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Abstract.   

 

Usual object-oriented modeling notations have either high expressiv-
ity, or a high proof-potential. As a consequence, developers have to choose
between an easy modeling or good analysis capability. This paper proposes to
bridge the object-oriented modeling language CO-OPN with the Petri-net based
formalism AMI-nets. Hence, user can manipulate easy-to-use, expressive CO-
OPN models, while keeping high proof-potential thanks to AMI nets.

 

1   Introduction

 

Development and maintenance of industrial applications becomes more and more
difficult. Systems’ complexity increases [19], technologies evolve, requirements has to
take care of «social factors» [12] and products’ time to market reduces. Instead of
«software crisis», people are now speaking of «software chronic crisis» [11]. Estima-
tion costs of such a crisis have been estimated to $ 100 billion in 1996 [27].

One problem in implementing systems is its evaluation. Post implementation test-
ing is not reliable because it is impossible to cover all possible executions of complex
systems. Software modeling through Object Oriented approaches such as OMT or
UML appears to be a solution to this problem. However, these description languages
essentially focus on the description of a general solution. Then, the system still has to
be analyzed.

Analysis could be supported by formal methods that are known to bring safe eval-
uation techniques, due to their mathematical foundation [20, 21]. However, these
mathematical foundations also bring problems like:
   • Formal notation is alien to most practicing programmers, who have little training

in higher mathematics,
   • Even if mathematical notations are very general, they require discrete types of

methods for discrete application domains. Thus, the same notation can be used in
many ways; this implies discrete evaluation and proof methods,



 

   • It is difficult to integrate formal methods into industrial software processes
because the notation used contain many mechanisms that are difficult to use,

   • Many of the most popular formal methods do not scale up to practical-size prob-
lems.

Thus, it appears that formal methods cannot be directly used to validate large indus-
trial-like systems. They have to be manipulated via high level representations.

This paper proposes to bridge the object-oriented Petri nets based specification
language CO-OPN with the Petri net model of the CPN-AMI environment (AMI-Nets)
to provide an approach dedicated to the analysis of concurrent systems. Hence, users
can manipulate high-level representations in CO-OPN, while discrete evaluations and
proof methods are likely to be performed on AMI-Nets using CPN-AMI. Section 2
introduces the various models and notations used in this work. Section 3 presents the
current stage of the bridge between CO-OPN and AMI-Nets. Then, sections 4 and 5
illustrate our approach by means of two discrete examples focusing on two different
aspects of concurrent systems. Finally, section 6 concludes the paper.

 

2   Software Modeling

 

It was mentioned in the introduction that one problem in implementing software
reside in their evaluation. One way - promoted by Software Engineering - to meet this
challenge is to develop software models before the definitive product. These software
models can be used to validate user requirements, to derive early prototypes, and
finally to evaluate the various possible solutions. Actually, analyzing software models
is one of the key task of software development process.

Software models usually include descriptions of the main features of the proposed
software, defined in a suitable modeling language or notation. Actually, we feel that
good modeling languages have an ability to abstract - at least intuitively, for the devel-
opers - marginal but rather complex implementation details.

Among the various modeling notations used yet, we propose to have a look at
three typical notations, namely UML, Petri nets and algebraic abstract data types.
   • UML [25] (Unified Modeling Language), proposed by OMG (Object Manage-

ment Group), is becoming the current leader among the modeling languages for
object-oriented systems. UML models are composed of various graphs, defining
classes, objects and messages composing the models.

   • Petri nets are a convenient way to describe software models based on the intuitive
notion of state machines. In short, a Petri net is a notation relying on places, con-
taining the resources of the system, and transitions, reflecting the interactions
among the resources. With regards to automata, Petri nets are much more easy to
use, much more intuitive, because the coordination between the various parts of
the system are explicitly represented.

   • Algebraic abstract data types are a formal modeling notation based on a sound
mathematical background. In short, such models, called algebras, are induced by
a set of axioms, formalizing the desired properties.



 

2.1   Expressiveness Power versus Analysis Capabilities

 

Let us consider discrete approaches and notations family. We could class them
using three criteria:
   •

 

structuration potential

 

: this criterion requires the associated notation to provide
high level structuration capabilities, like an object model (classes, inheritance
etc.), a module approach, and so on;

   •

 

verification potential

 

: this criterion requires strong foundation to provide execu-
tion of a specification, model checking and even structural analysis of a system
model;

   •

 

ease to verify

 

: this criterion requires that the verification potential is likely to be
performed using simple techniques and tools

Fig. 1. shows how some usual notations can be classified according these three
criteria. OMT or UML provide good design capabilities but are very poor in terms of
verification that is mostly cross review by humans or simulation (usually ease to pro-
duce). On the other end, notations such as Petri nets or algebraic specifications have
strong formal verification capabilities with average ease-to-verify; however these nota-
tions lack high-level structuring capabilities and it is difficult to handle complex speci-
fication such as the one of industrial applications. Some extensions to formal methods
are often investigated like CO-OPN and other Object-Oriented Petri Nets [14, 18, 2].
The main problem of such formalisms is to catch up with formal properties: small
modifications induce theoretical problems that are still to be solved. Thus, even if these
formalisms have a good structuration potential and a good verification potential, they
have a rather low ease to verify evaluation.

 

Fig. 1.   
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2.2   Association of UML, CO-OPN and AMI-Nets

 

Our approach is based on several refinement steps. Each one is dedicated to a
main goal and relies on an appropriate formalism. Fig. 2. illustrates our process. First,
modeling is performed using a suitable modeling language like UML [25]. This is
done according to a given method like FUSION [8]. Then, the second step resides in
the 

 

derivation

 

 into a high level formal notation for object oriented modeling: CO-OPN.
Finally, the last steps consist in 

 

transforming

 

 CO-OPN into AMI-Net: a formal specifi-
cation suitable for supporting the proof process. AMI-Net is a Petri net dialect having
the expression power of Well-formed nets [6].

Fig. 2. provides a more synthetic view the proposed procedure. Our aim is to
safely derive distributed programs from UML models. Both formalization and analy-
ses steps allows the exploitation of formal methods. This enables the validation of the
UML model and verification its formalization (using Petri nets). It also allows us to
take into consideration formal properties to optimize the resulting program.

Fig. 2. also shows the path from a specification level to another one. One CO-
OPN specification is derived from an UML specification. On the contrary, several Petri
Net specifications are derived from CO-OPN. Each one represents one particular
aspect of the CO-OPN model and is dedicated to the verification of a given property.
Implementation of CO-OPN modules into programs takes benefits from this analysis.

The first step now is to briefly describe the basics of CO-OPN and AMI-Nets as
well as the features of CPN-AMI. Then we have to present the translation strategy
between both formalisms we use. Finally - and archetypally - we illustrate our
approach by means of two paradigmatic case studies. These case studies are very sim-
ple but cover a substantial part of the main concepts of CO-OPN.

The goal of the first case study is the modeling of a simple communication proto-
col. It allows the analysis of the various components involved in the system, the analy-
sis of their instantiation, their composition, their synchronization. The second case
study deals with the modeling of an accumulator component. It focus on the deploy-

 

Fig. 2.   
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ment of complex object synchronizations (in particular, sequential recursive method
calls) and the management of algebraic data types.

 

2.3   CO-OPN

 

CO-OPN is an object-oriented modeling language, based on Algebraic Data
Types (ADT), Petri nets, and IWIM coordination models [5]. Hence, CO-OPN con-
crete specifications are collections of ADT, class and coordination 

 

modules

 

 [3, 4]. Syn-
tactically, each module has the same overall structure; it includes an 

 

interface section

 

defining all elements accessible from the outside, and a 

 

body section

 

 including the
local aspects private to the module. Moreover, class and context modules have conven-
ient graphical representations, showing their underlying Petri net model. Low-level
mechanisms and other features dealing specifically with object-orientation, such as
genericity, sub-classing and sub-typing are out of the scope of this paper, can be found
in [3].

 

ADT Modules.   

 

CO-OPN ADT modules define data types by means of algebraic
specifications. Each module describes one or more sorts (i.e. names of data types),
along with generators and operations on these sorts. The exact definition of the opera-
tions is given in the body of the module, by means of equationnal axioms. For instance,
Figure 3 describes a (very simple) ADT defining one sort (the booleans) and one oper-
ation on this sort (the negation).

 

Class Modules.   

 

CO-OPN classes are described by means of modular algebraic Petri
nets with particular, parameterised, external transitions, the 

 

methods

 

 of the class. The
behaviour of transitions are defined by so-called 

 

behavioural axioms

 

, corresponding to
the axioms in ADT. A method call is achieved by synchronizing external transitions,
according to the fusion of transitions technique.

Below is the code and the associated Petri net graphics of a class modeling an
unusual storage system; it stores boolean values, but delivers the negated ones. The
interface defines two methods, for the storage and the retrieving of values. The body is
actually a textual representation of the associated Petri net. Free variables may be
defined and used in the behavioural axioms.

 

ADT

 

 SimpleBooleans;

 

Interface

 

  

 

Sort

 

 booleans;
  

 

Generators

 

 true, false : ->boolean;
  

 

Operation

 

 not_ : boolean->boolean;

 

Body

 

  

 

Axioms

 

    not (true) = false;
    not (false) = true;

 

End

 

 SimpleBooleans;

 

Fig. 3.   

 

ADT SimpleBooleans



 

Coordination Modules.   

 

A third kind of modules is present in CO-OPN, the 

 

context

 

modules [5], which share the same overall structure with ADT and class modules.
Basically, context modules allow the modeling of distributed systems, by means of
suitable coordination mechanisms, more complex than the fusion of transitions seen
above. As context modules are clearly specific to the coordination theory, they are not
illustrated here.

 

2.4   AMI-Nets

 

AMI-Nets are a Petri Net dialect having an expression strength equivalent to the
one of Well-formed nets [6]. They include, besides the graphical features of a Place/
Transition Petri net (places, transitions and arcs) textual information like:
   • place and transition domains, and transition guards,
   • an enriched syntax for arc labels and place markings,

The behavior of an AMI net is controlled by the same set of rules used for general
colored nets:
   • A domain is associated with each place and transition of the model. Elements of

these domains are called colors.
   • When firing, a transition is binded by an element of its domain.
   • Each token in a place is colored by an element of the place domain (several tokens

may have the same color). The marking of a place is thus a multiset of colors - a
set in which an element may occur several times.

   • For a binded transition to be enabled, each input place of the transition must con-
tain a sufficient (possibly null) number of tokens for every color of the place
domain. These tokens will be taken from the place when the transition fires. Sim-
ilarly, the firing will produce colored tokens in the output places of the transition.

 

Class

 

 StrangeStorageSystem;

 

Interface

 

  

 

Use

 

 SimpleBooleans;
  

 

Methods

 

 put _ ,  get _ : boolean;

 

Body

 

  

 

Place

 

 container _ : boolean;
  

 

Axioms

 

      put b :: -> container b;
      get b :: container not(b) -> ;
  

 

Where

 

 b : boolean;

 

End

 

 StrangeStorageSystem;

 

Fig. 4.   

 

Class StrangeStorageSystem

StrangeStorageSystem

container: boolean
put(b) get(b)

b not(b)



 

Like in Ordinary Petri nets, the label attached to the arcs determines the number
of tokens to be taken or produced. However, this label is now a color function that
associates a multiset of colors of the place domain with each binding of the transi-
tion.

   • Independently from the evaluation of the color functions, a transition may not be
enabled if its binding does not satisfy some predicate. This predicate is called the
guard of the transition.

 

2.5   The CPN-AMI environment

 

CPN-AMI [22] is a collection of tools federated in FrameKit [16], a generic
CASE environment offering both integration capabilities and an enhanced develop-
ment environment. As all CASE environments generated from FrameKit, CP-AMI
offers a user-friendly access to Petri net services through a unique user interface:
Macao [23].

This architecture is one of the strongest points in CPN-AMI. It enables an enrich-
ment process taking benefits of other developments to propose a unified Petri net based
environment. Enrichment of the successive versions of CPN-AMI was done at a rela-
tively low development cost.

The current version of CPN-AMI offers numerous services such as:

   • Modeling tools:
-

 

Syntactic verifier

 

: checks the AMI-Net syntax and transform the Petri net into
an internal representation.

-

 

Modular Petri net assembling

 

: this tool is built to help designer to assemble
modules communicating either by means of places or by means of transitions.
The users select a group of objets and then, merge them to one equivalent object
if it is possible (for example, color domains are the same for places).

-

 

Pretty Petri Nets

 

: this service aims to rearrange "spaghetti" Petri nets. This serv-
ice has been made to be exploited by other Petri net services (like CPN-
Unfolder, Prefix or reachability graph display). However, it can be directly
invoked by a user. This service relies on DOT [17].

-

 

Suppression of 0-bounded places and non-firable transitions

 

: uses the bound of
place service to suppress 0-bounded places and transitions with those places as
precondition. Mainly used with structural analysis in order to limit the study to
the useful part of the net.

   • Simulation and debugging:
-

 

Colored Petri net simulator

 

: in this tool, we have attempted to keep, as more as
possible, the analogy with programming language debuggers. To achieve this
goal, the user may use different execution modes, break point possibilities, data
extractions during the execution and external treatments associated to transition.
Standard debugging functions are also available like intermediate state manage-
ment (including load and save operations) and configuration management (a
configuration is a set of simulation parameters: scripts definitions, observation



 

net, intermediate state).
   • Structural analysis:

-

 

Boolean formula on reachability graph

 

: this tool computes a set of markings
containing the reachability set. In this set, places are just considered as
“marked” or “unmarked”. The results are displayed as properties over the net.
This service uses BDDs [24] to compute the marking set.

-

 

Bounds of places: 

 

this tool computes lower and upper bounds. The calculus is
based on the state equation and uses linear programming techniques. As a con-
sequence, the computed bounds (higher and lower) may not be the best ones, but
this tool may be useful to quickly highlight some major problems in the model.
For colored models, this tool can be accessed via P/T unfolding. This service is
based on lp_solve (ftp://ftp.es.ele.tue.nl/pub/lp_solve).

-

 

Place invariants: 

 

computation of P-SemiFlows using a service from
GreatSPN [7].

-

 

Colored place invariants: 

 

this tool computes invariants using a adaptaed version
of the general algorithm [9]. It is one of the very few implemented ones.

-

 

Transition invariants

 

: computation of T-SemiFlows using a service from Great-
SPN.

-

 

Siphon and deadlocks

 

: they can be computed using a service from GreatSPN or
using a BDD based implementation.

-

 

Liveness computation

 

: computes if the net is live (from any reachable state and
for any transition it is possible to reach a state from which the transition is fira-
ble).

-

 

Linear properties characterization

 

: the aim of this tool is to compute a linear
characterization of the reachability set. When the resulting linear constraints
system exactly describes the reachability set, a message warns the user.

-

 

Colored Petri net unfolding

 

: transforms a colored Petri net into a Place/Transi-
tion Petri net. The resulting net is a new model that can be displayed and ana-
lyzed. An option allows to suppress 0-bounded places and non-firable
transitions. This option uses a heuristic to compute those places (it is not based,
like the “suppression of 0-bounded places and non-firable transitions” service,
on linear programming). Another option allows to compute a pretty layout of
the resulting net.

-

 

McMillan unfolding

 

: this service computes an unfolding for a safe net (safety is
not verified by the tool). This software has been developed by S. Römer (from
Technische Universität München) and implements the algorithm defined by J.
Esparza, S. Römer & W. Vogler in [10]. This tool is also part of PEP [13].

   • Model checking:
-

 

Generation of the reachability graph, CTL and LTL queries evaluation

 

: this tool
is based on PROD [28].

-

 

Generation of the symbolic reachability graph

 

: This service is based on a serv-
ice in GreatSPN. A Symbolic Reachability Graph (SRG) is a highly condensed
representation of the reachability graph built automatically from a specification
of system in terms of Well-formed net. The building of such graph profits from
the presence of object symmetries to aggregate either states or actions within



 

symbolic representatives (equivalence classes). The equivalence relation
between states is based on structural symmetries that are directly read off from
the types of objects defined in the system specification. By defining convenient
types of actions for these types of objects, it can be ensured that states that are
equivalent let the future behavior of the system unchanged

 

3   Translation Strategies and Rules

 

One of the key aspect of our work is to be able to translate a CO-OPN specifica-
tion into a model more suitable for the analysis of properties. Hence, it is a way to
extract properties of CO-OPN specification without paying the price of analyzing the
original CO-OPN model. Then, properties computed on the «analysis model» can be
interpreted in the CO-OPN model. Petri nets are suitable as the analysis model. To sup-
port the analysis of specification, we have chosen AMI-Net. Thus, the Petri net dialect
we have selected is AMI-Net.

Fig. 5. shows a typical translation scheme. The translation process has to cope
with the two aspects of CO-OPN (Petri nets and Algebraic data types, respectively
noted PN and ADT on the Figure). Please note that, due to the expressiveness of CO-
OPN, we consider several translation schemes. Each one is dedicated to the verifica-
tion of particular properties.

The gray arrow in Fig. 5. corresponds to the difficult way of proving a CO-OPN
specification. Hence, we exploit the correspondence between CO-OPN and AMI-Nets.
For some properties  we aim to prove, we can find a translation 
such that the interpretation of AMI-Net properties is included in  (i.e.

), where  is such that
.

Therefore, our goal is to find suitable transformations  between CO-OPN and
AMI-Nets. We decompose this transformation in two discrete steps. The first one is
devoted to the translation of CO-OPN systems into standard (i.e. un-synchronized)
algebraic Petri nets (APN) [29, 26], while the second one is dedicated to the translation

 

Fig. 5.   

 

The translation scheme.
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of algebras into colors. This situation is suggested in Fig. 6.

The following sections present the key problems of the transformation process
from CO-OPN to AMI-Nets, as well as its limitations. We now provide translation
rules for the synchronization operations, as well as those dealing with axioms (recur-
sive definitions, classes and algebraic values, etc.).

The detail of the translation between CO-OPN and algebraic net is given in Fig. 7.
The translation is divided into two parts, the first is the construction of the computation
of the transaction by sub-nets. Each sub-net being connected to each other by fusion of
transition, the second step is the interpretation of the fusion operators in order to pro-
duce the resulting algebraic net.. 

First of all, we must provide a simplified but formal description of the CO-OPN
notations, needed for the description of the translation rules. Given an algebraic speci-
fication , given a set of places , a set of transitions  and a set of behavioural
axioms  denoted by  where  is a transi-
tion,  is a synchronization built over transitions by the simultaneous,
sequential and alternative operators:

(1)

(2)

(3)

(4)

If  and  are markings over the set of places , a CO-OPN specification is:

(5)

Given axioms  of form , we define an algebraic net as:

Fig. 6.   Detail of the CO-OPN to AMI-Nets translation.

Fig. 7.   Detail of the CO-OPN to Algebraic net translation TrN.
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TrN
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sync Sync∈

t T∈ sync Sync∈⇒

s s', Sync∈ s // s' Sync∈⇒

s s', Sync∈ s + s' Sync∈⇒

s s', Sync∈ s ... s' Sync∈⇒

pre post P

SpecCOOPN P T AxiomsCOOPN ADT, , ,〈 〉=

AxiomAPN t : pre post→



(6)

Before going deeper into details about transformations ,  and , we
briefly introduces now the concepts of transactions - how they are seen in CO-OPN -
and transition fusion.

3.1   Synchronizations as Transactions

CO-OPN synchronizations can be considered as nested transactions. Therefore,
we first describe how a single synchronization can be translated into a transaction
using standard Petri net features. Fig. 8. shows an example of synchronization, where
transitions  and  are fired simultaneously, as a transaction.

Fig. 9. shows the result of our translation procedure. we split transition t into two
transitions:  and , representing respectively the beginning and the end of
the transaction. Both transitions are fired sequentially. A similar transformation is
applied to transition serv. To respect the transaction concept,  is associated with

 and  is associated with . Both associations are accomplished
by applying the transition fusion principle [1].

Fig. 8.   Example of CO-OPN synchronization.

SpecAPN P T AxiomsAPN ADT, , ,〈 〉=

TrBox Tr Inter

t serv

Transaction
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Server

 

serv
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post1  _

pre2  _

post2  _

serv

b1

b2

b1

b2

Tstart Tend

Tstart
ServStart Tend ServEnd



 
3.2   Transition Fusion

 

In order to collect the set of all the necessary fusion of transitions in , we define
the syntactic fusion operator, denoted by , with the following profile:

(7)

The semantic of the fusion of transition consists in the union of all the sets represent-
ing pre- and post-conditions of transitions  involved in the fusion operation.
This obviously produce a new pre- and post-condition, associated to the new transition
denoted by .

We are now able to express the transition fusion that is needed when decomposing
CO-OPN synchronizations using our syntactic operator. The interpretation of this syn-
tactic operator on a set of axiom is given by the  operation, defined as follows:

(8)

(9)

where  and .

This operator is the basis of the translation of CO-OPN into algebraic nets. Never-
theless all problems are not solved yet, as the following remaining questions should be
stated:
   • How to manage algebraic terms? (variables must convey the values)
   • How to deal with the multiplicity of the axioms? (it is mainly a combinatorial

expansion of the fusion)
These questions will be illustrated through paradigmatic examples.

 
Fig. 9.   

 
Translated synchronization.
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3.3   Translation of Synchronization Expressions: 

 

We define  the translation operation acting on synchronization expressions:

(10)

This operation is defined with the rule  dealing with simple coercion, and
recursively by the rules ,  and  dealing with simultaneity, sequentiallity
and non-determinism respectively. The translation produces axioms, operators of
fusion, and transitions. Actually, the translated elements can be seen as a kind of box,
with two transitions generically called  and  (The last two elements in the
operation profile) acting as connectors. The semantics of these boxes must be inter-
preted as follows: the synchronization is fire-able if there exist - in the semantics of the
translated net - a fire-able sequence of transitions, the first element of which is 
and the last element .

The rule for a simple coercion , called  is defined as follow (we assume
that transitions  and  are new for each application of the rule):

(11)

The rule for the simultaneity of synchronizations  and , called , is defined
as follow (we assume that each application of the rules produces new items ,

, ,  and ):

(12)

Where:

and

The rule for the sequentiality of synchronizations  and , called , is defined
as follow (we assume that  is the generic name for un-named transitions, and that
each application of the rules produces new items , , , ,

, , ,  and ):

(13)

Where:

TrBox

TrBox

TrBox : Sync AxiomAPN ℘ FusionOpSet( )× T× T×→

Trans
Sim Seq Alt

Tstart Tend

Tstart
Tend

t Trans
Tstart Tend

 
TrBox t( ) ∅ ∅ Tstart Tend, , ,〈 〉=
---------------------------------------------------------------------------------------     Trans

s s' Sim
Tstart

Tend temp Sseq1 Sseq2

TrBox s( ) Ax Fus Sstart Send, , ,〈 〉= TrBox s'( ) Ax' Fus' S'start S'end, , ,〈 〉=,
TrBox s // s'( ) newAx newFus Tstart Tend, , ,〈 〉=

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------     Sim

newAx Ax Ax' Sseq1 :  temp→{ } Sseq2 : temp  →{ }∪ ∪ ∪=

newFus Fus Fus' Tstart # Sstart S'start Sseq1{ } Tend # Send S'end Sseq2{ }∪ ∪ ∪=

s s' Seq
ε

Tstart Tend temp1 temp2
temp3 Sseq1 Sseq2 S'seq1 S'seq2

TrBox s( ) Ax Fus Sstart Send, , ,〈 〉= TrBox s'( ) Ax' Fus' S'start S'end, , ,〈 〉=,
TrBox s ... s'( ) newAx newFus Tstart Tend, , ,〈 〉=

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------     Seq

newAx= Ax Ax' Sseq1 :  temp1→{ } Sseq2 : temp1 temp2→{ }∪ ∪ ∪

   S'seq2 : temp2 temp3→{ } S'seq2 : temp3  →{ }∪ ∪



and

The rule for the non-deterministic choice of synchronizations  and , called
, is defined as follow (we assume that  is the generic name for un-named transi-

tions, and that each application of the rules produces new items  and ):

(14)

Where:
It must be noted

that recursive definitions are not covered by . Hence, we propose to handle
recursivity through net expansion; each level of recursion implies the adding of new

transitions in the translated net. For instance, consider the example depicted in Fig. 10.
showing iterators on naturals. The simple net is translated and expanded for two levels

of recursion.

newFus= Fus Fus' Tstart # Sstart Sseq1{ } ε # Sseq2 Send{ }∪ ∪ ∪

   ε # S'start S'seq1{ } Tend # S'end S'seq2{ }∪ ∪

s s'
Alt ε

Tstart Tend

TrBox s( ) Ax Fus Sstart Send, , ,〈 〉= TrBox s'( ) Ax' Fus' S'start S'end, , ,〈 〉=,
TrBox s + s'( ) Ax Ax'∪ newFus Tstart Tend, , ,〈 〉=

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------     Seq

newFus= Fus Fus' Tstart # Sstart{ } Tstart # S'start{ }∪ ∪ ∪
   Tend # Send{ } Tend # S'end{ }∪ ∪

TrBox



3.4   Translation of Synchronizations: 

CO-OPN introduces synchronization between transitions by means of the abstrac-
tion operator called . This operator links an event (in other words, a local transi-
tion) and a synchronization expression, the translation of which is given above.

We define  the translation operation acting on axioms, including the synchroni-
zations:

(15)

This operation is defined with the rule  dealing with axioms including syn-

t: Naturals;
t(succ(n)) with t(n): pren -> postn;
t(0) : pre0 -> post0;

Produces, for two iterations:
t(succ(n)): n= succ(m) & m = 0 => 

pren/1,pren/2,pre0 -> postn/1,postn/2,post0;
t(succ(n)): n= 0 => pren/1,pre0 -> postn/1,post0;
t(0) : pre0 -> post0;

Which can be reduced by replacing equal by equal:
t(succ(succ(0))):

pren/1,pren/2,pre0 -> postn/1,postn/2,post0;
t(succ(0)): pren/1,pre0 -> postn/1,post0;
t(0) : pre0 -> post0;

Produces for 2 iterations and transition splitting:
t-start(succ(n)) : n= succ(m) & m = 0 => 

pren/1,pren/2,pre0 -> temp1 n, temp2 m, temp0;
t-ends(succ(n)):

temp1 n ,temp2 m, temp0-> postn/1,postn/2,post0;
t-start(succ(n)) : n = 0 => 

pren/1, pre0 -> temp1 n, temp0;
t-ends(succ(n)): temp1 n, temp0 -> postn/1, post0;
t-start(0) : pre0 -> temp0;
t-ends(0) : temp0 -> post0;

Which can be reduced by replacing equal by equal:
t-start(succ(succ(0))) :

pren/1,pren/2,pre0 ->
temp1 succ(0), temp2 0, temp0;

t-ends(succ(succ(0))): temp1 succ(0) ,temp2 0, temp0 ->
postn/1,postn/2,post0;

t-start(succ(0)) : pren/1, pre0 -> temp1 0, temp0;
t-ends(succ(0)): temp1 0, temp0 -> postn/1, post0;
t-start(0) : pre0 -> temp0;
t-ends(0) : temp0 -> post0;

Fig. 10.   Iterator on Naturals

Tr

With

Tr

Tr : AxiomCOOPN AxiomAPN ℘ FusionOpSet( )×→

With



chronization, and with the rule , taking care of un-synchronized axioms.

The rule  is defined by the following rule (we assume that each application
of the rules produces new items ):

(16)

Where:

and

The rule  is defined by the following rule (we assume that each
application of the rules produces new items ):

(17)

Where:

and

3.5   Interpretation of the fusion: 

The translation function  does not ensure the computation of all axioms. It is
necessary to perform an interpretation of the transition fusion, as collected in the sec-
ond component of the result of . This is done by the interpretation operation 
which is based on the interpretation of the operator  seen above, acting on axi-
oms. Formally, we define the interpretation operation:

(18)

3.6   Recursive Definitions

The interpretation operation , as seen above, do not cover recursive defini-
tions. We propose, for now, to manage recursivity by admitting a bound to the execu-
tion of the recursive synchronizations, and by adopting ad-hoc techniques to avoid
conflicts between the partially computed data resulting from the various level of recur-

WithNoSync

With
temp

Tr Ax( ) Ax1 Fus1,〈 〉= TrBox s( ) Ax2 Fus2 Sstart Send, , ,〈 〉=,
Tr Ax t withs : cond pre post→⇒{ }∪( ) newAx newFus,〈 〉=
-------------------------------------------------------------------------------------------------------------------------------------------------------------------     With

newAx Ax1 Ax2 Tpre : cond pre temp→⇒{ } Tpre : temp post→{ }∪ ∪ ∪=

newFus Fus1 Fus2 Tstart # Tpre Sstart{ } Tend # Tpost Send{ }∪ ∪ ∪=

WithNoSync
temp

Tr Ax( ) Ax1 Fus1,〈 〉=

Tr Ax t : cond pre post→⇒{ }∪( ) newAx newFus,〈 〉=
--------------------------------------------------------------------------------------------------------------------------------------------------     WithNoSync

newAx Ax1 Tpre : cond pre temp→⇒{ } Tpre : temp post→{ }∪ ∪=

newFus Fus1 Tstart # Tpre Sstart{ } Tend # Tpost Send{ }∪ ∪=

Inter

Tr

Tr Inter
Fusion

Inter : AxiomAPN ℘ FusionOpSet( )× AxiomAPN→

Inter Ax Fus,〈 〉( )
Inter Ax f{ }∪ Fus f{ }–,〈 〉( ) if  f Fus∈∃ f t # t1 ... tn{ }=,

Ax else






=

Inter



sion.

Hence, we should obtain an approximation of the original semantics, with a static
limit in the re-application of recursive synchronizations. For a set of axioms , we
denote by  the new set of axioms reflecting this process of recursion reduc-
tion. Many work must still be done in this area of investigations; we just can cite now
the following conjecture:

Conjecture of Buchs: 

3.7   Templates

Class information are modelled by cartesian products of object references and
values. Methods include an additional parameter representing the object on which the
method is applied.

3.8   Taking into account Algebraic value in the Translation

The rule presented before must include algebraic value management, this is nec-
essary for keeping the same value for the variable in the t-start and t-end variables.
Intermediate place must be a cartesian product of the values of all the variables used in
both t-start and t-end axioms.

3.9   Unfolding of Behavioural Axioms

In the axioms it is possible to unfold the conditions and parameter passing accord-
ing to the algebraic definitions. This process splits behavioural axioms in various cases
corresponding to the case of the algebraic definitions of the operators. This unfolding
is generally infinite; bounds must be fixed depending on the interest of this decomposi-
tion. Unfolding can also be applied on selected operators depending on the goal of this
unfolding.

4   Case study 1: Communication Protocol

The first case study deals with a communication protocol problem and illustrates
the efficiency of both CO-OPN and Petri nets to extract accurate information suitable
for a final implementation.

We would like to design a safe channel based on a single cable line. The usual
problem with a unique cable is that electric signals coming from various origins may
provoke collisions (message is lost). To ensure a safe communication on the channel,
we propose the architecture of Fig. 11.

The channel relates two interlocutors that communicate together. It is composed
of a control cable and a controller that manages shared access to the channel main

Ax
AxPART

Ax has no cycles SemanticsAxPART( ) Semantics Ax( )=⇒



cable (128 bits width). The controller is connected two each interlocutor with a dis-
crete control cable (3 bits width). There is one control cable per interlocutor. Interlocu-
tors cannot send a signal at the same time : they must ask first the line to the controller
that accepts or refuse (according to an implemented strategy).

Interlocutors have to respect the following protocol:
  (1) the default state for an interlocutor is listening to the main cable,
  (2) when it wants to emit a signal, the interlocutor asks for the main cable,
  (3) if the controller provides the main line, then, the interlocutor sends its message

and waits for an acknowledge,
  (4) if the controller refuses the main line, then the interlocutor cannot get the line and

should retry and retries later on,
  (5) interlocutors only send one message at a time,
  (6) when an interlocutor gets its acknowledge, it frees the line for another use,
  (7) Only messages passing through the main cable are acknowledged,
  (8) The control cable is secure,
  (9) Signal on the main cable can be lost; however, we assume that connection

between the two interlocutors cannot be cut (message loss is bounded).

The table above provides the identification of signals passing through the cables.

A typical execution scenarios is provided hereafter to illustrate the expected
behavior of a interlocutor according to specific situations.

Fig. 11.   Structure of the line that composes a safe channel.

Signal 
name

Signification Signal direction 
Interlocutor Controller

AMC Ask for main cable ®

RMC Refuse main cable √
PMC Provide main cable √
MSG Message √ ®

ACK Acknowledge √ ®

FMC Free the main cable ®

Fig. 12.   

Interlocutor Interlocutor

Controller

Main Cable

Control Cable



Fig. 13. illustrates the behavior of a interlocutor that initiates a communication
when the controller provides the main cable. Then, the answer to AMC (demand) is
PMC. The interlocutor (here, 1) then sends the message to the other interlocutor (here,
2) and waits for an acknowledge. When it gets the acknowledge, it releases the main
cable (FMC).

Let us state some properties we would like to verify on this system:
  (i) the controller can never provide the line to more than one interlocutor,
  (ii) when an interlocutor decides to send a message, the other one always get it soon

or later.

4.1   The CO-OPN model

The CO-OPN model is composed of two classes, representing the controller and
the interlocutors. The controller class is rather simple, as shown in Fig. 14. It includes
two places denoting an idle and a busy state. Receptions of AMC and FMC trigger the
switch from a state to another. In addition, a reception of AMC in busy state triggers
the emission of a RMC.

The case of the interlocutors is more complex, as shown in Fig. 15. In essence, an
interlocutor is composed of two parallel processes; the first process cares about the
reception of messages, while the second one cares about the emission.
The reception process, shown on the bottom of the figure, is a simple sequence of mes-
sage’s reception, repetions of message’s receptions (due to signal lost, an re-emis-

Fig. 13.   UML-like sequence diagram of an accepted connection

Fig. 14.   CO-OPN description of the controller.
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sions), and finally an ACK emission.
The emission process starts by asking the controller for the main cable, followed either
by RMC an retries, or by PMC and the message’s emission. At this time, the reception
process is stopped (the token in place "listen" is consumed) and new emissions cannot
be proceed (a resource in place "prio" is consumed). Then after a bounded number of
re-emissions (controlled trough the place "maxTmo") and the reception of an ACK, the
process ends and the interlocutor is ready to emit a new message, or to receieve mes-
sages again (a token is produced into "listen"). In order to decsribe the class accurately,
we had to fix upper-bounds for free values in the system; in particular, we decided to
have at most two interlocutors (denoted by +i1" and "i2"), and three message’s re-
emissions.

 

4.2   Checking template model: the skeleton

Petri net synthesis.   

 

The generation of the skeleton of both classes is straightforward,

 Fig. 15.    CO-OPN description of the interlocutor
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as shown in Fig. 16. and in Fig. 17.

The skeleton itself is produced by collapsing both class skeletons, by means of
fusion of transition. In spite of the fact that the result is complex, as depicted in Fig.
18., the translation process itself is rather simple. The classes of the system exhibit
seven simple synchronizations, i.e. cohercions. Each of these cohercions is represented
by a new transition, resulting from the fusion of both the source and the target of the
cohercion.

 

Fig. 16.   

 

Skeleton of the controller.

 

Fig. 17.   

 

Skeletton of an interlocutor
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T
he skeleton.
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sents an interlocutor using the main cable). We can thus expect that some structural
invariant help us to prove this assertion. There are two interesting place invariants
involving place Busy provided by GreatSPN in CPN-AMI:
   • Invariant 1: Idle+ Busy+WaitCable= 1
   • Invariant 2: ProcessAMC2 + Busy + ProcessReception + Listen = 1

They both prove that place "busy" is structurally 1-bounded. Then, a token cannot
be in more than one of places support of these invariants. We can notice that the second
invariant corresponds to the sequential automaton of the controller.

The computation of structural bounds can also be used to check this assertion. in
CPN-AMI, the corresponding tool provides us with:
   • Prio : [1 ... 2]
   • max_tmo : [0 ... 1]
   • Listen : [0 ... 2]
   • ProcessReception : [0 ... 2]
   • WaitAck : [0 ... 1]
   • WaitCable : [0 ... 1]
   • StartSend : [0 ... + ]
   • Busy : [0 ... 1]
   • Idle : [0 ... 1]
   • ProcessAMC : [0 ... 1]
   • ProcessAMC2 : [0 ... 1]

We also verify the fact that Busy marking cannot exceed one token. We can also
deduce that the reachability graph of this Petri net is infinite, due to place StartSend.
This is normal: transition SendButton can be fired as many times as possible: it is the
interface with some external user.

Thus generation of the reachability graph is useless when we need temporal logic
to verify property (ii) . An «injection mechanism» has to be introduced in the model in
order to roughly simulate a «normal» user that do not stacks SendButton event quicker
that the system can afford. To take benefits of the information carried in tokens (essen-
tially, identity of interlocutors), let us perform this operation on the skeleton+ in the
next section.

 

4.3   Checking instance model: the skeleton+

Petri net synthesis.   

 

In essence, the skeleton+ is the skeleton augmented with information regarding
the objet identifiers. In our case, we have one controller and an indefinite number of
interlocutors. The skeleton+ of our system, depicted in Fig. 19., puts in evidence this
similarity; it is almots equals to the skeleton, the arcs of which are decorated with
object identifiers.

∞
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T
he skeleton+
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   E is <C,I,I>;
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Petri net analysis.   

 

As mentioned in the previous section, we have to enrich the Petri
net model with some environmental behavior. This is an easy operation because the
environment modeling is quite simple there. To bound the number of SendButton
event, we introduce two places (Fig. 20.):
   •

 

Emitter_list

 

: it contains all potential emitters (i.e. all interlocutor instances). It is a
precondition of the 

 

SendButton

 

 transition and a postcondition of the

 

SendACKButton_Receive_ACK_Receive_FMC

 

 transition that corresponds to the
end of a communication session (i.e. the line becomes available again),

   •

 

Receiver_list

 

: it contains all potential receiver. This place provides a value too
variable s1 in the Petri net model. Of course, we force in 

 

SendButton

 

’s guard that

 

i

 

 

 

≠

 

s1

 

 (i.e. no interlocutor uses the line to send a message to himself)

 

1

 

.

Checking of property (ii)  can be done by means of two symmetrical CTL queries
corresponding to all possibilities in the system (1 send a message to 2 and 2 sends a
message to 1). Using PROD, the Petri-Net based model checker integrated in CPN-
AMI, they can be expressed as follow:

 

query verbose AG(IfThen (StartSend ==<.1,2.> == 1, 
AF (Emitter_list == <.2.>))) (19)

query verbose AG(IfThen (StartSend ==<.2,1.> == 1, 
AF (Emitter_list == <.1.>))) (20)

 

Textual interpretation of formula (19) is: «when interlocutor 1 decides to send a
message to interlocutor 2 (i.e. Send Button as been fired with the corresponding bind-
ing), all path in the future lead to a state where the message is acknowledged and the
line released (i.e. transition 

 

SendACKButton_Receive_ACK_Receive_FMC

 

 has been

 

Fig. 20.   

 

A first injection mechanism.

 

1.If this guard is not set, the reachability graph contains two deadlocks that tri-
vially correspond to self emission of a message.

SendButton
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fired)».

Generation of the reachability graph provides the following information: 14
nodes, 30 arrows and 0 terminal nodes. These queries are not satisfied.

Let us consider query (21), which is (19) with a «EG» (at least one future leads
to) instead of a «AF» (meaning any future lead to).

 

query verbose AG(IfThen (StartSend ==<.1,2.> == 1, 
AF (Emitter_list == <.2.>))) (21)

 

Query (21) is verified. Thus, apparently, the problem comes from the reemission
mechanism that allows for example the infinite firing of transition

 

ReemitButton_Receive_MSG_2

 

. The problem comes from that fact that skeleton+ dos
not contain sufficient information about local variables in the CO-OPN specification.
Here, such local variables are used to bound message loss. Thus, to check this hypoth-
esis, we have to work on the valued model.

 

4.4   Checking valued model: the complete description

Petri net synthesis.   

 

Due to the fact that the exemple does not include algebraic val-
ues, with the exception of the kind of messages, which are already handled in the skel-
eton, the valued model is equals to the skeleton+, as shown in Fig. 26.
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Petri net analysis.   

 

Let us now apply queries (19) and (20) to the valued model (Fig. 21.) plus the
injection mechanism presented in the previous section (Fig. 20.). Generation of the
reachability graph provides the following information: 32 nodes, 72 arrows and 0 ter-
minal nodes. Queries (19) and (20) are still not verified, (21) is. The problem was not
only due to the reemission mechanism.

Checking for loops in the reachability graph bring us to the following observa-
tion: We can infinitely fire 

 

tau1_Receive_AMC_2

 

 and then

 

Ctrl_RMC_tau2_with_Ctrl_RMC

 

. It means that an interlocutor may focus on getting
the line without listening for an incoming message. Then, if the other interlocutor has
the line and waits for an acknowledge to release it, there is a livelock. Such a livelock
could be avoided if there is a way for a given interlocutor to know when it can send a
message. That could be solved by introducing new constraints in a communication
protocol between the two interlocutors 

 

on top of the protocol we are studying

 

.

Let us verify this hypothesis by changing the modeling of environmental behavior
(Fig. 22.). In this new one, we consider a simple deterministic strategy: round robin.
Place Emmiter_list only contains one token (here 

 

<1>

 

). Then, the successor of this
token will be produced when the message is sent (this is value 

 

<2>

 

) and so on. This
ping pong mechanism should never stop.

Generation of the reachability graph for this new model provides the following
information: 14 nodes, 20 arrows and 0 terminal nodes. Queries (19) and (20) are veri-
fied.

 

Fig. 22.   

 

The elaborated injection mechanism.
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4.5   Conlusion from the analysis

 

The conclusion of this verification procedure is that we have to change the proto-
col description and introduce a new hypothesis in point (10):

 

  (10)

 

There must be a deterministic mechanism that allow processes to know when they
can decide not to read from the line or a preemptive mechanism that periodically
force an interlocutor to read from the main cable.

According to the verification we have done, this extra point should insure a proper
execution of the protocol.

 

5   Case study 2: Accumulator

 

The second case study deals with the modeling of a single component, acting as a
provider of computing resource. This component must be able to accept a number, per-
form a pre-defined operation, and finally deliver the result. Obviously, this component
should then be able to process a new computing cycle. With regards to the first case
study, this example cares about two new complex concepts of CO-OPN, namely the
sequential synchronization and the recursive synchronization. Moreover, this example
uses an algebraic data type with a complex operation, namely the addition.

More precisely, in this case study, we want to model a component obeying to the
following contract:
   • the component has a port “start” accepting a natural number and starting a com-

putation;
   • the component has a port “result” delivering the result as a natural number;
   • the result is defined as the sum of the natural numbers less or equal than the

parameter;
   • the component is designed to accept sequences of “start” followed by “result”.

We would like to check that this algorithm is convergent.
 

5.1   The CO-OPN model

 

The CO-OPN modeling of the accumulator consists in a class, with two methods
corresponding to the two ports mentioned above. The first port accepts values to be
computed, and put the result in a dedicated place, namely “r”. The second port takes
the result from this place and delivers it. Looking at the class, we see that the first port,
“start”, has two behaviours:
   • for a positive number “succ n”, after a transit through an apposite place “i”, a

recursion is performed to compute the result for the value “n”, which is used to
put the current result in place “r”;

   • for a null number, i.e. the end of the recursion, the value zero (i.e. “zero”) is put in
place “r”.



 

It seems interesting to present now a CO-OPN model of the typical environment
for this accumulator class, as this model may serve as the basis for the description of
the injection mechanism used during the formal analysis.

The typical environment is the class called "AccumulatorEnvironment" depicted
in Fig. 24. The instances of this class repeat continuously sequences of method calls on
"start" and "result". The model includes a place acting as a reservoir of possible param-
eters for the computation.

 

5.2   Checking template model: the skeleton

Petri net synthesis.   

 

We first look on the template model, based on the skeleton of the
accumulator class.  The skeleton is obtained by transition expansion and fusion.

 

Fig. 23.   

 

The “Cumulator” Class

 

Fig. 24.   
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The first step in the process of skeleton generation consists in the expansion of the
sequential synchronization.  We achieve this goal by cutting "tau" in two transitions
connected through a place "tau_pi", reflecting the two steps of the sequence.  Each of
these transitions are then fusionned with the apposite transition, reflecting the actual
synchronization at each step; this generates the transitions "tau with start n" and "tau
with result f". Fig. 25. shows the resulting skeleton.

 

Petri net analysis.   

 

The convergence of the algorithm can be verified if place

 

tau_with_start_n_seq_result_f_pi

 

 is bounded. Let us apply the structural boun tool that
says it is not the case.

We can easily understand that a recursivity is not structurally bounded. Moreover,
the end of a recursion can be decided using values of parameters. These values are not
expressed in the skeleton model. Thus, the property is not decidable.

Let us note that GreatSPN provides us wit two place invariants:
   •

 

Inj_place1+inj_place_int

 

 corresponds to the terminal case,
   •

 

i+r+Inj_place1

 

 corresponds to the general recursive case.

 

5.3   Checking instance model: the skeleton+

Petri net synthesis.   

 

As mentioned before, this case study deals with the modeling of a single compo-
nent. Accordingly, the resulting CO-OPN system is composed of a single instance of
the class "Accumulor". 

Hence, the skeleton+ and the skeleton are equals, except that each place and tran-

 

Fig. 25.   

 

The skeleton.
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sition of the skeleton+ are overloaded with a constant object identifier, with regards to
the skeleton. In other words, the skeleton+ and the skeleton are equivalent.

 

Petri net analysis.   

 

The analysis of the skeleton+ does not bring any more informa-
tion than the one of the skeleton. This is due to the fact that local variables of the
cumulator carry out to much information; thus, the skeleton+ is almost as empty as the
skeleton.

 

5.4   Checking valued model: the complete description

Petri net synthesis.   

 

According to the translation strategy presented in Section 3, the valued model
integrates the unfolding of algebraic data types, as shown in Fig. 26. In addition, we
adopted here an ad-hoc strategy to associate partially computed values with their
recursive level (i.e. to simulate the recursive stack).

 

Fig. 26.   

 

The valued model.
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Petri net analysis.   

 

Once again, computation place bounds (after unfolding of the
colored Petri net) shows that place 

 

tau_with_start_n_seq_result_f_pi_entier

 

 is
unbounded. There is thus no structural bound but it is of interest to check if this struc-
tural bound if reached (structural bounds are sometimes larger than effective bounds).

Another way to check if the computation is convergent is to evaluate the follow-
ing CTL query:

query verbose AG (IfThen (card(inj_place_int) == 1,
AF (card (Inj_place1) == 1))) (22)

Textual interpretation of formula (22) is: «when a computation is started (e.g. a
token is dropped in place 

 

inj_place_int

 

, all future lead to a state where a new computa-
tion can be performed (i.e. for this model that performs only one computation at a
time, there is a token in place 

 

Inj_place1

 

)».

Generation of the reachability graph for this new model provides the following
information: 91 nodes, 679 arrows and 0 terminal nodes. Query (22) is satisfied.

 

5.5   Conlusion from the analysis

 
We have been able to perform some verification on the Petri net model generated

for the second case study. However, conclusions are less optimistic than the ones of the
first case study.

Basically, the main reason is the complexity of the model. While structural
bounds cannot be used to prove the property we are expecting, we have to explore a
reachability graph having a bad complexity increase. Thus, it is almost impossible to
check the system for large values (for example 1000). Moreover, the computation of
structural properties on the corresponding P/T net (obtained by unfolding of the
Colored Petri net) is almost impossible because of the combinatorial explosion of the
resulted P/T net. This combinatorial explosion is illustrated by the table below.

This is a typical illustration of a lack in Petri nets: they are not suitable for the
management of numeric variables and computations. Thus, analysis potential is very
limited in this area.

 

Max value 
of N

Reachability Graph Unfolded P/T model

 

nodes arcs places Transitions Arcs

 

3 91 679 60 1746 9402

4 135 1543 93 8047 42875

5 190 3118 134 28778 152050

6 256 5734 183 85353 448017

7 333 9787 240 219754 1147490

 

Fig. 27.   



 

Another point is the difficulty to check that the algorithm produces a good result.
This means that the arithmetic «+» has to be implemented, which is not easy, espe-
cially for a large interval. Thus, this part of the work was dropped.

 

6   Conclusions

 

We have proposed in this paper a prototyping approach based on CO-OPN and
AMI-Nets (colored Petri Nets). CO-OPN, the entry point of our approach proposes a
high level description language based on semantic construction dedicated to the man-
agement of concurrent systems. It has the following nice features :
   • it relies on a sound formal semantics that enables definition of expected proper-

ties;
   • it proposes most of the main nice structuring capabilities expected from a object

oriented language.

These characteristics enable the use of Petri-nets as a verification formalism.
These Petri nets can be used transparently. Thus, our approach can be used without
having to be an expert in formal methods.

Our approach requires various formally defined translations from CO-OPN con-
structors into Petri nets elements. The resulting nets are likely to be analyzed using a
dedicated tool. In this paper, our examples have been analyzed with CPN-AMI [22].

Our experience shows that such an approach is of interest for some kinds of sys-
tems. However, some other lead to Petri net models that are too complex to be handled
efficiently automatically. In this last case, a deep knowledge of the Petri net formalism
is required to expect manual simplifications. In particular, we experienced that, the
more complex algebraic types are, the more difficult the analysis is. On the contrary,
our approach remains very suitable to manage the control aspects of concurrent sys-
tems. This appears to be a lack observed in Petri nets (poor management of computa-
tional aspects).

We already started the implementation of a prototype tool allowing a semi-auto-
matic translation of CO-OPN models into Petri nets. We must enhance now the theo-
retical aspects, the implementational aspects, as well as the methodological aspects of
our method. This will provide the system designer a guide to have an appropriate use
of such an approach.

 

References

 

[1] H. Bachatène & J.M. Couvreur, "A Reference Model for Modular Colored Petri Nets", in
proceedings of IEEE/System, Man and Cybernetics International Conference, Le Touquet,
France, October 1993



 

[2] R. Bastide, "Approaches in unifying Petri nets and the Object-oriented Approach",1st
Workshop on Object-oriented Programming and Models of Concurrency, Torino, Italy,
1995

[3] O.Biberstein & D. Buchs, "Structured Algebraic Nets with Object-Orientation",
Proceedings of the first international workshop on Object-Oriented Programming and
Models of of Concurrency, in the 16th International Conference on Application and
Theory of Petri Nets, Torino, Italy, June 1995

[4] O. Biberstein, D. Buchs & N. Guelfi, "Object-Oriented Nets with Algebraic
Specifications: The CO-OPN/2 Formalism", To appear in Advances in Petri Nets on
Object-Orientation, G. Agha and F. De Cindio Eds, LNCS, 1999

[5] M. Buffo, "Experiences in Coordination Programming", Proceedings of the workshops of
DEXA'98 (International Conference on Data base and Expert Systems Applications),
IEEE Computer Society, Vienna, Austria, Aug 1998

[6] G. Chiola, C. Dutheillet, G. Franceschini & S. Haddad, "On Well-Formed Coloured Nets
and their Symbolic Reachability Graph",  High Level Petri Nets. Theory and Application.
Edited by K. Jensen G.Rozenberg, Springer Verlag 1991

[7] G. Chiola, G. Franceschinis, R. Gaeta & M. Ribaudo, " GreatSPN 1.7: Graphical Editor
and Analyzer for Timed and Stochastic Petri Nets", in Performance Evaluation, special
issue on Performance Modeling Tools, 24(1&2), pp47-68, November 1995

[8] D.  Coleman, P.  Arnold, S.  Bodoff, C.  Dollin, H.  Gilchrist, F.  Hayes & P.  Jeremaes
"Object-Oriented Development: the Fusion Method", Prenctice-Hall, 1994

[9] J.M. Couvreur, "The general computation of flows for coloured nets", 11th International
Conference on Application and Theory of Petri Nets, pp204-223, Paris, France, June 1990

[10] J. Esparza, S. Römer & W. Vogler, "An Improvement of McMillan's Unfolding
Algorithm", in proceedings of Tools and Algorithms for the Construction and Analysis of
Systems, LNCS 1055, pp 87-106, Springer Verlag, March 1996

[11] W. Gibbs, "Software's Chronic Crisis," Scientific American, Sep. 1994, pp. 86-95

[12] J. Goguen, "Requirements Engineering as the Reconciliation of Social and Technical
Issues," in Requirements Engineering: Social and Technical Issues, M. Jirotka and J.
Goguen  eds., Academic Press, pp. 165-200, London, 1994

[13] B. Grahlmann, “The State of PEP”, in the Proceedings of AMAST’98 (Algebraic
Methodology and Software Technology), LNCS 1548, Springer Verlag 1999

[14] V. Janousek, "PNtalk: Object Orientation in Petri nets", in proccedings of European
Simulation Multiconference ESM'95, Prague, pp 196-200, June 1995

[15] J.Kerr & R. Hunter, "Inside RAD", McGraw Hill, 1995

[16] F.Kordon & J-L. Mounier, "FrameKit, an Ada Framework for a Fast Implementation of
CASE Environments", in proceedings of the ACM/SIGAda ASSET'98 symposium, pp 42-
51, Monterey, USA, July 1998

[17] E. Koutsofios & S.C. North, "Drawing graphs with dot", Technical report, AT&T Bell
Laboratories, Murray Hill, NJ, 1993



 

[18] C. Lakos & C.D. Keen, "An Open Software Engineering Environment Based on Object
Petri Nets", Technical Report TR95-6, Computer Science Department,University of
Tasmania, Australia, 1995

[19] N. Leveson, "Software Engineering: Stretching the Limits of Complexity",
Communications of the ACM, Vol 40(2), pp 129-131, February 1997

[20] Luqi & J. Goguen, "Some Suggestions for Progress in Software Analysis, Synthesis and
Certification," in proceedings of the 6th International Conference on Software
Engineering and Knowledge Engineering, Knowledge Systems Institute, pp. 501-507,
Skokie, USA, 1994

[21] Luqi & J. Goguen, "Formal Methods: Promises and Problems", IEEE Software, Vol 14,
N°1, pp 75-85, January 1997

[22] MARS-Team. CPN-AMI Home page. http://www-src.lip6.fr/cpn-ami.

[23] MARS-Team. Macao Home page. http://www-src.lip6.fr/macao

[24] E. Pastor, O. Roig, J. Cortadella & R.M. Badia, "Petri Net Analysis Using Boolean
Manipulation", in LNCS 815, Springer Verlag, R. Valette (ed.), Proceedings 15th
International Conference on Application and Theory of Petri Nets, Zaragoza, Spain, 1994

[25] T. Quatrani, "Visual Modeling with Rational Rose and UML", Addison-Wesley, ISBN: 0-
201-31016-3, 1998

[26] W. Reisig, "Petri nets and algebraic specifications", In Theoretical Computer Science,
volume 80, pages 1–34. Elsevier, 1991.

[27] Standish Group International, "Chaos 97 technical report", Internal report, available on
<http://www.standishgroup.com/chaos.html>, 1995

[28] K. Varpaaniemi, J. Halme, K.Hiekkanen & T.Pyssysalo, "PROD reference manual",
Technical Report B13, Helsinki University of Technology, Digital Systems Laboratory,
Espoo, Finland, August 1995

[29] J. Vautherin, "Un modèle algébrique, basé sur les réseaux de Petri, pour l’étude des
systèmes parallèles", PhD thesis, Université de Paris-Sud, LRI, 1985


