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Abstract

We examine a system of equations arising in biophysics whosesolutions are believed to
represent the stable positions ofN conical proteins embedded in a cell membrane. Sym-
metry considerations motivate two equivalent refomulations of the system which allow the
complete classification of solutions for smallN < 13. The occurrence of regular geometric
patterns in these solutions suggests considering a simplersystem, which leads to the detec-
tion of solutions for largerN up to280. We use the most recent techniques of Gröbner bases
computation for solving non linear systems.

1 Introduction

Both the shapes and positions of proteins which are embeddedin a cell membrane can influ-
ence their biological function. It is the interaction between the proteins which dictates how they
become arranged, but little is known about this interactionand its exact cause is uncertain. How-
ever, for conical proteins, a likely explanation is the bending of the membrane caused by the
proteins. Specifically, an embedded conical protein induces a curvature in the two dimensional
membrane which influences the positions of neighboring proteins. There is an energy associated
to this curvature and the proteins will tend to arrange themselves so as to minimize this energy.
Recent work in [KJG98] shows that any minimum energy arrangement is a zero energy arrange-
ment. Furthermore, ifzi is the position of theith protein using complex coordinates, it was also
shown that the energy at theith protein is a constant multiple ofjfi(z1; : : : ; zN )j2 wherefi(z1; : : : ; zN) = NXj=1j 6=i 1(zi � zj)2 = 0:
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Therefore theN proteins are at equilibrium if and only if(z1; : : : ; zN) is a solution to the Mem-
brane Inclusions Curvature Equations, or MICE:fi(z1; : : : ; zN) = 0; i = 1; : : : ; N: (1)

For brevity, we refer to theN -th system of equations asSN .
One possible application of knowing how these proteins arrange themselves is to deduce the

form of proteins by examining the shapes they form. In this case, if they arrange themselves
according to our solutions it is very likely that they are conical. Determining the shapes of
proteins is still an unsolved problem in biology.

Gröbner bases are used to find the solutions ofSN for severalN . In section 2, we review
the most efficient algorithms for computing Gröbner bases and their implementations. Direct
application of these algorithms gives all the solutions of the problem forN < 7 and is described
in section 3. Because the difficulty of computing Gröbner bases increases rapidly with respect to
the complexity of the input equations, it is necessary to reformulate the system before most of the
computations will successfully terminate. Two reformulations ofSN into equivalent systems are
given in section 4. The first reformulation employs an algorithm for converting the numerators
of theSN equations into symmetric polynomials, which are then expressed in terms of the ele-
mentary symmetric functions prior to computing. The secondreformulation uses a differential
equation describing the minimum polynomial for the coordinates of a solution and gives directly
a system already formulated using the elementary symmetricfunctions. Both reformulations can
be used jointly to decrease the computation time. Finally, we consider a much simplified system
obtained fromSN by limiting our search to those solutions which have a certain geometric regu-
larity to them; namely, we look for solutions whose coordinates form concentric rings of regular
polygons. While this last approach does not detect all solutions for a givenN , it does allow many
to be found.

Our main result is a complete classification of the solutionsfor small values forN :

Theorem 1.1 There are no solutions forN � 12 except forN = 5 (finite number of solutions)
andN = 8 (S8 form a1 dimensional variety).

The proof of this theorem is included in sections 3 and 4. For larger values ofN we have only a
partial result:

Theorem 1.2 There exist solutions toSN for N = 5; 8; 16; 21; 33; 37; 40; 56; 65; 85; 119; 133;161; 175; 208; 225; 261 and 280. Moreover the number of solutions firS16 andS21 is infinite.

We explained in section 5 how we find this list of “regular solutions”.

2 Tools for solving polynomial equations

We now review some major algorithms for solving multivariate polynomial systems. The reader
is also referred to [Dav93, Bec93, CLO92, CLO98] for a more detailed introduction.
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LetQ [x1 ; : : : ; xn℄ be the polynomial ring with rational coefficients,F a finite list of equations
andI the ideal generated byF .

The main tools we use are Gröbner bases [Buc65, Buc70, Buc79, Buc85]. We recall that, in
general, when the number of equations equals the number of variables the shape of the Gröbner
basisG for a lexicographical ordering is the following:8>><>>: hn(xn)xn�1 = hn�1(xn): : :x1 = h1(xn)
where all thehi are univariate polynomials. Of course the shape of a lexicographical Gröbner
basis is not always so simple but it will allways be the case inthis paper (except one very easy non
zero dimensional system). From this Gröbner basis it is rather easy to compute numerically all
the complex roots: we first solve numerically the first equation [DG99], and we findz1; : : : ; zN
a guaranteed approximation of all the complex roots ofhn. Then we substitute these values into
the other coordinates.

Even if all the algorithms for computing Gröbner bases do not depend on a specific order it is
well known [Fau93] that it is more efficient to compute first a Gröbner basis for a Degree Reverse
Lexicographical ordering and then change the ordering witha specific algorithm. In this paper
we have used a standard implementation of the Buchberger algorithm and the FGLM algorithm
in Singular [Gre99] for easy cases. When the degree of the univariate is big> 500 we have used:� theF4 [Fau99] algorithm for computing a DRL groebner basis.� theF2 [Fau94] algorithm to change the ordering. For the bigger computations we found

that the dimension ofQ [x1 ; : : : ; xn℄=I is bigger than106 !

These two algorithms are implemented in an experimental software callled FGb [Fau].
For generating the input equations we have used the Maple [Cha91] computer algebra system.

3 First experiments

First, we observe that the set of solutions toSN is invariant under translation and multiplication
by complex scalars. These considerations allow us to changecoordinates so thatzN = 0 andzN�1 = 1.

Since thefi in the systemSN are rational functions we need to transform the system into a
polynomial system. In order to avoid ”parasite” solutions,wherezi = zj for somei 6= j, we
introduce a new variableu and letPi be the numerator of eachfi in SN . That is to sayPi(z1; : : : ; zN) =Xj 6=i Yk 6=i;j(zi � zk)2 = 0; i = 1; : : : ; N (2)
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S 0N 8>><>>: u�Ni=1�Nj=i+1(zi � zj) = 1Pi(z1; : : : ; zN) = 0 i = 1; : : : ; Nz1 = 0z2 = 1
Proposition 3.1 There is no solution forN � 4 andN = 6. The only solution forS5 is a regular
pentagon.

Proof ForN � 5 it takes less than0:1 second to compute a lexicographic Gröbner basis with
FGb on a PC Pentium II 300 Mhz. ForN < 5 the Gröbner basis isf1g. For N = 5 we
can factorize the univariate polynomial and find a decomposition into irreducible varietes:V =V1 [ V2 [ V3 [ V4 [ V5 [ V6 andV1 = [z3 � z5 3 + z5 2 � z5 ; z4 + z5 2 � z5 ; z5 4 � z5 3 + z5 2 � z5 + 1℄

For any polynomialp in x1; : : : ; xN and any permutation�, set�:p = p(x�(1); : : : ; x�(N))
and�(V ) = f�(v) : 8v 2 V g. It is easy to check that(z4; z5)V1 = V6(z3; z5)V1 = V3(z3; z4)V1 = V2(z3; z4; z5)V1 = V5(z3; z5; z4)V1 = V4

Now we have z5 4 � z5 3 + z5 2 � z5 + 1 = z55 + 1z5 + 1
so thatz5 = e�{�5 and we see that the only solution is the regular pentagon.

The caseN = 6 is a little more difficult: the degree of the polynomialu�Ni=1�Nj=i+1(zi�zj) =1 is 1+ N(N�1)2 = 16 and so big that it does not help the Gröbner basis computation. In that case
we can replace this condition byuz3z4z5z6 = 1 and it takes only 13.6 seconds to findf1g with
Fgb.�

In conclusion the straightforward approach solves the problem for smallN but leads to sev-
eral problems:� intermediate computations contain the same solution several times (action of the symmetric

group), so the degree of the intermediate varieties are big.� it is not easy to remove the parasite solutionszi = zj.
We have stopped the computation forN = 7 after2000 seconds.
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4 Using the symmetry

It is clear from 1 that if(z1; : : : ; zN ) 2 C N is a solution ofSN then (zi1 ; : : : ; ziN ) is also a
solution ofSN for every possible permutation of(i1; : : : ; iN) of (1; : : : ; n). Hence it is enough
to compute the polynomialf(X) = (X � z1) � � � (X � zN) = XN � e1XN�1 + � � � (�1)NeN

where theei = ei(z1; : : : ; zN) are the elementary symmetric functions inz1; : : : ; zN . In this
paper we will say thatf is solution ofSN . In general solving efficiently a polynomial system
with symmetries is an open issue especially when the group isnot the whole symmetric group.
In our problem the solutions are invariant under the symmetric group but unfortunatelyfi is not
a symmetric polynomial in(z1; : : : ; zn) but only infzj j j 6= ig. If we exchange the role ofzj
andzk thenfi remain unchanged whilefj becomesfk and reciprocally.zj  ! zk fi = fi for i 6= j; k fj  ! fk
4.1 nilCoxeter algebra

Let er be therth elementary symmetric function inN variables. For� = (�1; : : : ; �r) letm� =X z�1i1 � � � z�rir (3)

denote the monomial symmetric functions, where the sum ranges over all monomials whose
exponent vector is equal to a permutation of�. SolvingS 0N is equivalent to finding a polynomial� f = XN � e1XN�1 + e2XN�2 � � � �+ (�1)NeNf is squarefree.

(4)

whose roots are a solution toSN : For any polynomialp in z1; : : : ; zN , set�i(p) = p(z1; z2; : : : ; zN)� p(zi; z2; : : : ; zi�1; z1; zi+1; : : : ; zN)z1 � zi : (5)

Let I1 be the ideal generated byP1; : : : ; PN , we define by inductionIk = Ik�1 : (Yi1<i2(zi1 � zi2)) (6)

andI = I1. Note thatPi = (1; i):P1 for 1 � i � N andP1 is symmetric inz2; : : : ; zN .

Theorem 4.1 Define for1 � i1 < � � � < ik+1 � NPi1;::: ;ik;ik+1 = Pi1;::: ;ik � Pi1;::: ;ik�1;ik+1zik � zik+1
5



so thatPi1;::: ;ik 2 Ik andPi1;::: ;ik is symmetric inzi1 ; : : : ; zik and in the complementary set of
variables. Hence Hk = X1�i1<���<ik�N Pi1;::: ;ik
is a true symmetric function

The next theorem gives an efficient method for computing theHi.
Theorem 4.2 For 1 � i1 < � � � < ik � NPi1;::: ;ik = (1; i1):(2; i2): � � � :(k; ik)Qk
whereQk = P1;2;::: ;k and we have Qk = �kQk�1

TheHi were first computed in the monomial basism� using code specifically written for
this application in C++ in the small computer algebra systemGb; then the polynomials were
expressed in theei basis using ACE [AS98], SF [J.98] and symmetrica. If we setzn = 0 andzn�1 = 1 prior to computing theHi, the reformulated system~SN consists of the polynomialsH1; : : : ; HN ; PN�1; PN in the variablese1; : : : ; eN�2. It turns out that~SN is easier to solve: it
takes 2 minutes to compute a Gröbner basis forN = 10 with FGb, while the calculation forS7
was unsuccessfully stopped after 2000 seconds.

4.2 Harm Derksen formulation

Our second reformulation was found by Harm Derksen[Der99],and appeals to the structure of
the polynomialf in (5). First, a lemma.

Lemma 4.1 For any(z1; : : : ; zN ) 2 C N ,NXj=1 1z2j = e2N�1 � 2eNeN�2e2N :
Proof Since

PNj=1(1=zj) = eN�1=eN and
Pi>j(1=zizj) = eN�2=eN , we haveNXj=1 1z2j = ( NXj=1 1zj )2 � 2Xi>j 1zizj= e2n�1e2n � 2en�2en :�
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Theorem 4.3 (z1; : : : ; zN) is a solution toSN if and only if� f is squarefree and3(f 00)2 � 4f 0f 000 is divisible byf
wheref =QNi=1(x� zi) = xN � e1xN�1 + e2xN�2 � � � �+ (�1)NeN .

Proof Let Sr be therth elementary symmetric polynomial inx � z1; : : : ; x � zN . Note that
replacingx by zi in Sr gives therth elementary symmetric polynomial inzi � z1; : : : ; zi �zi�1; zi � zi+1; : : : ; zi � zN , which we denote byEir. Furthermore, thekth derivative off isf (k) = k!Sn�k so thatf (k)(zi) = k!Ein�k. Seth := 3(f 00)2 � 4f 0f 000. Thenh(zi) = 3(2EiN�2)2 � 4EiN�1(3!EiN�3)= 12((EiN�2)2 � 2EiN�1EiN�3): (7)

By Lemma 4.1 fi =Xj 6=i 1(zi � zj)2 = (EiN�2)2 � 2EiN�1EiN�3(EiN�1)2 (8)

so thath(zi) is a constant multiple of the numerator offi. Thereforef dividesh and thezi are
distinct () h(zi) = 0 for all i and thezi are distinct() fi(z1; : : : ; zN) = 0 for all i ()(z1; : : : ; zn) is a solution ofSN . �

Let r be the remainder of dividingh by f , and let
j, 1 � j � deg(r), be the coefficient ofxj
in r. Then each
j is a polynomial in theei and Theorem 2.3 implies the system
j(e1; : : : ; eN ) =0, 1 � j � deg(r), is equivalent toSN .

Computations with Singular [Gre99] using the formulation of Theorem 2.3 reveal a one-
dimensional family of solution shapes forN = 8:

Proposition 4.1 The coordinates of a solution toS8 are given by the roots of the polynomialt8 + 285 t6a + 14t4a2 + 28t2a3 � t� 7a4
wherea can be arbitrary. Settinga = 0, the roots form a regular heptagon with a point in the
center. Varyinga deforms this into irregular hexagons with two points in the interior.

–1

–0.5

0.5

1

–1 –0.8–0.6–0.4–0.2 0.2 0.4 0.6 0.8 1x

Solutions N=8 a=0

–20

–10

10

20

–8 –6 –4 –2 2 4 6 8x

Solutions N=8 a=100
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This is a one dimensional family of solution shapes.

Proposition 4.2 There are no solutions toSN for N = 3; 4; 6; 7; 9; 10; 11; and 12.

Proof For N = 3; 4, short (less than one minute by Maple on a Sun Ultra-5) Gröbner bases
computations show~SN , henceSN , has no solutions. For the remainingN , computations using
one or both of the above reformulations show there are no solutions of the equivalent systems.
For N > 7 we use FGb for the computations. WhenN > 9 another difficulty arises in the
computation: it is impossible to compute the discriminant of g = xN�2 � e1xN�3 + e2xN�4 �� � � + (�1)NeN�2. At the begining we add only the conditiong(0) = eN�2 6= 0 andg(1) 6= 0
and we compute a lexicographical Gröbner basis. In the lastwe remove the bad solutions.�
5 Regular solutions

The geometry of the solutions known thus far lead one to ask: What other regular polygons are
solution shapes (with or without a point in the center)? Whatabout two regular polygons, orn regular polygons? We use the notation[n;m; p℄ to denote a solution shape consisting ofn
regular concentricm-gons andp = 1 or 0 as there is or is not a point in the center. Thus a
solution[n;m; p℄ will be a solution forSnm+p. We begin this section by trying to find “by hand”
some regular solutions then give a more systematic way to findthese solutions.

5.1 One regular m-gon:[1;m; p℄
Since the solutions are invariant under translation and multiplication by complex numbers, it
suffices to examine them’th roots of unity.

The main lemma we need is

Lemma 5.1 Let! be a primitivem’th root of unity. ThenmXj=1 1(!j)2 = 0m�1Xj=1 1(!j � 1)2 = �(m� 1)(m� 5)12mXj=1 1(ab!j � 1)2 = mbm(bm + am(m� 1))(bm � am)2 : (9)

Proof From Lemma 4.1 we knowNXj=1 1z2j = e2N�1 � 2eNeN�2e2N
8



where theei are the elementary symmetric polynomials in thezj. The polynomials with roots!j
(1 � j � m), !j � 1 (1 � j � m� 1), andab!j � 1 (1 � j � m) are, respectivelyP (X) = Xm � 1 andP (X) = (X + 1)m � 1X = Xm�1 +mXm�2 + : : :+ �m3�X2 + �m2�X +mP (X) = (X + 1)m � (ab )m (10)

respectively. substituting in the corresponding values ofeN ; eN�1 andeN�2 gives the result.�
We first consider the casep = 0: [1; m; 0℄. Let zi = !i for all i, where! is a primitivem’th

root of unity. Then thei’th equation isfi =Xj 6=i 1(zi � zj)2 =Xj 6=i 1(!i � !j)2 = 1(!i)2 Xj 6=i 1(!j�i � 1)2 = 1(!i)2 m�1Xj=1 1(!j � 1)2 :
By lemma 5.1, for alli thei’th equation is zero if and only ifm�1Xj=1 1(!j � 1)2 = �(m� 1)(m� 5)12 = 0;
i.e., if and only ifm = 5 orm = 1. Thus the regular pentagon is the only solution shape for this
case. Ifp = 1, i.e., [1; m; 1℄, we havezi = !i for i = 1; : : : ; m andzN = 0. Then theN ’th
equation fN = mXj=1 1(!j � 0)2 = 0
by lemma 5.1. Fori = 1; : : : ; m, thei’th equation isfi =Xj 6=i 1(zi � zj)2 =Xj 6=i 1(!i � !j)2 + 1(!i)2 = 1(!i)2  Xj 6=i 1(!j�i � 1)2 + 1!= 1(!i)2  m�1Xj=1 1(!j � 1)2 + 1! : (11)

So for alli = 1; : : : ; m thei’th equation is zero if and only ifm�1Xj=1 1(!j � 1)2 = �(m� 1)(m� 5)12 = �1;
i.e.,m = 7 orm = �1. Therefore the regular heptagon with a point in the center isthe only

solution shape in this case.
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5.2 Two regular m-gons[2;m; x℄
Again we may fix onem-gon,P1, to be them’th roots of unity. We intruduce a new complex
variable,x, to describe the secondm-gon,P2 = xP1, where multiplication of a polygonP withx meansx times each vertex of the polygon.

Proposition 5.1 There are no solution shapes of the form[2; m; 0℄ or [2; m; 1℄.
Proof We include in square brackets facts for the case[2; m; 1℄. Letzi = 8><>:!i if i = 1; : : : ; m;x!i if i = m + 1; : : : ; 2m;

[0 if i = 2m + 1]: (12)

Dividing by ( 1!i )2 in the i’th equation wheni = 1; : : : ; m, or ( 1x!i )2 wheni = m + 1; : : : ; 2m,
we get two equations in one unknown:�(m� 1)(m� 5)12 [ + 1] + m(1 + xm(m� 1))(1� xm)2 = 0 (13)�(m� 1)(m� 5)12 [ + 1] + mxm(xm +m� 1)(xm � 1)2 = 0: (14)

where we have used the third part of lemma 5.1. Subtracting one equation from the other gives1� x2m = 0; (15)

so the solution set would have to consist of2mth roots of unities. But we have already seen that
in the single polygon case the only solutions arem = 5 andm = 7, neither of which is divisible
by two. Therefore no shapes of the form[2; m; 0℄ or [2; m; 1℄ can be a solution.�
5.3 The Generalization

Using the differential equation of theorem 4.3 we can find some more conditions not only for the
case of regular polygons but for any set of roots to a polynomialN(X). For the case of regular
polygons this raises the chances of succesful computationssince we can add the new equations
to our old systems.

Definition 5.1 Let N;M; P be univariate polynomials of degreen;m; p. We use the notation[N;M; P ℄ to denote the set of solutions ofSnm+p with the shapeP (X)N(M(X)). In the partic-
ular caseP (X) = Xp, M(X) = Xm we use the simplified notation[N;m; p℄.
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Theorem 5.1 LetN(x) =Pni=0 aiX i be a squarefree polynomial of degreen such thata0 6= 0.
Then[N;m; p℄ (withm > 1) is a solution ofSnm+p if and only ifp � 1 andN(X) dividesnXi=0j=0 ijaiaj (mi� 1) (3mj + 5� 4mi)X i+j if p = 0
andN(X) dividesnXi=0j=1 aiajjm(jm + 1)(im+ 1)(3im� 4jm+ 4)X i+j if p = 1:
Proof Let f(X) = XpN(Xm). We know from theorem 4.3 thatf is a solution ofSnm+p if and
only if f is squarefree andU(X) = 3(f 00)2 � 4f 0f 000 is divisible byf(X). The first condition is
true as soon asp � 1 since0 is not a root ofN(X).

Considering the casep = 0, we find:U(X) = 3  nXi=1 im (mi� 1) aiXmi�2!2�4  nXi=1 imaiXmi�1! nXi=i3 im (mi� 1) (mi� 2) aiX im�3!
wherei3 = 2 if m = 2 andi3 = 1 else. SinceX andf(X) are relative prime,f dividesU ifff dividesX4U = V withV (X) = 3  nXi=1 im (mi� 1) aiXmi!2�4  nXi=1 imaiXmi! nXi=i3 im (mi� 1) (mi� 2) aiX im!
henceV = W (Xm) is divisible byN(Xm) iff W (X) is divisible byN(X). We can rewrite

the sum: W (X) = m2 nXi=1j=1 ijaiaj (mi� 1) (3mj + 5� 4mi)X i+j:
We consider now the casep = 1 and find:U(X) = 3 nXi=1 ai(im+ 1)(im)X im�1!2�4 nXi=0 ai(im + 1)X im! nXi=1 ai(im + 1)(im)(im� 1)X im�2!
must be divisible byX andN(Xm) so thatm > 2 andV1(X) = X2U(X) should be divisible

byN(Xm)V1(X) = 3 nXi=1 ai(im + 1)(im)X im!2�4 nXi=0 ai(im+ 1)X im! nXi=1 ai(im+ 1)(im)(im� 1)X im!
11



this equivalent to divisibility ofW1(X) = 3 nXi=1 ai(im + 1)(im)X i!2 � 4 nXi=0 ai(im + 1)X i! nXi=1 ai(im + 1)(im)(im� 1)X i!= nXi=0j=1 aiajjm(jm+ 1)(im + 1)(3im� 4jm+ 4)X i+j�
Remark 5.1 We can always suppose thatN(X) = Xn +Xn�1 +Pn�2i=0 aiX i
Remark 5.2 In the following we give an explicit value ton and p and we considerm as a
variable.

Corollary 5.1 There are no solutions of the form[N; 2; 1℄.
Proof From the proof of Theorem 5.1,f(X) = XN(X) does not divideU(X)

becauseX does not divideU(X). �
Corollary 5.2 For deg(N) = 1, [N;m; 0℄ is a solution iff(m�1)(m�5) = 0 andN(X) = 1+X
Proof We apply the theorem 5.1 toN = 1+X and we findW (X) = �X2 (m� 1) (m� 5). �
Corollary 5.3 For deg(N) = 1, [N;m; 1℄ is a solution iffm = 7 andN(X) = 1 +X
Proof We apply the theorem 5.1 toN = 1 +X and we findW1(X) = X(�4 + 4m2) +X2(m3 � 2m2 � 7m� 4)

and the remainder ofW1 divided byN should be zero:�m(�7 +m)(m+ 1)x�
Corollary 5.4 deg(N) = 2, [N;m; 0℄ there is no solution.

Proof We apply the theorem 5.1 toN = a0 +X +X2 and we findW (X) = � �4 (2m� 1) (2m� 5)X2 + 4 (m� 1) (4m� 5)X + (m� 1) (m� 5)�X2
and the remainder ofW divided byN should be zero:� (�5�m2 + 18m� 60 a0m+ 16 a0m2 + 20 a0)X� (�m2 + 18m� 5 + 16 a0m2 � 48 a0m + 20 a0) a0 = 0
we can can compute a lexico Gröbner of the coefficients:�20 a0 �m2 + 18m� 5; m �m2 � 18m+ 5��
and the number of solutions is0.
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5.4 Summary of the regular solutions

An extended version of this paper including a complete list of solutions, pictures and all the
polynomials can be found athttp://calfor.lip6.fr/˜jcf/MICE/mice.ps.gz . We
summarize all the results:

Theorem 5.2 For fixed values ofn andp we give all the possible values ofm and for eachm all
the solutions[n;m; p℄. The results are summarized in the following table.

Shape Values ofm Values ofN[1; m; 0℄ m = 5 N = 5[1; m; 1℄ m = 7 N = 8[2; m; 0℄ ;[2; m; 1℄ ;[3; m; 0℄ m = 7, m = 11 N = 21, N = 33[3; m; 1℄ m = 5, m = 13 N = 16, N = 40[4; m; 0℄ m = 2, m = 4 N = 8, N = 16[4; m; 1℄ m = 5 N = 21[5; m; 0℄ m = 13, m = 17 N = 65, N = 85[5; m; 1℄ m = 11, m = 19 N = 56, N = 96[6; m; 0℄ ;[6; m; 1℄ ;[7; m; 0℄ m = 19, m = 23 N = 133, N = 161[7; m; 1℄ m = 1, m = 17, m = 25 N = 8, N = 119, N = 175[8; m; 0℄ m = 5, m = 7 N = 40, N = 56[8; m; 1℄ m = 4, m = 8 N = 37, N = 65[9; m; 0℄ m = 25, m = 29 N = 225, N = 261[9; m; 1℄ m = 23, m = 31 N = 208, N = 280
Corollary 5.5 Using this information we could find the following solution families:f(x) = �32� x5 + �+ x16 + x11 + 118 x6 � 11128xf(x) = �� x+ 25� x8 + x21 + x14 � 1310 x7 + 13400
for N = 16 andN = 21.

Conjecture 5.1 For n odd, there will be solutions for[n;m; 0℄ withm = 3n�2 andm = 3n+2
and for [n;m; 1℄ withm = 3n� 4; m = 3n+ 4.�
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0.2

0.2

Solutions [9,31,1]

Figure 1: one regular solution forN = 280.

6 Extended version of the paper.

6.1 Equations [3; 7; 0℄N(X) = X3 +X2 � 1310 X + 13400
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The following polynomial is also a solution for all�:
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f(X) = �� x+ 25� x8 + x21 + x14 � 1310 x7 + 13400
for instance for� = 400:
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–2 –1 1 2x

MICE

In fact the solution when “� is big” are from one part:f1(X) = �� x + 25� x8 = � �25x7 � 1�x
that is to say0 and25�17 e 2k{�7 for k = 0; : : : ; 6. The second set of solution isf2(X) = 25 x13 + 26 x6 + 625� � 25 x13 + 625�

and the solutions are(�25�) 113 e 2k{�13 for k = 0; : : : ; 12[3; 11; 0℄N(X) = X3 +X2 � 1770 X + 177840
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[3; 5; 1℄
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N(X) = X3 +X2 + 118 X � 11128
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f(x) = �32� x5 + �+ x16 + x11 + 118 x6 � 11128x[3; 13; 1℄N(X) = X3 +X2 � 19112 X + 1917920
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[4; 2; 0℄N(X) = X4 +X3 + 2556 X2 + 125784 X � 62587808
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[4; 4; 0℄N(X) = X4 +X3 + 4988 X2 � 3431936 X � 24011703680
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Solutions [4,4,0]

[5; 13; 0℄N(X) = X5 +X4 � 2624610773 X3 + 2641436786990 X2 + 133112216582 X + 146411169859892320
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Solutions [5,13,0]

[5; 17; 0℄N(X) = X5 +X4 � 5054661071455 X3 + 517478129646055 X2 + 19113949913731175 X + 8282694861846985100875
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Solutions [5,17,0]

[5; 11; 1℄N(X) = X5 +X4 + 1355544 X3 � 188530464 X2 � 345974848 X � 1151856110592
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[5; 19; 1℄N(X) = X5 +X4 � 6231872 X3 + 3523116061760 X2 + 106337709644800 X + 10633264595009536000
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Solutions [5,19,1]

[7; 19; 0℄N(X) = X7+X6� 25057370304 X5+ 15738440127380204032000 X4+ 16169361305279895190136832000 X3+ 1181106450178232798193844224000 X2�541543777144522972632309563392000 X + 920624421071854007817165581914944307200000
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Solutions [7,19,0]

[7; 23; 0℄N(X) = X7 +X6 � 1343919250 X5 + 11579363122586795000 X4 + 4543346861549084986450000 X3 + 529550913727124661250000 X2 �843657628908216355168750000 X + 534316122571767448273548505000000000
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Solutions [7,23,0]

[7; 17; 1℄N(X) = X7 +X6 + 673177186340 X5 � 2328195114148673760 X4 � 1398994164935139266747200 X3 � 56231698913528617697672000 X2 +317057654785096567324800 X � 3170571275586846622805442880000
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Solutions [7,17,1]

[7; 25; 1℄N(X) = X7+X6� 12036472434432 X5+ 1513386395504725917696 X4+ 3365775485997338413367296 X3+ 5642073394914883701074034688 X2�111082029427319648506180871913472 X + 370273431240334593196852549369068519424
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Solutions [7,25,1]

[8; 5; 0℄X8+X7+ 189832 X6� 151913312 X5+ 360155537792 X4� 215061143982592 X3� 456199214885888 X2+ 319333958348132352 X +3193331594691292233728
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Solutions [8,5,0]

[8; 7; 0℄N(X) = X8+X7 + 2885 X6� 14187 X5+ 79350 X4� 19326755375 X3 + 161148618250 X2 + 236316275625 X +2394491483350000
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[8; 4; 1℄N(X) = X8 +X7 + 13176 X6 � 187083862400 X5 + 17064099303564800 X4 � 402995716678425600 X3 + 246167259747983667200 X2 �1066724789164556406784000 X � 13867422257810933972631552000
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[8; 8; 1℄N(X) = X8+X7+12073344 X6� 8516839563840 X5� 127295838140740608 X4� 87613529309348143104 X3+ 34033972293538942757109760 X2+410338673268959649540341760 X + 6975757441233844277696354739814400
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[9; 25; 0℄N(X) = X9+X8�26846657239 X7+ 3774958130298840907899824 X6+ 4136568799049072119368964469508752 X5+ 12304828054251749996713791562436331960576 X4�201696293596961313792525447640993961670450688 X3+ 572173466080471049280165954736256628041206540288 X2+ 29020850072130338531221244525599674518192939008 X+2224931838712640627189356212335708507331037005997751533568
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[9; 29; 0℄N(X) = X9 + X8 � 31712296883433022619 X7 + 129645016239202205535082508693 X6 + 134507203251295281441110030908637142840678785 X5 +68635259350872716128140189133544510680777845794005 X4� 563378090146829056196573203056112876586695372353811 X3+ 673655030702006144011261775713673813363299935122968402618823 X2+226867786897664003262885539298427619562253503112758259154206613 X + 2835847336220800658915285859971494652443714988122706538556183025198791
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[9; 31; 1℄N(X) = X9+X8� 87004837132721650 X7+ 988698212699276694777878750 X6+ 76494669097074411433863961228011500000 X5+ 7783646183879270334619802143279560952137500000 X4�3123556075543790945292540212712815574756050000000 X3+ 8866460055407118584068683814396371805640376250000000 X2+ 4426273081155919075997419496364905314451000000000000 X+10180428086533153103873396184675257032714649680600675000000000000
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[9; 23; 1℄N(X) = X9+X8+44672577794325000 X7� 14305770645413267147265000000 X6� 1332851493909161728332267382403025000000000 X5� 2477873011542501119075934650450850000000000 X4+13426283429585484008833424350143615105705000000000000000 X3� 7845626917658302495093720838627469736187500000000000000 X2� 86865213114302791939688895349340475540200000000000000000000 X�550146349723917678527985765381631251907679274800000000000000000000000
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6.2 Another proof of Derksens formulation

Let f =Qnj=1(x� zj). Define fj =Yi 6=j (x� zi); j = 1; : : : ; n:
Then
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f 0jfj =Xi 6=j 1(x� zj)2 : (16)

Derivating this and plugging inzj we getf 00j fj � f 02jf 2j (zj) = �Xi 6=j 1(x� zi)2 (zj) = �Xi 6=j 1(zj � zi)2 : (17)

Therefore for allj, (f 00j fj � f 02j )(zj) = 0 if and only if
Pi 6=j 1(zj�zi)2 , i.e. if the MICE

equations are satisfied andzj is a root off . On the other hand we havef = fj(x� zj);f 0 = f 0j(x� zj) + fj;f 00 = f 00j (x� zj) + 2f 0j;f 000 = f 000j (x� zj) + 3f 00j ; (18)

and therefore (3(f 00)2 � 4f 0f 000)(zj) = 12((f 0j)2 � fjf 00j )(zj)= 0: (19)

6.3 Three regular m-gons

Proposition 6.1 The only solution shapes[3; m; 0℄ are form = 7 or m = 11. The only solution
shapes[3; m; 1℄ are form = 5 or m = 13.

Proof Proceeding as before, we fix onem-gon to be them’th roots of unity and use two variablesx andy to describe the remaining two. Again using formula in lemma 5.1,S3m+p is reduced to
a system of three equations in two unknowns. The casep = 1 is included in square brackets:�(m� 1)(m� 5)12 [ + 1] + m(1 + xm(m� 1))(1� xm)2 + m(1 + ym(m� 1))(1� ym)2 = 0 (20)�(m� 1)(m� 5)12 [ + 1] + mxm(xm +m� 1)(xm � 1)2 + mxm(xm +mym � ym)(xm � ym)2 = 0 (21)�(m� 1)(m� 5)12 [ + 1] + mym(ym +m� 1)(ym � 1)2 + mym(ym +mxm � xm)(ym � xm)2 = 0 (22)
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Remark 6.1 In general, this method reducesSnm+p to a system ofn equations inn � 1 un-
knowns.

We can also make the variable changesX = xm andY = ym to eliminatem from the exponents,
which allowsm to be treated as a variable in the calculations. A lexicographic Gröbner basis
for [3; m; 0℄ with X > Y > m was obtained after 536 seconds by computing a degree reverse-
lexicographic Gröbner basis thenusing FGLM. This was doneusing Singular[Gre99]. The sin-
gle polynomial involvingm alone is9m10 � 990m9 + 41657m8 � 833256m7 + 8052130m6 �35019540m5 + 56505450m4 � 33100200m3 + 8675125m2 � 1050750m + 48125 which fac-
tors as(m � 7)(m � 11)(3m � 5)(3m � 1)(m2 � 30m + 5)3. We are only interested in the
integer partial solutionsm = 7 andm = 11, both of which lift to solutions. Similarly, the
same calculation took 657 seconds for the case[3; m; 1℄ and the relevant polynomial is9m10 �990m9+41213m8� 796104m7+6974386m6� 22637556m5+9529122m4+27373752m3+12827269m2 + 2364642m + 156065. Its factorization is(m � 5)(m � 13)(3m � 7)(3m +1)(m2� 30m� 7)3 and both integer partial solutions lift.� U(X) = 12 (Pni=1 aiXmi�1im)2 +3 (Pni=0 aiXmi�1im (mi� 1))2�12 Pni=0 aiXmiPni=0 aiXmi�2im (mi� 1)�4 Pni=0 aiXmiPni=0 aiXmi�2im (mi� 1) (mi� 2)� 4 Pni=0 aiXmi�1imPni=0 aiXmi�1im (mi� 1) (mi� 2)

must be divisible byX andN(Xm) so thatm > 2 andV1(X) = X2U(X) should be divisible
byN(Xm)V1(X) = 12 (Pni=1 aiXmiim)2 + 3 (Pni=0 aiXmiim (mi� 1))2� 12 Pni=0 aiXmiPni=0 aiXmiim (mi� 1)� 4 Pni=0 aiXmiPni=0 aiXmiim (mi� 1) (mi� 2)� 4 Pni=0 aiXmiimPni=0 aiXmiim (mi� 1) (mi� 2)

this equivalent to divisibility ofW1(X) = 12 (Pni=1 aiX iim)2 + 3 (Pni=0 aiX iim (mi� 1))2� 12 Pni=0 aiX iPni=0 aiX iim (mi� 1)� 4 Pni=0 aiX iPni=0 aiX iim (mi� 1) (mi� 2)� 4 Pni=0 aiX iimPni=0 aiX iim (mi� 1) (mi� 2)
byN(X).

6.4 Different Polygons

We tried using 3 different polygons for the caseN = 16 and there were no solutions, neither with
a point nor without a point. We tried the partitions 1+2+2+11, 1+2+3+10, 1+2+4+9, 1+2+5+8,
1+2+6+7, 1+3+3+9, 1+3+4+8, 1+3+5+7, 1+3+6+6, 1+4+4+7, 1+4+5+6, 1+5+5+5 (there is the
solution we know), 2+2+12, 2+3+11, 2+4+10, 2+5+9, 2+6+8, 2+7+7, 3+3+10, 3+4+9, 3+5+8,
3+6+7, 4+4+8, 4+5+7, 4+6+6, 5+5+6.

7 Conclusion

We have a new application of computer algebra in biological physics. We were able to solve
the system completely up toN = 12 using the symmetry and the most recent techniques for the
Gröbner bases computation. Starting with solution shapesof regular polygons we found solution
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families forN = 8; 16; 21 as well as single solutions forN up to280 for which we have reason
to assume that they are part of solution families as well.

From the biophysical point of view, solutions forN about 1000 are needed since there are
thousands of proteins in a cell membrane [Kim99]. But even small numbers of proteins can
give some interesting insights. We have extended the results in the original paper[KJG98] fromN = 5 to 12.

This work is a particular instance of the more general problem of finding a global minimum
of an energy function and in particular we want want to point out similar work related to the
classification of the stable solutions of then body problem.

Acknowledgments
We are deeply indebted to Prof. Bernd Sturmfels for bringingthis problem to our attention. Two of

the authors (M.H. and J.P.) gratefully acknowledge severaldiscussions with K.S. Kim as well as with Eric
Antokoletz and Frank Calegari.

References

[AS98] Lascoux A. and Veigneau S. Algebraic combinatorics environment. Technical report,
Institut Gaspard Monge, Universite de Marne-la-Vallée, 1998. Version 3.0.

[Bec93] Becker T. and Weispfenning V.Groebner Bases, a Computationnal Approach to Com-
mutative Algebra. Graduate Texts in Mathematics. Springer-Verlag, 1993.

[Buc65] Buchberger B. Ein Algorithmus zum Auffinden der Basiselemente des Restklassen-
ringes nach einem nulldimensionalen Polynomideal.PhD thesis, Innsbruck, 1965.

[Buc70] Buchberger B. An Algorithmical Criterion for the Solvability of Algebraic Systems.
Aequationes Mathematicae, 4(3):374–383, 1970. (German).

[Buc79] Buchberger B. A Criterion for Detecting Unnecessary Reductions in the Construction
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Pure and Applied Algebra, 139(1–3):61–88, June 1999.

[Gre99] Greuel G.-M. and Pfister G. and Schoenemann H. SINGU-
LAR 1.2.3, Feb 1999. http://www.mathematik.uni-
kl.de/˜zca/Singular/Welcome.html .

[J.98] Stembridge J. The symmetric functions package. Technical report, Maple share library,
1998.

[Kim99] K.S. Kim. Private communication. Cambridge, 1999.

[KJG98] K.S. Kim, Neu J., and Oster G. Curvature-mediated interactions between membrane
proteins.Biophysical Journal, 75:2274–2291, 1998.

29


