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Abstract. This paper is part of FOC[3] a project for developing Computer Algebra libraries, certified
in Coq [2]. FOC has developed a methodology for programming Computer Algebra libraries, using
modules and objects in Ocaml. In order to specify modularity features used by FOC in Ocaml, we
are coding in Coq a theory for extensible records with dependent fields. This theory intends to express
especially the kind of inheritance with method redefinition and late binding, that FOC uses in its Ocaml
programs.

The unit of FOC are coded as records. As we want to encode semantic information on units, the fields
of our records may be proofs. Thus, our fields may depend on each others. We called them Drecords.
Then, we introduce a new datatype, called mizDrec, to represent FOC classes. Actually, mixDrecs are
useful for describing a hierarchy of Drecords in a incremental way. In mixDrecs, fields can be only
declared or they can be redefined. MixDrecs can be extended by inheritance.

1 Introduction

This work lies within the scope of FOC, a project for developing a library for Computer Algebra, written
in Ocaml and certified in Coq. Units of such a library are aimed to offer different views of mathematical
algebraic structures, from the purely abstract one, very close to mathematics to some fully implemented
ones, where the carrier and the code for the operators are completely fixed. For example, there exists a unit
U; describing the (abstract) notion of ring, a second one U, for the integral domains and a third one Us
giving the implementation of Z/2Z on the booleans. So a unit provides declarations of identifiers, possibly
some code for certain identifiers, and, as this library is to be certified, some assertions on identifiers and
code. A unit is rarely built independently of the others and there are usually several kinds of dependence
between units. For example, the unit of integral domains U, is built upon U; and Us gives an instantiation
of the abstract representation of the carrier of U,. Therefore, our library is a hierarchy — or a graph — of
units.

We face up the question: how to proceed to the certification of this library, in order to ensure that the
assertions put in the units are correct? As a unit U is built upon some other units U;, the assertions (so their
proofs) of U may depend of some assertions of the U;. These dependencies may be handled case by case, by
a method just driven by the assertions in U. Evidently, this is not a good solution as some sharing of the
treatment of dependencies can be done. The construction of the library must be able to be done in an incre-
mental way. In particular, one must be able to build the units the ones from the others, by expressing only the
differences between them. We propose in this paper a description in Coq of such a library construction system.

How to represent a unit? A unit introduces a certain number of functions, which could be called by other
units of the library. Thus, one must provide a non-ambiguous name for the function of a given library. But
at the same time, it is convenient that two functions “having the same meaning” in different units share
the same name. We choose to represent the units of our library via records (with the “.” notation) which
offer at the same time a non-ambiguous way to indicate a function of a library (it is not for example by the
case, in approaches with overloading), and at the same time the possibility of sharing field names between
records: and thus to indicate by a same name of the different functions.

Thus, roughly speaking, a unit will be coded as a record. As our units will contains types, programs,
proofs, in a spirit & la Curry-Howard, our records will have dependent fields. We called them Drecord.



In order to describe Drecords in a incremental way, we introduce a new datatype, called mizDrec. As
classes in object-oriented language, mixDrecs are generators of Drecords. In mixDrecs, fields can be only
declared or they can be redefined. MixDrecs can be extended by inheritance. Thus, mixDrecs describe a
family of Drecords.

Our requirements on records are the following: a same name could be shared between any records types;
fields may depends on other fields; we want a notion of subtyping between records type, with its associate
coercion. We want defines operation on records (coercions, inheritance, ...).

2 Records with dependent fields in Coq

In this section, we present quickly the records of the current version of Coq, explaining why they do not
meet these requirements. Then, we introduce our proper definition of records, called Drecords.

2.1 Records in Coq V6.3.1

In Coq V6.3.1, records are coded via inductive definitions. A type record S is simply an inductive type with
one constructor, called Build_S by default. Field access is coded as projections associated to this inductive
type. For instance the following definition of the type record pair introduces the name pair and the two
labels fst and snd. The constructor Build_pair is associated to this type and the labels are used to create
the access functions to the fields of the record:

Structure pair[A,B:Set]: Set := { fst: A; snd: B }.

is actually a macro for:

Inductive pair[A,B:Set]:Set :=
Build_pair: A->B->(pair A B).

Definition fst := [A,B:Set; x:(pair A B)]
Cases x of (Build_pair fst _) => fst end.

Definition snd := [A,B:Set; x:(pair A B)]
Cases x of (Build_pair snd) => snd end.

There is an important restriction on labels, which must not be shared by different record types. With
the mechanism of coercion, this restriction can be partially raised. Moreover, encoding records via a macro
mechanism and coercions operate at the level of record types. So this implementation does not meet our
requirements on records, and we have to introduce our own notion. We do that step by step, first introducing
some notations and the coding of field access.

2.2 A first sight of Drecords

Roughly speaking, a Drecord can be seen as a function from a given finite set of labels to a set of fields.
Applying this function to a given label performs field access. As the types of these fields may differ, a notion
of Drecord signature associating its type to each field is therefore needed.

Notations A is a type parameter (of sort Set) of the theory, which denotes the type of the labels. The
equality of A is assumed to be decidable.
Let L and L; be lists of labels and a a given label. We suppose given the following definitions:
_ €:(a € L) is true if a belongs to L.
- D: (L D L) is true if L contains L;.
- N: (L # Ly) is true if L and L; have no common labels
_7: Lis true if L does not contain two occurrences of the same label.
-\ :(L\ L) is a function which returns the list of labels in L which do not belong to L.
The code Coq given here is in “implicit arguments mode”: some arguments of functions are left implicit
but, if needed, they can be given with the notation n! where n is the position of the argument.



Field access We suppose given a type called sign of sort Type which is the type of Drecord signatures and
a function Drecord of type sign—Type. They will be defined further.

A Drecord is, by definition, a term of type (Drecord s), where s is a term of type sign. The function
sign_1 returns the list of labels of a Drecord and will also be defined further. In the following, expressions
(sign1 s) are denoted by |s|.

Field access is defined by two functions, field and fieldT, which takes a Drecord D and a label a as
arguments. (field D a) is the field associated with a in D and £ieldT returns the type of (field D a).

fieldT: (s:sign) (Drecord s)->A->Type
field:(s:sign ; i:(Drecord S) ; a:A ; H:(a€|s|)) (fieldT i a)

Note that the expression (fieldT D a) makes sense only if the label a figures in D. So, £ieldT is not
supposed to be used directly.

We turn now to the coding of sign and Drecord. The difficulty is to express the dependencies between
the fields. So, we make an intermediary step by introducing telescopes.

2.3 Telescopes

In [8], the concept of telescope is used to express dependencies between fields of record-like structures. This
notion was first introduced by [6] to express dependencies between contexts.

We introduce here telescopes with labels which implementation departs from those of [8] but we still
name this new version telescopes.

Pair with dependent fields A pair with dependent fields is a Cartesian-product-like type. As usual, it is
coded by a dependent sum upon two canonical injections:

Structure dpair[T2:Type; T1:T2->Typel : Type:= {x2: T2; x1: (T1 x2)}.

Let us remark that the different occurrences of Type in this definition denote different Type_n where n is an
implicit level of universe. The precedent definition is actually:

Structure dpair[T2:Type_i; T1:T2->Type_jJ: Typek:={z2: T2; z1: (T1 z1)}.

where i < k and j < k. This mechanism (invisible for the user) prevents the construction of paradoxes (cf.
[9] and [4]).

In this denotation X5 represents a constructor of binary existential type, and (7 is a type with one
element: @), called here empty telescope.

Telescopes are defined by an iteration of this type dpair on itself (see below). Moreover, each field will
be labelled. These labels may be used for example to define notions of field access, subsignature,... They are
firmly attached to the fields and may be considered as a part of the definition of the telescope: for example,
they are not submitted to a-conversion. Now, the content of a field may depend on the preceding ones in the
structure. As considered in [7] and [5], in a high order context, dependencies cannot be expressed by labels,
because of variable captures. Dependencies have to be expressed by bound variables.

Thus, informally, a labelled telescope can be denoted as a term of type

Yoln : T 5 oo 21 (T @y . 22)]0r

where X',, denotes a dependent sum type build upon n canonical injections; where T; are functions with values
in types, labelled by a;, themselves independent of x; variables; and, (7 is a type with a single element: the
empty telescope.

Formally, telescopes are defined through two types: sigtel, the type of “telescope signatures”, and
impltel the type of “telescope implementations”. The sort of sigtel and impltel id Type, as fields may lie
in Set or Prop or even in Type. But, because of universe constraints, fields of a telescope leave in a universe
below the one of this telescope.



Telescope signatures The type of telescope signatures, sigtel, is defined by recurrence on lists. It uses
two base types: EsigT the type having only one element which represents the type of the empty signature,
and (FunIn a T) the type, labelled by a, of functions with values in T.

Inductive EsigT: Type := Esig_: EsigT. Fixpoint sigtel[1l:(list A)]:Type :=
Cases 1 of
Structure FunIn[a:A; T:Typel: Type:= nil => EsigT
{dom: Type; fun:> (dom->T)}. | (cons a m) => (FunIn a (sigtel m))
end.

The “>” on fun in FunIn declares the fun projection as a Coq coercion. Without it, if s a term of type
(FunIn a T) and x a term of type (dom s), the term (s x) does not typecheck, because (FunIn a T) is not
a function type. With this coercion, this term typechecks, and mean ((fun s) x) (see below in impltel).

Telescope implementations Telescope implementations are defined in the same way, by an iteration on
dependent pairs:

Inductive EimplT: Type := Eimpl_: EimplT. Fixpoint impltel[l:(list A)]:(sigtel 1)->Type:=
<[1:(1ist A)](sigtel 1)->Type>Cases 1 of
Structure dpairT[T:Type,f:T->Type; a:A]l: Type:= nil => [_]EimplT
{dprojT1: T; dprojT2: (f dprojTi) }. | (cons a m) =>

[s](dpairT [x:(dom s)](impltel (s x)) a)
end.

These two recursive types sigtel and impltel could alternatively be defined by using inductive types
of Coq. For instance, sigtel could be write as:
Inductive sigtel: (list A)->Type :=

Esig: (sigtel (nil 4))
| Csig: (a:4; 1:(list A); dom:Type) (dom->(sigtel 1))->(sigtel (cons a 1)).

But, if recursive types (defined by fixpoint) are less general than inductive ones, they are more convenient
to handle in some situation. Inversion lemmas on inductive types are not well automatically generated when
using dependent types, whereas they simply correspond to reduction on recursive types.

Also, defining impltel by an inductive type requires to type it in a higher universe than sigtel, which
is against intuition. With the recursive definition, imptel lies in a lower universe than sigtel. Thus, in all
this implementation, we use only “not-recursive” inductive types (except for defining cont0 and subsig, see
below). For that, we pass the recursive calls as an argument of the inductive type (like in continuations):
for example, FunIn corresponds to the Csig constructor, with T as parameter, to capture the recursive call.
Then we use a fixpoint, to express the recursive calls. The counterpart of this method is that such recursive
definitions of type are harder to establish and to understand.

Field access Field access is done by two functions, fieldsig which returns the type of the field, and
fiedimpl which returns this field. These two functions are not totally defined. The type Dummy with a single
constructor foo is used to express this partiality.

Inductive Dummy: Type := foo: Dummy.
Hypothesis eqA_dec:(x, y:A){x=y}+{"x=y}.

Fixpoint fieldsigla:A; 1:(list A)]:(s:(sigtel 1)) (impltel s)->Type :=
<[1:(1list A)](s:(sigtel 1)) (impltel s)->Type>Cases 1 of
nil => [_;_]Dummy
| (cons b m) => [s;il
if (eqA_dec a b) then
[_](dom s)
else
[_](fieldsig a (dprojT2 i))
end.

Fixpoint fieldimpl[a:A; 1:(list A)]:(s:(sigtel 1); i:(impltel s)) (fieldsig a i):=
<[1:(1ist A)I(s:(sigtel 1); i:(impltel s))(fieldsig a i)>Cases 1 of
nil => [_;_Jfoo



| (cons b m) =>
[s;i]l<[H:a=b+~a=b]if H then [_](dom s) else [_](fieldsig a (dprojT2 i))>
if (eqA_dec a b) then
[_1(dprojT1 i)
else
[_]1(fieldimpl a (dprojT2 i))
end.

From telescopes to Drecords A Drecord is a telescope which labels (a; in the informal definition) are
pairwised distinct. This is only a “semantic” property: the access to a field has to be non ambiguous. All the
operations on Drecords may be built independently of this condition: they are firstly defined on telescopes.
In a first attempt, we coded Drecords by considering at the same time operational and semantic aspects. It
became quickly unmanageable because semantic considerations polutted the code.

This semantic property is encoded by putting guards in order to restrict the use of the telescopes. These
guards are the predicate denoted by €, D, N and ~. They are decidable (under the assumption of the
decidability of labels equality), and they can be discharged by the Coq typechecker.

Coding the guards on the lists To express the fact that guards express only that the “Drecord semantic”
is fulfilled, they are put into Prop. As they are decidable, their values may be: the type True or the type
False. They are implemented as instantiations of the two predicates A11D and ExD below.

Variable P:A->(list A)->Prop.
Hypothesis P_dec: (x:A; 1:(list A)){(P x ) }+{"(P x 1)}.

Fixpoint A11D[1:(list A)]: Prop :=
Cases 1 of

nil => True
| (cons a m) => if (P_dec a m) then [_](AllD m) else [_]False end.

Fixpoint ExD[1:(1list A)]: Prop :=
Cases 1 of

nil => False
| (cons a m) => if (P_dec a m) then [_]True else [_](ExD m) end.

Definition 1. Signatures of Drecord are a triple: a list sign 1, a proof sign_ 1 _df that this list is double-free
(guard instantiating AL1D above), and a sigtel sign_p built on sign 1.

Structure sign: Type := {
sign_1: (list A);

sign_1_df: éigﬂfi;
sign_p:> (sigtel sign_1) }.

Let us remark here, that sign_p is a Coq coercion, from sign to sigtel.

Definition 2. Drecords are simply telescopes, built upon a Drecord signature:

Definition Drecord[s:sign]:=(impltel s).
The transformation of telescope into a Drecord is thus only a type coercion.

Definition 3. Functions for accessing fields are:

Definition fieldT:(s:sign) (Drecord s)->A->Type
:=[s;i;al (fieldsig eqA_dec a 1i).

Definition field:(s:sign; i:(Drecord s); a:A; H:(a€|s|)) (fieldT i a)
:=[s;i;a;H] (fieldimpl eqA_dec a i).

3 Operations and relations between Drecord signatures

This section presents operators and properties of Drecords. They are first informally introduced, then the
operators and properties on the underlying telescopes are described.



3.1 Subsignature relation and coercion between Drecords

Properties Between Drecord signatures, there is a natural relation, subsign, of subsignature: s; is a
subsignature of s (we will informally write s; :> s2), if s; can be transformed into s, by forgetting or
permuting some fields. Internally, this concept of subsignature is implemented as an inductive type subsig
on telescope signatures, which allow to reason by induction on “proofs” of subsignatures (cf. below).

Theorem 1. The relation subsign of type sign->sign->Type is a preorder, whose associated relation of
equivalence can be easily defined: it corresponds to subsign on signatures of equal length.

Proof This has been proved in Coq:

(* Preorder propertiesx)
Lemma subsign_refl:(s:sign) (subsign s s).

Lemma subsign_trans:(sl,s2,s3:sign) (subsign sl s2)->(subsign s2 s3)->(subsign sl s3).

(* Properties of the associated equivalence *)
Lemma subsign_antisym:(sl,s2:sign) (subsign sl s2)->(subsign s2 s1)
->(length |s1])=(length |s2|).

Lemma subsign_sym: (sl,s2:sign) (subsign sl s2)
->(length |s1|)=(length |s2|)->(subsign s2 s1).

Associated with this concept of subsignature, there is a function coerce for converting Drecords, which
preserves the extensional behavior of Drecords (equality of the fields accessed via the same labels). These
coercions will correspond to coercions on objects in the FOC project.

Theorem 2. Let s1 and s2 two signatures such that sl :> s2. Then the function coerce of type
(Drecord s1)->(Drecord s2) has the following property (called subsign_ext):

Let i be a (Drecord s1), then for any label a in |s2|, .
the access to a via field on i is equal to the one on s1 subsign
(coerce 1i). i coerce
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Proof Let us assume the definition of eqT_dep!, the dependent equality over types. The theorem subsign ext
has been proved in Coq:

Lemma subsign_cont:(sl1,s2:sign) (subsign s1 s2)->|s1|D|s2|.

Lemma subsign_ext_T: (s1,s2:sign; H:(subsign sl s2); i:(Drecord s1); a:A) (a€ls|)
->(fieldT i a)==(fieldT (coerce H i) a).

Theorem subsign_ext: (s1,s2:sign; H1:(subsign sl s2); i:(Drecord sl1); a:A; H2:(a€|s2]))
(eqT_dep 2![T:TypelT (field i (cont_incl (subsign_cont H1) H2)?)
(field (coerce H1 i) H2)).

This last property (shown in Coq) guarantees the correction of the implementation of subsignature
with respect to its semantics. In particular, for every “proof” of subsignature between two signatures, the
associated coercions at Drecords level are equivalent (with respect to field access).

! With the following definition with implicit arguments on:

Inductive eqT_dep[U:Type; P:U->Type; p:U; x:(P p)1: (q:U) (P q)->Prop:=
eqT_dep_intro: (eqT_dep x x).

? proof of a€|s1|



Implementation The subsign relation from s1 to s2 is defined as a succession of elementary transforma-
tions on signatures (forgetting fields, permuting fields, ...). More formally, it is divided in two parts. First,
subsign _cont0 gives the skeleton these elementary transformations to pass from |s1| to |s2|. And then these
succession of transformations is expressed at the level of sigtels by subsign p:

Structure subsign[sl,s2:sign]: Type :=
{ subsign_cont0: (cont0 |s1]| |s2]);
subsign_p:> (subsig subsign_cont0 sl s2)}.

contO0 is defined by:

Inductive cont0:(list A)->(list A)->Set :=
contO_nil: (1:(1list A))(contD 1 (nil A))
| contO_cons: (al,a2:A)(11,12:(list A))al=a2->(cont0 11 12)->
(cont0 (cons al 11) (coms a2 12))
| cont0_lift:(a:A; 1,m:(list A)) (cont0 1 m)->(contD (cons a 1) m)
| contO_swap:(al,a2:4; 11,12:(list A))
(cont0 11 12)->(cont0 (cons al (cons a2 11)) (comns a2 (coms al 12)))
| contO_trans: (11,12,13:(list A)) (contD 11 12)->(contD 12 13)->(cont0 11 13).

Then subsig is defined as follows:

Inductive subsig: (11, 12:(list A)) (contD 11 12)->(sigtel 11)->(sigtel 12)->Type :=
subsig_E: (1:(list A); s:(sigtel 1)) (subsig (contO_nil 1) s Esig)
| subsig_C: (a:A; 11, 12:(list A); T:Type; f:T ->(sigtel 11); g:T ->(sigtel 12);
H: (contD 11 12))
((x:T) (subsig H (f x) (g x)))->(subsig (contO_cons (refl_equal A a) H)
(Csig a f) (Csig a g))
| subsig_lift: (a:A; 11, 12:(list A); T:Type; £:T ->(sigtel 11); s:(sigtel 12);
H: (contD 11 12))
((x:T) (subsig H (f x) s))->(subsig (contO_lift a H) (Csig a f) s)
| subsig_swap:
(al, a2:A; 11, 12:(list A); T1, T2:Type;
f:T1 -> T2 ->(sigtel 11); g:T2 -> T1 ->(sigtel 12))
(H: (contD 11 12))
((x:T1; y:T2)(subsig H (£ x y) (g y x))) —>
(subsig (contO_swap al a2 H)
(Csig al [x:T1](Csig a2 [y:T21(f x y)))
(Csig a2 [y:T2]1(Csig al [x:T1l(g y x))))
| subsig_trans:
(11, 12, 13:(list A); sil:(sigtel 11); s2:(sigtel 12); s3:(sigtel 13);
Hi:(contD 11 12); H2:(cont0 12 13))
(subsig H1 s1 s2) -> (subsig H2 s2 s3) -> (subsig (contO_trans H1 H2) sl s3).

where
Definition Esig: (sigtel (nil A)) := Esig_.

Definition Csig: (a:A; 1:(list A); T:Type) (T->(sigtel 1))->(sigtel (comns a 1))
:=[a,1,T,f] (Build_FunIn a f).

If we would have not defined cont0, but directly subsig, it would not be possible to have a right notion of
“succession of transformations”. This notion is however necessary to define the merge of signature (cf. 3.3),
because the use of permutation rule will have an influence on the order of the label list in the result signature.

The function of coercions between impltels, coerce_impltel, is then a trivial induction of a proof of
subsig. Here is its type :

Definition coerce_impltel: (11, 12:(list A); sl:(sigtel 11); s2:(sigtel 12);
H: (cont0 (eq A) 11 12)) (subsig H sl s2) -> (impltel s1) -> (impltel s2).

Thus,

Definition coerce: (s1,s2:(sign)) (subsign sl s2)->(Drecord s1)->(Drecord s2)
:=[s1,s2;H;i] (coerce_impltel H i).



3.2 Extending a Drecord signature some fields

Description A simple extension of signature, flatsign, consists to add some new fields at the end of a
given signature s. But these new fields may depend on the fields of s. So, this new part of signature must
be expressed in a context containing the fields of s i.e. a Drecord of signature s.® The part of signature may
thus be expressed by a function of the type (Drecord s)->(sigtel 1), where 1 is a double-free list of the
new labels.

Theorem 3. The simple extension of a signature s, is a subsignature of s.

Proof This has been proved in Coq:

Variable s:sign. Definition flatsign: ((Drecord s)->(sigtel 1))->sign.
Variable 1:(1list A)).

Hypothesis H1:1. Theorem flatsign_subsign:

Hypothesis H2: (1fi|s]|). (f: (Drecord s)->(sigtel 1)) (subsign (flatsign f) s).
(|

By construction |flatsign| is the concatenation of |s| and from 1. As a particular case of extension of
signatures, one derive the concatenation of signatures:

Variables s1,s2:sign. Definition concatsign:=
Hypothesis H: (|s2|fi|s1]). (flatsign (sign_1_df s2)* H [_: (Drecord s1)1(sign_p s2)).

Lemma subsign_concatsign_1: (subsign concatsign s1).
Lemma subsign_concatsign_2: (subsign concatsign s2).

Implementation Actually, flatsign corresponds to the flatsig operation on telescopes. For readability
reasons, we will now denote (impltel s) by 5 and (coerce_impltel H i) by i|H. flatsig is a trivial

induction on 11, which type is:
flatsig: (11,12:(list A))(sl:(sigtel 11))sI->(sigtel 12))->(sigtel (11712)).

Here are some important properties of flatsig used to build merging of signatures. The terms “cont0”

are here hidden with “...”

e The extension of a signature s1 by s2 that does not depend on s1 is a subsignature of s2.
Lemma flatsig_constant: (11,12:(list A); sl:(sigtel 11); s2:(sigtel 12))

(subsig ... (flatsig [_:s1]1s2) s2).

e Subsignature is compatible with extension
Lemma subsig_flatsig_coerce: (11,12:(list A); sl:(sigtel 11); s2:(sigtel 12); ...;

H: (subsig ... s2 s1); 13:(list A); f:sl->(sigtel 13))
(subsig ... (flatsig [i](f ihf)) (flatsig [i](f 1))).

Lemma subsig_flatsig: (11,12,13:(list A); s:(sigtel 11); f:5->(sigtel 12);
g:5->(sigtel 13); ...)
((1:3) (subsig ... (f i) (g i)))->
(subsig ... (flatsig f) (flatsig g)).

e Subsignature is compatible with the permutation of a field with a packet of fields:
Lemma subtel_Csig_flatsig :
(11:(list A); s:(sigtel 11); a:A; 12,13:(list A); T:Type;
£:T->5->(sigtel 12); g:T->(sigtel 13); ...)
((x:T) (subsig ... (flatsig [i](f x 1)) (g x)))
->(subsig ... (flatsig [i]1(Csig a [x](f x 1))) (Csig a g)).

3.3 Merging signatures

A more delicate point is to define an operation for merging signatures. The concatenation of signatures
previously defined can only be applied to signatures having no common label. On the contrary, the merge
operation allows signatures to share some labels. But it imposes that these shared labels correspond to
compatible fields.

3 Do not forget that telescopes were introduced to formalize the concept of context
* proof of |s2]



Description This constraint on sharing requires the existence of a subsignature (possibly empty) common
to these two signatures and containing all labels present in both signatures. This constraint on signatures
being not decidable, the user is asked to discharge it completely. Later on, it is planed to write a tactic
(heuristic) which succeeds in discharging sometimes this constraint.

A way to implement the merging operation, is first to write the inverse of flatsign, i.e., a function
apsign such that given two signatures s; and sy with s; :> s2, apsign factorizes s in s1, by expressing the
fields of s; which do not belong to s, in function of those of so.

apsign: (s1,s2:sign) (subsign sl s2)->(Drecord s2)->sign.

apsign_subsign_1:(sl,s2:sign; H:(subsign sl s2))
(subsign (flatsign ... [i:(Drecord s2)](apsign H i)) s1).

apsign_subsign_r: (s1,s2:sign; H:(subsign sl s2))
(subsign s1 (flatsign ... [i:(Drecord s2)](apsign H i))).
With apsign defined, mergesign is quite simple:

Variables s,sl,s2:sign.

Hypothesis H1: (subsign sl s).
Hypothesis H2: (subsign s2 s).
Hypothesis H3: (|s2|\|s]) A(|s1|\|s]).

Definition mergesign :=
(flatsign ... [i:(Drecord s)](concatsign 1!(apsign H1 i) 2!(apsign H2 i) H3)).

Theorem 4. The merge of two signatures is both a subsignature of these two signatures.

Proof In Coq, we proved the following lemmas:

Lemma subsign_mergesign_1: (subsign mergesign s1).
Lemma subsign_mergesign_2: (subsign mergesign s2).

O
By construction |mergesign| is the concatenation of three lists: |s|, (|s1|\|s]) and (|s2]\|s]).

Implementation This function apsign is defined at the telescope level, by structural induction on the proof
that s; :> s2. The main difficulty of this definition (and even of all this development) comes at subsig trans
case.

Informally, assuming that apsig with the type

(s1:> s2) = (52 — (sigtel |s1]\ |s2]))

for s; and so sigtels, we are defining it by induction on the proof that s; :> s2. The subsig trans case
corresponds to :

Hi :s1:> 59
52— (sigtel [s1]\ [s2))

92183 > S3
53— (sigtel [sa] \ [s3])

< ~

Eg-—)(sigte1|81|\|83D

The idea is to give the following term for this goal :
i 5] (apsig (£1atsig [ : (Flaveis 9)](f 4|, )) )

In order to write “[j : (flatsig g)](f j| )” (expression called h below), apsign_subsign_1 has to be
$2

proved in the same time than apsig is build.
Also, unfortunately, apsig is not applicable to flatsig h because apsig is being defined by structural
induction. Fortunately, one can that prove flatsig h is a signature signature whose s3 is a prefix (in the same



sense than prefix on words). Thus, we introduce this prefix relation between telescopes signatures (showing
for instance that if s, is a prefix of s; then sy :> s2). Then, we define the function apsig pre corresponding
to apsig for the prefix relation.
Finally, apsig will be defined as the first projection of apsig dpair, which type is :
Definition apsig_dpair:(11,12:(list A); sl:(sigtel 11); s2:(sigtel 12);
H: (cont0 11 12); Hi:(subsig H sl s2))

(dpair [f:(impltel s2)->(sigtel (extract0 H))]
(subsig (contO_app_extract0 H) (flatsig [il(f i)) s1)).

where extract0 is here a function which takes a proof H of (cont0 11 12) and which returns a list “11
without the element of 12”. The order of the elements in this list depends on H (or more especially, of the
permutations in H). Actually what we abusively denote in all this paper by [1\ 12 is (extract0 H).

apsig dpair is defined by the induction described above. And the term corresponding to the subsig trans
case is finally :

[i : 53](apsig-pre (flatsig h) i)

3.4 Renaming

Renaming has not yet been implemented. We just present which renaming operations we intend to have.
A partial function f from labels to labels is a renaming on labels, a partial function f if it is injective on
its definition domain, D. Such functions form a group for the composition law (Dso, = g1 (I, N Dy) and
Dy = Iy).

Given a renaming on labels f, the associated renaming on lists of labels is the map extension of f from
list of labels to list of labels (thus, its domain is the set of lists whose elements are in Dy).

By extension, a renaming on Drecord signatures (resp. Drecords) is the corresponding mapping on Drecord
signatures (resp. Drecords).

We can now define a notion of subsignature modulo renaming. A signature Sy is a subsignature of another
signature Sy modulo renaming, if there exists two renamings on signatures f and g such that (f Sp) is a
subsignature of (g S2).

If such f and g exist, then f(|Si|) D g(|S2|). Then (g|S2|) C Ds-1, and [Sz| C Dj-1,,. Thus, this
definition is equivalent to the following one: A signature Sy is a subsignature of another signature So modulo
renaming, if there exist a renaming on signatures f such that Sy is a subsignature of (fSs).

Let Sy a subsignature of (f Sa), we call ¢ the associated coercion from Drecords of signature S; to Drecords
of signature (f S2). We can define a coercion from Drecords of signature S; to Drecords of signature Ss as
the function f~!oec.

4 Example of use of this theory

In our example, we start by defining the type of the labels, as a (very simple) finite enumerated type, called
Label, which contains all the labels needed.

Inductive Label: Set := T: Label | EQ : Label | EQ_refl: Label | EQ_sym: Label
| EQ_trans: Label | OP: Label | OP_EQ_1l: Label.

Lemma eqLabel_dec : (x,y:Label){x=y}+{"x=y}.
Intros x y; Case x; Case y; Auto; Right; Discriminate.
Defined.

We build setoid_sig, the setoid signature, and then the Drecord type setoid. We use extensible grammars
of Coq to mask the mechanisms of guard on the lists: the system checks that the list of the labels of
setoid_sig is double-free (the user has no proof to do). failure occurs:

Definition setoid_sig:=(<eqlLabel_dec>Sign

T:Type;

EQ: T->T->Prop;

EQ_refl: (x:T)(EQ x x);

EQ_sym: (x,y:T)(EQ x y)->(EQ y x);

EQ_trans: (x,y,z:T)(EQ x y)->(EQ y z)->(EQ x z)).

Definition setoid:=(Drecord setoid_sig).



Thanks to a function Build of our Drecords theory, we make a function for building a setoid by giving all its
fields in the order where they appear in the signature. For example, types themselves form a setoid defined
by:

Definition Build_setoid:=(Build setoid_sig).

Definition Type_setoid: setoid :=
(Build_setoid (refl_eqT Type) (sym_eqT Type) (trans_eqT Type)).

The fields of Drecords are accessed via the binary operator @. It masks the check that the required field
belongs actually to the Drecord:

Definition carrier: setoid->Type:=[s](s @ T).

The type semigroup is build by using the extension of signature on setoids, adding a binary law, associative,
and compatible with the equivalence relation:
Definition semigroup_on:=[s:setoid] (Sigtel

O0P:((s @ T)->(s @ T)->(s @ T)) ;

OP_EQ_1: (x,y,z:(s @ T))((s @ EQ) x y)->((s @ EQ) (OP x z) (OP y z)) ;

OP_EQ_r: (x,y,z:(s @ T)) ((s @ EQ) x y)->((s @ EQ) (OP z x) (OP z y)) ;
OP_ass : (x,y,z:(s @ T))((s @ EQ) (OP (OP x y) z) (OP x (OP y 2)))).

Definition semigroup_sig:=(Flat [s] (semigroup_on s)).
Definition semigroup:=(Drecord semigroup_sig).

We benefit then from conversions of the theory, to transform them into Coq coercions.

Definition sgp_setoid: semigroup -> setoid := (coerce (FlatSub [s](semigroup_on s))).
Coercion sgp_setoid: semigroup >-> setoid.

Then, the type order of ordered setoids is built on the same model than semigroup. Merging semigroup_sig
and order_sig (with setoid_sig as shared subsignature) enables us to create a Drecord type ordsg which
can be extended for describing the ordered semigroups (it is necessary to add assumptions of compatibility
between the order relation and the operation of the semigroup). Unfortunately, these computations on types
are too large for the current implementation of Coq. That is due at least in a partial way to the fact that
the Drecord are not primitive. For instance, the complexity for accessing fields of a Drecord seems to be
exponential in function of its length.

5 MixDrecs

For managing mecanisms for declaring deferred fields or redefining fields, we introduce a new data type,
called mixDrec, corresponding to classes in object oriented languages. The signature of Drecord gives an
interface for specifying how it can be used. MixDrecs are a way to specify how Drecords can be build.

5.1 Motivations

We introduce the notion of mixDrec an example in a virtual syntax, inspired from Coq. The proofs are
A-terms. We use the fact that =P, where P is a proposition, is defined as P — False.

The mixDrec of setoids may be defined as follows (for concision of the example, eq is only supposed
reflexive), where the fields prefixed by decl are only declared, and the fields prefixed by def are defined.

\

(decl T : Type
decleq: T'— T — Prop
decleqrefl: Y(x:T)(eq x x)
def neq: T — T — Prop
setoid := = ANz,y: T]-(eq z y)
def neg_spec: Y(z,y:T)(neq z y) = —(eq = y)
= Ma,y:T;H : —(eq z y)|H
def negnrefl: Y(x :T)-(neq x )
= Az :T;H : (neq x x)|(neq_spec v © H (eqrefl x)) )




Dependences between fields appear in fields signatures or definitions, and there are of two kinds like in Coq.
The dependence of a field my on a field m; is said opague if expressing the signature or the definition of m,
requires to know the signature of my, but not its definition. The dependence is said transparent if expressing
the definition of ms requires to know the definition of m;.

For instance, there are opaque dependencies of neq_nrefl with every other fields in setoid (by transitive
closure). But the dependence of neq_spec on neq is transparent, and dependencies of neq_spec on eq and T
are opaque.

These notions of dependencies give a sufficient condition to ensure the coherence of the redefinition of
fields. Indeed, the only requirements for the (re)definition of a field m to be valid, is to respect the type of
m, if this one has been precedently be declared (or defined). When building a mixtel B by redefining some
field m of a mixtel A, the fields of A that depends opaquely on m have not to be redefined, because their
definition will still be coherent with their type. But the definition of the fields of A depending transparently
on m are lost, because they may become incoherent.

In setoid, we may redefine neq without having to redefine neqnrefl (so, we freely inherit it). But, if we
redefine neq, the definition of neq_spec is lost. It is a kind of proof obligation, the user has to redefine them.

The user will have to carefully manage these kinds of dependencies: opaque dependencies will express
generic properties, but transparent ones will express fundamental specifications.

5.2 Informal description

Roughly speaking, mixDrecs contain both defined fields, and declared (but not yet defined) fields. There
is thus a correspondence between Drecord implementations and mixDrecs whose all fields are defined. And
dually, there is a correspondence between Drecord signatures and mixDrecs whose all fields are declared.

As for Drecords, we define a type, called miztel, on sigtel. Then a mixDrec is a well-formed mixtel, whose
list of labels is double-free.

Unlike telescopes signatures which have a linear structure, mixtels have a tree structure with two kinds
of internal nodes: nodes known as “abstract” which represent roughly speaking declared fields, and those
known as “manifest” which represent defined fields. “Abstract” nodes correspond to the “nodes” of telescope
signatures: they contain the same information, in particular, they have a unique son. “Manifest” nodes contain
several informations: the name of the field, its type, its implementation, and two sons: a mixtel which depends
in an opaque way on this field (as in telescope signatures) and a mixtel which depends in a transparent way
on this field (as in telescope implementations).

Mixtel corresponding to the setoid mixDrec above

Aeq

lj — 1" — Prop
q-refl

\L(a: :T)(eq x )

(z,y: T)(neq x y) — —(eq z y) 7 z,y:T;H :=(eq x y)|H
4
Mneq_nrefl neq-nrefl
[&:T;H : (neq z x) LT
(neq-spec z x llf (eqrefl x)) ¢T3 H (eq(ﬁ[xeeq_irgﬁs;)])

z:T)~(neq x
(x: T)=(neq x fv) (& T](eq 2 )

A :abstract nodes ; M : manifest nodes ; E : leafs (empty mixtel).

In a manifest node, the two sons represent the same mixtel: the left son (opaque) represents this mixtel if
one forgets (or changes) the implementation associated with the node, the right son (transparent) represents



this mixtel when this implementation is preserved. A well-formed mixtel is such that the right son of every
manifest nodes is a more-defined view of the left son mixtel.

At last, let us precise a little the concepts of declared and defined field in a well-formed mixtel. A field
will be defined in a well-formed mixtel when in the rightest branch, the node carrying its label is manifest.
On the contrary, a field will be declared, when in this branch, this node is abstract. In this case, all the mixtel
nodes which carry this label will be abstract (under the assumption of mixtel well-formness). When all the
fields of a mixtel are defined, a telescope implementation may be built directly: it is the rightest branch.

5.3 Implementation

The type mixtel is defined by two parts: first, the structure of trees is expressed only on lists of labels (via
a predicate on lists pre which gives which labels are “Abstract” or “Manifest”), and then the dependencies
between fields are expressed in mixtel. As for telescopes, pre and mixtel are recursive types instead of
inductive types. Thus, we introduce respectively flag and mix which contains the “inductive part” of these
definitions.

Inductive UnitS:Set:= unitS:UnitS. Variable T:Type.
Variable U:Set.
Inductive flag[U:Set]:Set := Variable F:T->U->Type.
Abs: U->(flag U)
| Man: U->U->(flag U). Structure dpair[f:T->Type]:Type :=

{dproj1:T;dproj2: (f dprojl)}.
Fixpoint pre[l:(list A)]: Set :=

Cases 1 of Definition option:(flag U)->Type:=
nil => Unit$S [plCases p of
| (cons a m) => (flag (pre m)) (Abs _)=>UnitT
end. | (Man _ p2)=>(dpair [x:T](F x p2))
end.
Definition abs_of:=[U:Set;x:(flag U)]
Cases x of (Abs p) => p Structure mix[p:(flag U);a:A]:Type:=
| (Man p ) =>p {mix_spec: (x:T) (F x (abs_of p));
end. mix_val: (option p) }.

Fixpoint mixtel[l:(1list A)]:(sigtel 1)->(pre 1)->Type :=
<[1:(1ist A)](sigtel 1)->(pre 1)->Type>Cases 1 of
nil => [_;_]EsigT
| (cons a m) => [s;p](mix [x:(dom s)](mixtel (s x)) p a)
end.

5.4 Properties and operations

The predicate is_all_def tests if all labels in a pre are defined. The function new which generates an impltel
from a mixtel, whose all labels are defined.

Definition new:(1l:(list A); s:(sigtel 1); p:(pre 1)) (is_all_def p)
->(mixtel s p)->(impltel s).

Definition 4. Then, given a signature s, and two miztels m1 and m2, (matchmix ml m2) s a proof that
the fields of m1 are a more-defined view (with the same definition) of their equivalent in ms (match_pre is
the correspondent notion on pre).

1:(list A) Definition match_mix:
s:(sigtel 1) (match_pre pl p2)
pl,p2: (pre 1) ->(mixtel s pl)->(mixtel s p2)->Type.

match mix is a transitive relation, but not reflexive (nor anti-reflexive).

Theorem 5. We have then the following property: if all the labels of m2 are defined, then all the labels of m1
are also (is_all_def match property), and the telescope implementation generated, via new, by m2 is equal
to the one generated by m1.

ml: (mixtel s pl) Theorem match_mix_new: (H1:(is_all_def p2);
m2: (mixtel s p2) H2: (match_pre pl p2)) (match_mix H2 mil m2)->
(new H1 m2)===(new (is_all_def_match H1 H2) ml).



Definition 5. A well-formed miztel is a mixtel that checks the reflexivity of match mix.

Definition wellmixed:=
[p: (pre 1);H:(wellpre p);m:(mixtel s p)](match_mix H m m).

We have then two operations on mixtels: merge mix for merging two mixtels of same signatures, and
liftmix for lifting a mixtel in a subsignature.

Definition merge_mix:(1l:(list A); s:(sigtel 1); pl,p2:(pre 1))
(mixtel s pl)->(mixtel s p2)->(mixtel s (merge_pre pl p2)).

Definition lift_mix:(11,12:(list A); H: (11 D 12);
sl:(sigtel 11); s2:(sigtel 12)) (subsig H sl s2)->(p:(pre 12))
(mixtel s2 p)->(mixtel s1 (lift_pre H p)).

The following properties are currently in way to be proved (but there are some difficulties to handle
big terms). wellmix merge says that merge mix transforms wellformed mixtels in a wellformed mixtel. And
match mix merge_1 says that mergemix mil m2 matches mi. As merging on mixtels is not commutative
(because, when fields of same name have different definitions, you have to choose one), it gives a control of
what definition will be choosen by the system in case of conflict: the left will always win.

Lemma wellmiz_merge: (wellmized HI m1) -> (wellmized H2 m2)->
(wellmized (wellpre_merge H1 H2) (merge_miz ml m2)).

Lemma match_miz_merge_1: (wellmized H1 ml) -> (wellmized H2 m2)->
(match_miz (match_pre_merge_1 H1 H2) (merge_miz ml m2) ml1).

That’s the point where the current implementation stops. There are some lemmas left to write in order
to check the correctness of lift mix. But we will need to extend the notion of match mix for mixtels of
different signatures.

5.5 Using mixtels

The correctness of the operations merge mix and 1ift mix are not totally proved. But semantic aspects are
sufficiently disjoint of operational ones to allow to use them already. We have tried a little example that we
describe now, without giving the sources because the syntax is too much ugly. We keep here the informal
syntax given for setotid.

First, we have coded the setoid mixtel mentioned before. Then, we have define Bool_base as follow, where
bool is an inductive type with two constructors, negb the negation on booleans, and Is_true, the conversion
from booleans to Prop:

(def T : Type )
= bool
defeq: T'— T — Prop
:= A[b1, bs : bool](Is_true (if by then by else (negb b2)))
def eqrefl: Y(xz:T)(eq z x)
Bool_base := = A[b:boollif bthen I else I.
def neq: T'— T — Prop
:= A[by, ba @ bool](Is_true (if (negb by) then (negb b2) else b))
def neq_spec: Y(z,y:T)(neq x y) = —(eq © y)
= A[b1,02 : boollif b1 then if b2 then A[H,_|H else A[., H|H
else if b2 then N\, H|H else A[H,_|H )

\

The aim of the operation is to merge setoid and Bool_base. As neqnrefl is a field of setoid but not in
Bool _base, we must first lift Bool_base by the signature of setoid. It makes from Bool_base a mixtel with a
declared field neqg_nrefl. Then, we can make the merge. But, the merge is not commutative, because neq
differs in the two mixtels. We tried the two possibilities. Results are computed with a reasonable efficiency.



5.6 From mixtels to mixDrecs

MixDrecs are wellformed mixtels, on a signature of Drecords (double-free signature of telescope). Wellform-
ness can be discharged via a tactic (which fails when the underlying mixtel is not wellformed). Thus, one
could imagine, that the user enters its mixtels, and a macro (which may fail) transform them into mixDrecs.
The problem is now to give a syntax to the user.

Currently, the syntax is very bad, because, the user is obliged to describe the tree-like structure of
the above figure. With a semantical analysis, it may be possible to parse "mixtels” in the informal syntax
presented here, to put them into the tree-like structure. But it is generally not a good idea to make semantic
analysis while parsing: here, the user will not see easily in the code the kind of dependences between fields.
But these dependencies are fundamental for its understanding of the code.

A good solution, is maybe to mark syntacticaly field identifiers, whose definition is needed, by putting
them between delimitors. From this syntax, it should be possible to generate the tree-like structure without
typing, but only syntactic manipulation...

6 Conclusion

This paper presents an encoding in Coq of a framework aimed to be used for specifying and implementing a
computer algebra library. This framework rests upon a notion of structures, which share some features with
object-oriented language: especially, structures can be described the one from the others, by differences.

This encoding is based on a record description in Coq (Drecords), enriched with a class-like notion, also
coded in Coq: mixDrecs. They allow to describe a hierarchy of Drecords in a incremental way. In mixDrecs,
fields may only be declared, or may be redefined. MixDrecs may be extended by inheritance.

There are some features left to be implemented. Mainly, renaming, mixtel “semantical aspects” and a
“user interface” for mixtels.

However, in the current implementation of Coq, this encoding cannot really be used on interesting
examples, because of efficiency limitations.

In futures works, we will try to give a more abstracted presentation of this framework, free from the Coq
description.
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