is
oded as proje
tions asso
iated to this indu
tivetype. For instan
e the following de�nition of the type re
ord pair introdu
es the name pair and the twolabels fst and snd. The
onstru
tor Build pair is asso
iated to this type and the labels are used to
reatethe a

ess fun
tions to the �elds of the re
ord:Stru
ture pair[A,B:Set℄: Set := f fst: A; snd: B g.is a
tually a ma
ro for:Indu
tive pair[A,B:Set℄:Set :=Build_pair: A->B->(pair A B).Definition fst := [A,B:Set; x:(pair A B)℄Cases x of (Build_pair fst _) => fst end.Definition snd := [A,B:Set; x:(pair A B)℄Cases x of (Build_pair _ snd) => snd end.There is an important restri
tion on labels, whi
h must not be shared by di�erent re
ord types. Withthe me
hanism of
oer
ion, this restri
tion
an be partially raised. Moreover, en
oding re
ords via a ma
rome
hanism and
oer
ions operate at the level of re
ord types. So this implementation does not meet ourrequirements on re
ords, and we have to introdu
e our own notion. We do that step by step, �rst introdu
ingsome notations and the
oding of �eld a

ess.2.2 A �rst sight of Dre
ordsRoughly speaking, a Dre
ord
an be seen as a fun
tion from a given �nite set of labels to a set of �elds.Applying this fun
tion to a given label performs �eld a

ess. As the types of these �elds may di�er, a notionof Dre
ord signature asso
iating its type to ea
h �eld is therefore needed.Notations A is a type parameter (of sort Set) of the theory, whi
h denotes the type of the labels. Theequality of A is assumed to be de
idable.Let L and L1 be lists of labels and a a given label. We suppose given the following de�nitions:2: (a 2 L) is true if a belongs to L.�: (L � L1) is true if L
ontains L1.6 \: (L 6 \ L1) is true if L and L1 have no
ommon labelsb: : bL is true if L does not
ontain two o

urren
es of the same label.n : (L n L1) is a fun
tion whi
h returns the list of labels in L whi
h do not belong to L1.The
ode Coq given here is in \impli
it arguments mode": some arguments of fun
tions are left impli
itbut, if needed, they
an be given with the notation n! where n is the position of the argument.

Field a

ess We suppose given a type
alled sign of sort Type whi
h is the type of Dre
ord signatures anda fun
tion Dre
ord of type sign!Type. They will be de�ned further.A Dre
ord is, by de�nition, a term of type (Dre
ord s), where s is a term of type sign. The fun
tionsign l returns the list of labels of a Dre
ord and will also be de�ned further. In the following, expressions(sign l s) are denoted by jsj.Field a

ess is de�ned by two fun
tions, field and fieldT, whi
h takes a Dre
ord D and a label a asarguments. (field D a) is the �eld asso
iated with a in D and fieldT returns the type of (field D a).fieldT: (s:sign) (Dre
ord s)->A->Typefield:(s:sign ; i:(Dre
ord S) ; a:A ; H:(a2jsj))(fieldT i a)Note that the expression (fieldT D a) makes sense only if the label a �gures in D. So, fieldT is notsupposed to be used dire
tly.We turn now to the
oding of sign and Dre
ord. The diÆ
ulty is to express the dependen
ies betweenthe �elds. So, we make an intermediary step by introdu
ing teles
opes.2.3 Teles
opesIn [8℄, the
on
ept of teles
ope is used to express dependen
ies between �elds of re
ord-like stru
tures. Thisnotion was �rst introdu
ed by [6℄ to express dependen
ies between
ontexts.We introdu
e here teles
opes with labels whi
h implementation departs from those of [8℄ but we stillname this new version teles
opes.Pair with dependent �elds A pair with dependent �elds is a Cartesian-produ
t-like type. As usual, it is
oded by a dependent sum upon two
anoni
al inje
tions:Stru
ture dpair[T2:Type; T1:T2->Type℄ : Type:= fx2: T2; x1: (T1 x2)g.Let us remark that the di�erent o

urren
es of Type in this de�nition denote di�erent Type n where n is animpli
it level of universe. The pre
edent de�nition is a
tually:Stru
ture dpair[T2:Type i; T1:T2->Type j℄: Type k:=fx2: T2; x1: (T1 x1)g.where i < k and j < k. This me
hanism (invisible for the user) prevents the
onstru
tion of paradoxes (
f.[9℄ and [4℄).In this denotation �2 represents a
onstru
tor of binary existential type, and ;T is a type with oneelement: ;,
alled here empty teles
ope.Teles
opes are de�ned by an iteration of this type dpair on itself (see below). Moreover, ea
h �eld willbe labelled. These labels may be used for example to de�ne notions of �eld a

ess, subsignature,... They are�rmly atta
hed to the �elds and may be
onsidered as a part of the de�nition of the teles
ope: for example,they are not submitted to �-
onversion. Now, the
ontent of a �eld may depend on the pre
eding ones in thestru
ture. As
onsidered in [7℄ and [5℄, in a high order
ontext, dependen
ies
annot be expressed by labels,be
ause of variable
aptures. Dependen
ies have to be expressed by bound variables.Thus, informally, a labelled teles
ope
an be denoted as a term of type�n[xn : T ann ; : : : ; x1 : (T a11 xn : : : x2)℄;Twhere �n denotes a dependent sum type build upon n
anoni
al inje
tions; where Ti are fun
tions with valuesin types, labelled by ai, themselves independent of xi variables; and, ;T is a type with a single element: theempty teles
ope.Formally, teles
opes are de�ned through two types: sigtel, the type of \teles
ope signatures", andimpltel the type of \teles
ope implementations". The sort of sigtel and impltel id Type, as �elds may liein Set or Prop or even in Type. But, be
ause of universe
onstraints, �elds of a teles
ope leave in a universebelow the one of this teles
ope.

Teles
ope signatures The type of teles
ope signatures, sigtel, is de�ned by re
urren
e on lists. It usestwo base types: EsigT the type having only one element whi
h represents the type of the empty signature,and (FunIn a T) the type, labelled by a, of fun
tions with values in T.Indu
tive EsigT: Type := Esig_: EsigT.Stru
ture FunIn[a:A; T:Type℄: Type:=fdom: Type; fun:> (dom->T)g. Fixpoint sigtel[l:(list A)℄:Type :=Cases l ofnil => EsigT| (
ons a m) => (FunIn a (sigtel m))end.The \>" on fun in FunIn de
lares the fun proje
tion as a Coq
oer
ion. Without it, if s a term of type(FunIn a T) and x a term of type (dom s), the term (s x) does not type
he
k, be
ause (FunIn a T) is nota fun
tion type. With this
oer
ion, this term type
he
ks, and mean ((fun s) x) (see below in impltel).Teles
ope implementations Teles
ope implementations are de�ned in the same way, by an iteration ondependent pairs:Indu
tive EimplT: Type := Eimpl_: EimplT.Stru
ture dpairT[T:Type,f:T->Type; a:A℄: Type:=fdprojT1: T; dprojT2: (f dprojT1) g. Fixpoint impltel[l:(list A)℄:(sigtel l)->Type:=<[l:(list A)℄(sigtel l)->Type>Cases l ofnil => [_℄EimplT| (
ons a m) =>[s℄(dpairT [x:(dom s)℄(impltel (s x)) a)end.These two re
ursive types sigtel and impltel
ould alternatively be de�ned by using indu
tive typesof Coq. For instan
e, sigtel
ould be write as:Indu
tive sigtel: (list A)->Type :=Esig: (sigtel (nil A))| Csig: (a:A; l:(list A); dom:Type)(dom->(sigtel l))->(sigtel (
ons a l)).But, if re
ursive types (de�ned by �xpoint) are less general than indu
tive ones, they are more
onvenientto handle in some situation. Inversion lemmas on indu
tive types are not well automati
ally generated whenusing dependent types, whereas they simply
orrespond to redu
tion on re
ursive types.Also, de�ning impltel by an indu
tive type requires to type it in a higher universe than sigtel, whi
his against intuition. With the re
ursive de�nition, imptel lies in a lower universe than sigtel. Thus, in allthis implementation, we use only \not-re
ursive" indu
tive types (ex
ept for de�ning
ontO and subsig, seebelow). For that, we pass the re
ursive
alls as an argument of the indu
tive type (like in
ontinuations):for example, FunIn
orresponds to the Csig
onstru
tor, with T as parameter, to
apture the re
ursive
all.Then we use a �xpoint, to express the re
ursive
alls. The
ounterpart of this method is that su
h re
ursivede�nitions of type are harder to establish and to understand.Field a

ess Field a

ess is done by two fun
tions, fieldsig whi
h returns the type of the �eld, andfiedimpl whi
h returns this �eld. These two fun
tions are not totally de�ned. The type Dummy with a single
onstru
tor foo is used to express this partiality.Indu
tive Dummy: Type := foo: Dummy.Hypothesis eqA_de
:(x, y:A)fx=yg+f~x=yg.Fixpoint fieldsig[a:A; l:(list A)℄:(s:(sigtel l))(impltel s)->Type :=<[l:(list A)℄(s:(sigtel l))(impltel s)->Type>Cases l ofnil => [_;_℄Dummy| (
ons b m) => [s;i℄if (eqA_de
 a b) then[_℄(dom s)else[_℄(fieldsig a (dprojT2 i))end.Fixpoint fieldimpl[a:A; l:(list A)℄:(s:(sigtel l); i:(impltel s))(fieldsig a i):=<[l:(list A)℄(s:(sigtel l); i:(impltel s))(fieldsig a i)>Cases l ofnil => [_;_℄foo

| (
ons b m) =>[s;i℄<[H:a=b+~a=b℄if H then [_℄(dom s) else [_℄(fieldsig a (dprojT2 i))>if (eqA_de
 a b) then[_℄(dprojT1 i)else[_℄(fieldimpl a (dprojT2 i))end.From teles
opes to Dre
ords A Dre
ord is a teles
ope whi
h labels (ai in the informal de�nition) arepairwised distin
t. This is only a \semanti
" property: the a

ess to a �eld has to be non ambiguous. All theoperations on Dre
ords may be built independently of this
ondition: they are �rstly de�ned on teles
opes.In a �rst attempt, we
oded Dre
ords by
onsidering at the same time operational and semanti
 aspe
ts. Itbe
ame qui
kly unmanageable be
ause semanti

onsiderations polutted the
ode.This semanti
 property is en
oded by putting guards in order to restri
t the use of the teles
opes. Theseguards are the predi
ate denoted by 2, �, 6 \ and b. They are de
idable (under the assumption of thede
idability of labels equality), and they
an be dis
harged by the Coq type
he
ker.Coding the guards on the lists To express the fa
t that guards express only that the \Dre
ord semanti
"is ful�lled, they are put into Prop. As they are de
idable, their values may be: the type True or the typeFalse. They are implemented as instantiations of the two predi
ates AllD and ExD below.Variable P:A->(list A)->Prop.Hypothesis P_de
: (x:A; l:(list A))f(P x l)g+f~(P x l)g.Fixpoint AllD[l:(list A)℄: Prop :=Cases l ofnil => True| (
ons a m) => if (P_de
 a m) then [_℄(AllD m) else [_℄False end.Fixpoint ExD[l:(list A)℄: Prop :=Cases l ofnil => False| (
ons a m) => if (P_de
 a m) then [_℄True else [_℄(ExD m) end.De�nition 1. Signatures of Dre
ord are a triple: a list sign l, a proof sign l df that this list is double-free(guard instantiating AllD above), and a sigtel sign p built on sign l.Stru
ture sign: Type := fsign_l: (list A);sign_l_df: \sign l;sign_p:> (sigtel sign_l) g.Let us remark here, that sign p is a Coq
oer
ion, from sign to sigtel.De�nition 2. Dre
ords are simply teles
opes, built upon a Dre
ord signature:Definition Dre
ord[s:sign℄:=(impltel s).The transformation of teles
ope into a Dre
ord is thus only a type
oer
ion.De�nition 3. Fun
tions for a

essing �elds are:Definition fieldT:(s:sign)(Dre
ord s)->A->Type:=[s;i;a℄(fieldsig eqA_de
 a i).Definition field:(s:sign; i:(Dre
ord s); a:A; H:(a2jsj))(fieldT i a):=[s;i;a;H℄(fieldimpl eqA_de
 a i).3 Operations and relations between Dre
ord signaturesThis se
tion presents operators and properties of Dre
ords. They are �rst informally introdu
ed, then theoperators and properties on the underlying teles
opes are des
ribed.

3.1 Subsignature relation and
oer
ion between Dre
ordsProperties Between Dre
ord signatures, there is a natural relation, subsign, of subsignature: s1 is asubsignature of s2 (we will informally write s1 :> s2), if s1
an be transformed into s2 by forgetting orpermuting some �elds. Internally, this
on
ept of subsignature is implemented as an indu
tive type subsigon teles
ope signatures, whi
h allow to reason by indu
tion on \proofs" of subsignatures (
f. below).Theorem 1. The relation subsign of type sign->sign->Type is a preorder, whose asso
iated relation ofequivalen
e
an be easily de�ned: it
orresponds to subsign on signatures of equal length.Proof This has been proved in Coq:(* Preorder properties*)Lemma subsign_refl:(s:sign)(subsign s s).Lemma subsign_trans:(s1,s2,s3:sign)(subsign s1 s2)->(subsign s2 s3)->(subsign s1 s3).(* Properties of the asso
iated equivalen
e *)Lemma subsign_antisym:(s1,s2:sign)(subsign s1 s2)->(subsign s2 s1)->(length js1j)=(length js2j).Lemma subsign_sym:(s1,s2:sign)(subsign s1 s2)->(length js1j)=(length js2j)->(subsign s2 s1).Asso
iated with this
on
ept of subsignature, there is a fun
tion
oer
e for
onverting Dre
ords, whi
hpreserves the extensional behavior of Dre
ords (equality of the �elds a

essed via the same labels). These
oer
ions will
orrespond to
oer
ions on obje
ts in the FOC proje
t.Theorem 2. Let s1 and s2 two signatures su
h that s1 :> s2. Then the fun
tion
oer
e of type(Dre
ord s1)->(Dre
ord s2) has the following property (
alled subsign ext):Let i be a (Dre
ord s1), then for any label a in js2j,the a

ess to a via field on i is equal to the one on(
oer
e i). S1 S2
subsign

coercei

field fieldProof Let us assume the de�nition of eqT dep1, the dependent equality over types. The theorem subsign exthas been proved in Coq:Lemma subsign_
ont:(s1,s2:sign)(subsign s1 s2)->js1j�js2j.Lemma subsign_ext_T: (s1,s2:sign; H:(subsign s1 s2); i:(Dre
ord s1); a:A)(a2jsj)->(fieldT i a)==(fieldT (
oer
e H i) a).Theorem subsign_ext: (s1,s2:sign; H1:(subsign s1 s2); i:(Dre
ord s1); a:A; H2:(a2js2j))(eqT_dep 2![T:Type℄T (field i (
ont_in
l (subsign_
ont H1) H2)2)(field (
oer
e H1 i) H2)).This last property (shown in Coq) guarantees the
orre
tion of the implementation of subsignaturewith respe
t to its semanti
s. In parti
ular, for every \proof" of subsignature between two signatures, theasso
iated
oer
ions at Dre
ords level are equivalent (with respe
t to �eld a

ess).1 With the following de�nition with impli
it arguments on:Indu
tive eqT dep[U:Type; P:U->Type; p:U; x:(P p)℄: (q:U)(P q)->Prop:=eqT dep intro: (eqT dep x x).2 proof of a2js1j

Implementation The subsign relation from s1 to s2 is de�ned as a su

ession of elementary transforma-tions on signatures (forgetting �elds, permuting �elds, ...). More formally, it is divided in two parts. First,subsign
ontO gives the skeleton these elementary transformations to pass from js1j to js2j. And then thesesu

ession of transformations is expressed at the level of sigtels by subsign p:Stru
ture subsign[s1,s2:sign℄: Type :=f subsign_
ontO: (
ontO js1j js2j);subsign_p:> (subsig subsign_
ontO s1 s2)g.
ontO is de�ned by:Indu
tive
ontO:(list A)->(list A)->Set :=
ontO_nil: (l:(list A))(
ontO l (nil A))|
ontO_
ons: (a1,a2:A)(l1,l2:(list A))a1=a2->(
ontO l1 l2)->(
ontO (
ons a1 l1) (
ons a2 l2))|
ontO_lift:(a:A; l,m:(list A))(
ontO l m)->(
ontO (
ons a l) m)|
ontO_swap:(a1,a2:A; l1,l2:(list A))(
ontO l1 l2)->(
ontO (
ons a1 (
ons a2 l1)) (
ons a2 (
ons a1 l2)))|
ontO_trans: (l1,l2,l3:(list A))(
ontO l1 l2)->(
ontO l2 l3)->(
ontO l1 l3).Then subsig is de�ned as follows:Indu
tive subsig: (l1, l2:(list A))(
ontO l1 l2)->(sigtel l1)->(sigtel l2)->Type :=subsig_E: (l:(list A); s:(sigtel l))(subsig (
ontO_nil l) s Esig)| subsig_C: (a:A; l1, l2:(list A); T:Type; f:T ->(sigtel l1); g:T ->(sigtel l2);H:(
ontO l1 l2))((x:T)(subsig H (f x) (g x)))->(subsig (
ontO_
ons (refl_equal A a) H)(Csig a f) (Csig a g))| subsig_lift: (a:A; l1, l2:(list A); T:Type; f:T ->(sigtel l1); s:(sigtel l2);H:(
ontO l1 l2))((x:T)(subsig H (f x) s))->(subsig (
ontO_lift a H) (Csig a f) s)| subsig_swap:(a1, a2:A; l1, l2:(list A); T1, T2:Type;f:T1 -> T2 ->(sigtel l1); g:T2 -> T1 ->(sigtel l2))(H:(
ontO l1 l2))((x:T1; y:T2)(subsig H (f x y) (g y x))) ->(subsig (
ontO_swap a1 a2 H)(Csig a1 [x:T1℄(Csig a2 [y:T2℄(f x y)))(Csig a2 [y:T2℄(Csig a1 [x:T1℄(g y x))))| subsig_trans:(l1, l2, l3:(list A); s1:(sigtel l1); s2:(sigtel l2); s3:(sigtel l3);H1:(
ontO l1 l2); H2:(
ontO l2 l3))(subsig H1 s1 s2) -> (subsig H2 s2 s3) -> (subsig (
ontO_trans H1 H2) s1 s3).whereDefinition Esig: (sigtel (nil A)) := Esig_.Definition Csig: (a:A; l:(list A); T:Type)(T->(sigtel l))->(sigtel (
ons a l)):=[a,l,T,f℄(Build_FunIn a f).If we would have not de�ned
ontO, but dire
tly subsig, it would not be possible to have a right notion of\su

ession of transformations". This notion is however ne
essary to de�ne the merge of signature (
f. 3.3),be
ause the use of permutation rule will have an in
uen
e on the order of the label list in the result signature.The fun
tion of
oer
ions between impltels,
oer
e impltel, is then a trivial indu
tion of a proof ofsubsig. Here is its type :Definition
oer
e_impltel: (l1, l2:(list A); s1:(sigtel l1); s2:(sigtel l2);H:(
ontO (eq A) l1 l2))(subsig H s1 s2) -> (impltel s1) -> (impltel s2).Thus,Definition
oer
e: (s1,s2:(sign))(subsign s1 s2)->(Dre
ord s1)->(Dre
ord s2):=[s1,s2;H;i℄(
oer
e_impltel H i).

3.2 Extending a Dre
ord signature some �eldsDes
ription A simple extension of signature, flatsign,
onsists to add some new �elds at the end of agiven signature s. But these new �elds may depend on the �elds of s. So, this new part of signature mustbe expressed in a
ontext
ontaining the �elds of s i.e. a Dre
ord of signature s.3 The part of signature maythus be expressed by a fun
tion of the type (Dre
ord s)->(sigtel l), where l is a double-free list of thenew labels.Theorem 3. The simple extension of a signature s, is a subsignature of s.Proof This has been proved in Coq:Variable s:sign.Variable l:(list A)).Hypothesis H1:bl.Hypothesis H2:(l 6 \jsj). Definition flatsign: ((Dre
ord s)->(sigtel l))->sign.Theorem flatsign_subsign:(f:(Dre
ord s)->(sigtel l))(subsign (flatsign f) s).By
onstru
tion jflatsignj is the
on
atenation of jsj and from l. As a parti
ular
ase of extension ofsignatures, one derive the
on
atenation of signatures:Variables s1,s2:sign.Hypothesis H:(js2j6\js1j). Definition
on
atsign:=(flatsign (sign_l_df s2)4 H [_:(Dre
ord s1)℄(sign_p s2)).Lemma subsign_
on
atsign_1: (subsign
on
atsign s1).Lemma subsign_
on
atsign_2: (subsign
on
atsign s2).Implementation A
tually, flatsign
orresponds to the flatsig operation on teles
opes. For readabilityreasons, we will now denote (impltel s) by s and (
oer
e impltel H i) by ijH . flatsig is a trivialindu
tion on l1, whi
h type is:flatsig: (l1,l2:(list A))(s1:(sigtel l1))s1->(sigtel l2))->(sigtel (l1^l2)).Here are some important properties of flatsig used to build merging of signatures. The terms \
ontO"are here hidden with \..."� The extension of a signature s1 by s2 that does not depend on s1 is a subsignature of s2.Lemma flatsig_
onstant: (l1,l2:(list A); s1:(sigtel l1); s2:(sigtel l2))(subsig ... (flatsig [_:s1℄s2) s2).� Subsignature is
ompatible with extensionLemma subsig_flatsig_
oer
e: (l1,l2:(list A); s1:(sigtel l1); s2:(sigtel l2); ...;H:(subsig ... s2 s1); l3:(list A); f:s1->(sigtel l3))(subsig ... (flatsig [i℄(f ijH)) (flatsig [i℄(f i))).Lemma subsig_flatsig: (l1,l2,l3:(list A); s:(sigtel l1); f:s->(sigtel l2);g:s->(sigtel l3); ...)((i:s)(subsig ... (f i) (g i)))->(subsig ... (flatsig f) (flatsig g)).� Subsignature is
ompatible with the permutation of a �eld with a pa
ket of �elds:Lemma subtel_Csig_flatsig :(l1:(list A); s:(sigtel l1); a:A; l2,l3:(list A); T:Type;f:T->s->(sigtel l2); g:T->(sigtel l3); ...)((x:T)(subsig ... (flatsig [i℄(f x i)) (g x)))->(subsig ... (flatsig [i℄(Csig a [x℄(f x i))) (Csig a g)).3.3 Merging signaturesA more deli
ate point is to de�ne an operation for merging signatures. The
on
atenation of signaturespreviously de�ned
an only be applied to signatures having no
ommon label. On the
ontrary, the mergeoperation allows signatures to share some labels. But it imposes that these shared labels
orrespond to
ompatible �elds.3 Do not forget that teles
opes were introdu
ed to formalize the
on
ept of
ontext4 proof of djs2j

Des
ription This
onstraint on sharing requires the existen
e of a subsignature (possibly empty)
ommonto these two signatures and
ontaining all labels present in both signatures. This
onstraint on signaturesbeing not de
idable, the user is asked to dis
harge it
ompletely. Later on, it is planed to write a ta
ti
(heuristi
) whi
h su

eeds in dis
harging sometimes this
onstraint.A way to implement the merging operation, is �rst to write the inverse of flatsign, i.e., a fun
tionapsign su
h that given two signatures s1 and s2 with s1 :> s2, apsign fa
torizes s2 in s1, by expressing the�elds of s1 whi
h do not belong to s2 in fun
tion of those of s2.apsign: (s1,s2:sign)(subsign s1 s2)->(Dre
ord s2)->sign.apsign_subsign_l:(s1,s2:sign; H:(subsign s1 s2))(subsign (flatsign ... [i:(Dre
ord s2)℄(apsign H i)) s1).apsign_subsign_r:(s1,s2:sign; H:(subsign s1 s2))(subsign s1 (flatsign ... [i:(Dre
ord s2)℄(apsign H i))).With apsign de�ned, mergesign is quite simple:Variables s,s1,s2:sign.Hypothesis H1: (subsign s1 s).Hypothesis H2: (subsign s2 s).Hypothesis H3: (js2jnjsj) 6 \(js1jnjsj).Definition mergesign :=(flatsign ... [i:(Dre
ord s)℄(
on
atsign 1!(apsign H1 i) 2!(apsign H2 i) H3)).Theorem 4. The merge of two signatures is both a subsignature of these two signatures.Proof In Coq, we proved the following lemmas:Lemma subsign_mergesign_1: (subsign mergesign s1).Lemma subsign_mergesign_2: (subsign mergesign s2).By
onstru
tion jmergesignj is the
on
atenation of three lists: jsj, (js1jnjsj) and (js2jnjsj).Implementation This fun
tion apsign is de�ned at the teles
ope level, by stru
tural indu
tion on the proofthat s1 :> s2. The main diÆ
ulty of this de�nition (and even of all this development)
omes at subsig trans
ase.Informally, assuming that apsig with the type(s1 :> s2)! (s2 ! (sigtel js1j n js2j))for s1 and s2 sigtels, we are de�ning it by indu
tion on the proof that s1 :> s2. The subsig trans
ase
orresponds to : H1 : s1 :> s2f : s2 ! (sigtel js1j n js2j)H2 : s2 :> s3g : s3 ! (sigtel js2j n js3j)���� s3 ! (sigtel js1j n js3j)The idea is to give the following term for this goal :[i : s3℄(apsig (flatsig [j : (flatsig g)℄(f jjs2)) i)In order to write \[j : (flatsig g)℄(f jjs2)" (expression
alled h below), apsign subsign l has to beproved in the same time than apsig is build.Also, unfortunately, apsig is not appli
able to flatsig h be
ause apsig is being de�ned by stru
turalindu
tion. Fortunately, one
an that prove flatsig h is a signature signature whose s3 is a pre�x (in the same

sense than pre�x on words). Thus, we introdu
e this pre�x relation between teles
opes signatures (showingfor instan
e that if s2 is a pre�x of s1 then s1 :> s2). Then, we de�ne the fun
tion apsig pre
orrespondingto apsig for the pre�x relation.Finally, apsig will be de�ned as the �rst proje
tion of apsig dpair, whi
h type is :Definition apsig_dpair:(l1,l2:(list A); s1:(sigtel l1); s2:(sigtel l2);H:(
ontO l1 l2); H1:(subsig H s1 s2))(dpair [f:(impltel s2)->(sigtel (extra
tO H))℄(subsig (
ontO_app_extra
tO H) (flatsig [i℄(f i)) s1)).where extra
tO is here a fun
tion whi
h takes a proof H of (
ontO l1 l2) and whi
h returns a list \l1without the element of l2". The order of the elements in this list depends on H (or more espe
ially, of thepermutations in H). A
tually what we abusively denote in all this paper by l1 n l2 is (extra
tO H).apsig dpair is de�ned by the indu
tion des
ribed above. And the term
orresponding to the subsig trans
ase is �nally : [i : s3℄(apsig pre (flatsig h) i)3.4 RenamingRenaming has not yet been implemented. We just present whi
h renaming operations we intend to have.A partial fun
tion f from labels to labels is a renaming on labels, a partial fun
tion f if it is inje
tive onits de�nition domain, Df . Su
h fun
tions form a group for the
omposition law (DfÆg = g�1(Ig \Df) andDf�1 = If).Given a renaming on labels f , the asso
iated renaming on lists of labels is the map extension of f fromlist of labels to list of labels (thus, its domain is the set of lists whose elements are in Df).By extension, a renaming on Dre
ord signatures (resp. Dre
ords) is the
orresponding mapping on Dre
ordsignatures (resp. Dre
ords).We
an now de�ne a notion of subsignature modulo renaming. A signature S1 is a subsignature of anothersignature S2 modulo renaming, if there exists two renamings on signatures f and g su
h that (f S1) is asubsignature of (g S2).If su
h f and g exist, then f(jS1j) � g(jS2j). Then (gjS2j) � Df�1 , and jS2j � Df�1Æg. Thus, thisde�nition is equivalent to the following one: A signature S1 is a subsignature of another signature S2 modulorenaming, if there exist a renaming on signatures f su
h that S1 is a subsignature of (fS2).Let S1 a subsignature of (f S2), we
all
 the asso
iated
oer
ion from Dre
ords of signature S1 to Dre
ordsof signature (f S2). We
an de�ne a
oer
ion from Dre
ords of signature S1 to Dre
ords of signature S2 asthe fun
tion f�1 Æ
.4 Example of use of this theoryIn our example, we start by de�ning the type of the labels, as a (very simple) �nite enumerated type,
alledLabel, whi
h
ontains all the labels needed.Indu
tive Label: Set := T: Label | EQ : Label | EQ_refl: Label | EQ_sym: Label| EQ_trans: Label | OP: Label | OP_EQ_l: Label.Lemma eqLabel_de
 : (x,y:Label)fx=yg+f~x=yg.Intros x y; Case x; Case y; Auto; Right; Dis
riminate.Defined.We build setoid sig, the setoid signature, and then the Dre
ord type setoid. We use extensible grammarsof Coq to mask the me
hanisms of guard on the lists: the system
he
ks that the list of the labels ofsetoid sig is double-free (the user has no proof to do). failure o

urs:Definition setoid_sig:=(<eqLabel_de
>SignT:Type;EQ: T->T->Prop;EQ_refl: (x:T)(EQ x x);EQ_sym: (x,y:T)(EQ x y)->(EQ y x);EQ_trans: (x,y,z:T)(EQ x y)->(EQ y z)->(EQ x z)).Definition setoid:=(Dre
ord setoid_sig).

Thanks to a fun
tion Build of our Dre
ords theory, we make a fun
tion for building a setoid by giving all its�elds in the order where they appear in the signature. For example, types themselves form a setoid de�nedby:Definition Build_setoid:=(Build setoid_sig).Definition Type_setoid: setoid :=(Build_setoid (refl_eqT Type) (sym_eqT Type) (trans_eqT Type)).The �elds of Dre
ords are a

essed via the binary operator �. It masks the
he
k that the required �eldbelongs a
tually to the Dre
ord:Definition
arrier: setoid->Type:=[s℄(s � T).The type semigroup is build by using the extension of signature on setoids, adding a binary law, asso
iative,and
ompatible with the equivalen
e relation:Definition semigroup_on:=[s:setoid℄(SigtelOP:((s � T)->(s � T)->(s � T)) ;OP_EQ_l: (x,y,z:(s � T))((s � EQ) x y)->((s � EQ) (OP x z) (OP y z)) ;OP_EQ_r: (x,y,z:(s � T)) ((s � EQ) x y)->((s � EQ) (OP z x) (OP z y)) ;OP_ass : (x,y,z:(s � T))((s � EQ) (OP (OP x y) z) (OP x (OP y z)))).Definition semigroup_sig:=(Flat [s℄(semigroup_on s)).Definition semigroup:=(Dre
ord semigroup_sig).We bene�t then from
onversions of the theory, to transform them into Coq
oer
ions.Definition sgp_setoid: semigroup -> setoid := (
oer
e (FlatSub [s℄(semigroup_on s))).Coer
ion sgp_setoid: semigroup >-> setoid.Then, the type order of ordered setoids is built on the same model than semigroup. Merging semigroup sigand order sig (with setoid sig as shared subsignature) enables us to
reate a Dre
ord type ordsg whi
h
an be extended for des
ribing the ordered semigroups (it is ne
essary to add assumptions of
ompatibilitybetween the order relation and the operation of the semigroup). Unfortunately, these
omputations on typesare too large for the
urrent implementation of Coq. That is due at least in a partial way to the fa
t thatthe Dre
ord are not primitive. For instan
e, the
omplexity for a

essing �elds of a Dre
ord seems to beexponential in fun
tion of its length.5 MixDre
sFor managing me
anisms for de
laring deferred �elds or rede�ning �elds, we introdu
e a new data type,
alled mixDre
,
orresponding to
lasses in obje
t oriented languages. The signature of Dre
ord gives aninterfa
e for spe
ifying how it
an be used. MixDre
s are a way to spe
ify how Dre
ords
an be build.5.1 MotivationsWe introdu
e the notion of mixDre
 an example in a virtual syntax, inspired from Coq. The proofs are�-terms. We use the fa
t that :P , where P is a proposition, is de�ned as P ! False.The mixDre
 of setoids may be de�ned as follows (for
on
ision of the example, eq is only supposedre
exive), where the �elds pre�xed by de
l are only de
lared, and the �elds pre�xed by def are de�ned.
setoid := 8>>>>>>>>>>>><>>>>>>>>>>>>:

de
l T : Typede
l eq : T ! T ! Propde
l eq refl : 8(x : T)(eq x x)def neq : T ! T ! Prop:= �[x; y : T ℄:(eq x y)def neq spe
 : 8(x; y : T)(neq x y)! :(eq x y):= �[x; y : T ;H : :(eq x y)℄Hdef neq nrefl : 8(x : T):(neq x x):= �[x : T ;H : (neq x x)℄(neq spe
 x x H (eq refl x))
9>>>>>>>>>>>>=>>>>>>>>>>>>;

Dependen
es between �elds appear in �elds signatures or de�nitions, and there are of two kinds like in Coq.The dependen
e of a �eld m2 on a �eld m1 is said opaque if expressing the signature or the de�nition of m2requires to know the signature of m1, but not its de�nition. The dependen
e is said transparent if expressingthe de�nition of m2 requires to know the de�nition of m1.For instan
e, there are opaque dependen
ies of neq nrefl with every other �elds in setoid (by transitive
losure). But the dependen
e of neq spe
 on neq is transparent, and dependen
ies of neq spe
 on eq and Tare opaque.These notions of dependen
ies give a suÆ
ient
ondition to ensure the
oheren
e of the rede�nition of�elds. Indeed, the only requirements for the (re)de�nition of a �eld m to be valid, is to respe
t the type ofm, if this one has been pre
edently be de
lared (or de�ned). When building a mixtel B by rede�ning some�eld m of a mixtel A, the �elds of A that depends opaquely on m have not to be rede�ned, be
ause theirde�nition will still be
oherent with their type. But the de�nition of the �elds of A depending transparentlyon m are lost, be
ause they may be
ome in
oherent.In setoid, we may rede�ne neq without having to rede�ne neq nrefl (so, we freely inherit it). But, if werede�ne neq, the de�nition of neq spe
 is lost. It is a kind of proof obligation, the user has to rede�ne them.The user will have to
arefully manage these kinds of dependen
ies: opaque dependen
ies will expressgeneri
 properties, but transparent ones will express fundamental spe
i�
ations.5.2 Informal des
riptionRoughly speaking, mixDre
s
ontain both de�ned �elds, and de
lared (but not yet de�ned) �elds. Thereis thus a
orresponden
e between Dre
ord implementations and mixDre
s whose all �elds are de�ned. Anddually, there is a
orresponden
e between Dre
ord signatures and mixDre
s whose all �elds are de
lared.As for Dre
ords, we de�ne a type,
alled mixtel, on sigtel. Then a mixDre
 is a well-formed mixtel, whoselist of labels is double-free.Unlike teles
opes signatures whi
h have a linear stru
ture, mixtels have a tree stru
ture with two kindsof internal nodes: nodes known as \abstra
t" whi
h represent roughly speaking de
lared �elds, and thoseknown as \manifest" whi
h represent de�ned �elds. \Abstra
t" nodes
orrespond to the \nodes" of teles
opesignatures: they
ontain the same information, in parti
ular, they have a unique son. \Manifest" nodes
ontainseveral informations: the name of the �eld, its type, its implementation, and two sons: a mixtel whi
h dependsin an opaque way on this �eld (as in teles
ope signatures) and a mixtel whi
h depends in a transparent wayon this �eld (as in teles
ope implementations).Mixtel
orresponding to the setoid mixDre
 above

E E E E

...M M

M

MA

A

A

[x : T ;H : (eq x x)! False℄(H (eq refl x))[x : T ;H : (neq x x)℄(neq spe
 x x H (eq refl x))neq nrefl neq nrefl
(x : T)(eq x x)neqeqeq reflT ! T ! Prop[x; y : T ℄:(eq x y)neq spe
 neq spe
[x; y : T ;H : :(eq x y)℄H(x; y : T)(neq x y)! :(eq x y)T ! T ! Prop

[x : T ℄::(eq x x)(x : T):(neq x x)A :abstra
t nodes ; M : manifest nodes ; E : leafs (empty mixtel).In a manifest node, the two sons represent the same mixtel: the left son (opaque) represents this mixtel ifone forgets (or
hanges) the implementation asso
iated with the node, the right son (transparent) represents

this mixtel when this implementation is preserved. A well-formed mixtel is su
h that the right son of everymanifest nodes is a more-de�ned view of the left son mixtel.At last, let us pre
ise a little the
on
epts of de
lared and de�ned �eld in a well-formed mixtel. A �eldwill be de�ned in a well-formed mixtel when in the rightest bran
h, the node
arrying its label is manifest.On the
ontrary, a �eld will be de
lared, when in this bran
h, this node is abstra
t. In this
ase, all the mixtelnodes whi
h
arry this label will be abstra
t (under the assumption of mixtel well-formness). When all the�elds of a mixtel are de�ned, a teles
ope implementation may be built dire
tly: it is the rightest bran
h.5.3 ImplementationThe type mixtel is de�ned by two parts: �rst, the stru
ture of trees is expressed only on lists of labels (viaa predi
ate on lists pre whi
h gives whi
h labels are \Abstra
t" or \Manifest"), and then the dependen
iesbetween �elds are expressed in mixtel. As for teles
opes, pre and mixtel are re
ursive types instead ofindu
tive types. Thus, we introdu
e respe
tively flag and mix whi
h
ontains the \indu
tive part" of thesede�nitions.Indu
tive UnitS:Set:= unitS:UnitS.Indu
tive flag[U:Set℄:Set :=Abs: U->(flag U)| Man: U->U->(flag U).Fixpoint pre[l:(list A)℄: Set :=Cases l ofnil => UnitS| (
ons a m) => (flag (pre m))end.Definition abs_of:=[U:Set;x:(flag U)℄Cases x of (Abs p) => p| (Man p _) => pend.
Variable T:Type.Variable U:Set.Variable F:T->U->Type.Stru
ture dpair[f:T->Type℄:Type :=fdproj1:T;dproj2:(f dproj1)g.Definition option:(flag U)->Type:=[p℄Cases p of(Abs _)=>UnitT| (Man _ p2)=>(dpair [x:T℄(F x p2))end.Stru
ture mix[p:(flag U);a:A℄:Type:=fmix_spe
:(x:T)(F x (abs_of p));mix_val:(option p) g.Fixpoint mixtel[l:(list A)℄:(sigtel l)->(pre l)->Type :=<[l:(list A)℄(sigtel l)->(pre l)->Type>Cases l ofnil => [_;_℄EsigT| (
ons a m) => [s;p℄(mix [x:(dom s)℄(mixtel (s x)) p a)end.5.4 Properties and operationsThe predi
ate is all def tests if all labels in a pre are de�ned. The fun
tion new whi
h generates an impltelfrom a mixtel, whose all labels are de�ned.Definition new:(l:(list A); s:(sigtel l); p:(pre l))(is_all_def p)->(mixtel s p)->(impltel s).De�nition 4. Then, given a signature s, and two mixtels m1 and m2, (mat
h mix m1 m2) is a proof thatthe �elds of m1 are a more-de�ned view (with the same de�nition) of their equivalent in m2 (mat
h pre isthe
orrespondent notion on pre).l:(list A)s:(sigtel l)p1,p2:(pre l) Definition mat
h_mix:(mat
h_pre p1 p2)->(mixtel s p1)->(mixtel s p2)->Type.mat
h mix is a transitive relation, but not re
exive (nor anti-re
exive).Theorem 5. We have then the following property: if all the labels of m2 are de�ned, then all the labels of m1are also (is all def mat
h property), and the teles
ope implementation generated, via new, by m2 is equalto the one generated by m1.m1:(mixtel s p1)m2:(mixtel s p2) Theorem mat
h_mix_new:(H1:(is_all_def p2);H2:(mat
h_pre p1 p2))(mat
h_mix H2 m1 m2)->(new H1 m2)===(new (is_all_def_mat
h H1 H2) m1).

De�nition 5. A well-formed mixtel is a mixtel that
he
ks the re
exivity of mat
h mix.Definition wellmixed:=[p:(pre l);H:(wellpre p);m:(mixtel s p)℄(mat
h_mix H m m).We have then two operations on mixtels: merge mix for merging two mixtels of same signatures, andlift mix for lifting a mixtel in a subsignature.Definition merge_mix:(l:(list A); s:(sigtel l); p1,p2:(pre l))(mixtel s p1)->(mixtel s p2)->(mixtel s (merge_pre p1 p2)).Definition lift_mix:(l1,l2:(list A); H:(l1 � l2);s1:(sigtel l1); s2:(sigtel l2))(subsig H s1 s2)->(p:(pre l2))(mixtel s2 p)->(mixtel s1 (lift_pre H p)).The following properties are
urrently in way to be proved (but there are some diÆ
ulties to handlebig terms). wellmix merge says that merge mix transforms wellformed mixtels in a wellformed mixtel. Andmat
h mix merge 1 says that merge mix m1 m2 mat
hes m1. As merging on mixtels is not
ommutative(be
ause, when �elds of same name have di�erent de�nitions, you have to
hoose one), it gives a
ontrol ofwhat de�nition will be
hoosen by the system in
ase of
on
i
t: the left will always win.Lemma wellmix merge: (wellmixed H1 m1) -> (wellmixed H2 m2)->(wellmixed (wellpre merge H1 H2) (merge mix m1 m2)).Lemma mat
h mix merge 1: (wellmixed H1 m1) -> (wellmixed H2 m2)->(mat
h mix (mat
h pre merge 1 H1 H2) (merge mix m1 m2) m1).That's the point where the
urrent implementation stops. There are some lemmas left to write in orderto
he
k the
orre
tness of lift mix. But we will need to extend the notion of mat
h mix for mixtels ofdi�erent signatures.5.5 Using mixtelsThe
orre
tness of the operations merge mix and lift mix are not totally proved. But semanti
 aspe
ts aresuÆ
iently disjoint of operational ones to allow to use them already. We have tried a little example that wedes
ribe now, without giving the sour
es be
ause the syntax is too mu
h ugly. We keep here the informalsyntax given for setoid.First, we have
oded the setoid mixtel mentioned before. Then, we have de�ne Bool base as follow, wherebool is an indu
tive type with two
onstru
tors, negb the negation on booleans, and Is true, the
onversionfrom booleans to Prop:
Bool base :=

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:
def T : Type:= booldef eq : T ! T ! Prop:= �[b1; b2 : bool℄(Is true (if b1 then b2 else (negb b2)))def eq refl : 8(x : T)(eq x x):= �[b : bool℄if b then I else I:def neq : T ! T ! Prop:= �[b1; b2 : bool℄(Is true (if (negb b1) then (negb b2) else b2))def neq spe
 : 8(x; y : T)(neq x y)! :(eq x y):= �[b1; b2 : bool℄if b1 then if b2 then �[H; ℄H else �[; H ℄Helse if b2 then �[; H ℄H else �[H; ℄H

9>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>;The aim of the operation is to merge setoid and Bool base. As neq nrefl is a �eld of setoid but not inBool base, we must �rst lift Bool base by the signature of setoid. It makes from Bool base a mixtel with ade
lared �eld neq nrefl. Then, we
an make the merge. But, the merge is not
ommutative, be
ause neqdi�ers in the two mixtels. We tried the two possibilities. Results are
omputed with a reasonable eÆ
ien
y.

5.6 From mixtels to mixDre
sMixDre
s are wellformed mixtels, on a signature of Dre
ords (double-free signature of teles
ope). Wellform-ness
an be dis
harged via a ta
ti
 (whi
h fails when the underlying mixtel is not wellformed). Thus, one
ould imagine, that the user enters its mixtels, and a ma
ro (whi
h may fail) transform them into mixDre
s.The problem is now to give a syntax to the user.Currently, the syntax is very bad, be
ause, the user is obliged to des
ribe the tree-like stru
ture ofthe above �gure. With a semanti
al analysis, it may be possible to parse "mixtels" in the informal syntaxpresented here, to put them into the tree-like stru
ture. But it is generally not a good idea to make semanti
analysis while parsing: here, the user will not see easily in the
ode the kind of dependen
es between �elds.But these dependen
ies are fundamental for its understanding of the
ode.A good solution, is maybe to mark synta
ti
aly �eld identi�ers, whose de�nition is needed, by puttingthem between delimitors. From this syntax, it should be possible to generate the tree-like stru
ture withouttyping, but only synta
ti
 manipulation...6 Con
lusionThis paper presents an en
oding in Coq of a framework aimed to be used for spe
ifying and implementing a
omputer algebra library. This framework rests upon a notion of stru
tures, whi
h share some features withobje
t-oriented language: espe
ially, stru
tures
an be des
ribed the one from the others, by di�eren
es.This en
oding is based on a re
ord des
ription in Coq (Dre
ords), enri
hed with a
lass-like notion, also
oded in Coq: mixDre
s. They allow to des
ribe a hierar
hy of Dre
ords in a in
remental way. In mixDre
s,�elds may only be de
lared, or may be rede�ned. MixDre
s may be extended by inheritan
e.There are some features left to be implemented. Mainly, renaming, mixtel \semanti
al aspe
ts" and a\user interfa
e" for mixtels.However, in the
urrent implementation of Coq, this en
oding
annot really be used on interestingexamples, be
ause of eÆ
ien
y limitations.In futures works, we will try to give a more abstra
ted presentation of this framework, free from the Coqdes
ription.Referen
es1. B. Barras. Auto-validation d'un syst�eme de preuves ave
 familles indu
tives. Th�ese de Do
torat, Universit�e Paris7, 1999.2. B. Barras, S. Boutin, C. Cornes, J. Courant, , Y. Cos
oy, D. Delahaye, D. de Rauglaudre, J.-C. Filliâtre,E. Gim�enez, H. Herbelin, G. Huet, H. Laulh�ere, C. Mu~noz, C. Murthy, C. Parent-Vigouroux, P. Loiseleur,C. Paulin-Mohring, A. Sa��bi, and B. Werner. The Coq Proof Assistant Referen
e Manual. Projet Coq, INRIA-Ro
quen
ourt { CNRS-ENS Lyon, january 1999.3. S. Boulm�e, T. Hardin, D. Hirs
hko�, V. M�enissier-Morain, and R. Rioboo. On the way to
ertify
omputer algebrasystems. In Cal
ulemus 99 Systems for Integrated Computation and Dedu
tion, volume 23 of ENTCS. Elsevier,1999.4. Th. Coquand. An analysis of girard's paradox. In Symposium on Logi
 in Computer S
ien
e. Cambridge, MA.IEEE PRESS, 1986.5. J. Courant. Un
al
ul de modules pour les syst�emes de types purs. Th�ese de Do
torat, E
ole Normale Sup�erieurede Lyon, 1998.6. N. G. de Bruijn. Teles
oping mapping in typed lambda
al
ulus. Information and Computation, pages 189{204,April 1991.7. R. Harper and M. Lillibridge. A type-theoreti
 approa
h to higher-order modules with sharing. In 21st Symposiumon Prin
iples of Programming Languages, pages 123{137. ACM PRESS, 1994.8. L. Pottier. T�eles
opes : des re
ords g�en�eralis�es d�e�nis dans Coq lui-même. Communi
ation personnelle, sour
esdisponibles sur http://www-sop.inria.fr/
roap/CFC/Tel/index.html, 1999.9. B. Werner. Une Th�eorie des Constru
tions Indu
tives. Th�ese de do
torat, Universit�e de Paris 7, 1994.

