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Abstract

We show how computer algebra methods based on Grobnerdmsgutation and im-
plemented in the program FGb enable us to compute all thé@olof the Cyclic9 problem
a previously untractable problem. There are one type ofitaefgolutions of dimension two
and 6156 isolated points.

1 Introduction

The main purpose of this paper is to show how today efficientpmder algebra programs and
algorithms can fin@utomaticallyall cyclic 9-roots [6, 7, 5]. The title of this paper refer afrse
to the papers [3, 8]. We quote from this papers:

“This paper presents some tricks which may be used whenngplvisystem of algebraic
equations which is too complex to be handled directly by alsylin algebra system”. Here the
idea is exactly the opposite since we want to use the compuatethe program as black boxex
to find all the solutions.

In this paper we do not use the symmetry of the problem for ading the solutions (even
if we give a trick at the end of the paper to speed up the comipatand to reduce the number
of solutions by9). We use the symmetry for the classification of the solutions

The Cyclicn has become a standard benchmark for polynomial systemngadwid has now
a long history. We would like to stress the close relatiopsiiisome algebraic systems occuring
in optimal design of filter banks. Cycliccan be solved for. < 7 by the most efficient computer
algebra systems, but far= 8 it requires human interaction hand and software compurts{a)].
The case: = 9 is a very challenging problem because it is

e anon zero dimensional system: we recall that#fdividesn thenC, is at least of dimen-
sionm — 1 (see [2, 16] and lemma 1.1). So fer= 9 we know thatCy is of dimension at
least2.

e a difficult system: with classical Buchberger algorithm ésvimpossible to compute a
Grobner basis of'y even for a total degree ordering. Very recently we proposaaaigo-
rithm for computing Grobner basis, and it takesl 5 days with this algorithm to compute
a DRL Grobner basis. The result requést Giga bytes on the hard disk. Consequently it
is difficult to “solve” completely this problem. By solving) this paper, we mean give a
concise list of solution as in [3, 8].

Iwe will see that it is almost the case in our program, since aw@lto give a hint to the NTL in order to be able
to factorize a big univariate polynomial.



The plan of this paper is as follows: in the first section wel@xphow to obtain a decompo-
sition into irreducible components mainly by using the FGbgpam and the NTL library. We
then provide in the second section a complete classificafiati the solutions of Cyclic 9 using
the symmetries. The last section contains a little trickeduce the number of solutions. We
begin by recalling the following lemma (see also [2, 16]):

Lemma 1.1 If m? dividesn, then the dimension @f, is at leastm — 1.

Proof We setn; = m, andn, = . We choosg to be an, th primitive root of unity (for
instancej = e%), then we claim that

Snyg (Yo, - - 7yn1—1) = (Yo, Y1y - -+ +Yni—1,
ijJ"' ijnl laj Yo, .-,
P Yn—ts - Yor o 5 1)
is a solution of cyclic: as soon agyg, - - - , y,,—1)"* = 1. We are doing the proof only in the
casen = 9. We set
{z; = vo, 2y = jyo,x7 = %Yo, T2 = Y1, %5 = Jyi,%Ts = J2Y1, %3 = Y2, %6 = jYp, Ly =
7*ys}
and all the equations of cyclitcan be rewritteny,3y,3y,3° —1 =0
772+ 7+ Vyo®yi®y2*(ys ye + Y2 Yo + Yo y;) =0
PG+ 7+ Do’y *ye*(52ye + 7%y0 — Jys +3Ys — jYo + Y2 + yo) =0
Y0°y1°y2"3> (> — j + 1)(J> + 7 + 1) 0
PG+ VY0 yi e Gy ve —y1 2 3%+ 5%ye vo +5°Y0 y1 — Yo 77y2 + Y1 Y2 I+ Y2 Jyo —
JYo ys + Yo ys) =0
3G 47+ Dyoyr ve (5 y2 — y2 5> + 7%y + 7%v0 — 5°ys + jye + 3y — Jyo + yo) =0
Yo yr Y2 (77 —j+ 1)+ +1)> =0
G2+ 7+ 1)y s +5%Y1 2 + Y2 5Y0 — JYo Yr — Y1 Y2 J + Yo Y1 + Ys y2) =0
(P+i+)(wo+y: +ys) =0
and sincg? + j + 1 = 0 all the equations are equal to zero. Moreover, in the gase), we
have found a solution of dimensi@wand degre@ « 9 = 18 (]

2 Decomposition into irreducible varieties

Let I be the ideal generated by the equatiéi3sandV the associated variety, that is to say the
complex roots ot’y.

2.1 General decomposition
Theorem 2.1 We have the following decomposition into irreducible vaes
VvV =u3y,
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For each varietyV; we have computed a lexicographic dbner basisG;. Moreover all
the components are zero dimension exdégor i € {111,112, 113} which are components of
dimensior2 and degreé.

index [ 1,...,18] 19,...,36 | 37,...,54
number 18 18 18
dimension 0 0 0
degree 2 4 12
index [55,...,63] 64,...,99 [100,...,108
number 9 36 9
dimension 0 0 0
degree 24 48 216
index | 109,110 [111,...,113
number 2 3
dimension 0 2
degree 972 6

that is to sayCy is a two dimensional variety of degré& with 6156 isolated points.

Proof The proof of this theorem is done by computer algebra. Thiediitd most straightforward
method is to use an algorithm for computing such a decompogitiecomposition into primes,
triangular systems,.. ); unfortunately the size of cyclié (and even cycli®) is far beyond
the capacities of all the current implementation. For tesson we have developed a new very
efficient algorithm called; for computing decomposition into primes of an ideal: theoalpm

rely heavily on Grobner basis [9, 10, 11, 13] computatiottibyto split the ideal in early stages;
with this algorithm implemented in the Gb [15] and FGb [14pgrams it take8 days on a PC
Pentium Il (400 Mhz with512 Mega bytes of memory) to compute the decomposition. In view
of the fact that this algorithm is not yet published and carredescribed in such a paper we
give an alternate (and longer) proof. First we compute abGe0 basis for a DRL ordering as
explained in [17]: it takeg5 days and the size of the result is 1.6 Giga bytes. Then we loave t
separate the non zero dimensional componentd: lbet the ideal generated by the equations of
Cyclic 9, we can use the known solutions given by lemma 1.1serthe first polynomials given
by F:

f1 = Tslg — Ty

f2:.’L‘3+l‘6+.’L‘9

then we can use the decompositigh = I,NL,N1; = /T + (f1, f2)N/ (T + (f1)) : (f2)N

(I) : (ff°). Of course there is possibly some redundancy in this deceitipo. Computing
a lexicographic Grobner of; is straightforward from the original equation and it is alvs
to check that it is exactly the component given by lemma 1rilorber to computd : ()
we add a new variable > z; > --- > x9 and a new equationsf; = 1 and we compute
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a Grobner for an elimination ordering withas the first block (about0 hours). We proceed
in the same way for computing + (/1)) : (f5°) (20 minutes of CPU time). From this first
computations we find that, (resp. I3) is a zero dimensional ideal of degrég9 (resp. 6156).
Since we have now only zero dimensional systems we can usdasthtools to change the
ordering to compute lexicographic Grobner bases [18, 16],0l5 (7 hours). Then we use
the lextriangular algorithm [19] implemented in Gb to obtai decomposition into triangular
systems. To find prime components in this decomposition veel b factorize some univariate
polynomials: we use the powerful package NTL 3.7a [22]. A# factorization are done easily
(less thanl0 minutes) except for one polynomi&l(z,) of degreed72 which was untractable
(this is a “Swinerton Dyer” example). Very recently a newalthm [1] was implemented by
V. Shoup in NTL and it takes only 32 min 57 sec and 1.3 Giga bgtesemory to factor” on

a alpha workstation 500 Mhz (we have to senuallya pruning parameter t80 which is an
upper bound of the maximum size of allocable memory). Frasghbint all the components are
in triangular form[z{* + hy(xq, ... ,%9),... 25" + hs(xs, xg9), ho(z9)] With hy an irreducible
polynomial. We need now to factorize in algebraic extensibis is done simply by factorizing
with NTL a primitive element of each component (fortunataglhthe components are close to the
shape lemma form, that is to s@le «; is small). We have to remove duplicated components
(see figure 3.9 to see all the components a this step) whiclhheamry easily done since two
identical components have exactly the same lexicographibizr basis. The total time for
decomposing thé, and I; represent less thalt% of the time for computing a DRL Grdbner
basis..J

Remark 2.1 The size of this decomposition in text forma.is Mega bytes.

2.2 Decomposition with the symmetry

For any polynomiapinzy, ... ,zy and any permutation, seto.p = p(z,q), - - - , o). If F'is
finite subset, then(F) = {o(v) : Yv € F'}. Inthe rest of the paper, = (1,2,3,4,5,6,7,8,9)
is the cyclic permutation.

Theorem 2.2 For all k € {1,...,12},forall i € {0,...,8} we havel; g, s = oVy;, g and
0'(‘/109) = ‘/109 andO'(‘/llo) = ‘/110. I\/IOI’eoveI’ng,g, ng andG110 arein Shape lemma form.

Remark 2.1 The fact that all the components can be represented by aolgsaphic Gbbner
basis is a remarkable fact since Cyclicwithout decomposition is very far from being shape
lemma!

Proof This is done simply by substituting the variables— ;. , v — x; and recomputing a
Grobner basis: for alls; we apply the substitution, compute a lexicographic Groltmasis and
then we identify the new component in the list of theorem 211.

In the rest of the papetr, = Gor_s, G35 = Gig, G4 = G110 and W, are the corre-
sponding varieties. Since all th@, are in shape lemma for we can fix the notatioh =

k k k
95(; )(569),338 - gé )(339), ] —95 )(339) :



3 Classification of the solutions

We proceed degree by degree beginning with the non zero diorea amd low degree varieties
found in theorem 2.2.

3.1 Non zero dimensional components

Since we found only components of dimensiahand degreé it is obvious from lemma 1.1
. . 27 21w . . .
thatSs ; with j € {e™s ,e~ "5 } describe all the non zero dimensional components.

Remark 3.1 The solution(1, o, o?, ... ,a®) wherea® = 1, which is always a solution of the
cyclicn problem, is a member of this infinite component.

3.2 Degree?2

It is straightforward from the Grobner basis@f andG’, to identify the following patterns:

1 1 1 .
Wy = (—,1,——,—a,1,a,—,1,a> witha*+3a+1 =10
a a

a
and
1 L
Wy=1{1,1,1,1,1,1,1,—,a | witha®+7a+1=0
a
3.3 Degree4
So far we have not used the fact thatif, . . . , z,,) isasolutionthe®(z1, ... ,z,) = (Bz1,... fz,)

is also a solution if3* = 1. We define3 to be{sw | w € W}. Since we are working with de-
composition into irreducible components we should fagms® —1 = (3 —1)(5%2+3+1)(3°+

% + 1). For any Grobner basis in the list of theorem 2.1 such that the univariate equation i
Tg IS 3 + x9 + 1 OF 2§ + 23 + 1 we introduce new variables, > -+ > 29 > y; > -+ > yg
and we add the equatiopsry = 1,7 = 1,...,8, y9 = 1. Then we compute a lexicographical
Grobner and we take the intersection W@fy , . . . , yo; we notex% the resulting Grobner basis.

It is straightforward to see th@f) (xg) = gé4) (z9) = x% + w9 + 1 (to be fully rigorous we
have to search this univariate polynomial in all the Gralbveses~ 1, . .. , G35). We check that

f—é = G and that%s = GY,. Consequently there is no new solution of degtee
9 x9

3.4 Degree 12

In exactly the same way we see t@é@ (xg) = géﬁ) (z9) = z§ + x5 + 1, and we check that
% = G and that™s = G,



3.5 Degree 24

We study the varietyls. We have a polynomiagéﬁ) (z9) Of degree24. We compute a DRL
Grobner basis ofy in order to find algebraic relation and we keep only low degmeaations:

E T; :O,.I'@l'g :1,.1'5379 = 1,]}7: 1

)

We can try to simplifygéﬁ) (z9): we remark thasiWs C V for 3° = 1; from the observation
thats®—1 = (8—1)(8%+B+1)(B%+33+1) we should find in the decomposition of theorem 2.1
some varieties of degreex 24 = 48 and6 x 24 = 144. Since it is not the case fdri4 we
conclude that the varietyW; for o® + o* + 1 = 0 is not irreducible, or in other words (since
x7; = 1) that the univariate polynomigéﬁ) (xg) is not irreducible ovefQ(«). We add a new
variablea and the equation® + o® + 1 = 0 to G and we decompose the resulting varietylip
in Uy U U, U Us. All the U; are of degred8. We can keep only one factor, séy and we find

0 =28+ (5a?+2—5a+50") m7 + (—200% — 150° — 22+ 20 + 5 at) 3, +
(—15a+15a2+9+5a° —10at) 2s° + (5 — 10a — 10 a* + 10 ?) zy*
+(=15a+15a2+9+5a° —10a*) 1> + (—20a? — 150° — 22 + 20 a + 5 at) x4
+(Ba*+2-5a+5a°)zy+1=0

This representation of the solutions is not satisfactangesilegree(1Ws) = 24 and we have
now 48 solutions. We remark that the coefficient«gfcan be rewritte o? +2 —5a + 5a° =
2-5 (a + %) and similarly for the other coefficients. Thgéﬁ) is invariant if replacex by @
the complex conjugate ef. So we replacé&)(«) by Q(v) wherey is the minimum polynmial of
a+ L =cos(a) = cos(4) (we have’y® — 67+ 1 = 0). We note also theyéﬁ) is a self reciprocal
polynomial and we add the new variabler;) = z; + - ands(z;) = z; — --. We recompute a
new decomposition ifi varieties of degree4 and we find: l

H(w9) = c(9)* (2072 + 10y — 8) ¢(29)*+(—60~2 — 40y 4 4) c(z9)*+(—40 42 + 23) c(z9)+
12072 + 1007 — 9 =0

the next equation ig(zy)? — s(zy)? = 4 and for all the other variabless {1,2,3,4,5, 6, 8}:

c(zi) = Pi(c(xs),7)
s(z;) = Qi(s(wg), )

we give Px:

3924989¢(5) = —2339596 ¢(x)* 12 —2784 ¢(z9) v +1252564 ¢(29)” +3678516 ¢(z9)°7% —
2271060 c(z9)*y — 2028597 ¢(z9)” + 36734620 c(xg) V> 4 6538322 ¢ (1) v — 23201914 ¢(z9) +
20909524 2 + 8944278 v — 17802043

For ally = cos(ZkTH) andk € {0, 1,2} we check that{ (c¢(xy)) has four real roots(zy) =
r](.k): -2 < r§k) < ré’“) < 2and2 < |r§k)| < |rflk)| and we can comput€(zg) = +£+/c(xg)? — 4
and we find two real roots whein= 3, 4 and two complex roots of modulus one whge: 1, 2.
In the first case it is obvious (since we have a shape lemma) fibvauh all the other coordinates
are reals. In the second check we check (numerically foants) that all the other coordinates
are also of modulus one and that we have the following pattern
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_ 1 1
(l‘4,$3,$3,l‘4,_,_,1,338,.7)9)
Tg Tg

and there is no simple algebraic relation between the coateis.

3.6 Degree 48

Wg can be represented by one of the Grobner b@sis. . . , Gs¢; among these Grobner bases
we find one, say7%, such that the univariate polynomiali§ + =3 + 1. We computefj—;8 and
we find G%. (since the direct computation of the lexicographical li3ré@r basis is a little more
difficult we can first change the ordering Gf, from lexicographical to DRL with the algorithm
F5 or FGLM, then add new variables and the new equations, cagDRL Grobner and finally
re-change the ordering to obtain a lexicographical Grobasis). In exactly the same way we
find g—;’ = i—g) = G%. We find also%1 = G', with the polynomiakj + x4 + 1. There is no new
solution of degreds.

3.7 Degree 216

The study ofi¥;, is much more difficult: first we compute a DRL Grobner but wenda find
interesting algebraic relation of small degre. We know fitbieorem 2.2 thalktl’;, can be repre-
sented byG g, ... , Gigs, SO that (Up to renumbering)ioo; = o4Vigo. It is easy to show by
computation that we have also

€MT7TV100 =Vioye k€{1,...,8}

Since it is not possible to find patterns as usual it is necg$sajive a name to all the roots
of 112 (z4) (all the roots are complex}, . .. , 2216 (the choice of the indices is arbitrary).

By inspecting the Grobner basis we remark that the unit@palynomial (the unknown is
T9) IN Gigo and iNGyg3 = 03G1go are the same; we conclude immediately that there exists
a permutatiory of {1,...,216} such that(z, zs, 23, Za(k), T5, T6, T7, Ts, 2x) € Wip fOr k €
{1,...,216}. Moreover we can deduce that all the other univariate potyiats have the same
roots thany(!? () multiplied by some:*s". With the help of the mpsSolve [4] program we can
compute all the complex roots gf'? (x4) with guaranteed numerical approximation (we take
100 digits), then plug in these values in the other coordinatescan identify the value of for
each coordinate df/;,:

£2r Edn £27
(Zal (k)€ 2 5 Zaa(k)E ° 5 Zo3(k)€ 3 5 Zoy(k)s
£87 EY3 £2m £87
Ras(k)€ 2 1 Zag(k)€ O 5 Rar(k)€ 3 5 2og(k)€ O zk:)

where all ther; are permutations dfl, .. . ,216}. Itis also possible to represent, z, x3, x5
andzg as a product of two roots, z;, andzg, z7 as a product o8 rootsz;, z;, z;,. Describing in
a better way these permutations is still an open issue.
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3.8 Degree 972

At first glance it may seem surprising that we have only two ponents of degreg72. But by
theorem 2.2 we know that,1W,3 = W3 so that all the univariate in all the variables, ...,
xg are the same. We deduce that all the coordinates. . , x4 are permutations of the same
set of roots. NG, andG’, we remark thay"™® (z9) = ¢\"Y(z) for i € {1,...,8}, so that
if (x1,...,29) € Wi3then(zs,...,z1,29) € Wiy (read backward the solution) or with our
notationso'Wy3 = Wy with o' = (9,8,7,6,5,4,3,2,1). The invariance by multiplication by
a 9th root of unity is obvious sincg'™ (z4) = Pys(z3) where Py is an irreducible and self
reciprocal polynomial of degre8 andg\"™ (z,) = z,Q;(a?) fori € {1,... ,8}.
It is possible to simplify the expression éfys: since all the coordinates have the same
minimal polynomial we introduce a new variallig{lwe choose the ordering > --- > x9 > F)
and a new equatiolt — e, wheree, = z,19 + --- IS the elementary symmetric function of
degree? in xy,... ,x9. We compute a new lexicographical Grobner basis and find\eauate
polynomial inE, Q1,(E?).
CQH()()::)(12+6601155911730349056*)(1L+295095197051110199427610010031489024*
X194-223175222604255983677512938848051888306758283689984 X ?+5290012830676547209230665619239
X8414587937890791519309362487871019230673224124268386919113921432222869916844294144 %
X7—5442412131282622518914473166074019012331571163477990623299833355255725905738207617905747
X645569956315805696088342735660531728629693578397676154869137014229764738365605880612627342
X542022865343696074837066188639312366450285700556782449921249866722159868666244986649436734
X*44-2813254657616983909282840547795171446224241854563564232815403382963963097419086118694395
X341046149309680490605185534154073983943647351973760193228691739149829943901833042238004611
X245101218322392121114052691308942811294877407843752132037795445301069423393019471729861117
X+2499659987467139284600730925553985319526269757582532599608036424139795438151360108943641¢€
Following a suggestion of D. Lazard [20], it is even posstblsplit the field defined by, 2
using the program Kant [21] through the Magma [12] interfalet u, v be two new variables
then we have a polynomial im, v, E' of degree 2 in¥, a polynomial inu, v of degree 3 in, and
a univariate polynomial of degree 2in
We can separate the rootsBfys in two sets of same size; < --- < r54 the real roots, and
{z1, ..., 254} the complex roots. We define first two new operators:

Definition 3.1 If x = (x1,... ,x9) then

Tk = (21, %15 (kmod 9)s - - - » T14((8k) mod 9))

and
T = (2129,... ,T8Ty, TgT1)
Wet set

Ry = (71,730, 54, T25, 9, T23, T'11, T'40, T'21)

8



we compute from this solution
Ry =R 12
we check that:
e all the coordinates oR, ... , Rs are all the real roots aP;s.
e RRy,...,Rgareinl¥;

° {age%}zk li,je{l,...,9 ke {l,... ,6}} are all the486 essentially real solutions of
Wis.

We study now the complex solutions: fet;, ay, us, U, us, u3 } be the subsetdfzy, ... , 254},
the complex roots of modulus one. For the complex solutibagpattern oiV; is
1 1 1 1
|:E1| - ]-7 —H = = — L6, L7, T8, L9
Tg Tg X7 Te

If C; is the solution correspondingiq = u;,i = 1,2,3,weselC = {aée%Ck li,je{l,...,9 ke {1,2,
all the486 complex solutions are obtained by takiigandC' the complex conjugates.

3.9 Summary of the results
Theorem 3.1 If V is a variety, set, = (1,2,3,4,5,6,7,8,9),0' = o,', O(V) = {agv | j =

2j1m

0,...,8tandO'(V) ={e» V|j=0,...,8} then

VOI(O(Wl U W2 U W@)) U O(ng) U W13 U OJ(W13) U 53,82”3
and the number of isolated pointsd®).(2 + 2 + 24) 4+ 9.216 + 2.972 = 6156.

Remark 3.2 The size ofl; U Wy U Ws U Wio U W3 is 379 kbytes.

4 Use of an elementary trick

If it is not easy to use fully the symmetry in the cycligoroblem but it is possible to divide the
number of solutions by and to reduce significantly the CPU time: we remark that trstesy
defining cyclicn is homogeneous if we remove the equatign- - x,, = 1. We introduce new
variabley; = o fori =1,...,8 and we divide theth equation byz!:

y14+--F+ys+1=0

Y1Y2Y3Y1YsYeYrYs + Y1Y2Y3YsYsYsY7
+Y1Y2y3yaysysys + -+ =0

9



,;/’m p® %ﬂ?rirmmu' TEAN o

=

0.3, 90,24 4 :
E!:.xz@: :‘l & &7: ;F 20,424

Figure 1: decomposition into prim means a component of dimensiéand degree.

We must add another equation to specify that~ 0. The trick consists in adding a new
variable and adding the equation of low degree

uysyeYrys = 1

With this trick we divide the computation time Ryor 3 and divide the number of solutions
by 9 (experimentations on a PC Pentium Il 400 Mhz).

Cy Cs Cy Cy
F; | 463.9 s| 150.9 s| 3days| 1.5 days

5 Conclusion

We have presented an automatic method based on Grobnerdoasputations for solving the
Cyclic 9 problem. Thanks to this systematic approach we can claa#ifihe solutions and

removing the well known symmetries. This paper shows alabiths now possible to compute
a decomposition into primes for a very difficult example. gscompletely the symmetries to
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describe more easily the biggest components is still an Hsee. How to use the symmetries to
solve efficiently such a problem remains also an open questio

Acknowledgementl greatly appreciate that | had access to the computers of WMd@cis
658 and | want to express my appreciation to Joél Marchanam ldeeply indebted to Paul
Zimmermann and Victor Shoup for factoring the big polynomiedegreed72.
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