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Real solving for positive dimensional systemsP. Aubry�, F. Rouilliery, M. Safey El Din�Marh 14, 2000AbstratFinding one point on eah semi-algebraially onneted omponent of a real algebrai variety,or at least deiding if suh a variety is empty or not, is a fundamental problem of omputationalreal algebrai geometry. Even though numerous studies have been done on the subjet, only afew number of eÆient implementations exists.In this paper, we propose a new eÆient and pratial algorithm for omputing suh points.By studying the ritial points of the restrition to the variety of the distane funtion to one wellhosen point, we show how to provide a set of zero-dimensional systems whose zeroes ontain atleast one point on eah semi-algebraially onneted omponent of the studied variety, withoutany assumption neither on the variety (smoothness or ompatness for example) nor on thesystem of equations that de�ne it.One suh a result is omputed, one an then apply, for eah omputed zero-dimensionalsystem, any symboli or numerial algorithm for ounting or approximating the solutions. Wehave made experiments using a set of pure exat methods.The pratial eÆieny of our method is due to the fat that we do not apply any in�nitesimaldeformations, onversely to the existing methods based on similar strategy.1 IntrodutionThe problem of �nding one point on eah semi-algebraially onneted omponent of a real al-gebrai variety, or at least deiding if it is empty, appears in several omputational problems inomputational algebrai geometry.The most popular algorithm whih solves this problem is Collins' Cylindrial Algebrai Deom-position (see [8℄). This algorithm is based on variable elimination, one after the other, and solvesthe thruth deisison problem of a �rst order formula. Thus, it solves more general problems thanthe one in whih we are interested. Note also that it is polynomial in the degree and the numberof the polynomials and doubly exponential in the number of variables. In pratie, this theoretialomplexity an be observed for many examples, and so, the problem size whih an be solved withsuh algorithms is limited.In [14℄, Grigoriev and Vorobjov proposed an algorithm for deiding the emptiness of a semi-algebrai set with a single exponential omplexity in the number of variables. In this method aswell as in most of its variants (see [20, 7, 15, 4, 5, 25℄), the key idea is to apply deformationsso that the projetion ritial points with respet to one oordinate de�ne a �nite set that meetsevery semi-algebrai onneted omponent of the deformed variety. In [4, 5, 25℄ the authors take, in�Universit�e de Paris VI, FraneyLORIA, INRIA-Lorraine, Nany, Frane 1



addition, sums of squares in order to work with smooth and ompat real algebrai sets de�ned bya unique polynomial equation. The �nal result is then obtained by taking the limits of the points(substituting the in�nitesimals by zero).In any ase, the problem is redued to the resolution of zero-dimensional systems. But even if thevarious done transformations keep a good theoretial omplexity (see [4℄), they render impossiblean eÆient resolution in pratie, due to the use of at least two in�nitesimals (deformations) and adegree growth (sum of squares).In [3℄ , the authors provide an algorithm, based on straight-line programs, with a good theoretialomplexity, when the variety to be studied is smooth, ompat and given by a regular sequene ofpolynomials, so that, in pratie, one would have to fae, at least, the same problems than in [4℄(smoothness and ompatness) for providing an algorithm that works in every situation.In [9℄, the authors propose a new algorithm for deiding the emptiness of semi-algebrai sets,whih is more pratial. In partiular they avoid to take the sums of the squares, and deal withthe singularities by using the fat that the singular lous is an algebrai variety whose dimensionis inferior to the one of the variety they onsider. Nevertheless, they keep on using the projetionfuntion. Thus, their algorithm requires the use of at least one in�nitesimal deformation or a newvariable addition for dealing with non ompat varieties.In [23℄, the authors onsider the partiular ase of a variety de�ned by a single equation. Comingbak to a lassial idea of Seidenberg (see [26℄), they study the ritial points of the distane funtionto a point instead of oordinates funtions. The authors reall that the set of ritial point set of thedistane funtion to a point meet eah onneted omponent and they show that it is �nite whenthe point is well hosen (they propose a strategy for hoosing it) and when the variety has at mosta �nite number of singularities, so that an in�nitesimal deformation is needed only when the varietyhas an in�nite number of singular points.In this paper, we keep on omputing the ritial points of the distane funtion to a point Abut for the general ase of real algebrai sets de�ned by a polynomial system of equations (the aseof hypersurfaes de�ned by a unique equation beomes a partiular ase without taking the sum ofthe squares of the equations). Like in [23℄, we de�ne an algebrai set C(V;A) that ontains theseritial points and a sub-algebrai variety of V of the one studied.Our main result onsists in proving that by hoosing a good point A, C(V;A) is the disjointunion of a sub-algebrai variety of V whose dimension is inferior to the one of the variety and ofa �nite set of points. The problem then remains to ompute the isolated points of C(V;A) and tostudy, in the same way, the de�ned sub-variety V whih has a dimension stritly smaller than thedimension of the variety. Also, we obtain an algorithm without any in�nitesimal deformation whoseproof is simply based on the fat that the dimension of the studied varieties stritly dereases ateah step.The paper plan is as follows. Setion 2 is devoted to the de�nition and the study of C(V;A), analgebrai set depending on the hoie of a point A in the spae, that meets every semi-algebraiallyonneted omponent of V . In partiular, we show how to hoose a point A so that C(V;A) beomesthe disjoint union of a �nite set of points and of V . Moreover we propose the expliit onstrution of azero-dimensional system whose zeroes meet every semi-algebrai onneted omponent of V . Setion3 is devoted to present the way of using in pratie suh results for getting an eÆient algorithm thatavoids in�nitesimal deformations. The last setion is devoted to present some pratial experiments.Aknowledgments : We would like to thank J.-C. Faug�ere, D. Lazard and M.-F. Roy for theirhelpful omments, advises and supports and Hoon Hong who did provide us the CAD implementation2



used for the tests.2 The AlgorithmIn the whole paper, K is an ordered �eld, R is its real losure and C its algebrai losure. If(P1; : : : ; Ps) is a family of polynomials in K[X1; : : : ;Xn℄, we denote by V (P1; : : : ; Ps) � Cn thealgebrai variety de�ned by the polynomial system of equation :P1 = : : : = Ps = 0and I = hP1; : : : ; Psi the ideal of K[X1; : : : ;Xn℄ generated by this family of polynomials.As desribed in introdution, our goal is to use the properties of the distane funtion to onepoint. More preisely, we are going to prove the following theorem :Theorem 2.1 Let V be an algebrai variety of dimension d and S = fP1; : : : ; Psg polynomials ofK[X1; : : : ;Xn℄ suh that I(V ) = hP1; : : : ; Psi. Given any point A 2 Cn, we de�ne the followingalgebrai set : C(V;A) = fM 2 V; rank( �!gradM (P1); : : : ; �!gradM (Ps); �!AM) � n� dg:If D is a positive integer large enough, there exists at least one point A in f1 : : : Dgn suh that :1. C(V;A) meets every semi-algebraially onneted omponent of V TRn,2. C(V;A) = Sing(V )S V0.where� V0 is a �nite set of points in Cn,� Sing(V ) = fM 2 V j rank( �!gradM (P1); : : : ; �!gradM (Ps)) < n� dg.Moreover, dim(C(V;A)) < dim(V ).Proof : Let A be any point in Cn and D be a semi-algebraially onneted omponent of V TRn.If M 2 DTSing(V ), it is lear that M 2 C(V;A).Now, suppose that M 2 D n Sing(V ) is at minimal distane from A. Let S(A; r) be the sphere ofenter A and radius r = d(A;M). Sine M is at minimal distane to A, S and V are tangent at Mand then �!AM 2 Vet( �!gradM (P1); : : : ; �!gradM (Ps)). Thus M 2 C(V;A).Let Q1; : : : ; Qn be polynomials in K[X1; : : : ;Xn; �1; : : : ; �s℄ de�ned by Qj = Pi=1;:::;s �i �Pi�Xj �Xj ,and let H be the subset of Cn+s de�ned by H = f(M;�1; : : : ; �s) 2 Cn+s jM 2 V n Sing(V )g:Consider the appliationF : H �! Cn(M;�1; : : : ; �s) 7�! (Q1(M;�1; : : : ; �s); : : : ; Qn(M;�1; : : : ; �s))If Ja((P1; : : : ; Ps; Q1+b1; : : : ; Qn+bn) denotes the determinant of the Jaobian matrix assoiated tothe polynomials P1; : : : ; Ps; Q1+b1; : : : ; Qn+bn, the ritial values of F are the pointsB = (b1; : : : ; bn)of Cn suh thatV (Q1 + b1; : : : ; Qn + bn; Ja(P1; : : : ; Ps; Q1 + b1; : : : ; Qn + bn)) 6= ;.3



>From Sard's theorem over C [19℄ and the transfer priniple [6℄ it follows thatB = fB = (b1; : : : ; bn) 2 Cn jH \ V (Q1 + b1; : : : ; Qn + bn; Ja(P1; : : : ; Ps; Q1 + b1; : : : ; Qn + bn)) 6= ;gis a onstrutible set of dimension < n of Cn.Sine B is a onstrutible set of dimension < n, one an hoose A = (a1; : : : ; an) 2 f0; : : : ;Dgn withD large enough, and suh that A =2 B. In suh ase,H \ V (Q1 + a1; : : : ; Qn + an; Ja(P1; : : : ; Ps; Q1 + a1; : : : ; Qn + an)) = ;and thus the points of H \ V (Q1 + a1; : : : ; Qn + an) are isolated and non singular. Let � be theprojetion de�ned by : � : Cn+s �! Cn(x1; : : : ; xn; `1; : : : ; `s) 7�! (x1; : : : ; xn) :Sine C(V;A) = Sing(V ) [ �(H \ V (Q1 + a1; : : : ; Qn + an)), C(V;A) = Sing(V ) [ V0, where V0 is�nite set of points. >From [10℄, Sing(V ) is the union of algebrai varieties whose dimensions arestritly inferior to the dimension of V .Remark 2.1 >From the proof of theorem 2.1, a point A taken at random veri�es dim(C(V;A)) <dim(V ) with a probability one.De�nition 2.1 Given any variety V 2 Cn, we de�ne reursively Ci(V;Ai), i � 0, a set of points inCn in the following way :� A0 is any point in Kn and C0(V;A0) = V ,� Ai 2 Kn is suh that dim(C(Ci�1(V;Ai�1); Ai)) < dim(Ci�1(V;Ai�1)),� Ci(V;Ai) = C(Ci�1(V;Ai�1); Ai).Aording to the de�nition above, we have :Corollary 2.1 Given any variety V 2 Cn, It exists an integer m <1 suh that :� Cm(V;Am) is a �nite set of points,� Cm(V;Am)) meets every semi-algebraially onneted omponent of V TRn.Proof : >From theorem 2.1 , Ci+1(V;Ai+1) meets every semi-algebraially onneted omponent ofCi(V;Ai)TRn and dim(Ci+1(V;Ai+1)) < dim(Ci(V;Ai)), 8i � 0. The proof omes also immediatelyby indution sine C0(V;A0) = V and sine 8i 2 f0; : : : ;mg V (Ci+1(V;Ai+1)) � V (Ci(V;Ai)).The algorithm we propose onsists in onstruting the sets Ci(V;Ai) until dim(Cm(V;Am)) = 0.In a omputational viewpoint, this onsists in omputing a set of generators Pi of radial ideals Iisuh that V (Ii) = Ci(V;Ai), 8i = 0 : : : m.Let suppose that Pk = fPk;1; : : : Pk;sg suh a set.4



De�nition 2.2 For B 2 Cn, Q = fQ1; : : : Qsg � K[X1; : : : ;Xn℄s, and d 2 IN ; 0 � d < n, wede�ne �B;d(Q) as being the set of all the minors of order (n� d+ 1; n� d+ 1) of the matrix24" �Qi�Xj #(i=1:::n;j=1:::s) ���� �!BM 35Coming bak to our problem, if V (hPii) = Ci(V;Ai), di = dim(Ci(V;Ai) and hPii is a radialideal, then Ci+1(V;Ai+1) = V (hPi ; �Ai+1;di(Pi)i):We may also de�ne Pi+1 as being a system of generators of the ideal qhPi�Ai+1;di(Pi)i.Aording to the results above, the basi routines needed to implement an algorithm that omputesa zero-dimensional system Pm suh that V (Pm) = Cm(V;Am) (orollary 2.1) may be the following :� Radial : takes as input a polynomial system S of equations and returns a �nite set ofgenerators (for example a Gr�obner base) of phSi,� Dim : takes as input a �nite set of generators of an ideal and omputes the dimension of theassoiated variety,� Minors : takes as input a �nite set of polynomials Q, and integer d and a point A 2 Cn (infat in Kn) and omputes �A;d(Q)i).Algorithm 1� Input : A polynomial system S of equations in K[X1; : : : ; Xn℄.� Output : A zero-dimensional system whose zeroes de�ne at least one point in eah semi-algebraially on-neted omponent of V (S)TRn.1. S := Radial(S), d := Dim(S),2. Choose A 62 V (S).3. while d 6= 0 do� (*) Q = Minors(S; d;A)SS� u = Dim(Q)� if u = d hoose another point A and go to step (*).� else d := u ; S := Radial(Q)4. return (S).Note that the required subroutines of our algorithm are weaker than the ones of the algorithmdesribed in [9℄ sine we do not need to perform an irreduible deomposition.3 OptimizationsIn this setion, we present pratial optimizations of our algorithm. The main idea is to split,as most as possible, the systems to be solved (phPii) in order to make easier the intermediateomputations and the resolution of the �nal zero-dimensional systems. In the �rst part, we modify5



slightly Algorithm 1 for this purpose. In the seond part, we show how to derease the numberof determinants to ompute and to make their omputation easier. The last sub-setion is devotedto present a lazy version of the algorithm for deiding the emptiness of a real algebrai variety, andomputing at least one point on eah semi-algebraially onneted omponent in some generi ases.In the two last parts, we use results oming from the theory of triangular sets (see [17, 18, 16, 1, 2℄)for optimizing the algorithms. We refer to [2℄ whih synthesizes these results.3.1 Splitting the omputationsIn Algorithm 1, we need to ompute generators of radial ideals at eah step. Aording to reentprogress (see [11℄), the most eÆient way to do suh a omputation in pratie is to ompute adeomposition into primes. Moreover, sine eah omputed system splits into a zero-dimensionalsystem and a system of dimension less than the original one (theorem 2.1), we may extrat theisolated roots at eah step instead of keeping them embedded in the main omponent, making easierthe �nal resolution (for example isolating the real roots of zero-dimensional systems).Let PrimeDeomposition be a subroutine taking as input a polynomial system of equationsS in K[X1; : : : ;Xn℄ and returning a set of generators of eah prime ideal assoiated to phSi.We propose the following algorithm : Algorithm 2� Input : A polynomial system S of equations in K[X1; : : : ; Xn℄.� Output : An empty list if V (S)TRn = ;, else a list of zero-dimensional systems whose roots ontain atleast one point in eah semi-algebraially onneted omponent of V (S)TRn.1. list := PrimeDeomposition(S), result := [℄,2. Choose A 62 V (S).3. while list 6= ; do� S := �rst(list), and remove S from list, set d = Dim(S),� if d = 0 then result := resultSS,� else{ (*) Q = Minors(S; d;A)SS and set u = Dim(Q){ if u = d hoose another point A 62 S and go to step (*).{ d := u ; list := listSPrimeDeomposition(Q),4. return result.3.2 Using triangular setsIn this setion, we show how to redue the number and the size of the determinants by onsideringspei� subsets of the Gr�obner bases.Let G be a redued lexiographial Gr�obner base generating a prime ideal of dimension d inK[X1; : : : ;Xn℄ for the ordering X1 < : : : < Xn. For p 2 G, we denote by mvar(p) (and we all mainvariable of p) the greatest variable appearing in p . If F is a onstrutible subset of Cn, we denoteby F the Zariski losure of F in Cn. In [2℄, the following result is proved :Theorem 3.1 (see [2℄ and [1℄) Let T = (td+1; : : : ; tn) � G be a set of polynomials suh that8(ti; tj) 2 T � T mvar(ti) 6= mvar(tj);6



and 8g 2 G; 8i 2 fd+ 1; : : : ; ng suh that mvar(ti) = mvar(g) ([1℄) :deg(ti;mvar(ti)) � deg(g;mvar(ti)):We denote by� hi the leading oeÆient of ti (when it is seen as a univariate polynomial in its main variable)and H(T ) = fhd+1; : : : ; hng.� W (T ) = fM 2 V (T ) n V (H)g,� sat(T ) = fp 2 K[X1; : : : ;Xn℄ j 9m 2 N;9h 2 H(T ); hmp 2 hT ig.Then we have :1. sat(T ) = hGi,2. W (T ) = V (G),If G is prime, the set T = (td+1; : : : ; tn) is a regular separable triangular set (see [2℄).Lemma 3.1 If T is a regular separable triangular set extrated from a redued lexiographialGr�obner base generating a prime ideal, then : 8i 2 fd + 1; : : : ; ng;dim(V ( �ti�mvar(ti))T V (G)) <dim(V (G)):Proof : Sine hGi is prime, it is suÆient to show that �ti�mvar(ti) =2 hGi. Let mXdii the leadingmonomial of ti. Sine G is redued, 8g 2 G n ftig, the leading monomial of g does not divide mXdii .Hene, the leading monomial of �ti�mvar(ti) is not divisible by the leading monomial of g, and thus�ti�mvar(ti) =2 hGi.Let M = (x1; : : : ; xn), A = (a1; : : : an), d = dim(V (G)), and onsider, for j = 1 : : : d, the restritedlist of minors of order (n� d+ 1) extrated from �A;d(T ) :�A(T ) = f�(j)A (T ) = det(M(j)A ); j = 1 : : : dgwhere M(j)A = 2666664 h �ti�Xj ii=d+1:::n xj � ajUT = h �ti�Xj ii=d+1:::nj=d+1:::n xd+1 � ad+1...xn � an
3777775Without lost of generality, we may suppose that mvar(ti) = Xi, so that the minors �(j)A (T ) areeasy to ompute sine UT is upper triangular. Our goal is now to show that we an replae, in ouralgorithm, the omputation of �A;d(G) by the omputation of �A(T ), dereasing so the number andthe ost of the omputations :Proposition 3.1 Let de�ne D(V (G); A) = V (G)T V (�A(T )), d = dim(G) and Sep(T ) = Qni=d+1 �tiXi .If A 2 Cn suh that dim(C(V (G); A)) < dim(V (G)), then, aording to the notations of theorem 2.1,we have : 7



� C(V (G); A) � D(V (G); A);� (D(V (G); A) n V (Sep(T ))) � V0,� dim (D(V (G); A)T V (Sep(T ))) < dim(V (G)):In partiular, dim(D(V (G); A)) < dim(V (G)): and D(V (G); A) meets every semi-algebraially on-neted omponent of V (G).Proof :� Sine T � G, �A(T ) � �A;d(T ) � �A;d(G), then :C(V (G); A) = V (G)\ V (�A;d(G)) � V (G)\ V (�A;d(T )) � V (G)\ V (�A(T )):� Let M 2 D(V (G); A) n V (Sep(T )). We have det(UT (M)) 6= 0 so thatrank( �!gradM (td+1); : : : ; �!gradM (tn)) � n� d;and onsequently rank( �!gradM (g1); : : : ; �!gradM (gs)) � n � d. On one hand, �(i)A (T )(M) =0 ; 8i = 1 : : : d, and so rank( �!gradM (td+1); : : : ; �!gradM (tn); �!AM) = n � d. On the otherhand, dim(V (G)) = d, so that rank( �!gradN (g1); : : : ; �!gradN (gs)) � n � d ; 8N 2 V (G)and thus M 62 Sing(V (G)). Moreover, the vetor spaes V et( �!gradM (g1); : : : ; �!gradM (gs))and V et( �!gradM (td+1); : : : ; �!gradM (tn)) oinide whih shows that M 2 V0 = C(V (G)) nSing(V (G)).� From 3.1, dim(V (Sep(T ))T V (G)) < dim(V (G)):For desribing the full algorithm indued by proposition 3.1, we de�ne new external funtions :� LexPrimeDeomposition takes as input a polynomial system of equations S inK[X1; : : : ;Xn℄and returns a lexiographi Gr�obner base of eah prime ideal assoiated to phSi.� ExtratTriangular takes as input a lexiographi Gr�obner base and extrat the triangularset as desribed in theorem 3.1.
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Algorithm 3� Input : A polynomial system S of equations in K[X1; : : : ; Xn℄.� Output : A list of zero-dimensional systems whose roots ontain at least one point in eah semi-algebraiallyonneted omponent of V (S)TRn.1. list := LexPrimeDeomposition(S), result := [℄,2. Choose A 62 V (S).3. while list 6= ; do� S := �rst(list), and remove S from list, set d = Dim(S),� if d = 0 then result := resultSS,� else{ T = ExtratTriangular(S).{ (*) Q = �A(T )SS and set u = Dim(Q){ if u = d hoose another point A 62 S and go to step (*).{ d := u ; list := listSLexPrimeDeomposition(Q),4. return result.Remark 3.1 If V (G) is a variety of dimension d, one needs to ompute only d determinants.In order to make easier the omputations in LexPrimeDeomposition, one an redue thedeterminants modulo the triangular set at the step (*). Let prem(p; q;X) denote the lassialpseudo-remainder of two polynomials p and q with respet to the variable X. If p 2 K[X1; : : : ;Xn℄,its redued form prem(p;T ) an be omputed by the following reursive proedure :� if T = ;, then prem(p;T ) = p.� else, if Xi is the greatest variable appearing in a polynomial t 2 T ,prem(p;T ) = prem(prem(p; t;Xi);T n ftg):In partiular, there exists polynomials qd+1; : : : qn and positive integers id+1; : : : ; in suh that :prem(p;T ) = qd+1td+1 + : : :+ qntn + hid+1d+1 : : : hinn p:Thus V (G)T V (prem(p;T )) = V (G)T(V (p) [ V (hd+1 : : : hn)). Hene, from theorem 3.1,dim(V (G)\ V (p)) < dim(V (G)) =) dim(V (G)\ V (prem(p;T )) < dim(V (G)):3.3 Deiding emptiness in any ase and omputing one point on eah semi-algebraially onneted omponent in generi asesLet G � K[X1; : : : ;Xn℄ be a lexiographial redued Gr�obner base and T = (td+1; : : : ; tn) a regularseparable triangular set extrated from G. Without lost of generality, we suppose that 8i 2 fd +1; : : : ; ng mvar(ti) = Xi.De�nition 3.1 T is said to be in quasi-generi position if there exists k 2 fd+1; : : : ; ng suh that8i > k deg(ti;Xi) = 1:We denote by k the index of quasi-generi position of Tk.9



If T is in quasi-generi position, we may suppose, without lost of generality, that tj = hjXj + qjwith hj ; qj 2 K[X1; : : : ;Xk℄ ; 8j = k + 1 : : : n.If V (Gk) = ; then V (G) = ;.Suppose that V (Gk)TRk 6= ; and let M 2 D(V (Gk; Ak))TRk for any Ak 2 Rk.� IfM = (x1; : : : ; xk) 62 V (hk+1), there exists a unique value y 2 R suh thatM 0 = (x1; : : : ; xk; y) 2V (Tk+1). Moreover, ifM 62 V (Qk+1j=d+1 hj) then, aording to theorem 3.1,M 0 2 V (Gk+1)TRk+1.� Suppose M 2 V (hk+1) and M 62 Sing(V (Gk)). Sine dim(V (hk+1)T V (Gk)) < dim(V (Gk))and sine M is a regular point of V (Gk), there exists a neighborhood U � V (Gk)TRkontaining a point N suh that hk+1(N) 6= 0 and so, aording to the preeding item,N 2 V (Gk+1)TRk+1.Reursively, if �D(V (Gk; Ak)) n �Sing(V (Gk))T V (Qni=d+1 hi)��TRk 6= ;, then V (G)TRn 6= ;.Sine the ases where (D(V (Gk); A) n (Sing(V (Gk)) \ V ( nYi=d+1hi)))\Rk = ;and (D(V (Gk); A)\ Sing(V (Gk))\ V ( nYi=d+1 hi))\Rk 6= ;;are rare, we propose a spei� algorithm, based on Algorithm 3 and optimized to deide theemptiness.In the following, we denote by �(Gk) all the minors of order k�d of the Jaobian matrix assoiatedto Gk and we de�ne new external funtions :� ZeroDimTest : takes as input a zero-dimensional system S and returns true if V (S)TRn = ;,else it returns false.� ZeroDimSolve : takes as input a zero-dimensional system S and returns true if V (S)TRn =,else it returns false.� leanlingStep : takes as input a zero-dimensional system S and a polynomial p, and returnsa list of real solutions of S whih do not vanish p. This an be done by gd omputations onunivariate polynomials if we solve zero-dimensional systems by omputing Rational UnivariateRepresentations (see [21, 22℄).
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Algorithm 4� Input : A polynomial system S of equations in K[X1; : : : ; Xn℄.� Output : true if V (S)TRn = ;, else it returns false.1. list := LexPrimeDeomposition(S), result := true,2. Choose A 62 V (S).3. while list 6= ; do� (*)S := �rst(list), and remove S from list, set d = Dim(S),� if d = 0 and if ZeroDimSolve(S) = false then return false,� T = ExtratTriangular(S).� if T is in quasi-generi position then{ newlist := Algorithm3(�A(Tk) [ Sk), where k is the index of quasi-generi position of Tk,{ for S0 in newlist, remove S0 if ZeroDimSolve(S0) = true,{ if newlist := ; then set result to true and return to step (*),{ for S0 in newlist, remove S0 from newlist and if leaningStep(S0;�(Gk)) 6= ; then return false,{ for S0 in newlist, remove S0 from newlist and if leaningStep(S0;Qni=d+1 hi) 6= ; then return false,� (**) Q = �A(T )SS and set u = Dim(Q)� if u = d hoose another point A 62 S and go to step (**).� d := u ; list := listSLexPrimeDeomposition(Q),4. return result.Remark 3.2 One an guarantee that the method desribed above omputes at least one point ineah onneted omponent if 8i 2 fk + 1; : : : ; ng; hi 2 K, whih ours, for example, when thesystem is in Noether position. In other ases, this an not be guaranteed (onsider the example :t2 = y � x and t3 = xz � 1 with z > y > x and take A = (0; 1)).4 ExperimentsThis setion is devoted to present some tests performed with an experimental implementation ofour algorithms.4.1 Software and basi algorithmsThe deomposition into primes have been omputed using Gb (software devoted to Gr�obner basesomputations, implemented by J.-C. Faug�ere) and maple. We �rst ompute a Gr�obner base withrespet to any ordering (Gb), then dedue, by hange of ordering, a lexiographi Gr�obner base(Gb) and �nally we ompute the prime deomposition using multi-variate fatorization and gd's(Maple). In the onlusion of this artile, we present some tests made using a reent experimentalalgorithm (F7 - see [11℄) devoted to the deomposition into primes.The resolution of zero-dimensional systems (ounting/isolating of the real roots) has been doneusing ZDS algorithm (Rational Univariate Representation + Isolation of the Real Roots) whihuses Gb and RS (software implemented by F. Rouillier). In partiular, all the omputations havebeen done using exlusively exat omputations.The other parts of the algorithms were implemented in maple.11



In order to show the eÆieny of our algorithms, we have applied the CAD algorithm on eahexample. Remember that this method is more general than ours. In partiular, it is urrently theonly eÆient method able to ompute, in pratie, at least one point on every semi-algebraiallyonneted omponent of a semi-algebrai variety. The implementation we used (QEPCAD) is buildupon the SACLIB library and has been provided by Hoon Hong.4.2 The methodologyThe polynomial systems used for our experiments ome from various soures and most of them anbe found in the FRISCO Test-Suite (see [13℄). A larger list is available on the web page [24℄.We may point out that the examples F633, F744 and F855 ome from an industrial appliation(design of �lter banks - see [12℄).All the omputations have been performed on a PC Pentium II 400 MHz with 512 Mo of RAM(mahine of the UMS Mediis). The timings are given in seonds.We hose to stop the omputations systematially after 12 hours. Also, the symbol1 in the timingtables means in fat stopped after 12 hours.It happens that the CAD fails when the number of ells beomes too large. In suh ases, we putfailed(n), where n denotes a lower bound of the number of ells, in the tables.4.3 Algorithm 2 / Algorithm 3The goal of these tests is to show how the use of triangular sets dereases the omputation times.The following table ontains the timings for the omputation of all the zero-dimensional systems(outputs of Algorithm 2 and Algorithm 3) but exludes the omputation times related to their reso-lution. In the olumns Algorithm 2 and Algorithm 3 the �rst number is the umulative omputationtime of the prime deompositions, while the seond one is the umulative omputation time of thedeterminants. If one of these both olumns ontains \?", it means that the preeeding step (eithera prime deomposition omputation, or a determinant omputation) has not ended.System Dimension/Degree Nb Vars Algorithm 2 Algorithm 3Vermeer 1,26 5 0.01 0 0.01 0Wang 1,114 13 0.12 0 0.12 0Euler 3,2 10 0.01 0 0.01 0Neural 1,24 4 0.43 0 0.43 0Buther 3,3 8 1.7 0 1.7 0Buhberger 4,6 8 0 0 0 0DisPb 2,3 4 0.02 0 0.02 0Donati 1,10 4 0.04 26 0.04 0Hairer2 2,25 13 ? 1 1 ?Prodeo 2,2 5 284 26 284 0F633 2,32 10 ? 1 1 ?F744 1,40 12 24.06 1 24.06 0.02F855 1,52 14 5654 1 5654 173Table 1 : omputation times for Algorithm 2 and Algorithm 3One an remark that the onstrution of the zero-dimensional systems is a limiting step in Algorithm2 and not in Algorithm 3. In Algorithm 3, we ompute only a subset of the set of the determinantsneeded by algorithm 2. 12



4.4 Algorithm 3 / CAD4.4.1 Size of the outputIn the following table, we give the number of points omputed by Algorithm 3 (sum of the degreesof the zero-dimensional systems) and QEPCAD on the examples for whih at least one of thesemethods ends . When QEPCAD is stopped after 12 hours, we put 1 in the table. If the ompu-tation failed beause the number of ells is too huge, we put failed(n), where n is the lower boundof number of ells that QEPCAD has predited.System Algorithm 3 + ZDS QEPCADVermeer 84 65976Wang 132 1Euler 10 failed(872043)Neural 133 205Buther 15 1Buhberger 32 failed(991324)DisPb 28 1Donati 61 10Table 2 : omparison between (Algorithm 3 + ZDS) and QEPCADOne an observe that these results are oherent with the theoretial omplexity : the outputof the CAD is doubly exponential in the number of variables while the number of points of theoutput of our algorithm is proportional to the number of semi-algebraially onneted omponentsof the real algebrai variety and thus singly exponential in the number of variables. We an alsoremark that none of the methods solved the examples Hairer2, Prodeo, F633, F744 and F855,even if Algorithm 3 provided all the zero-dimensional systems. These systems were too large for theomputation of a Gr�obner base by Gb.4.4.2 Computation timesOne of our motivations was to provide an algorithm whose output is reasonable with the hope toget signi�antly better omputation times, ompared to existing implementations that omputes atleast the same thing, even if the methods used have not, theoretially, a better omplexity in termsof omputation times.The next table shows that both algorithms Algorithm 2 + ZDS and Algorithm 3 + ZDS havea better behavior, in pratie, than QEPCAD :System Algorithm 2 + ZDS Algorithm 3 + ZDS QEPCADVermeer 62.36 3.32 43Wang 1.37 1.37 1Euler 0.01 0.01 failed(872043)Neural 1.02 1.02 0.9Buther 1.7 1.7 1Buhberger < 0.01 < 0.01 failed(991324)DisPb 0.2 0.2 1Donati 11609 10 0.6Table 3 : Computation times for Algorithm 2 +ZDS, Algorithm 3 +ZDS and QEPCAD.13



4.5 Algorithm 4The last table shows the progress indued by Algorithm 4. Aording to remark 3.2, Algorithm4 omputes one point on eah onneted omponent in favorable ases, and allows to deide if avariety is empty or not in any ase. The examples for whih Algorithm 4 gives at least one pointon eah semi-algebraially onneted omponent are marked by *.System Algorithm 2 + ZDS Algorithm 3 + ZDS Algorithm 4 QEPCADVermeer 62.36 3.32 <0.01 43Wang 1.37 1.37 0.13 1Euler 0.01 0.01 <0.01* failed(872043)Neural 1.02 1.02 0.44* 0.9Buther 1.7 1.7 1.7* 1Buhberger < 0.01 <0.01 <0.01* failed(991324)DisPb 0.2 0.2 0.02 1Donati 11609 10 0.04 0.6Hairer2 1 1 23.03 failed(872043)Prodeo 1 1 286 1F633 1 1 5700 1F744 1 1 40 1F855 1 1 5664 1Table 4 : Outputs of Algorithm 2 + ZDS, Algorithm 3 + ZDS and QEPCAD.In terms of omputations, the di�erene between Algorithm 3 and Algorithm 4 is the numberand size of the intermediate determinants. One an see that the zero-dimensional systems providedby Algorithm 4 are muh more simple to solve.The ases where Algorithm 4 omputes one point on eah semi-algebrai omponent are fewwhih means, in partiular, that, in our test list, the systems in Noether position are few and sojustify a large part of our study whose objetive is to provide an algorithm that works in everysituation.5 ConlusionsWe have provided an eÆient algorithm (Algorithm 3) that allows to ompute one point on eahsemi-algebraially onneted omponent of a real algebrai variety, without assumption neither onthe variety (smoothness, ompatness) nor on the system of polynomial equations that de�ne it.We proposed an optimization (Algorithm 4) for deiding the emptiness of the variety in anyases or for omputing at least one point on eah onneted omponent in generi ases (see remark3.2). Aording to the experiments, we notied that in pratie, these onditions of generiity (forexample the Noether position) are too strong, whih prevents algorithm 4 for omputing at leastone point on eah semi-algebraially onneted omponent.Moreover, we will have muh better timings in a near future. For example, we try a reentprototype, due to J.C. Faug�ere, of an algorithm for omputing prime deompositions that speedsup our algorithms : with this implementation, Algorithm 4 an solve F633 in 7.2 se. and F855 in26 se.Aording to other experiments we made, additional assumptions on the variety (smoothness,ompatness) or on the system of equations that de�nes it (Noether position, radial, prime, et ...)speeds up strongly the method. For example, if we suppose the real algebrai set to be ompat,14
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