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Abstract

We examine a system of equations arising in biophysics wholsgions are believed to
represent the stable positions &f conical proteins embedded in a cell membrane. Sym-
metry considerations motivate two equivalent refomutaiof the system which allow the
complete classification of solutions for small < 13. The occurrence of regular geometric
patterns in these solutions suggests considering a sirsydéem, which leads to the detec-
tion of solutions for largeV up t0280. We use the most recent techniques of Grobner bases
computation for solving non linear systems.

Introduction

Both the shapes and positions of proteins which are embeddadell membrane can influ-
ence their biological function. It is the interaction beemehe proteins which dictates how they
become arranged, but little is known about this interaciod its exact cause is uncertain. How-
ever, for conical proteins, a likely explanation is the bhagdof the membrane caused by the
proteins. Specifically, an embedded conical protein induceurvature in the two dimensional
membrane which influences the positions of neighboringgimst There is an energy associated
to this curvature and the proteins will tend to arrange tredwes so as to minimize this energy.
Recent work in [KJG98] shows that any minimum energy arramg# is a zero energy arrange-
ment. Furthermore, if; is the position of theth protein using complex coordinates, it was also
shown that the energy at thi protein is a constant multiple of;(z1, . .. , zy)|? where

AR |
filz1, ... ’ZN):ZﬁZO'



Therefore theV proteins are at equilibrium if and only {4, .. . , zy) is a solution to the Mem-
brane Inclusions Curvature Equations, or MICE:

filz1y . zn) =0, i=1,... N. 1)

For brevity, we refer to thév-th system of equations &5, .

One possible application of knowing how these proteinsngeahemselves is to deduce the
form of proteins by examining the shapes they form. In thisecaf they arrange themselves
according to our solutions it is very likely that they are wah Determining the shapes of
proteins is still an unsolved problem in biology.

Grobner bases are used to find the solution§ pffor severalN. In section 2, we review
the most efficient algorithms for computing Grobner bases their implementations. Direct
application of these algorithms gives all the solutionshefproblem forV < 7 and is described
in section 3. Because the difficulty of computing Grobnesdsaincreases rapidly with respect to
the complexity of the input equations, it is necessary torrafilate the system before most of the
computations will successfully terminate. Two reformigdas of Sy into equivalent systems are
given in section 4. The first reformulation employs an alini for converting the numerators
of the S,y equations into symmetric polynomials, which are then esged in terms of the ele-
mentary symmetric functions prior to computing. The secafdrmulation uses a differential
equation describing the minimum polynomial for the cooatlés of a solution and gives directly
a system already formulated using the elementary symnfatrations. Both reformulations can
be used jointly to decrease the computation time. Finakycansider a much simplified system
obtained fromSy by limiting our search to those solutions which have a cem@ometric regu-
larity to them; namely, we look for solutions whose coordassform concentric rings of regular
polygons. While this last approach does not detect all emiatfor a givenV, it does allow many
to be found.

Our main result is a complete classification of the solutfonsmall values forV:

Theorem 1.1 There are no solutions faV < 12 except forV = 5 (finite number of solutions)
and N = 8 (Sg form a1 dimensional variety).

The proof of this theorem is included in sections 3 and 4. &aydr values ofV we have only a
partial result:

Theorem 1.2 There exist solutions t8y for N = 5,8, 16, 21, 33, 37, 40, 56, 65, 85,119, 133,
161,175, 208, 225,261 and 280. Moreover the number of solutions fifs and S, is infinite.

We explained in section 5 how we find this list of “regular smns”.

2 Tools for solving polynomial equations

We now review some major algorithms for solving multivagigblynomial systems. The reader
is also referred to [Dav93, Bec93, CLO92, CLO98] for a moreidied introduction.
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LetQ[z4,. .. ,x,] be the polynomial ring with rational coefficients,a finite list of equations
and/ the ideal generated hy.

The main tools we use are Grobner bases [Buc65, Buc70, B&tk®5]. We recall that, in
general, when the number of equations equals the numberiabies the shape of the Grobner
basisG for a lexicographical ordering is the following:

b ()

Tp—1 = hn—l (xn)

Ty = h1($n)

where all theh; are univariate polynomials. Of course the shape of a lexaggcal Grobner
basis is not always so simple but it will allways be the caghispaper (except one very easy non
zero dimensional system). From this Grobner basis it isera¢asy to compute numerically all
the complex roots: we first solve numerically the first equafDG99], and we findy, ... , 2y

a guaranteed approximation of all the complex roots,pofThen we substitute these values into
the other coordinates.

Even if all the algorithms for computing Grobner bases diodepend on a specific order it is
well known [Fau93] that it is more efficient to compute first ed@ner basis for a Degree Reverse
Lexicographical ordering and then change the ordering wisipecific algorithm. In this paper
we have used a standard implementation of the Buchbergerithign and the FGLM algorithm
in Singular [Gre99] for easy cases. When the degree of thatiate is big> 500 we have used:

e the F, [Fau99] algorithm for computing a DRL groebner basis.

e the F; [Fau94] algorithm to change the ordering. For the biggermatations we found
that the dimension o[z, . .. , z,]/I is bigger than 0 !

These two algorithms are implemented in an experimentalvaoé callled FGb [Faul].
For generating the input equations we have used the MapEgQltomputer algebra system.

3 First experiments

First, we observe that the set of solutionsSte is invariant under translation and multiplication
by complex scalars. These considerations allow us to cheogelinates so thaty = 0 and
ZN—-1 = 1.

Since thef; in the systentSy are rational functions we need to transform the system into a
polynomial system. In order to avoid "parasite” solutiomherez; = z; for some: # j, we
introduce a new variable and letP; be the numerator of eaghin Sy. That is to say

Pz(zlaaZN):ZH(zz_zk)2ZOa 2:1,,N (2)
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UHiNzlnévziﬂ(zi —z) =1
PZ'(Zl,... ,ZN):O 221, ,N
Z1:0

22:1

Proposition 3.1 There is no solution foN < 4andN = 6. The only solution fof} is a regular
pentagon.

Proof For N < 5 it takes less thaf.1 second to compute a lexicographic Grobner basis with
FGb on a PC Pentium Il 300 Mhz. Fd¥ < 5 the Grobner basis i§1}. For N = 5 we
can factorize the univariate polynomial and find a decontjmsinto irreducible varietest’ =
ViuVa,UuVauV,u Vs U Vg and

3 2 2 4 3 2
‘/1:[23—25 + Z5 —25,Z4+25 — 25,85 — 25 + Z5 —25+1]

For any polynomiap in zy, ...,y and any permutation, seto.p = p(z,(1), - - , To(n))
ando (V) = {o(v) : Yv € V}. Itis easy to check that

(24, 25)Vi = Vi
(23, 2’5)V1 Vi
(23, 24)V1 = V2
(
(

Now we have
z2+1
Z5 + 1

4 3 2
25 — 25" + %5 —25+1:

so thatz; = e*s and we see that the only solution is the regular pentagon
The caseV = G is alittle more difficult: the degree of the polynomidl 1T}, | (z;—z;) =

lis1+ YL — 16 and so big that it does not help the Grobner basis computdtidhat case
we can replace this condition ;32,2526 = 1 and it takes only 13.6 seconds to fifid} with
Fgb.O

In conclusion the straightforward approach solves thelpralfor smallN but leads to sev-
eral problems:

e intermediate computations contain the same solution aktweres (action of the symmetric
group), so the degree of the intermediate varieties are big.

e itis not easy to remove the parasite solutions- z;.
We have stopped the computation fér= 7 after2000 seconds.
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4 Using the symmetry

It is clear from 1 that if(zy,...,2x) € CV is a solution ofSy then(z;,,...,z,) is also a
solution of Sy for every possible permutation 6f;, ... ,iy) of (1,...,n). Hence itis enough
to compute the polynomial

FX)=(X—2z) (X —zy) =XV —e XV L4 (D) Vey

where thee; = ¢;(z1, ... , zy) are the elementary symmetric functions:in. .. , zy. In this
paper we will say thaf is solution ofSy. In general solving efficiently a polynomial system
with symmetries is an open issue especially when the grooptithe whole symmetric group.
In our problem the solutions are invariant under the symimgtoup but unfortunately; is not
a symmetric polynomial irfzy, ... , 2,) butonly in{z; | 7 # ¢}. If we exchange the role aof;
andz; then f; remain unchanged whilg becomesf;, and reciprocally.

Zj & % fl:flforl%],k f]Mfk

4.1 nilCoxeter algebra

Let e, be therth elementary symmetric function iN variables. Fo = (A, ..., \,) let

m)\:ZZi)‘ll...Z;\: (3)

denote the monomial symmetric functions, where the sumesyer all monomials whose
exponent vector is equal to a permutatiomofSolving S’y is equivalent to finding a polynomial

f:XN—elXNil—FeQXNiZ—"'+(—1)N€N (4)
f is squarefree.
whose roots are a solution &),. For any polynomiap in zy, ... , zy, Set
@(p) _ p(Zb 225 JZN) - p(Zi, 225 v 3 Ri—1, 215 Zit1y - - - ;ZN). (5)
21 — %4
Let I, be the ideal generated 18, . . . , Py, we define by induction
Iy =Ty (] (2 — 20)) (6)

11 <12
and/ = I,. Note thatP;, = (1,7).P, for 1 <i < N andP; is symmetric inz,, ... , 2.
Theorem 4.1 Define forl <i; < -++ <ipyy <N

P P,

P o S T S WP S (K Y
Clyeee sl lk41
%

e Riptr



so thatF;, .. ; € Iy and P, ; is symmetric ing,, ...,z and in the complementary set of
variables. Hence
Hy, = Z P i

1<ip < <ip, <N

is a true symmetric function

The next theorem gives an efficient method for computinghe
Theorem4.2For1 <i; <---<i, <N

-Pil,...,ik, = (]-) Zl)(27 12) e (ka Z/C)Qk

whereQ), = P, »,... , and we have

Qr = OQr—1

The H; were first computed in the monomial basis using code specifically written for
this application in C++ in the small computer algebra sys@im then the polynomials were
expressed in the; basis using ACE [AS98], SF [J.98] and symmetrica. If weget= 0 and
zn—1 = 1 prior to computing theH;, the reformulated systerfiy consists of the polynomials
H,,...,Hy,Py_1, Py in the variables:, ... ,ex_o. It turns out thatSy is easier to solve: it
takes 2 minutes to compute a Grobner basig¥oe 10 with FGb, while the calculation fof;
was unsuccessfully stopped after 2000 seconds.

4.2 Harm Derksen formulation

Our second reformulation was found by Harm Derksen[Der88§l appeals to the structure of
the polynomialf in (5). First, a lemma.

Lemma 4.1 Forany(zi,...,zy) € CV,

N

1 B%VA — 2enen_o
§ :_2 2 :
j=1 i €N

Proof SinceZﬁl(l/zj) = en—1/ey and) ;. ;(1/ziz;) = en—2/en, we have
al L

N
1
Y=o

Jj=1 J 1>]

2
€n_1 2€n—2‘

2
ez en



Theorem 4.3 (z, ... , zy) is a solution taSy if and only if

f is squarefree and
3(f")% — 4f'f™ is divisible byf

wheref = [[X, (v — z) = 2N —epa™ 1 4 ega¥ 2 — oo 4+ (=1)Vey.

Proof Let S, be therth elementary symmetric polynomial in— z;,... ,z — zy. Note that
replacingz by z; in S, gives therth elementary symmetric polynomial i) — zq,...,2; —

Zii1,% — Zis1,--- % — 2N, Which we denote by?. Furthermore, théth derivative off is

f®) = k1S, sothatf¥)(z;) = kIE? . Seth := 3(f")? — 4f'f". Then

h(Zz) = 3(2E§v72)2 - 4E§vf1(3!E§v73)

= 12((EN—2) - 2EN—1EN—3)'
By Lemma 4.1
1 (E§Vf2)2 B 2E§V71E§\773
; (2 — 2;)? (Ey-1)?

so thath(z;) is a constant multiple of the numerator 6f Thereforef dividesh and thez; are
distinct <= h(z;) = 0 for all  and thez; are distinct<=- f;(z1,... ,2y) =0foralli <
(21,...,2,)is asolution ofSy. O

Let r be the remainder of dividing by f, and letc;, 1 < j < deg(r), be the coefficient of’
inr. Then eacle, is a polynomial in the; and Theorem 2.3 implies the systepfe;, ... ,ey) =

0,1 < j <deg(r),is equivalent tc5y.
Computations with Singular [Gre99] using the formulatidnTédneorem 2.3 reveal a one-
dimensional family of solution shapes for = 8:

Proposition 4.1 The coordinates of a solution tg; are given by the roots of the polynomial
8 28 6 4 2 2.3 4
t —i-gt a4+ 14t%a” 4+ 28t°a” —t — Ta
whereq can be arbitrary. Setting = 0, the roots form a regular heptagon with a point in the

center. Varying: deforms this into irregular hexagons with two points in theerior.
Solutions N=8 a=0 Solutions N=8 a=100

1 204

0.5 10

~1-08-06-0.4-02 | 02 04 0608 1 876 a2 2 a6 8




This is a one dimensional family of solution shapes.
Proposition 4.2 There are no solutions t68y for N = 3,4,6,7,9,10,11, and 12.

Proof For N = 3,4, short (less than one minute by Maple on a Sun Ultra-5) Gedlmases
computations show, henceSy, has no solutions. For the remaining computations using
one or both of the above reformulations show there are ndisokiof the equivalent systems.
For N > 7 we use FGb for the computations. Whah > 9 another difficulty arises in the
computation: it is impossible to compute the discriminang o= V=2 — e;aV 3 + eV —

.-+ (=1)Ney 5. At the begining we add only the conditigii0) = ey » # 0 andg(1) # 0
and we compute a lexicographical Grobner basis. In thenlasemove the bad solutionisl

5 Regular solutions

The geometry of the solutions known thus far lead one to adkatWither regular polygons are
solution shapes (with or without a point in the center)? Waiatut two regular polygons, or

n regular polygons? We use the notatienm, p| to denote a solution shape consistingnof
regular concentrien-gons andp = 1 or 0 as there is or is not a point in the center. Thus a
solution|n, m, p] will be a solution forS,,,,,. We begin this section by trying to find “by hand”
some regular solutions then give a more systematic way tdliege solutions.

5.1 One regular m-gon:[1,m, p]

Since the solutions are invariant under translation andiptication by complex numbers, it
suffices to examine the:'th roots of unity.
The main lemma we need is

Lemma 5.1 Letw be a primitivemn’th root of unity. Then

1
Z (wi)? =0

i=1

— 1 (m —1)(m — 5)

(wi—1)2 12 ©)

j=1

~ 1 mb™(b™ + a™(m — 1))
Z (wi —1)2 (bm — am)? '

Jj=1

Proof From Lemma 4.1 we know




where the:; are the elementary symmetric polynomials in theThe polynomials with roots’
(1<j<m),w —1(1<j<m-—1),and%w’ —1(1 < j < m) are, respectively

P(X)=X™—1and

(X+1)m -1 _ - m m
P(X):?:X LymX™ 24+ 3 X%+ o )X +m (10)
P(X) = (X +1)" = (3)"

respectively. substituting in the corresponding values\Qky_; andey_, gives the result.
Il

We first consider the cage= 0: [1,m,0]. Letz; = w’ for all 4, wherew is a primitivem’th
root of unity. Then the&’th equation is

1 1 1 1 1
= G T T P & 1P @

j#i J#i

m—1

— 1
j#i = W =12

By lemma 5.1, for all the:’th equation is zero if and only if

m—1

-~ 1 (m-1)(m=5)
;(wﬂ'—l)? T 12 =0

i.e., ifand only ifm = 5 orm = 1. Thus the regular pentagon is the only solution shape fer thi
case. Ifp = 1, i.e.,[1,m, 1], we havez; = w'fori = 1,... ,m andzy = 0. Then theN'th
equation

- 1
In Z (wi —0)?
Jj=1
by lemmab5.1. Fof = 1,... ,m, thei'th equation is

J#i J#i J#i (11)
W \ & (Wi —1)2
Soforalli = 1,...,m thei'th equation is zero if and only if
w1 (m —1)(m — 5)
_— = — _= —1,
(i —1)2 12
7j=1

i.e.,m = 7orm = —1. Therefore the regular heptagon with a point in the centdranly
solution shape in this case.



5.2 Two regular m-gons|2, m, z]

Again we may fix onen-gon, P;, to be themn'th roots of unity. We intruduce a new complex
variable,z, to describe the second-gon, P, = xP;, where multiplication of a polygo#® with
x meanse times each vertex of the polygon.

Proposition 5.1 There are no solution shapes of the foiyn, 0] or [2, m, 1].

Proof We include in square brackets facts for the dasen, 1]. Let
wi
zi=Raw' fi=m+1,...,2m; (12)

[0 ifi=2m+1].

ife=1,...,m;

1

Twt

Dividing by (X)? in the:'th equation when = 1,... ,m, or (
we get two equations in one unknown:

)2wheni =m+1,...,2m,

(m —1)(m —5) m(l+a2™(m—1))

- 5 1+ = =0 (13)
(m —1)(m —5) ma™ (2™ +m—1)

- 5 [+ = =0 (14)

where we have used the third part of lemma 5.1. Subtractiegegnation from the other gives
1— 2’ =0, (15)

so the solution set would have to consisRefith roots of unities. But we have already seen that
in the single polygon case the only solutions are= 5 andm = 7, neither of which is divisible
by two. Therefore no shapes of the fof2nim, 0] or [2, m, 1] can be a solutiori]

5.3 The Generalization

Using the differential equation of theorem 4.3 we can findesomore conditions not only for the
case of regular polygons but for any set of roots to a polyabiii X'). For the case of regular
polygons this raises the chances of succesful computatione we can add the new equations
to our old systems.

Definition 5.1 Let N, M, P be univariate polynomials of degreem,p. We use the notation
[N, M, P] to denote the set of solutions $f,,, with the shape’(X )N (M (X)). In the partic-
ular caseP(X) = X?, M(X) = X™ we use the simplified notatig®v, m, p].

10



Theorem 5.1 Let N(z) = 3" , ;X" be a squarefree polynomial of degreesuch thata, # 0.
Then[N, m, p] (with m > 1) is a solution ofS,,,,, ., if and only ifp < 1 and N(X) divides

> ijaa; (mi — 1) (3mg + 5 — 4mi) X if p =0

i=0
J=0

and N (X) divides

> aaijm(jm + 1)(im + 1)(3im — 4jm + 4) X if p = 1.

=0
=1

Proof Let f(X) = XPN(X™). We know from theorem 4.3 th4tis a solution ofS,,,,,,, if and
only if f is squarefree antl(X) = 3(f")? — 4f'f" is divisible by f(X). The first condition is
true as soon gs < 1 since0 is not a root ofV (.X).

Considering the case= 0, we find:

U(X)=3 (Z im (mi — 1)az-X”“'—2) —4 <Z imaiXmi_1> <Z im (mi — 1) (mi — 2) aiXim—3>

=1 =1 =13
wherei; = 2if m = 2 andiz = 1 else. SinceX andf(X) are relative primef dividesU iff
f dividesX*U = V with

V(X)=3 (Z im (mi — l)aiXmi) —4 (Z imaiXmi) <Z im (mi — 1) (mi — 2) aiXim)

i=1 1=1 1=13
hencel” = W (X™) is divisible by N (X™) iff W (X) is divisible by N(X'). We can rewrite
the sum:

W(X) = m?2 Zijai&j (mi—1) (3mj +5— 4mi) it
1
1

[
J

We consider now the cage= 1 and find:

n

U(X) =3 <Z a;(im + 1)(z'm)Xim—1) —4 (Z a; (im + 1)Xim> <Z a;(im + 1) (im) (im — 1)Xim—2>

=1 1=0 =1

must be divisible byX and N (X™) so thatn > 2 andV;(X) = X?U(X) should be divisible
by N(X™)

n

Vi(X)=3 <Z ag(im + 1)(z'm)Xim) —4 (Z a;(im + 1)X“”) <Z a;(im + 1) (im) (im — 1)Xim>

1=1 1=0 =1

11



this equivalent to divisibility of

n

Wy(X) =3 (Z a;(im + 1)(¢m)Xi> —4 (Z a;(im + 1)XZ'> (Z a;(im + 1)(im) (im — 1)XZ'>

= aagjm(jm + 1) (im + 1)(3im — 4jm + 4) X"
=
0
Remark 5.1 We can always suppose thai{X) = X" + X" ! + 3" 2 ¢, X"

Remark 5.2 In the following we give an explicit value t@ and p and we considern as a
variable.

Corollary 5.1 There are no solutions of the foriy, 2, 1].

Proof From the proof of Theorem 5.¥(X) = X N(X) does not dividé/(.X)
becauseX does not dividé/(X). O

Corollary 5.2 Fordeg(N) = 1, [N, m, 0] is a solutioniffim—1)(m—>5) = 0and N (X) = 1+X
Proof We apply the theorem 5.1 f§ = 1+ X and we find¥V (X) = —X? (m — 1) (m —5). O
Corollary 5.3 For deg(N) =1, [N, m, 1] is a solution iffm = 7and N(X) =1+ X
Proof We apply the theorem 5.1 t§ = 1 + X and we find
Wi(X) = X(—4 + 4m?) + X*(m® — 2m® — Tm — 4)
and the remainder d¥/; divided by N should be zero:
—m(=7+m)(m+ 1)z

U
Corollary 5.4 deg(N) = 2, [N, m, 0] there is no solution.
Proof We apply the theorem 5.1 t§ = a, + X + X? and we find

WX)==(4@2m-1)2m-5)X*+4 (m—1)(4m—5) X + (m —1) (m —5)) X*
and the remainder d¥" divided by N should be zero:

— (=5 —m?+18m — 60 apm + 16 aym? + 20 ay) X
—(=m? 4+ 18m — 5+ 16 agm? — 48 agm + 20 ag) ag = 0
we can can compute a lexico Grobner of the coefficients:

[20a0 — m* 4+ 18m — 5,m (m* — 18 m + 5)]
and the number of solutions(s

12



5.4 Summary of the regular solutions

An extended version of this paper including a complete lfssautions, pictures and all the
polynomials can be found attp://calfor.lip6.fr/"jcf/MICE/mice.ps.gz . We
summarize all the results:

Theorem 5.2 For fixed values of. andp we give all the possible valuesafand for eachn all
the solutiongn, m, p|]. The results are summarized in the following table.

Shape Values ofim Values of v
[1,m, 0] m=>5 N =

1,m, 1] m=7 N =38
[2,m, 0] 0

2,m, 1] 0

[3,m, 0] m="7m=11 N =21,N =33
3,m,1] m=>5,m=13 N =16, N = 40
[4,m, 0] m=2,m=4 N=8 N=16
[4,m, 1] m = N =21
5,m,0] |  m=13,m=17 N =65, N = 85
[5,m, 1] m=11,m =19 N =56, N =96
[6,m, 0] 0

[6,m, 1] 0

[7,m,0] | m=19,m =23 N =133, N = 161
[7,m,1] |m=1,m=17,m=25| N=8, N =119, N =175
[8,m, 0] m=5m=7 N =40, N =56
[8,m, 1] m=4,m= N =37, N =65
(9, m, 0] m =25, m = 29 N =225, N = 261
9,m,1] |  m=23m=31 N =208, N = 280

Corollary 5.5 Using this information we could find the following soluti@amfilies:

11 11
f(ZL') = —32)\1'5 + A +51716 +ZL‘11 + §$6 — m[lf
13 13
=\ 25 \ 8 21 14 =27
f(x) x + °+x" + o Tk —|——400

for N =16 and N = 21.

Conjecture 5.1 For n odd, there will be solutions fdrn, m, 0] withm = 3n—2 andm = 3n+2
and for[n, m, 1] withm = 3n — 4, m = 3n + 4.

4
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Figure 1: one regular solution fa¥ = 280.

6 Extended version of the paper.

6.1 Equations
3,7,0]

NX)=X3+ X2 -2 X+ 2
Solutions [3,7,0]

0.8+

0.6

0.4-

0.2+

-1-08 04 9102040608 1
—0.2-
0.4+
056 -
0.8

E

The following polynomial is also a solution for ait

14



f(X) = —)\x+25)\378+x21+:c14—%3:7+%
for instance for\ = 400:
MICE

2

A T

-1

2]
In fact the solution whenX is big” are from one part:
fiX) ==Xz +2502° =)\ (252" — 1) w

that is to say) and25+ ¢“7~ for k = 0, ... ,6. The second set of solution is

f2(X) = 252" +262° + 625 A ~ 252" + 625 A

and the solutions arg-25))1¢15" for k =0,... 12

3,11,0]
NX)=X+X? - I X+ 45
Solutions [3,11,0]
1*: ©
038
0.6
0.4-

0.2+

-1-08 04 0] 02040608 1
. 0.2

—0.4-

_0'§€

-0,8-

E
13,5,1]

15



NX)=X+ X2+ 2 X -

Solutions [3,5,1]
gt

O.Sé

0.6

0.4

0.2—2

-1-08 04 | 02040608 1
-0.2-
0.4
0.6
0.8

E

fla) = =320a° + A+ '8 4 211 4 L — 1Ly

NX)=X*+X? -2 X + 25
Solutions [3,13,1]
1 O
- 081"
067
0.4
0.2

“1208 04 1 0204 9.‘6 08 1
o ¢ -0.2
041

0.6

°-0.8 |

=14

14,2,0]

_ y4 3,25 y2 4 125 625
NX) =X+ X+ 2 X7+ 5 X — 225

16



Solutions [4,2,0]

0.8*;
0.6%
0.4%

0.2

04 02 0] 02y 04
—0.2

—-0.4

—0.6

-0.8 ]

[4,4,0]

_ v4 3, 49 v2 343 2401
N(X)_X +X +@X _WX_NO%SO

Solutions [4,4,0]

° o.sg °
0.65
0.4

° 0.2

-0.8-06-04-020{ 02 04 06 08
=0.2

-0.4

—-0.6 1

-0.8

[5,13, 0]

— 5 4 _ 26246 3 264143 2 1331 14641
N(X) =X"+X 10773 X7+ 6786990 X7+ 12216582 X+ 1169859892320

17



Solutions [5,13,0]

l*: °
0.8 °
061 -

© 0.4

-1-08 04 0] 02 of40%6 08 1

°

o

(5,17, 0]

— 5 4 _ 505466 3 517478 2 191139 828269
N(X) =X+ X 1071455 X7+ 129646055 X7+ 49913731175 X+ 4861846985100875

Solutions [5,17,0]
1 o

] o
oA ) o
> 0.6
° ] ° e
o °

© L 04
° 0.2*;

-1-08 -04 0{ 02040608 1
R P E :
o 0.4

° o ] R

°_Q 6°;
—J. CH| o )
o

087

1.
-1 °

[5,11,1]

— Y5 4 , 1355 v3 _ 1885 y2 _ 345 115
N(X) = X"+ X"+ TVIRAS 50461 X 574818 <X 1836110592

18



Solutions [5,11,1]

o 17: o
0.8

91 o

L0649 °
0.4- oo

o 0.2

0.4 f ° o
206 -
0.8+

[5,19,1]

N(X) — X5 —|—X4 _ @XS + 35231 X2 + 10633 X + 10633

1872 16061760 7709644800 264595009536000
Solutions [5,19,1]
C M
° 0 o8l O° .
-7, oo G.6-. o .
o°o°ooo.4— 0
° o 0.2 o

.o 021 o
S 04 -
N " : °
. 00—0.8* : o
- .
7,19, 0]

— 7 6 _ 250573 5 15738440127 4 1616936130527 3 118110645017 2
N(X) =X +X 70304 X +380204032000 X +9895190136832000 X +8232798193844224000 X

5415437771 X + 92062442107
44522972632309563392000 1854007817165581914944307200000
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Solutions [7,19,0]

° 1 °
o ]
° ] o
R 0.84 o o
o 9916
] o o
N X R °
. S o
o o o o
o o] o o o
o o © 04f o
o o ] o ° o
4 o o
N ] o
o e % 0.24 oo °
o } o
oo ] o
. ey . . . . . - .
-1-0.8 o=0.4 1 0204 9(6 08 1
] o
¢ o ° o —0.241 ° . °
o ] o %, o
o o - o
B e I
o N L e o
] o
. ° o —670 o
] o o
o o 2 Jo o
-0.8+ .
o ]
° —<l’: o °
© 1 o
(7,23, 0]

N(X) — X7—|—X6 _ 13439 X5 + 115793631 X4—|— 4543346861 X3 + 5295509 X2 _

843657 X+ 19250 53432256795000 549084986450000 13727124661250000
628908216355168750000 22571767448273548505000000000
Solutions [7,23,0]
BRI
° OQ'S)EOOOOO o0
“1708 “<04 " 0204.9608 1
.t e 7029 ce
R Zoo"‘?"‘é o Lo
o ° 00_606‘(’%01 Oo o oo
VS
BT
[7,17,1]
N 3(1)7{)27: X 7; X0+ %25531%557_ 4213428861793571610 Xt — 3511339982969647146742900 XP— 135222?%3?232000 X2+

654785096567324800 T 1275586846622805442880000
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Solutions [7,17,1]

21

. o 7 o
. ° ° 005 ‘ R B
1 -05. 05 1
° B X o
‘ ° . <051 . °oe 5
° o -1 .
[7,25,1]
_ 7 6 1203647 5 1513386395 4 3365775485 3 564207339
N(X) — X +X 2434432 X + 50%72%9]47696 X + 997338413367296 X +4914883701074034688
111082029 + 37027343
427319648506180871913472 1240334593196852549369068519424
Solutions [7,25,1]
o ° °n, ©
L Y1 LY R
1 . .05 0 05 1
- o .7 % o 95{, o o
o ° elf o °
8,5,0]
8 7 189 6 _ 1519 5 36015 4 215061 3 _ 45619 2 319333
‘§19;§3X + 832 X 13312 X + 5537792 X 143982592 X 9214885888 X + 958348132352
1594691292233728

X2

X+



Solutions [8,5,0]

°

0.8
0.6
044 -°

° 0.2 °

o

21.208-06-0.4-0.2 02 0.4 Xofs 08 1

. 021 e
. 047 - o
o6l O .
08"
18,7,0]

_ v8 7,28 v6_ 14 5 7 4 1932 3 161 2 23
N2(3X) =X+ X+ X 157 X T 5350 X~ G7ssars <\ T Taso1sa50 X T 6316075625 % T

94491483350000

Solutions [8,7,0]

o 0.8

&
3
o 061 o e
o ]
° 04 ° o °
© o 4 o

- ez .

-1-08-06-04-020] 02 04 06 08 1

- 021,
C 0—0.04—2 I ’
o _O.GE o o
° —6.8%
[8, 4, 1]

— 8 7 13 y6 _ 187083 5 17064099 4 40299571 3 246167259 2
N(X) = X"+ X 176 X 862400 X7+ 303564800 X 6678425600 X7+ 747983667200 X
1066724789 X 13867422257

164556406784000 "~ 810933972631552000
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Solutions [8,4,1]

o o

0.4

0.2

o ] o

0.8 <06 0.4 0.2 0] 0.2 o.‘ﬁ 06 08

-0.21

8,8,1]

— 8 7 1207 y6__ 851683 5_ 12729583 4__ _ 87613529 3 3403397229 2
N(X) = X°+X +3344 X 9563840 X 8140740608 X 309348143104 X +3538942757109760 X+
410338673 X + 6975757441

268959649540341760 233844277696354739814400

Solutions [8,8,1]

°

0.84
o o 0.6 o

. . 044 o

. . 021 i

-1-08-06-04-02 | 02 04,06 08 1
o ° _02{ ) ° o
-0.44 -

4

[9, 25, 0]

N(X) — X9_|_X8_268466 X7_|_ 377495813029 X6+ 413656879904907 X5—|— 12304828054251749 X4_

57239 8840907899824 2119368964469508752 996713791562436331960576
2016962935969613 3+ 57217346608047 2+ 290208500 +

137925254476409939%%%1%%?%%%% 1049280165954736256628041206540288 2130338531221244525599674518192939008

12640627189356212335708507331037005997751533568
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Solutions [9,25,0]

A
o o 14 o

o
o ] oo ©

204 01 0204°06:08 1
000 =02 co TP,

9, 29, 0]

N(X) — X9 —|—X8 _ 3171229688 X? + 12964501623920 X6 + 13450720325129528144 X5 +

3433022619 2205535082508693 1110030908637142840678785
68635259350872716128 4 563378090146829056 6736550307020061440 X2—|—

- X34
14018913354451068077784579400 196573203056112876586695372353811 11261775713673813363299935122968402618823
22(98 778658 766400 + 28358473 625 80

3262885539298427619562253503112758259154206613 658915285859971494652443714988122706538556183025198791
Solutions [9,29,0]

o o 130 ©

°
o %0 % 0.24 wo oo °
) o OOOO ] ooo o © ©
< A T T T T T T
-1-08°° 0.4 0.2 0.4 Q.G °0:8 1
o © 1 oo © o
° 000 —0.27 ° °
1 o, o o
° 4 o o 1 o %o
© o o o o 1 °% o . ° o
o o o, =044 o o o
° o 0 9 oo o ©
o0 o o o 0 o % °
o e o067 L %0, °

° ]
o o © o) o o

© . 20,8, ° .

o O_L{ ° 5
[9,31,1]
— 9 8 _ 87004837 7 988698212699 6 7649466909707441 5 778364618387927033 4
N(X) = X"+ X 132721650 X +276694777878750 X +1433863961228011500000 X +4619802143279560952137500000 X
31235560755437909 3+ 886646005540711 2+ 44262730811 X
45292540212712815574756050000000 8584068683814396371805640376250000000 55919075997419496364905314451000000000000

1018042808653
3153103873396184675257032714649680600675000000000000
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Solutions [9,31,1]

° oo °op %0 02{ OZOO Oo °
{02 el
(9,23, 1]
N X) — X9_|_X8_|_446725777 X7_ 14305770645413 X6_ 13328514939091617283 X5_ 247787301154250111 X4+
4325000 26714726 2267382403025000000000 907593465045085 00000
134262834295854840088? 3_ ;g2888891765838248 )(2__ 2%82g81§?§488898
3424350143615105705000000000000000 5093720838627469736187500000000000000 193968889534934047554020000000000000000000C

55014634972391767
8527985765381631251907679274800000000000000000000000

Solutions [9,23,1]
o °1F ° o

° ] °

- 084 . ¢

°

o Jo
o
o] o
o 0.6 -°
o
o ° 1.° o °
. o
° o Jo 2 ° o °
o 0.474° o oo .

° o °© oo ] o
© q o
° ° 5 % ] ° °
o 0.2+ 0% o
° °o q °
o o ] o

21-08 - 04 01 02040608 ¥
oot 0.2 SR
RS YL
00-5065;1 R
“08i° . -

°

°

EEE

6.2 Another proof of Derksens formulation
Let f = []j_,(z — ;). Define

Then
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fi 1

= T (16)
fi i (= z)?
Derivating this and plugging in; we get
=17, 1 B 1
R M M e )

Therefore for allj, (f}'f; — f]'?)(zj) = 0 if and only if 3>, ﬁ l.e. if the MICE

equations are satisfied anglis a root off. On the other hand we have

f= fj(x_zj)a
=il —z)+ i

18
f = - )+ 2f, (49
J" = £ = 2) + 37,
and therefore
(BUf")? = 4f"f") (=) = 12((f))* = fif{) (%) (19)

=0.

6.3 Three regular m-gons

Proposition 6.1 The only solution shapé8, m, 0] are form = 7 or m = 11. The only solution
shapeg3, m, 1] are form = 5 or m = 13.

Proof Proceeding as before, we fix onegon to be then’th roots of unity and use two variables
x andy to describe the remaining two. Again using formula in lemma, 5;,,, is reduced to
a system of three equations in two unknowns. The pasel is included in square brackets:

(m —1)(m = 5) m(l+a"(m—1)) m{A+y"(m—-1))
- 19 [+ 1] + 1= )2 =y =0 (20)
_(m—=1)(m—5) ma™ (™ +m—1)  ma™ (™ +my™ —y™)
5 [0+ = o= =0 (21)
_(m-=1)(m-5) my™(y™ +m—1)  my™(y™ +ma™ —a™)
19 [+ 1] + " — 1) G — o) =0 (22)
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Remark 6.1 In general, this method reduces,,,., to a system of. equations inn — 1 un-
knowns.

We can also make the variable changes- z™ andY = y™ to eliminatem from the exponents,
which allowsm to be treated as a variable in the calculations. A lexicdgafrobner basis
for [3,m,0] with X > Y > m was obtained after 536 seconds by computing a degree reverse
lexicographic Grobner basis thenusing FGLM. This was dasiag Singular[Gre99]. The sin-
gle polynomial involvingm alone is9m!® — 990m® + 41657m® — 833256m" + 8052130m° —
35019540m° + 56505450m* — 33100200m> + 8675125m? — 1050750m + 48125 which fac-
tors as(m — 7)(m — 11)(3m — 5)(3m — 1)(m? — 30m + 5)3. We are only interested in the
integer partial solutions: = 7 andm = 11, both of which lift to solutions. Similarly, the
same calculation took 657 seconds for the dase:, 1] and the relevant polynomial 8210 —
990m9 +41213m8 — 796104m7 + 6974386m6 — 22637556mb + 9529122m4 + 27373752m3 +
12827269m2 + 2364642m + 156065. Its factorization is(m — 5)(m — 13)(3m — 7)(3m +
1)(m? — 30m — 7)* and both integer partial solutions liff] U/(X) = 12 (X7, a; X™'im)* +

3 (X7 a; X™ L im (mi — 1))

—12 3" @ XM Ja X ™2 im (i — 1) —4 300 @ X3 S X ™ 2im (mi — 1) (mi — 2)
— 43 s X™ im Y S a X™ im (mi — 1) (mid — 2)

must be divisible byX and N (X™) so thatn > 2 andV;(X) = X?U(X) should be divisible
by N(X™)

Vi(X) =12 (X0, s X™im)” + 3 (30, ag X ™im (mi — 1))
=12 3" Ja; X™ Y s X ™im (mi — 1) —4 > @ XY s ai X ™im (mi — 1) (mi — 2)
— 43 i X™im Y r o a; X ™ im (mi — 1) (mi — 2)

this equivalent to divisibility of

Wi(X) =12 (00, a X Pim)* + 3 (X0 a: XPim (mi — 1))
— 1230 sa X > ai X im (mi — 1) — 4 300 @i XY 00 @i X im (mi — 1) (mi — 2)
— 43" ca Xm0 ai X im (mi — 1) (mi — 2)

by N(X).

6.4 Different Polygons

We tried using 3 different polygons for the caSe= 16 and there were no solutions, neither with
a point nor without a point. We tried the partitions 1+2+2;+132+3+10, 1+2+4+9, 1+2+5+8,
1+2+6+7, 1+3+3+9, 1+3+4+8, 1+3+5+7, 1+3+6+6, 1+4+4+7 +bHb, 1+5+5+5 (there is the
solution we know), 2+2+12, 2+3+11, 2+4+10, 2+5+9, 2+6+8/£# 3+3+10, 3+4+9, 3+5+8,
3+6+7, 4+4+8, 4+5+7, 4+6+6, 5+5+6.

7 Conclusion
We have a new application of computer algebra in biologitsispcs. We were able to solve

the system completely up t¥ = 12 using the symmetry and the most recent techniques for the
Grobner bases computation. Starting with solution shapesgular polygons we found solution
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families for N = 8, 16, 21 as well as single solutions fa¥ up to280 for which we have reason
to assume that they are part of solution families as well.

From the biophysical point of view, solutions fof about 1000 are needed since there are
thousands of proteins in a cell membrane [Kim99]. But evealsmumbers of proteins can
give some interesting insights. We have extended the sesulhe original paper[KJG98] from
N =51t012.

This work is a particular instance of the more general pmobdé finding a global minimum
of an energy function and in particular we want want to pout similar work related to the
classification of the stable solutions of thé@ody problem.
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