N
N

N

HAL

open science

Real Solving for positive dimensional systems
Philippe Aubry, Fabrice Rouillier, Mohab Safey El Din

» To cite this version:

Philippe Aubry, Fabrice Rouillier, Mohab Safey El Din. Real Solving for positive dimensional systems.
[Research Report] 1ip6.2000.009, LIP6. 2000. hal-02548286

HAL Id: hal-02548286
https://hal.science/hal-02548286
Submitted on 20 Apr 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-02548286
https://hal.archives-ouvertes.fr

Real solving for positive dimensional systems

P. Aubry? F. Rouillier! M. Safey El Din*

March 14, 2000

Abstract

Finding one point on each semi-algebraically connected component of a real algebraic variety,
or at least deciding if such a variety is empty or not, is a fundamental problem of computational
real algebraic geometry. Even though numerous studies have been done on the subject, only a
few number of efficient implementations exists.

In this paper, we propose a new efficient and practical algorithm for computing such points.
By studying the critical points of the restriction to the variety of the distance function to one well
chosen point, we show how to provide a set of zero-dimensional systems whose zeroes contain at
least one point on each semi-algebraically connected component of the studied variety, without
any assumption neither on the variety (smoothness or compactness for example) nor on the
system of equations that define it.

Once such a result is computed, one can then apply, for each computed zero-dimensional
system, any symbolic or numerical algorithm for counting or approximating the solutions. We
have made experiments using a set of pure exact methods.

The practical efficiency of our method is due to the fact that we do not apply any infinitesimal
deformations, conversely to the existing methods based on similar strategy.

1 Introduction

The problem of finding one point on each semi-algebraically connected component of a real al-
gebraic variety, or at least deciding if it is empty, appears in several computational problems in
computational algebraic geometry.

The most popular algorithm which solves this problem is Collins’ Cylindrical Algebraic Decom-
position (see [8]). This algorithm is based on variable elimination, one after the other, and solves
the thruth decisison problem of a first order formula. Thus, it solves more general problems than
the one in which we are interested. Note also that it is polynomial in the degree and the number
of the polynomials and doubly exponential in the number of variables. In practice, this theoretical
complexity can be observed for many examples, and so, the problem size which can be solved with
such algorithms is limited.

In [14], Grigoriev and Vorobjov proposed an algorithm for deciding the emptiness of a semi-
algebraic set with a single exponential complexity in the number of variables. In this method as
well as in most of its variants (see [20, 7, 15, 4, 5, 25]), the key idea is to apply deformations
so that the projection critical points with respect to one coordinate define a finite set that meets
every semi-algebraic connected component of the deformed variety. In [4, 5, 25] the authors take, in

*Université de Paris VI, France
fLORIA, INRIA-Lorraine, Nancy, France

addition, sums of squares in order to work with smooth and compact real algebraic sets defined by
a unique polynomial equation. The final result is then obtained by taking the limits of the points
(substituting the infinitesimals by zero).

In any case, the problem is reduced to the resolution of zero-dimensional systems. But even if the
various done transformations keep a good theoretical complexity (see [4]), they render impossible
an efficient resolution in practice, due to the use of at least two infinitesimals (deformations) and a
degree growth (sum of squares).

In [3] , the authors provide an algorithm, based on straight-line programs, with a good theoretical
complexity, when the variety to be studied is smooth, compact and given by a regular sequence of
polynomials, so that, in practice, one would have to face, at least, the same problems than in [4]
(smoothness and compactness) for providing an algorithm that works in every situation.

In [9], the authors propose a new algorithm for deciding the emptiness of semi-algebraic sets,
which is more practical. In particular they avoid to take the sums of the squares, and deal with
the singularities by using the fact that the singular locus is an algebraic variety whose dimension
is inferior to the one of the variety they consider. Nevertheless, they keep on using the projection
function. Thus, their algorithm requires the use of at least one infinitesimal deformation or a new
variable addition for dealing with non compact varieties.

In [23], the authors consider the particular case of a variety defined by a single equation. Coming
back to a classical idea of Seidenberg (see [26]), they study the critical points of the distance function
to a point instead of coordinates functions. The authors recall that the set of critical point set of the
distance function to a point meet each connected component and they show that it is finite when
the point is well chosen (they propose a strategy for choosing it) and when the variety has at most
a finite number of singularities, so that an infinitesimal deformation is needed only when the variety
has an infinite number of singular points.

In this paper, we keep on computing the critical points of the distance function to a point A
but for the general case of real algebraic sets defined by a polynomial system of equations (the case
of hypersurfaces defined by a unique equation becomes a particular case without taking the sum of
the squares of the equations). Like in [23], we define an algebraic set C(V, A) that contains these
critical points and a sub-algebraic variety of V' of the one studied.

Our main result consists in proving that by choosing a good point A, C(V, A) is the disjoint
union of a sub-algebraic variety of V' whose dimension is inferior to the one of the variety and of
a finite set of points. The problem then remains to compute the isolated points of C(V, A) and to
study, in the same way, the defined sub-variety V which has a dimension strictly smaller than the
dimension of the variety. Also, we obtain an algorithm without any infinitesimal deformation whose
proof is simply based on the fact that the dimension of the studied varieties strictly decreases at
each step.

The paper plan is as follows. Section 2 is devoted to the definition and the study of C(V, A), an
algebraic set depending on the choice of a point A in the space, that meets every semi-algebraically
connected component of V. In particular, we show how to choose a point A so that C(V, A) becomes
the disjoint union of a finite set of points and of V. Moreover we propose the explicit construction of a
zero-dimensional system whose zeroes meet every semi-algebraic connected component of V. Section
3 is devoted to present the way of using in practice such results for getting an efficient algorithm that
avoids infinitesimal deformations. The last section is devoted to present some practical experiments.

Acknowledgments : We would like to thank J.-C. Faugere, D. Lazard and M.-F. Roy for their
helpful comments, advises and supports and Hoon Hong who did provide us the CAD implementation

used for the tests.

2 The Algorithm

In the whole paper, K is an ordered field, R is its real closure and C' its algebraic closure. If
(Py,...,Ps) is a family of polynomials in K[X1,...,X,], we denote by V(Py,...,P;) C C" the
algebraic variety defined by the polynomial system of equation :

P=...=P, =0

and I = (Py,..., Ps) the ideal of K[X1,..., X,] generated by this family of polynomials.
As described in introduction, our goal is to use the properties of the distance function to one
point. More precisely, we are going to prove the following theorem :

Theorem 2.1 Let V be an algebraic variety of dimension d and S = {P,...,Ps} polynomials of
K[Xy,...,X,] such that I(V) = (P1,...,Ps). Given any point A € C", we define the following
algebraic set :

C(V, A) = {M € V,rank(grady, (PL), ..., grady (P,), AM) < n — d}.
If D is a positive integer large enough, there ezists at least one point A in {1...D}" such that :
1. C(V, A) meets every semi-algebraically connected component of V. R",
2. C(V,A) = Sing(V)U V.
where

e Vp is a finite set of points in C",

— —
o Sing(V) ={M €V | rank(grady (P1),...,grady;(Ps)) <n —d}.
Moreover, dim(C(V,A)) < dim(V).

Proof : Let A be any point in C™ and D be a semi-algebraically connected component of V (| R™.
If M € D Sing(V), it is clear that M € C(V, A).

Now, suppose that M € D \ Sing(V) is at minimal distance from A. Let S(A,r) be the sphere of
center A and radius r :_cf(A, M). Since M is at minimal distance to A, S and V are tangent at M

and then AM € Vect(grady; (Py), ... ,gﬁdM(Ps)). Thus M € C(V, A).

Let @1,...,Qn be polynomials in K[Xy,...,Xn,A1,...,As] defined by Q; =37, Aig—;;; - X
and let H be the subset of C"** defined by H = {(M, \1,..., ;) € C""* | M € V' \ Sing(V)}.
Consider the application

F H — c”
(Ma>‘17"'7>‘s) — (Ql(Makla---aAs)a---7Qn(M7>‘1a---7>‘s))

If Jac((Py, ..., Ps,Q1+b1,...,Qn+by,) denotes the determinant of the Jacobian matrix associated to
the polynomials P, ..., Ps,Q1+b1,...,Qy+by, the critical values of F' are the points B = (by,...,by)
of C™ such thatV (Qy + by,...,Qpn + by, Jac(Pr, ..., Ps, Q1+ b1,...,Qn + by)) # 0.

;From Sard’s theorem over C' [19] and the transfer principle [6] it follows that

B={B=(b,... b)) €C"|
HmV(Q1+b1a---aQn+bnaJaC(P1a---aPsaQ1+b17---aQn+bn))7&@}

is a constructible set of dimension < n of C™.
Since B is a constructible set of dimension < n, one can choose A = (ay,...,a,) € {0,...,D}"™ with
D large enough, and such that A ¢ B. In such case,

Hﬂv(Ql+a1a-"7Qn+an7Ja’C(P17"'7PSaQ1+a1a-"aQn+an)):Q)

and thus the points of HNV(Q1 + a1,...,Qy + ay) are isolated and non singular. Let 7w be the
projection defined by :

T cnts — cn
(X1, Zpy b1y ls) — (T1,...y)

Since C(V, A) = Sing(V)Ur(HNV(Q1 + a1,...,Qn + ap)), C(V, A) = Sing(V') UV, where Vj is
finite set of points. ;From [10], Sing(V') is the union of algebraic varieties whose dimensions are
strictly inferior to the dimension of V. [

Remark 2.1 ;From the proof of theorem 2.1, a point A taken at random wverifies dim(C(V, A)) <
dim(V') with a probability one.

Definition 2.1 Given any variety V € C™, we define recursively C*(V, A;), i > 0, a set of points in
C™ in the following way :

o Ay is any point in K" and C°(V, Ag) =V,
o A; € K" is such that dim(C(C'~1(V, A;_1), A;)) < dim(C*~Y(V, A; 1)),
o C'(V,A;) = C(C 1V, Aima), Ai).

According to the definition above, we have :

Corollary 2.1 Given any variety V € C™, It exists an integer m < oo such that :
e C"™(V,Ay,) is a finite set of points,
o C"(V,Ap)) meets every semi-algebraically connected component of V(| R™.

Proof : ;From theorem 2.1, CHY(V, A1) meets every semi-algebraically connected component of
CHV, A;) N R™ and dim(C**1(V, A;;1)) < dim(C*(V, A;)), Vi > 0. The proof comes also immediately
by induction since C°(V, Ag) = V and since Vi € {0,...,m} V(C"TY(V, A;11)) CV(CYV, 4;)). =

The algorithm we propose consists in constructing the sets C*(V, A4;) until dim(C™(V, A,,)) = 0.
In a computational viewpoint, this consists in computing a set of generators P; of radical ideals Z;
such that V(Z;) = CY(V, A;), Vi=0...m.

Let suppose that Py = {Py.1,... P s} such a set.

4

Definition 2.2 For B € C", Q = {Q1,...Qs} C K[X1,...,X,]%, andd €e N , 0 < d < n, we
define Ap q(Q) as being the set of all the minors of order (n —d+1,n —d + 1) of the matriz

&
8XJ (i=1...m,j=1...5)

Coming back to our problem, if V((P;)) = C{(V, 4;), d; = dim(C*(V, A;) and (P;) is a radical
ideal, then

—

BM

CHUV, Ai) = V((Pi s Ay, (P))).

We may also define P; 11 as being a system of generators of the ideal \/ (Pid a1 ,4;(Pi)).
According to the results above, the basic routines needed to implement an algorithm that computes
a zero-dimensional system P, such that V(P,,) = C™(V, A,,) (corollary 2.1) may be the following :

e Radical : takes as input a polynomial system S of equations and returns a finite set of
generators (for example a Grobner base) of /(S),

e Dim : takes as input a finite set of generators of an ideal and computes the dimension of the
associated variety,

e Minors : takes as input a finite set of polynomials Q, and integer d and a point A € C™ (in
fact in K™) and computes Ay 4(Q))).

Algorithm 1

e Input : A polynomial system S of equations in K[X1,...,X,].

e Output : A zero-dimensional system whose zeroes define at least one point in each semi-algebraically con-
nected component of V(S) (| R".

1. S := Radical(S), d := Dim(S5),

2. Choose A € V(S5).

3. while d # 0 do

(*) @ = Minors(S,d, A)|J S

v = Dim(Q)
e if u = d choose another point A and go to step (*).
e else d :=u ; S := Radical(Q)

4. return (S).

Note that the required subroutines of our algorithm are weaker than the ones of the algorithm
described in [9] since we do not need to perform an irreducible decomposition.

3 Optimizations

In this section, we present practical optimizations of our algorithm. The main idea is to split,
as most as possible, the systems to be solved (1/(P;)) in order to make easier the intermediate
computations and the resolution of the final zero-dimensional systems. In the first part, we modify

slightly Algorithm 1 for this purpose. In the second part, we show how to decrease the number
of determinants to compute and to make their computation easier. The last sub-section is devoted
to present a lazy version of the algorithm for deciding the emptiness of a real algebraic variety, and
computing at least one point on each semi-algebraically connected component in some generic cases.

In the two last parts, we use results coming from the theory of triangular sets (see [17, 18, 16, 1, 2])
for optimizing the algorithms. We refer to [2] which synthesizes these results.

3.1 Splitting the computations

In Algorithm 1, we need to compute generators of radical ideals at each step. According to recent
progress (see [11]), the most efficient way to do such a computation in practice is to compute a
decomposition into primes. Moreover, since each computed system splits into a zero-dimensional
system and a system of dimension less than the original one (theorem 2.1), we may extract the
isolated roots at each step instead of keeping them embedded in the main component, making easier
the final resolution (for example isolating the real roots of zero-dimensional systems).

Let PrimeDecomposition be a subroutine taking as input a polynomial system of equations
Sin K[Xi,...,X,] and returning a set of generators of each prime ideal associated to \/(S5).

We propose the following algorithm :

Algorithm 2

e Input : A polynomial system S of equations in K[X1,...,X,].

e Output : An empty list if V(S)[|R™ = 0, else a list of zero-dimensional systems whose roots contain at
least one point in each semi-algebraically connected component of V(S) [R".

1. list := PrimeDecomposition(S), result := [],

2. Choose A g V(5).

3. while list # @) do

e S :=first(list), and remove S from list, set d = Dim(S),

e if d = 0 then result :=result [J S,

o else
— (*) Q@ = Minors(S,d, A) | J S and set v = Dim(Q)
— if w = d choose another point A ¢ S and go to step (¥*).
— d:=u ; list := list | J PrimeDecomposition(Q),

4. return result.

3.2 Using triangular sets

In this section, we show how to reduce the number and the size of the determinants by considering
specific subsets of the Grobner bases.

Let G be a reduced lexicographical Grobner base generating a prime ideal of dimension d in
K[Xy,...,X,] for the ordering X; < ... < X,,. For p € G, we denote by mvar(p) (and we call main
variable of p) the greatest variable appearing in p . If F' is a constructible subset of C™, we denote
by F the Zariski closure of F' in C™. In [2], the following result is proved :

Theorem 3.1 (see [2] and [1]) Let T = (t441,---,tn) C G be a set of polynomials such that

V(ti,tj) € T x T mvar(t;) # mvar(t;),

and Vg € G, Vi€ {d+1,...,n} such that mvar(t;) = mvar(g) ([1]) :
deg(t;, mvar(t;)) < deg(g, mvar(¢;)).
We denote by

e h; the leading coefficient of t; (when it is seen as a univariate polynomial in its main variable)

and H(T) = {has1, .-, hn}-
o W(T)={M e V(T)\V(H)},
e sat(7T) = {pe K[Xy,...,Xn] | Im e N,3h € H(T),h™p € (T)}.
Then we have :
1. sat(T) = (9),
2. W(T) =V(9),
If G is prime, the set T = (t411,...,%,) is a regular separable triangular set (see [2]).

Lemma 3.1 If T is a regular separable triangular set extracted from a reduced lexicographical
Grébner base generating a prime ideal, then : Vi € {d + 1,...,n},dim(V (8mvar @)ﬂV() <

dim(V (G)).

Proof : Since (G) is prime, it is sufficient to show that ﬁt;(ti) ¢ (G). Let mX% the leading
monomial of ¢;. Since G is reduced, Vg € G\ {t;}, the leading monomial of g does not divide mXZd".
Hence, the leading monomial of ﬁtﬁ(m is not divisible by the leading monomial of g, and thus

78m\?3té(ti) ¢ (9). u

Let M = (z1,...,2y), A = (a1,...a,), d = dim(V(G)), and consider, for j = 1...d, the restricted
list of minors of order (n — d + 1) extracted from Ay 4(7) :

T4(T) = {T9(T) = det(MD),j =1...d}

where

at;] ‘
i — s
[an i=d+1l.n)
A4(ﬂ _ i—dt1n Td4+1 — Gd+1

A = 1=
Ur = [a—t]
j=d+1..n

Ty — anp
Without lost of generality, we may suppose that mvar(¢;) = X;, so that the minors Fg)(T) are
easy to compute since Uy is upper triangular. Our goal is now to show that we can replace, in our
algorithm, the computation of A4 4(G) by the computation of I' 4 (7"), decreasing so the number and
the cost of the computations :

Proposition 3.1 Let define D(V(G), A) = V(G) N V(T a(T)), d = dim(G) and Sep(T) = [T}~ 41 3
If A € C™ such that dim(C(V(G), A)) < dim(V(G)), then, according to the notations of theorem 2.1,

we have :

e C(V(G),A) CD(V(G),A),
e (D(V(G),A4) \V(Sep(T))) C Vo,
o dim (D(V(G), A) NV (Sep(T))) < dim(V (G)).

In particular, dim(D(V(G), A)) < dim(V(G)). and D(V(G), A) meets every semi-algebraically con-
nected component of V(G).

Proof :
e Since T C G, FA(T) C AAyd(T) C AA,d(g), then :

C(V(G),4) =V(G)[V(A4a(9) CV(G)(V(Aaa(T)) C V(G (V(Ta(T)).
e Let M € D(V(G),A) \ V(Sep(T)). We have det(Uy(M)) # 0 so that
rank(grady; (tae), - - grady, (b)) > n — d,

and consequently rank(gEdM(gl),...,gEdM(gs)) > n —d. On one hand, Fg) (T)(M) =
0, Vi = 1...d, and so rank(gﬁdM(th),...,gﬁdM(tn),m) = n — d. On the other
hand, dim(V(G)) = d, so that rank(gﬁdN(gl),...,gEdN(gs)) <n-d, VN € V(9
and thus M ¢ Sing(V(G)). Moreover, the vector spaces Vect(gﬁdM(gl),...,gEdM(gs))
and Vect(gﬁdM(th),...,g;:dM(tn)) coincide which shows that M € Vy, = C(V(G)) \
Sing(V(G)).

e From 3.1, dim(V (Sep(T)) NV (G)) < dim(V (G)).

For describing the full algorithm induced by proposition 3.1, we define new external functions :

e LexPrimeDecomposition takes as input a polynomial system of equations S in K[X}, ..., X,,]
and returns a lexicographic Grobner base of each prime ideal associated to \/(S).

e ExtractTriangular takes as input a lexicographic Grobner base and extract the triangular
set as described in theorem 3.1.

Algorithm 3

e Input : A polynomial system S of equations in K[X,..., X,].

e Output : A list of zero-dimensional systems whose roots contain at least one point in each semi-algebraically
connected component of V (S) [R™.

1. list := LexPrimeDecomposition(S), result := [],
2. Choose A € V(S5).
3. while list # @) do

e S :=first(list), and remove S from list, set d = Dim(S),
e if d =0 then result :=result|J S,
e else

— T = ExtractTriangular(S).

— (*) Q=T4a(T)JS and set u = Dim(Q)

— if w = d choose another point A ¢ S and go to step (*).
— d:=u; list := list | J LexPrimeDecomposition(Q),

4. return result.

Remark 3.1 If V(G) is a variety of dimension d, one needs to compute only d determinants.

In order to make easier the computations in LexPrimeDecomposition, one can reduce the
determinants modulo the triangular set at the step (*). Let prem(p,q, X) denote the classical
pseudo-remainder of two polynomials p and g with respect to the variable X. If p € K[X,..., X,],
its reduced form prem(p,7) can be computed by the following recursive procedure :

e if T =0, then prem(p,T) = p.
e clse, if X; is the greatest variable appearing in a polynomial ¢t € T,
prem(p, T) = prem(prem(p, , X;), T\ {t}).
In particular, there exists polynomials g441, ... g, and positive integers 4441, ... ,%, such that :
prem(p, T) = qg+1tas1 + - -« + qutn + h;‘:‘_”f ... h%"p.
Thus V(G) NV (prem(p,T)) =V(G)N(V(p) UV (hgsy-..hy)). Hence, from theorem 3.1,
dim(V () (V(p)) < dim(V(§)) = dim(V(G) |V (prem(p, T)) < dim(V (g))-
3.3 Deciding emptiness in any case and computing one point on each semi-
algebraically connected component in generic cases

Let G C K[X1,...,Xy] be a lexicographical reduced Grobner base and 7 = (t441,...,t,) a regular
separable triangular set extracted from G. Without lost of generality, we suppose that Vi € {d +
1,...,n} mvar(t;) = X;.

Definition 3.1 T is said to be in quasi-generic position if there exists k € {d+1,...,n} such that
Vi>k deg(t;, X;) = 1.

We denote by k the index of quasi-generic position of Tg.

If 7 is in quasi-generic position, we may suppose, without lost of generality, that ¢; = h; X; + ¢;
with h; , g; e K[Xy,...,Xg],Vi=k+1...n

If V(Gi) = 0 then V(G) = 0.

Suppose that V(G) N R* # 0 and let M € D(V (G, Ar)) N RF for any A, € RE.

o If M = (z1,...,2x) & V(hgyt1), there exists a unique value y € R such that M’ = (z1,...,x,y) €

V(Tks1). Moreover, if M & V(Hfié_i_l h;) then, according to theorem 3.1, M’ € V(G1) | RFFL.

e Suppose M € V(hgy1) and M & Sing(V(G)). Since dim(V (hx4+1) NV (Gk)) < dim(V(Gi))
and since M is a regular point of V(G;), there exists a neighborhood U C V(G.) N RF
containing a point N such that hgi1(N) # 0 and so, according to the preceding item,
N € V(ng) ﬂRk+1.

Recursively, if (D(V(Gk, A)) \ (Sing(V(Gr)) NV (I11qi1 hi))) NRF # 0, then V(G) N R™ # 0.
Since the cases where

n

(D(V(Gr),)\ (Sing(V(G)) nV(][] ha)))(R" =0

1=d+1

n
and (D(V(Gy), A) () Sing(V(G)) \V([ha))(R* #0,
i=d+1
are rare, we propose a specific algorithm, based on Algorithm 3 and optimized to decide the
emptiness.
In the following, we denote by A(Gg) all the minors of order k — d of the Jacobian matrix associated
to G and we define new external functions :

e ZeroDimTest : takes as input a zero-dimensional system S and returns true if V(S) N R" = 0,
else it returns false.

e ZeroDimSolve : takes as input a zero-dimensional system S and returns true if V(S) N R™ =,
else it returns false.

e cleanlingStep : takes as input a zero-dimensional system S and a polynomial p, and returns
a list of real solutions of .S which do not vanish p. This can be done by ged computations on
univariate polynomials if we solve zero-dimensional systems by computing Rational Univariate
Representations (see [21, 22]).

10

Algorithm 4

e Input : A polynomial system S of equations in K[X,..., X,].
e Output : true if V(S) [R" =0, else it returns false.

1. list := LexPrimeDecomposition(S), result := true,
2. Choose A g V(5).
3. while list # @) do

e (*)S := first(list), and remove S from list, set d = Dim(S),
e if d =0 and if ZeroDimSolve(S) = false then return false,
e T = ExtractTriangular(S).
e if 7 is in quasi-generic position then
— newlist := Algorithm3(I"4(7x) U Sk), where k is the index of quasi-generic position of Ty,
— for S’ in newlist, remove S’ if ZeroDimSolve(S') = true,
— if newlist := () then set result to true and return to step (*),
— for S’ in newlist, remove S’ from newlist and if cleaningStep(S’, A(Gr)) # 0 then return false,
— for S’ in newlist, remove S’ from newlist and if cleaningStep(S’, [] h;) # 0 then return false,

i=d+1
e (**)Q=Ta(T)JS and set v = Dim(Q)

e if 4 = d choose another point A ¢ S and go to step (**).

e d:=u; list := list | J LexPrimeDecomposition(Q),

4. return result.

Remark 3.2 One can guarantee that the method described above computes at least one point in
each connected component if Vi € {k +1,...,n}, h; € K, which occurs, for example, when the
system is in Noether position. In other cases, this can not be guaranteed (consider the example :
to=y—x and t3 = zz — 1 with z >y > x and take A= (0,1)).

4 Experiments

This section is devoted to present some tests performed with an experimental implementation of
our algorithms.

4.1 Software and basic algorithms

The decomposition into primes have been computed using Gb (software devoted to Grobner bases
computations, implemented by J.-C. Faugere) and maple. We first compute a Grobner base with
respect to any ordering (Gb), then deduce, by change of ordering, a lexicographic Grébner base
(Gb) and finally we compute the prime decomposition using multi-variate factorization and ged’s
(Maple). In the conclusion of this article, we present some tests made using a recent experimental
algorithm (F7 - see [11]) devoted to the decomposition into primes.

The resolution of zero-dimensional systems (counting/isolating of the real roots) has been done
using ZDS algorithm (Rational Univariate Representation + Isolation of the Real Roots) which
uses Gb and RS (software implemented by F. Rouillier). In particular, all the computations have
been done using exclusively exact computations.

The other parts of the algorithms were implemented in maple.

11

In order to show the efficiency of our algorithms, we have applied the CAD algorithm on each
example. Remember that this method is more general than ours. In particular, it is currently the
only efficient method able to compute, in practice, at least one point on every semi-algebraically
connected component of a semi-algebraic variety. The implementation we used (QEPCAD) is build
upon the SACLIB library and has been provided by Hoon Hong.

4.2 The methodology

The polynomial systems used for our experiments come from various sources and most of them can
be found in the FRISCO Test-Suite (see [13]). A larger list is available on the web page [24].

We may point out that the examples F633, F7/4 and F855 come from an industrial application
(design of filter banks - see [12]).

All the computations have been performed on a PC Pentium II 400 MHz with 512 Mo of RAM
(machine of the UMS Medicis). The timings are given in seconds.

We chose to stop the computations systematically after 12 hours. Also, the symbol oo in the timing
tables means in fact stopped after 12 hours.

It happens that the CAD fails when the number of cells becomes too large. In such cases, we put
failed(n), where n denotes a lower bound of the number of cells, in the tables.

4.3 Algorithm 2 / Algorithm 3

The goal of these tests is to show how the use of triangular sets decreases the computation times.

The following table contains the timings for the computation of all the zero-dimensional systems
(outputs of Algorithm 2 and Algorithm 3) but excludes the computation times related to their reso-
lution. In the columns Algorithm 2 and Algorithm 3 the first number is the cumulative computation
time of the prime decompositions, while the second one is the cumulative computation time of the
determinants. If one of these both columns contains “?”, it means that the preceeding step (either
a prime decomposition computation, or a determinant computation) has not ended.

System Dimension/Degree | Nb Vars | Algorithm 2 | Algorithm 3
Vermeer 1,26 5 0.01 0 0.01 0
Wang 1,114 13 0.12 0 0.12 0
Euler 3,2 10 0.01 0 0.01 0
Neural 1,24 4 0.43 0 0.43 0
Butcher 3,3 8 1.7 0 1.7 0
Buchberger 4,6 8 0 0 0 0
DiscPb 2,3 4 0.02 0 0.02 0
Donati 1,10 4 0.04 26 0.04 0
Hairer2 2,25 13 ? 00 00 ?
Prodecco 2,2 5 284 26 284 0
F633 2,32 10 ? 00 0 ?

F744 1,40 12 24.06 00 24.06 | 0.02

F855 1,52 14 5654 oo | 5654 | 173

Table 1 : computation times for Algorithm 2 and Algorithm 3

One can remark that the construction of the zero-dimensional systems is a limiting step in Algorithm
2 and not in Algorithm 3. In Algorithm 3, we compute only a subset of the set of the determinants
needed by algorithm 2.

12

4.4 Algorithm 3 / CAD

4.4.1 Size of the output

In the following table, we give the number of points computed by Algorithm 3 (sum of the degrees
of the zero-dimensional systems) and QEPCAD on the examples for which at least one of these
methods ends . When QEPCAD is stopped after 12 hours, we put oo in the table. If the compu-
tation failed because the number of cells is too huge, we put failed(n), where n is the lower bound
of number of cells that QEPCAD has predicted.

System Algorithm 3 + ZDS QEPCAD
Vermeer 84 65976
Wang 132 00
Euler 10 failed(872043)
Neural 133 205
Butcher 15 00
Buchberger 32 failed(991324)
DiscPb 28 00
Donati 61 10

Table 2 : comparison between (Algorithm 3 + ZDS) and QEPCAD

One can observe that these results are coherent with the theoretical complexity : the output
of the CAD is doubly exponential in the number of variables while the number of points of the
output of our algorithm is proportional to the number of semi-algebraically connected components
of the real algebraic variety and thus singly exponential in the number of variables. We can also
remark that none of the methods solved the examples Hairer?2, Prodecco, F633, F7/4 and F855,
even if Algorithm 3 provided all the zero-dimensional systems. These systems were too large for the
computation of a Grobner base by Gb.

4.4.2 Computation times

One of our motivations was to provide an algorithm whose output is reasonable with the hope to
get significantly better computation times, compared to existing implementations that computes at
least the same thing, even if the methods used have not, theoretically, a better complexity in terms
of computation times.

The next table shows that both algorithms Algorithm 2 + ZDS and Algorithm 3 4+ ZDS have
a better behavior, in practice, than QEPCAD :

Table 3 :

System Algorithm 2 + ZDS | Algorithm 3 4+ ZDS QEPCAD
Vermeer 62.36 3.32 43
Wang 1.37 1.37 o0
Euler 0.01 0.01 failed(872043)
Neural 1.02 1.02 0.9
Butcher 1.7 1.7 00
Buchberger < 0.01 < 0.01 failed(991524)
DiscPb 0.2 0.2 00
Donati 11609 10 0.6

Computation times for Algorithm 2 +ZDS, Algorithm 3 +ZDS and QEPCAD.

13

4.5 Algorithm 4

The last table shows the progress induced by Algorithm 4. According to remark 3.2, Algorithm
4 computes one point on each connected component in favorable cases, and allows to decide if a
variety is empty or not in any case. The examples for which Algorithm 4 gives at least one point

on each semi-algebraically connected component are marked by *.

System Algorithm 2 + ZDS | Algorithm 3 + ZDS | Algorithm 4 QEPCAD
Vermeer 62.36 3.32 <0.01 43
Wang 1.37 1.37 0.13 00
Euler 0.01 0.01 <0.01* failed(872043)
Neural 1.02 1.02 0.44%* 0.9
Butcher 1.7 1.7 1.7* 00
Buchberger < 0.01 <0.01 <0.01%* failed(991324)
DiscPb 0.2 0.2 0.02 o0
Donati 11609 10 0.04 0.6
Hairer2 00 00 23.03 failed(872043)
Prodecco 00 00 286 00
F633 00 00 5700 00
F744 oo oo 40 oo
F855 00 00 5664 00

Table 4 : Outputs of Algorithm 2 + ZDS, Algorithm 3 + ZDS and QEPCAD.

In terms of computations, the difference between Algorithm 3 and Algorithm 4 is the number
and size of the intermediate determinants. One can see that the zero-dimensional systems provided
by Algorithm 4 are much more simple to solve.

The cases where Algorithm 4 computes one point on each semi-algebraic component are few
which means, in particular, that, in our test list, the systems in Noether position are few and so
justify a large part of our study whose objective is to provide an algorithm that works in every
situation.

5 Conclusions

We have provided an efficient algorithm (Algorithm 3) that allows to compute one point on each
semi-algebraically connected component of a real algebraic variety, without assumption neither on
the variety (smoothness, compactness) nor on the system of polynomial equations that define it.

We proposed an optimization (Algorithm 4) for deciding the emptiness of the variety in any
cases or for computing at least one point on each connected component in generic cases (see remark
3.2). According to the experiments, we noticed that in practice, these conditions of genericity (for
example the Noether position) are too strong, which prevents algorithm 4 for computing at least
one point on each semi-algebraically connected component.

Moreover, we will have much better timings in a near future. For example, we try a recent
prototype, due to J.C. Faugere, of an algorithm for computing prime decompositions that speeds
up our algorithms : with this implementation, Algorithm 4 can solve F633 in 7.2 sec. and F855 in
26 sec.

According to other experiments we made, additional assumptions on the variety (smoothness,
compactness) or on the system of equations that defines it (Noether position, radical, prime, etc ...)
speeds up strongly the method. For example, if we suppose the real algebraic set to be compact,

14

then, according to Lemma 3.1 we can replace the distance function by any projection with respect

to one coordinate X;. In practice, it is sufficient to replace m by the vector U; whose coordinates
are null except the i-th.

The theoretical complexity of our method depends strongly on the complexity of the prime
decomposition. So note that there is no precise result about it. We can just give an upper doubly
exponential in the number of variables bound (since we compute lexicographical Grébner bases).

We plan to extend our work to the case of semi-algebraic sets, generalizing our main results or
simply applying well known transformations (see for example [25]) that comes to study real algebraic
varieties.

References

[1] P. AUBRy, Ensembles triangulaires de polynomes et résolution de systémes algébriques. Implan-
tation en Aziom, Doctoral Thesis, University of Paris VI, 1999.

[2] P. AuBRy, D. LAZARD, M. MORENO MAZA, On the theories of triangular sets,in Journal of
Symbolic Computation, 1999.

3] B. BANK, M. Griusti, J. HEINTZ, AND M. MBAKOP Polar Varieties and Efficient Real
Elimination, to appear in MSRI journal, (2000).

[4] S. Basu, R. PoLLAck, M.-F. Roy, A New Algorithm to Find a Point in Every Cell Defined
by a Family of Polynomials, in Quantifier Elimination and Cylindrical Algebraic Decomposition,
Texts and Monographs in Symbolic Computation, B. Caviness and J. Johnson, Eds. 341-349,
Springer-Verlag, Wien, New York (1998).

[5] S. Basu, R. PoLLack, M.-F. Roy, On the combinatorial and algebraic complezity of Quan-
tifier elimination. J. Assoc. Comput. Machin., 43, 1002-1045, (1996).

[6] J. BocHNAK, M. COSTE, M.-F. RoY, Real algebraic geometry, Springer-Verlag (1999).

[7] J. CANNY , A toolkit for nonlinear algebra, Goldberg, Ken (ed.) et al., Algorithmic foundations
of robotics, Proceedings of the workshop on the algorithmic foundations of robotics, WAFR 94,
held in San Francisco, CA, USA, 17-19 February, 1994. Wellesley, MA: A.K. Peters.

8] G. E. COLLINS, Quantifier elimination for real closed fields by cylindrical algebraic decomposi-
tion, Springer Lecture Notes in Computer Science 33, 515- 532, (1975).

9] P. ConTI, C. TRAVERSO, Algorithms for the real radical, unpublished manuscript
[10] D. Cox, J. LitTLE, D. O’SHEA, Ideals, Varieties, and Algorithms, Springer-Verlag (1991)
[11] J.C. FAUGERE, FGb, available on the web http://www-calfor.lip6.fr/ jcf

[12] , J.C. FAUGERE AND F. MOREAU DE SAINT MARTIN AND F .ROUILLIER Design of reqular
nonseparable bidimensional wavelets using Groebner basis techniques, in IEEE SP Transactions
Special Issue on Theory and Applications of Filter Banks and Wavelets (1997).

[13] THE FRISCO TEST-SUITE, available on the web http://www-sop.inria.fr/saga/POL

15

[14] D. GRIGOR’EV, N. VOROBJOV , Solving Systems of Polynomial Inequalities in Subexponential
Time, J. Symbolic Comput., 5:37-64, (1988).

[15] J. HEINTZ, M.-F. ROY, P. SOLERNO , On the Complexity of Semi-Algebraic Sets, Proc. IFIP
89, San Francisco. North-Holland 293-298 (1989).

[16] M. KALKBRENNER, Three contributions to elimination theory,Doctoral thesis, 1991.

[17] D. LAZARD, A new method for solving algebraic systems of positiove dimension, in Discrete
Applied Mathematics, 1991.

[18] M. MORENO MAzA, Calculs de Pgcd au-dessus des Tours d’Extensions Simples et Résolution
des Systémes d’Equations Algébriques, Doctoral Thesis, University of Paris VI, 1997.

[19] D. MUMFORD Algebraic Geometry I, Complex projective varieties, Berlin, Heildelberg, New
York : Springer Verlag (1976).

[20] J. RENEGAR On the computational complexity and geometry of the first order theory of the
reals, J. of Symbolic Comput.13(3):255-352, (1992).

[21] F. ROUILLIER, Algorithmes efficaces pour l’étude des zéros réels des systémes polynomiauz,
Doctoral Thesis, University of Rennes I (1996).

[22] F. ROUILLIER, Solving Zero-Dimensional Systems through the Rational Univariate Represen-
tation, AAECC Journal.9 : 433-461 (1999).

[23] F. ROUILLIER, M.-F. Roy, M. SAFEY EL DIN, Finding at least one point in each connected

component of a real algebraic set defined by a single equation, to appear in Journal of Complexity,
1999.

[24] F. RoOUILLIER, M. SAFEY EL DIN, Some Benchmarks for RSDF Algorithm, available on the
Web http://posso.lip6.fr/ safey/benchs.html

[25] M.-F. Roy, Basic algorithms in real algebraic geometry: from Sturm theorem to the existential
theory of reals, Lectures on Real Geometry in memoriam of Mario Raimondo, Expositions in
Mathematics 23, 1- 67. Berlin, New York: de Gruyter (1996).

[26] A. SEIDENBERG, A new decision method for elementary algebra, Annals of Mathematics,
60:365-374, (1954).

16

