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Real solving for positive dimensional systemsP. Aubry�, F. Rouilliery, M. Safey El Din�Mar
h 14, 2000Abstra
tFinding one point on ea
h semi-algebrai
ally 
onne
ted 
omponent of a real algebrai
 variety,or at least de
iding if su
h a variety is empty or not, is a fundamental problem of 
omputationalreal algebrai
 geometry. Even though numerous studies have been done on the subje
t, only afew number of eÆ
ient implementations exists.In this paper, we propose a new eÆ
ient and pra
ti
al algorithm for 
omputing su
h points.By studying the 
riti
al points of the restri
tion to the variety of the distan
e fun
tion to one well
hosen point, we show how to provide a set of zero-dimensional systems whose zeroes 
ontain atleast one point on ea
h semi-algebrai
ally 
onne
ted 
omponent of the studied variety, withoutany assumption neither on the variety (smoothness or 
ompa
tness for example) nor on thesystem of equations that de�ne it.On
e su
h a result is 
omputed, one 
an then apply, for ea
h 
omputed zero-dimensionalsystem, any symboli
 or numeri
al algorithm for 
ounting or approximating the solutions. Wehave made experiments using a set of pure exa
t methods.The pra
ti
al eÆ
ien
y of our method is due to the fa
t that we do not apply any in�nitesimaldeformations, 
onversely to the existing methods based on similar strategy.1 Introdu
tionThe problem of �nding one point on ea
h semi-algebrai
ally 
onne
ted 
omponent of a real al-gebrai
 variety, or at least de
iding if it is empty, appears in several 
omputational problems in
omputational algebrai
 geometry.The most popular algorithm whi
h solves this problem is Collins' Cylindri
al Algebrai
 De
om-position (see [8℄). This algorithm is based on variable elimination, one after the other, and solvesthe thruth de
isison problem of a �rst order formula. Thus, it solves more general problems thanthe one in whi
h we are interested. Note also that it is polynomial in the degree and the numberof the polynomials and doubly exponential in the number of variables. In pra
ti
e, this theoreti
al
omplexity 
an be observed for many examples, and so, the problem size whi
h 
an be solved withsu
h algorithms is limited.In [14℄, Grigoriev and Vorobjov proposed an algorithm for de
iding the emptiness of a semi-algebrai
 set with a single exponential 
omplexity in the number of variables. In this method aswell as in most of its variants (see [20, 7, 15, 4, 5, 25℄), the key idea is to apply deformationsso that the proje
tion 
riti
al points with respe
t to one 
oordinate de�ne a �nite set that meetsevery semi-algebrai
 
onne
ted 
omponent of the deformed variety. In [4, 5, 25℄ the authors take, in�Universit�e de Paris VI, Fran
eyLORIA, INRIA-Lorraine, Nan
y, Fran
e 1



addition, sums of squares in order to work with smooth and 
ompa
t real algebrai
 sets de�ned bya unique polynomial equation. The �nal result is then obtained by taking the limits of the points(substituting the in�nitesimals by zero).In any 
ase, the problem is redu
ed to the resolution of zero-dimensional systems. But even if thevarious done transformations keep a good theoreti
al 
omplexity (see [4℄), they render impossiblean eÆ
ient resolution in pra
ti
e, due to the use of at least two in�nitesimals (deformations) and adegree growth (sum of squares).In [3℄ , the authors provide an algorithm, based on straight-line programs, with a good theoreti
al
omplexity, when the variety to be studied is smooth, 
ompa
t and given by a regular sequen
e ofpolynomials, so that, in pra
ti
e, one would have to fa
e, at least, the same problems than in [4℄(smoothness and 
ompa
tness) for providing an algorithm that works in every situation.In [9℄, the authors propose a new algorithm for de
iding the emptiness of semi-algebrai
 sets,whi
h is more pra
ti
al. In parti
ular they avoid to take the sums of the squares, and deal withthe singularities by using the fa
t that the singular lo
us is an algebrai
 variety whose dimensionis inferior to the one of the variety they 
onsider. Nevertheless, they keep on using the proje
tionfun
tion. Thus, their algorithm requires the use of at least one in�nitesimal deformation or a newvariable addition for dealing with non 
ompa
t varieties.In [23℄, the authors 
onsider the parti
ular 
ase of a variety de�ned by a single equation. Comingba
k to a 
lassi
al idea of Seidenberg (see [26℄), they study the 
riti
al points of the distan
e fun
tionto a point instead of 
oordinates fun
tions. The authors re
all that the set of 
riti
al point set of thedistan
e fun
tion to a point meet ea
h 
onne
ted 
omponent and they show that it is �nite whenthe point is well 
hosen (they propose a strategy for 
hoosing it) and when the variety has at mosta �nite number of singularities, so that an in�nitesimal deformation is needed only when the varietyhas an in�nite number of singular points.In this paper, we keep on 
omputing the 
riti
al points of the distan
e fun
tion to a point Abut for the general 
ase of real algebrai
 sets de�ned by a polynomial system of equations (the 
aseof hypersurfa
es de�ned by a unique equation be
omes a parti
ular 
ase without taking the sum ofthe squares of the equations). Like in [23℄, we de�ne an algebrai
 set C(V;A) that 
ontains these
riti
al points and a sub-algebrai
 variety of V of the one studied.Our main result 
onsists in proving that by 
hoosing a good point A, C(V;A) is the disjointunion of a sub-algebrai
 variety of V whose dimension is inferior to the one of the variety and ofa �nite set of points. The problem then remains to 
ompute the isolated points of C(V;A) and tostudy, in the same way, the de�ned sub-variety V whi
h has a dimension stri
tly smaller than thedimension of the variety. Also, we obtain an algorithm without any in�nitesimal deformation whoseproof is simply based on the fa
t that the dimension of the studied varieties stri
tly de
reases atea
h step.The paper plan is as follows. Se
tion 2 is devoted to the de�nition and the study of C(V;A), analgebrai
 set depending on the 
hoi
e of a point A in the spa
e, that meets every semi-algebrai
ally
onne
ted 
omponent of V . In parti
ular, we show how to 
hoose a point A so that C(V;A) be
omesthe disjoint union of a �nite set of points and of V . Moreover we propose the expli
it 
onstru
tion of azero-dimensional system whose zeroes meet every semi-algebrai
 
onne
ted 
omponent of V . Se
tion3 is devoted to present the way of using in pra
ti
e su
h results for getting an eÆ
ient algorithm thatavoids in�nitesimal deformations. The last se
tion is devoted to present some pra
ti
al experiments.A
knowledgments : We would like to thank J.-C. Faug�ere, D. Lazard and M.-F. Roy for theirhelpful 
omments, advises and supports and Hoon Hong who did provide us the CAD implementation2



used for the tests.2 The AlgorithmIn the whole paper, K is an ordered �eld, R is its real 
losure and C its algebrai
 
losure. If(P1; : : : ; Ps) is a family of polynomials in K[X1; : : : ;Xn℄, we denote by V (P1; : : : ; Ps) � Cn thealgebrai
 variety de�ned by the polynomial system of equation :P1 = : : : = Ps = 0and I = hP1; : : : ; Psi the ideal of K[X1; : : : ;Xn℄ generated by this family of polynomials.As des
ribed in introdu
tion, our goal is to use the properties of the distan
e fun
tion to onepoint. More pre
isely, we are going to prove the following theorem :Theorem 2.1 Let V be an algebrai
 variety of dimension d and S = fP1; : : : ; Psg polynomials ofK[X1; : : : ;Xn℄ su
h that I(V ) = hP1; : : : ; Psi. Given any point A 2 Cn, we de�ne the followingalgebrai
 set : C(V;A) = fM 2 V; rank( �!gradM (P1); : : : ; �!gradM (Ps); �!AM) � n� dg:If D is a positive integer large enough, there exists at least one point A in f1 : : : Dgn su
h that :1. C(V;A) meets every semi-algebrai
ally 
onne
ted 
omponent of V TRn,2. C(V;A) = Sing(V )S V0.where� V0 is a �nite set of points in Cn,� Sing(V ) = fM 2 V j rank( �!gradM (P1); : : : ; �!gradM (Ps)) < n� dg.Moreover, dim(C(V;A)) < dim(V ).Proof : Let A be any point in Cn and D be a semi-algebrai
ally 
onne
ted 
omponent of V TRn.If M 2 DTSing(V ), it is 
lear that M 2 C(V;A).Now, suppose that M 2 D n Sing(V ) is at minimal distan
e from A. Let S(A; r) be the sphere of
enter A and radius r = d(A;M). Sin
e M is at minimal distan
e to A, S and V are tangent at Mand then �!AM 2 Ve
t( �!gradM (P1); : : : ; �!gradM (Ps)). Thus M 2 C(V;A).Let Q1; : : : ; Qn be polynomials in K[X1; : : : ;Xn; �1; : : : ; �s℄ de�ned by Qj = Pi=1;:::;s �i �Pi�Xj �Xj ,and let H be the subset of Cn+s de�ned by H = f(M;�1; : : : ; �s) 2 Cn+s jM 2 V n Sing(V )g:Consider the appli
ationF : H �! Cn(M;�1; : : : ; �s) 7�! (Q1(M;�1; : : : ; �s); : : : ; Qn(M;�1; : : : ; �s))If Ja
((P1; : : : ; Ps; Q1+b1; : : : ; Qn+bn) denotes the determinant of the Ja
obian matrix asso
iated tothe polynomials P1; : : : ; Ps; Q1+b1; : : : ; Qn+bn, the 
riti
al values of F are the pointsB = (b1; : : : ; bn)of Cn su
h thatV (Q1 + b1; : : : ; Qn + bn; Ja
(P1; : : : ; Ps; Q1 + b1; : : : ; Qn + bn)) 6= ;.3



>From Sard's theorem over C [19℄ and the transfer prin
iple [6℄ it follows thatB = fB = (b1; : : : ; bn) 2 Cn jH \ V (Q1 + b1; : : : ; Qn + bn; Ja
(P1; : : : ; Ps; Q1 + b1; : : : ; Qn + bn)) 6= ;gis a 
onstru
tible set of dimension < n of Cn.Sin
e B is a 
onstru
tible set of dimension < n, one 
an 
hoose A = (a1; : : : ; an) 2 f0; : : : ;Dgn withD large enough, and su
h that A =2 B. In su
h 
ase,H \ V (Q1 + a1; : : : ; Qn + an; Ja
(P1; : : : ; Ps; Q1 + a1; : : : ; Qn + an)) = ;and thus the points of H \ V (Q1 + a1; : : : ; Qn + an) are isolated and non singular. Let � be theproje
tion de�ned by : � : Cn+s �! Cn(x1; : : : ; xn; `1; : : : ; `s) 7�! (x1; : : : ; xn) :Sin
e C(V;A) = Sing(V ) [ �(H \ V (Q1 + a1; : : : ; Qn + an)), C(V;A) = Sing(V ) [ V0, where V0 is�nite set of points. >From [10℄, Sing(V ) is the union of algebrai
 varieties whose dimensions arestri
tly inferior to the dimension of V .Remark 2.1 >From the proof of theorem 2.1, a point A taken at random veri�es dim(C(V;A)) <dim(V ) with a probability one.De�nition 2.1 Given any variety V 2 Cn, we de�ne re
ursively Ci(V;Ai), i � 0, a set of points inCn in the following way :� A0 is any point in Kn and C0(V;A0) = V ,� Ai 2 Kn is su
h that dim(C(Ci�1(V;Ai�1); Ai)) < dim(Ci�1(V;Ai�1)),� Ci(V;Ai) = C(Ci�1(V;Ai�1); Ai).A

ording to the de�nition above, we have :Corollary 2.1 Given any variety V 2 Cn, It exists an integer m <1 su
h that :� Cm(V;Am) is a �nite set of points,� Cm(V;Am)) meets every semi-algebrai
ally 
onne
ted 
omponent of V TRn.Proof : >From theorem 2.1 , Ci+1(V;Ai+1) meets every semi-algebrai
ally 
onne
ted 
omponent ofCi(V;Ai)TRn and dim(Ci+1(V;Ai+1)) < dim(Ci(V;Ai)), 8i � 0. The proof 
omes also immediatelyby indu
tion sin
e C0(V;A0) = V and sin
e 8i 2 f0; : : : ;mg V (Ci+1(V;Ai+1)) � V (Ci(V;Ai)).The algorithm we propose 
onsists in 
onstru
ting the sets Ci(V;Ai) until dim(Cm(V;Am)) = 0.In a 
omputational viewpoint, this 
onsists in 
omputing a set of generators Pi of radi
al ideals Iisu
h that V (Ii) = Ci(V;Ai), 8i = 0 : : : m.Let suppose that Pk = fPk;1; : : : Pk;sg su
h a set.4



De�nition 2.2 For B 2 Cn, Q = fQ1; : : : Qsg � K[X1; : : : ;Xn℄s, and d 2 IN ; 0 � d < n, wede�ne �B;d(Q) as being the set of all the minors of order (n� d+ 1; n� d+ 1) of the matrix24" �Qi�Xj #(i=1:::n;j=1:::s) ���� �!BM 35Coming ba
k to our problem, if V (hPii) = Ci(V;Ai), di = dim(Ci(V;Ai) and hPii is a radi
alideal, then Ci+1(V;Ai+1) = V (hPi ; �Ai+1;di(Pi)i):We may also de�ne Pi+1 as being a system of generators of the ideal qhPi�Ai+1;di(Pi)i.A

ording to the results above, the basi
 routines needed to implement an algorithm that 
omputesa zero-dimensional system Pm su
h that V (Pm) = Cm(V;Am) (
orollary 2.1) may be the following :� Radi
al : takes as input a polynomial system S of equations and returns a �nite set ofgenerators (for example a Gr�obner base) of phSi,� Dim : takes as input a �nite set of generators of an ideal and 
omputes the dimension of theasso
iated variety,� Minors : takes as input a �nite set of polynomials Q, and integer d and a point A 2 Cn (infa
t in Kn) and 
omputes �A;d(Q)i).Algorithm 1� Input : A polynomial system S of equations in K[X1; : : : ; Xn℄.� Output : A zero-dimensional system whose zeroes de�ne at least one point in ea
h semi-algebrai
ally 
on-ne
ted 
omponent of V (S)TRn.1. S := Radi
al(S), d := Dim(S),2. Choose A 62 V (S).3. while d 6= 0 do� (*) Q = Minors(S; d;A)SS� u = Dim(Q)� if u = d 
hoose another point A and go to step (*).� else d := u ; S := Radi
al(Q)4. return (S).Note that the required subroutines of our algorithm are weaker than the ones of the algorithmdes
ribed in [9℄ sin
e we do not need to perform an irredu
ible de
omposition.3 OptimizationsIn this se
tion, we present pra
ti
al optimizations of our algorithm. The main idea is to split,as most as possible, the systems to be solved (phPii) in order to make easier the intermediate
omputations and the resolution of the �nal zero-dimensional systems. In the �rst part, we modify5



slightly Algorithm 1 for this purpose. In the se
ond part, we show how to de
rease the numberof determinants to 
ompute and to make their 
omputation easier. The last sub-se
tion is devotedto present a lazy version of the algorithm for de
iding the emptiness of a real algebrai
 variety, and
omputing at least one point on ea
h semi-algebrai
ally 
onne
ted 
omponent in some generi
 
ases.In the two last parts, we use results 
oming from the theory of triangular sets (see [17, 18, 16, 1, 2℄)for optimizing the algorithms. We refer to [2℄ whi
h synthesizes these results.3.1 Splitting the 
omputationsIn Algorithm 1, we need to 
ompute generators of radi
al ideals at ea
h step. A

ording to re
entprogress (see [11℄), the most eÆ
ient way to do su
h a 
omputation in pra
ti
e is to 
ompute ade
omposition into primes. Moreover, sin
e ea
h 
omputed system splits into a zero-dimensionalsystem and a system of dimension less than the original one (theorem 2.1), we may extra
t theisolated roots at ea
h step instead of keeping them embedded in the main 
omponent, making easierthe �nal resolution (for example isolating the real roots of zero-dimensional systems).Let PrimeDe
omposition be a subroutine taking as input a polynomial system of equationsS in K[X1; : : : ;Xn℄ and returning a set of generators of ea
h prime ideal asso
iated to phSi.We propose the following algorithm : Algorithm 2� Input : A polynomial system S of equations in K[X1; : : : ; Xn℄.� Output : An empty list if V (S)TRn = ;, else a list of zero-dimensional systems whose roots 
ontain atleast one point in ea
h semi-algebrai
ally 
onne
ted 
omponent of V (S)TRn.1. list := PrimeDe
omposition(S), result := [℄,2. Choose A 62 V (S).3. while list 6= ; do� S := �rst(list), and remove S from list, set d = Dim(S),� if d = 0 then result := resultSS,� else{ (*) Q = Minors(S; d;A)SS and set u = Dim(Q){ if u = d 
hoose another point A 62 S and go to step (*).{ d := u ; list := listSPrimeDe
omposition(Q),4. return result.3.2 Using triangular setsIn this se
tion, we show how to redu
e the number and the size of the determinants by 
onsideringspe
i�
 subsets of the Gr�obner bases.Let G be a redu
ed lexi
ographi
al Gr�obner base generating a prime ideal of dimension d inK[X1; : : : ;Xn℄ for the ordering X1 < : : : < Xn. For p 2 G, we denote by mvar(p) (and we 
all mainvariable of p) the greatest variable appearing in p . If F is a 
onstru
tible subset of Cn, we denoteby F the Zariski 
losure of F in Cn. In [2℄, the following result is proved :Theorem 3.1 (see [2℄ and [1℄) Let T = (td+1; : : : ; tn) � G be a set of polynomials su
h that8(ti; tj) 2 T � T mvar(ti) 6= mvar(tj);6



and 8g 2 G; 8i 2 fd+ 1; : : : ; ng su
h that mvar(ti) = mvar(g) ([1℄) :deg(ti;mvar(ti)) � deg(g;mvar(ti)):We denote by� hi the leading 
oeÆ
ient of ti (when it is seen as a univariate polynomial in its main variable)and H(T ) = fhd+1; : : : ; hng.� W (T ) = fM 2 V (T ) n V (H)g,� sat(T ) = fp 2 K[X1; : : : ;Xn℄ j 9m 2 N;9h 2 H(T ); hmp 2 hT ig.Then we have :1. sat(T ) = hGi,2. W (T ) = V (G),If G is prime, the set T = (td+1; : : : ; tn) is a regular separable triangular set (see [2℄).Lemma 3.1 If T is a regular separable triangular set extra
ted from a redu
ed lexi
ographi
alGr�obner base generating a prime ideal, then : 8i 2 fd + 1; : : : ; ng;dim(V ( �ti�mvar(ti))T V (G)) <dim(V (G)):Proof : Sin
e hGi is prime, it is suÆ
ient to show that �ti�mvar(ti) =2 hGi. Let mXdii the leadingmonomial of ti. Sin
e G is redu
ed, 8g 2 G n ftig, the leading monomial of g does not divide mXdii .Hen
e, the leading monomial of �ti�mvar(ti) is not divisible by the leading monomial of g, and thus�ti�mvar(ti) =2 hGi.Let M = (x1; : : : ; xn), A = (a1; : : : an), d = dim(V (G)), and 
onsider, for j = 1 : : : d, the restri
tedlist of minors of order (n� d+ 1) extra
ted from �A;d(T ) :�A(T ) = f�(j)A (T ) = det(M(j)A ); j = 1 : : : dgwhere M(j)A = 2666664 h �ti�Xj ii=d+1:::n xj � ajUT = h �ti�Xj ii=d+1:::nj=d+1:::n xd+1 � ad+1...xn � an
3777775Without lost of generality, we may suppose that mvar(ti) = Xi, so that the minors �(j)A (T ) areeasy to 
ompute sin
e UT is upper triangular. Our goal is now to show that we 
an repla
e, in ouralgorithm, the 
omputation of �A;d(G) by the 
omputation of �A(T ), de
reasing so the number andthe 
ost of the 
omputations :Proposition 3.1 Let de�ne D(V (G); A) = V (G)T V (�A(T )), d = dim(G) and Sep(T ) = Qni=d+1 �tiXi .If A 2 Cn su
h that dim(C(V (G); A)) < dim(V (G)), then, a

ording to the notations of theorem 2.1,we have : 7



� C(V (G); A) � D(V (G); A);� (D(V (G); A) n V (Sep(T ))) � V0,� dim (D(V (G); A)T V (Sep(T ))) < dim(V (G)):In parti
ular, dim(D(V (G); A)) < dim(V (G)): and D(V (G); A) meets every semi-algebrai
ally 
on-ne
ted 
omponent of V (G).Proof :� Sin
e T � G, �A(T ) � �A;d(T ) � �A;d(G), then :C(V (G); A) = V (G)\ V (�A;d(G)) � V (G)\ V (�A;d(T )) � V (G)\ V (�A(T )):� Let M 2 D(V (G); A) n V (Sep(T )). We have det(UT (M)) 6= 0 so thatrank( �!gradM (td+1); : : : ; �!gradM (tn)) � n� d;and 
onsequently rank( �!gradM (g1); : : : ; �!gradM (gs)) � n � d. On one hand, �(i)A (T )(M) =0 ; 8i = 1 : : : d, and so rank( �!gradM (td+1); : : : ; �!gradM (tn); �!AM) = n � d. On the otherhand, dim(V (G)) = d, so that rank( �!gradN (g1); : : : ; �!gradN (gs)) � n � d ; 8N 2 V (G)and thus M 62 Sing(V (G)). Moreover, the ve
tor spa
es V e
t( �!gradM (g1); : : : ; �!gradM (gs))and V e
t( �!gradM (td+1); : : : ; �!gradM (tn)) 
oin
ide whi
h shows that M 2 V0 = C(V (G)) nSing(V (G)).� From 3.1, dim(V (Sep(T ))T V (G)) < dim(V (G)):For des
ribing the full algorithm indu
ed by proposition 3.1, we de�ne new external fun
tions :� LexPrimeDe
omposition takes as input a polynomial system of equations S inK[X1; : : : ;Xn℄and returns a lexi
ographi
 Gr�obner base of ea
h prime ideal asso
iated to phSi.� Extra
tTriangular takes as input a lexi
ographi
 Gr�obner base and extra
t the triangularset as des
ribed in theorem 3.1.
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Algorithm 3� Input : A polynomial system S of equations in K[X1; : : : ; Xn℄.� Output : A list of zero-dimensional systems whose roots 
ontain at least one point in ea
h semi-algebrai
ally
onne
ted 
omponent of V (S)TRn.1. list := LexPrimeDe
omposition(S), result := [℄,2. Choose A 62 V (S).3. while list 6= ; do� S := �rst(list), and remove S from list, set d = Dim(S),� if d = 0 then result := resultSS,� else{ T = Extra
tTriangular(S).{ (*) Q = �A(T )SS and set u = Dim(Q){ if u = d 
hoose another point A 62 S and go to step (*).{ d := u ; list := listSLexPrimeDe
omposition(Q),4. return result.Remark 3.1 If V (G) is a variety of dimension d, one needs to 
ompute only d determinants.In order to make easier the 
omputations in LexPrimeDe
omposition, one 
an redu
e thedeterminants modulo the triangular set at the step (*). Let prem(p; q;X) denote the 
lassi
alpseudo-remainder of two polynomials p and q with respe
t to the variable X. If p 2 K[X1; : : : ;Xn℄,its redu
ed form prem(p;T ) 
an be 
omputed by the following re
ursive pro
edure :� if T = ;, then prem(p;T ) = p.� else, if Xi is the greatest variable appearing in a polynomial t 2 T ,prem(p;T ) = prem(prem(p; t;Xi);T n ftg):In parti
ular, there exists polynomials qd+1; : : : qn and positive integers id+1; : : : ; in su
h that :prem(p;T ) = qd+1td+1 + : : :+ qntn + hid+1d+1 : : : hinn p:Thus V (G)T V (prem(p;T )) = V (G)T(V (p) [ V (hd+1 : : : hn)). Hen
e, from theorem 3.1,dim(V (G)\ V (p)) < dim(V (G)) =) dim(V (G)\ V (prem(p;T )) < dim(V (G)):3.3 De
iding emptiness in any 
ase and 
omputing one point on ea
h semi-algebrai
ally 
onne
ted 
omponent in generi
 
asesLet G � K[X1; : : : ;Xn℄ be a lexi
ographi
al redu
ed Gr�obner base and T = (td+1; : : : ; tn) a regularseparable triangular set extra
ted from G. Without lost of generality, we suppose that 8i 2 fd +1; : : : ; ng mvar(ti) = Xi.De�nition 3.1 T is said to be in quasi-generi
 position if there exists k 2 fd+1; : : : ; ng su
h that8i > k deg(ti;Xi) = 1:We denote by k the index of quasi-generi
 position of Tk.9



If T is in quasi-generi
 position, we may suppose, without lost of generality, that tj = hjXj + qjwith hj ; qj 2 K[X1; : : : ;Xk℄ ; 8j = k + 1 : : : n.If V (Gk) = ; then V (G) = ;.Suppose that V (Gk)TRk 6= ; and let M 2 D(V (Gk; Ak))TRk for any Ak 2 Rk.� IfM = (x1; : : : ; xk) 62 V (hk+1), there exists a unique value y 2 R su
h thatM 0 = (x1; : : : ; xk; y) 2V (Tk+1). Moreover, ifM 62 V (Qk+1j=d+1 hj) then, a

ording to theorem 3.1,M 0 2 V (Gk+1)TRk+1.� Suppose M 2 V (hk+1) and M 62 Sing(V (Gk)). Sin
e dim(V (hk+1)T V (Gk)) < dim(V (Gk))and sin
e M is a regular point of V (Gk), there exists a neighborhood U � V (Gk)TRk
ontaining a point N su
h that hk+1(N) 6= 0 and so, a

ording to the pre
eding item,N 2 V (Gk+1)TRk+1.Re
ursively, if �D(V (Gk; Ak)) n �Sing(V (Gk))T V (Qni=d+1 hi)��TRk 6= ;, then V (G)TRn 6= ;.Sin
e the 
ases where (D(V (Gk); A) n (Sing(V (Gk)) \ V ( nYi=d+1hi)))\Rk = ;and (D(V (Gk); A)\ Sing(V (Gk))\ V ( nYi=d+1 hi))\Rk 6= ;;are rare, we propose a spe
i�
 algorithm, based on Algorithm 3 and optimized to de
ide theemptiness.In the following, we denote by �(Gk) all the minors of order k�d of the Ja
obian matrix asso
iatedto Gk and we de�ne new external fun
tions :� ZeroDimTest : takes as input a zero-dimensional system S and returns true if V (S)TRn = ;,else it returns false.� ZeroDimSolve : takes as input a zero-dimensional system S and returns true if V (S)TRn =,else it returns false.� 
leanlingStep : takes as input a zero-dimensional system S and a polynomial p, and returnsa list of real solutions of S whi
h do not vanish p. This 
an be done by g
d 
omputations onunivariate polynomials if we solve zero-dimensional systems by 
omputing Rational UnivariateRepresentations (see [21, 22℄).
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Algorithm 4� Input : A polynomial system S of equations in K[X1; : : : ; Xn℄.� Output : true if V (S)TRn = ;, else it returns false.1. list := LexPrimeDe
omposition(S), result := true,2. Choose A 62 V (S).3. while list 6= ; do� (*)S := �rst(list), and remove S from list, set d = Dim(S),� if d = 0 and if ZeroDimSolve(S) = false then return false,� T = Extra
tTriangular(S).� if T is in quasi-generi
 position then{ newlist := Algorithm3(�A(Tk) [ Sk), where k is the index of quasi-generi
 position of Tk,{ for S0 in newlist, remove S0 if ZeroDimSolve(S0) = true,{ if newlist := ; then set result to true and return to step (*),{ for S0 in newlist, remove S0 from newlist and if 
leaningStep(S0;�(Gk)) 6= ; then return false,{ for S0 in newlist, remove S0 from newlist and if 
leaningStep(S0;Qni=d+1 hi) 6= ; then return false,� (**) Q = �A(T )SS and set u = Dim(Q)� if u = d 
hoose another point A 62 S and go to step (**).� d := u ; list := listSLexPrimeDe
omposition(Q),4. return result.Remark 3.2 One 
an guarantee that the method des
ribed above 
omputes at least one point inea
h 
onne
ted 
omponent if 8i 2 fk + 1; : : : ; ng; hi 2 K, whi
h o

urs, for example, when thesystem is in Noether position. In other 
ases, this 
an not be guaranteed (
onsider the example :t2 = y � x and t3 = xz � 1 with z > y > x and take A = (0; 1)).4 ExperimentsThis se
tion is devoted to present some tests performed with an experimental implementation ofour algorithms.4.1 Software and basi
 algorithmsThe de
omposition into primes have been 
omputed using Gb (software devoted to Gr�obner bases
omputations, implemented by J.-C. Faug�ere) and maple. We �rst 
ompute a Gr�obner base withrespe
t to any ordering (Gb), then dedu
e, by 
hange of ordering, a lexi
ographi
 Gr�obner base(Gb) and �nally we 
ompute the prime de
omposition using multi-variate fa
torization and g
d's(Maple). In the 
on
lusion of this arti
le, we present some tests made using a re
ent experimentalalgorithm (F7 - see [11℄) devoted to the de
omposition into primes.The resolution of zero-dimensional systems (
ounting/isolating of the real roots) has been doneusing ZDS algorithm (Rational Univariate Representation + Isolation of the Real Roots) whi
huses Gb and RS (software implemented by F. Rouillier). In parti
ular, all the 
omputations havebeen done using ex
lusively exa
t 
omputations.The other parts of the algorithms were implemented in maple.11



In order to show the eÆ
ien
y of our algorithms, we have applied the CAD algorithm on ea
hexample. Remember that this method is more general than ours. In parti
ular, it is 
urrently theonly eÆ
ient method able to 
ompute, in pra
ti
e, at least one point on every semi-algebrai
ally
onne
ted 
omponent of a semi-algebrai
 variety. The implementation we used (QEPCAD) is buildupon the SACLIB library and has been provided by Hoon Hong.4.2 The methodologyThe polynomial systems used for our experiments 
ome from various sour
es and most of them 
anbe found in the FRISCO Test-Suite (see [13℄). A larger list is available on the web page [24℄.We may point out that the examples F633, F744 and F855 
ome from an industrial appli
ation(design of �lter banks - see [12℄).All the 
omputations have been performed on a PC Pentium II 400 MHz with 512 Mo of RAM(ma
hine of the UMS Medi
is). The timings are given in se
onds.We 
hose to stop the 
omputations systemati
ally after 12 hours. Also, the symbol1 in the timingtables means in fa
t stopped after 12 hours.It happens that the CAD fails when the number of 
ells be
omes too large. In su
h 
ases, we putfailed(n), where n denotes a lower bound of the number of 
ells, in the tables.4.3 Algorithm 2 / Algorithm 3The goal of these tests is to show how the use of triangular sets de
reases the 
omputation times.The following table 
ontains the timings for the 
omputation of all the zero-dimensional systems(outputs of Algorithm 2 and Algorithm 3) but ex
ludes the 
omputation times related to their reso-lution. In the 
olumns Algorithm 2 and Algorithm 3 the �rst number is the 
umulative 
omputationtime of the prime de
ompositions, while the se
ond one is the 
umulative 
omputation time of thedeterminants. If one of these both 
olumns 
ontains \?", it means that the pre
eeding step (eithera prime de
omposition 
omputation, or a determinant 
omputation) has not ended.System Dimension/Degree Nb Vars Algorithm 2 Algorithm 3Vermeer 1,26 5 0.01 0 0.01 0Wang 1,114 13 0.12 0 0.12 0Euler 3,2 10 0.01 0 0.01 0Neural 1,24 4 0.43 0 0.43 0But
her 3,3 8 1.7 0 1.7 0Bu
hberger 4,6 8 0 0 0 0Dis
Pb 2,3 4 0.02 0 0.02 0Donati 1,10 4 0.04 26 0.04 0Hairer2 2,25 13 ? 1 1 ?Prode

o 2,2 5 284 26 284 0F633 2,32 10 ? 1 1 ?F744 1,40 12 24.06 1 24.06 0.02F855 1,52 14 5654 1 5654 173Table 1 : 
omputation times for Algorithm 2 and Algorithm 3One 
an remark that the 
onstru
tion of the zero-dimensional systems is a limiting step in Algorithm2 and not in Algorithm 3. In Algorithm 3, we 
ompute only a subset of the set of the determinantsneeded by algorithm 2. 12



4.4 Algorithm 3 / CAD4.4.1 Size of the outputIn the following table, we give the number of points 
omputed by Algorithm 3 (sum of the degreesof the zero-dimensional systems) and QEPCAD on the examples for whi
h at least one of thesemethods ends . When QEPCAD is stopped after 12 hours, we put 1 in the table. If the 
ompu-tation failed be
ause the number of 
ells is too huge, we put failed(n), where n is the lower boundof number of 
ells that QEPCAD has predi
ted.System Algorithm 3 + ZDS QEPCADVermeer 84 65976Wang 132 1Euler 10 failed(872043)Neural 133 205But
her 15 1Bu
hberger 32 failed(991324)Dis
Pb 28 1Donati 61 10Table 2 : 
omparison between (Algorithm 3 + ZDS) and QEPCADOne 
an observe that these results are 
oherent with the theoreti
al 
omplexity : the outputof the CAD is doubly exponential in the number of variables while the number of points of theoutput of our algorithm is proportional to the number of semi-algebrai
ally 
onne
ted 
omponentsof the real algebrai
 variety and thus singly exponential in the number of variables. We 
an alsoremark that none of the methods solved the examples Hairer2, Prode

o, F633, F744 and F855,even if Algorithm 3 provided all the zero-dimensional systems. These systems were too large for the
omputation of a Gr�obner base by Gb.4.4.2 Computation timesOne of our motivations was to provide an algorithm whose output is reasonable with the hope toget signi�
antly better 
omputation times, 
ompared to existing implementations that 
omputes atleast the same thing, even if the methods used have not, theoreti
ally, a better 
omplexity in termsof 
omputation times.The next table shows that both algorithms Algorithm 2 + ZDS and Algorithm 3 + ZDS havea better behavior, in pra
ti
e, than QEPCAD :System Algorithm 2 + ZDS Algorithm 3 + ZDS QEPCADVermeer 62.36 3.32 43Wang 1.37 1.37 1Euler 0.01 0.01 failed(872043)Neural 1.02 1.02 0.9But
her 1.7 1.7 1Bu
hberger < 0.01 < 0.01 failed(991324)Dis
Pb 0.2 0.2 1Donati 11609 10 0.6Table 3 : Computation times for Algorithm 2 +ZDS, Algorithm 3 +ZDS and QEPCAD.13



4.5 Algorithm 4The last table shows the progress indu
ed by Algorithm 4. A

ording to remark 3.2, Algorithm4 
omputes one point on ea
h 
onne
ted 
omponent in favorable 
ases, and allows to de
ide if avariety is empty or not in any 
ase. The examples for whi
h Algorithm 4 gives at least one pointon ea
h semi-algebrai
ally 
onne
ted 
omponent are marked by *.System Algorithm 2 + ZDS Algorithm 3 + ZDS Algorithm 4 QEPCADVermeer 62.36 3.32 <0.01 43Wang 1.37 1.37 0.13 1Euler 0.01 0.01 <0.01* failed(872043)Neural 1.02 1.02 0.44* 0.9But
her 1.7 1.7 1.7* 1Bu
hberger < 0.01 <0.01 <0.01* failed(991324)Dis
Pb 0.2 0.2 0.02 1Donati 11609 10 0.04 0.6Hairer2 1 1 23.03 failed(872043)Prode

o 1 1 286 1F633 1 1 5700 1F744 1 1 40 1F855 1 1 5664 1Table 4 : Outputs of Algorithm 2 + ZDS, Algorithm 3 + ZDS and QEPCAD.In terms of 
omputations, the di�eren
e between Algorithm 3 and Algorithm 4 is the numberand size of the intermediate determinants. One 
an see that the zero-dimensional systems providedby Algorithm 4 are mu
h more simple to solve.The 
ases where Algorithm 4 
omputes one point on ea
h semi-algebrai
 
omponent are fewwhi
h means, in parti
ular, that, in our test list, the systems in Noether position are few and sojustify a large part of our study whose obje
tive is to provide an algorithm that works in everysituation.5 Con
lusionsWe have provided an eÆ
ient algorithm (Algorithm 3) that allows to 
ompute one point on ea
hsemi-algebrai
ally 
onne
ted 
omponent of a real algebrai
 variety, without assumption neither onthe variety (smoothness, 
ompa
tness) nor on the system of polynomial equations that de�ne it.We proposed an optimization (Algorithm 4) for de
iding the emptiness of the variety in any
ases or for 
omputing at least one point on ea
h 
onne
ted 
omponent in generi
 
ases (see remark3.2). A

ording to the experiments, we noti
ed that in pra
ti
e, these 
onditions of generi
ity (forexample the Noether position) are too strong, whi
h prevents algorithm 4 for 
omputing at leastone point on ea
h semi-algebrai
ally 
onne
ted 
omponent.Moreover, we will have mu
h better timings in a near future. For example, we try a re
entprototype, due to J.C. Faug�ere, of an algorithm for 
omputing prime de
ompositions that speedsup our algorithms : with this implementation, Algorithm 4 
an solve F633 in 7.2 se
. and F855 in26 se
.A

ording to other experiments we made, additional assumptions on the variety (smoothness,
ompa
tness) or on the system of equations that de�nes it (Noether position, radi
al, prime, et
 ...)speeds up strongly the method. For example, if we suppose the real algebrai
 set to be 
ompa
t,14



then, a

ording to Lemma 3.1 we 
an repla
e the distan
e fun
tion by any proje
tion with respe
tto one 
oordinate Xi. In pra
ti
e, it is suÆ
ient to repla
e �!AM by the ve
tor �!ui whose 
oordinatesare null ex
ept the i-th.The theoreti
al 
omplexity of our method depends strongly on the 
omplexity of the primede
omposition. So note that there is no pre
ise result about it. We 
an just give an upper doublyexponential in the number of variables bound (sin
e we 
ompute lexi
ographi
al Gr�obner bases).We plan to extend our work to the 
ase of semi-algebrai
 sets, generalizing our main results orsimply applying well known transformations (see for example [25℄) that 
omes to study real algebrai
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