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Abstract. Usual object-oriented modeling notationséaither high xpressiv-

ity, or a high proof-potential. As a consequencejelbpers hee to choose
between an easy modeling or good analysis capability. This paper proposes to
bridge the object-oriented modeling language CO-OPN with the Petri-net based
formalism AMI-nets. Hence, user can manipulate easy-to-upeessie CO-

OPN models, while keeping high proof-potential thanks to AMI nets.

1 Introduction

Dewvelopment and maintenance of industrial applications becomes more and more
diffi cult. Systems’ complexity increasg®], technologieswlve, requirements has to
take care of «social factorg42] and products’ time to market reduces. Instead of
«software crisis», people are now speaking of «software chronic cfisi»Estima-
tion costs of such a crisis have been estimated to $ 100 billion in 1996 [27].

One problem in implementing systems is italgeation. Post implementation test-
ing is not reliable because it is impossible teeraall possible xecutions of comple
systems. Software modeling through Object Oriented approaches such as OMT or
UML appears to be a solution to this problemwéger these description languages
essentially focus on the description of a general solution. Then, the system still has to
be analyzed.

Analysis could be supported by formal methods that are known to bringvakfe e
uation techniques, due to their mathematical foundd@n 21]. Hovever these
mathematical foundations also bring problems like:

« Formal notation is alien to most practicing programmers, whe ltile training
in higher mathematics,

¢ Ewen if mathematical notations are very general, they require discrete types of
methods for discrete application domains. Thus, the same notation can be used in
many ways; this implies discrete evaluation and proof methods,



e It is difficult to integrate formal methods into industrial software processes
because the notation used contain many mechanisms that are difficult to use,
« Mary of the most popular formal methods do not scale up to practical-size prob-
lems.
Thus, it appears that formal methods cannot be directly used to validate large indus-
trial-like systems. They have to be manipulated via high level representations.

This paper proposes to bridge the object-oriented Petri nets basedcapenifi
language CO-OPN with the Petri net model of the CPN-AMI environment (AMI-Nets)
to provide an approach dedicated to the analysis of concurrent systems. Hence, users
can manipulate high+el representations in CO-OPN, while discretal@ations and
proof methods are likely to be performed on AMI-Nets using CPN-AMI. Se@tion
introduces the various models and notations used in this work. S8gti@sents the
current stage of the bridge between CO-OPN and AMI-Nets. Then, se¢tantb
illustrate our approach by means of two discrete examples focusing on tererdif
aspects of concurrent systems. Finally, section 6 concludes the paper.

2 Software Modeling

It was mentioned in the introduction that one problem in implementing aaftw
reside in theirealuation. One way - promoted by Software Engineering - to meet this
challenge is to deslop software models before the défve product. These softwe
models can be used to validate user requirements, teedesirly prototypes, and
finally to evaluate the various possible solutioAstually, analyzing software models
is one of the key task of software development process.

Software models usually include descriptions of the main features of the proposed
software, defined in a suitable modeling language or notadctually, we feel that
good modeling languagesveaan ability to abstract - at least intudtiy, for the deel-
opers - marginal but rather complex implementation detalils.

Among the various modeling notations used yet, we proposevin ahéook at
three typical notations, namely UML, Petri nets and algebraic abstract data types.

« UML [25] (Unified Modeling Language), proposed by OMG (Object Manage-
ment Group), is becoming the current leader among the modeling languages for
object-oriented systems. UML models are composed of various grapminglefi
classes, objects and messages composing the models.

« Petri nets are a ceenient way to describe software models based on the wetuiti
notion of state machines. In short, a Petri net is a notation relying on places, con-
taining the resources of the system, and transitions, reflecting the interactions
among the resourcedlith regards to automata, Petri nets are much more easy to
use, much more intuite, because the coordination between the various parts of
the system are explicitly represented.

< Algebraic abstract data types are a formal modeling notation based on a sound
mathematical background. In short, such models, called algebras, are induced by
a set of axioms, formalizing the desired properties.



2.1 Expressiveness Power versus Analysis Capabilities

Let us consider discrete approaches and notatemmgyf We could class them
using three criteria:

e structumtion potential this criterion requires the associated notation teigeo
high level structuration capabilities, like an object model (classes, inheritance
etc.), a module approach, and so on;

« verification potential this criterion requires strong foundation to provideos-
tion of a specification, model checking anem structural analysis of a system
model,

« ease to verifythis criterion requires that thenfication potential is likely to be
performed using simple techniques and tools

Fig. 1. shows how some usual notations can be classified according these three
criteria. OMT or UML provide good design capabilities but are very poor in terms of
verification that is mostly crossview by humans or simulation (usually ease to pro-
duce). On the other end, notations such as Petri nets or algebraic specifications ha
strong formal erification capabilities withweerage ease-to-verify; h@ver these nota-
tions lack high-lgel structuring capabilities and it is filifult to handle complex speci-
fication such as the one of industrial applications. Some extensions to formal methods
are often imesticated likeCO-OPNand other Object-Oriented Petri N§td, 18, 2]

The main problem of such formalisms is to catch up with formal properties: small
modifications induce theoretical problems that are still to be solved. Narsifehese
formalisms hee a good structuration potential and a goedfication potential, the

have a rather low ease to verify evaluation.
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Fig. 1. A classification of specification notations.



2.2 Association of UML, CO-OPN and AMI-Nets

Our approach is based orverl refinement steps. Each one is dedicated to a
main goal and relies on an appropriate formalism. Fig. 2. illustrates our process. First,
modeling is performed using a suitable modeling language like (28l This is
done according to a\gn method like FUSIONB]. Then, the second step resides in
thederivationinto a high leel formal notation for object oriented modeling: CO-OPN.
Finally, the last steps consisttimnsformingCO-OPN into AMI-Net: a formal specifi
cation suitable for supporting the proof process. AMI-Net is a Petri net dialéngha
the expression power of Well-formed nets [6].

UML Modeling step

derivation %7

CO-OPN Formalization step

transformation %7

AMI-Nets  Analysis step

Fig. 2. Chaining formalisms over the proposed approach.

Fig. 2. provides a more synthetic view the proposed procedure. Our aim is to
safely denve distributed programs from UML models. Both formalization and analy-
ses steps allows the exploitation of formal methods. This enables the validation of the
UML model and erification its formalization (using Petri nets). It also allows us to
take into consideration formal properties to optimize the resulting program.

Fig. 2. also shows the path from a specificatimelléo another one. One CO-
OPN specification is destd from an UML specification. On the contrarywesal Petri
Net specifications are deed from CO-OPN. Each one represents one particular
aspect of the CO-OPN model and is dedicated to ¢nfication of a gien property
Implementation of CO-OPN modules into programs takes benefits from this analysis.

The first step now is to briefly describe the basics of CO-OPN and AMI-Nets as
well as the features of CPN-AMI. Then wevhao present the translation stpte
between both formalisms we use. Finally - and archetypally - we illustrate our
approach by means of two paradigmatic case studies. These case studies are very sim-
ple but cover a substantial part of the main concepts of CO-OPN.

The goal of the first case study is the modeling of a simple communication proto-
col. It allows the analysis of the various componentslired in the system, the analy-
sis of their instantiation, their composition, their synchronization. The second case
study deals with the modeling of an accumulator component. It focus on thg-deplo



ment of complex object synchronizations (in particular, sequential reeurstthod
calls) and the management of algebraic data types.

2.3 CO-OPN

CO-OPN is an object-oriented modeling language, based on Algebraic Data
Types (ADT), Petri nets, and IWIM coordination modg@g Hence, CO-OPN con-
crete specifications are collections®@T, class and coordinationoduleq3, 4]. Syn-
tactically each module has the same@ll structure; it includes @nterface section
defining all elements accessible from the outside, abhody sectionincluding the
local aspects prate to the module. Morger, class and context modules/bacoven-
ient graphical representations, showing their underlying Petri net modetlekel
mechanisms and other features dealing specifically with object-orientation, such as
genericity sub-classing and sub-typing are out of the scope of this paper, can be found
in [3].

ADT Modules. CO-OPN ADT modules define data types by means of algebraic
speciftations. Each module describes one or more sorts (i.e. names of data types),
along with generators and operations on these sorts. The exact definition of the opera-
tions is gven in the body of the module, by means of equationnal axioms. For instance,
Figure3 describes a (very simple) ADT defining one sort (the booleans) and ore oper
ation on this sort (the negation).

ADT Si npl eBool eans;

Interface
Sort bool eans;
Cenerators true, false : ->bool ean;
Qperation not_ : bool ean- >bool ean;
Body
AXi ons

not (true) = fal se;
not (false) = true;
End Si npl eBool eans;

Fig. 3. ADT SimpleBooleans

Class Modules. CO-OPN classes are described by means of modular algebraic Petri
nets with particular, parameterised, external transitiongnt#iibodsof the classThe
behaiour of transitions are defined by so-caltehavioual axioms corresponding to

the axioms iPADT. A method call is achied by synchronizing external transitions,
according to the fusion of transitions technique.

Below is the code and the associated Petri net graphics of a class modeling an
unusual storage system; it stores boolean values, buerdethe ngated onesThe
interface defines two methods, for the storage and the retrieving of values. The body is
actually a textual representation of the associated Petri net. Free variables may be
defined and used in the behavioural axioms.



d ass StrangeSt or ageSyst em

Interface
Use Si npl eBool eans;
Met hods put _ , get _ : bool ean;
Body
Pl ace container _ : bool ean;
AXxi ons
put b :: -> container b;
get b :: container not(b) ->;

Wiere b : bool ean;
End StrangeSt orageSyst em

StrangeStorageSystem
b not(b)

put(b) get(b)

container: boolean

Fig. 4. Class StrangeStorageSystem

Coordination Modules. A third kind of modules is present in CO-OPN, temtext
modules[5], which share the sameveyall structure with ADT and class modules.
Basically context modules allow the modeling of distributed systems, by means of
suitable coordination mechanisms, more complex than the fusion of transitions seen
abowe. As context modules are clearly specific to the coordination theory, they are not
illustrated here.

2.4 AMI-Nets

AMI-Nets are a Petri Net dialect having an expression strengthadepi to the
one ofWell-formed netd6]. They include, besides the graphical features of a Place/
Transition Petri net (places, transitions and arcs) textual information like:

« place and transition domains, and transition guards,
« an enriched syntax for arc labels and place markings,

The behavior of an AMI net is controlled by the same set of rules used for general
colored nets:

« A domain is associated with each place and transition of the model. Elements of
these domains are called colors.

* When firing, a transition is binded by an element of its domain.

« Each token in a place is colored by an element of the place domagre{delens
may hae the same color). The marking of a place is thus a multiset of colors - a
set in which an element may occur several times.

» For a binded transition to be enabled, each input place of the transition must con-
tain a suficient (possibly null) number of tokens foveey color of the place
domain. These tokens will be taken from the place when the transition fires. Sim-
ilarly, the firing will produce colored tokens in the output places of the transition.



Like in Ordinary Petri nets, the label attached to the arcs determines the number
of tokens to be taken or produced wéwer this label is now a color function that
associates a multiset of colors of the place domain with each binding of the transi-
tion.

* Independently from thevaluation of the color functions, a transition may not be
enabled if its binding does not satisfy some predicate. This predicate is called the
guard of the transition.

2.5 The CPN-AMI environment

CPN-AMI [22] is a collection of tools federated in FrameKi6], a generic
CASE environment offering both integration capabilities and an enhangetbgle
ment environment. As all CASE environments generated from FrameKit, CP-AMI
offers a user-friendly access to Petri net services through a unique usexcanterf
Macao [23].

This architecture is one of the strongest points in CPN-AMI. It enables an enrich-
ment process taking benefits of otheradlepments to propose a unified Petri net based
ervironment. Enrichment of the succegsiversions of CPN-AMI was done at a rela-
tively low development cost.

The current version of CPN-AMI offers numerous services such as:

¢ Modeling tools:

- Syntactic veriBr: checks the AMI-Net syntax and transform the Petri net into
an internal representation.

- Modular Petri net assemblinghis tool is built to help designer to assemble
modules communicating either by means of places or by means of transitions.
The users select a group of objets and then, merge them to ovedetubject
if it is possible (for example, color domains are the same for places).

- Pretty Petri Netsthis service aims to rearrange "spaghetti” Petri nets. This serv-
ice has been made to be exploited by other Petri net services (like CPN-
Unfolder, Prefix or reachability graph display). Wever it can be directly
invoked by a user. This service relies on DOT [17].

- Suppession of 0-bounded places and neoakie tansitions uses the bound of
place service to suppress 0-bounded places and transitions with those places as
precondition. Mainly used with structural analysis in order to limit the study to
the useful part of the net.

¢ Simulation and debugging:

- Colored Petri net simulatorin this tool, we hee attempted to keep, as more as
possible, the analogy with programming language debuggerachiee this
goal, the user may use differemeeution modes, break point possibilities, data
extractions during thex@cution and external treatments associated to transition.
Standard debugging functions are algailable like intermediate state manage-
ment (including load and ga operations) and configuration management (a
configuration is a set of simulation parameters: scripts definitions, aggrv



net, intermediate state).

Structural analysis:
- Boolean formula oneadability graph this tool computes a set of markings

containing the reachability set. In this set, places are just considered as
“marked” or “unmarked”. The results are displayed as properties the net.
This service uses BDDs [24] to compute the marking set.
Bounds of placeghis tool computes lower and upper bounds. The calculus is
based on the state equation and uses linear programming techniques. As a con-
sequence, the computed bounds (higher and lower) may not be the beatitones, b
this tool may be useful to quickly highlight some major problems in the model.
For colored models, this tool can be accessed via P/T unfolding. This service is
based on Ip_solve (ftp:/ftp.es.ele.tue.nl/pub/lp_solve).
Place invariants: computation of P-SemiFlows using a service from
GreatSPN [7].
Colored place invariantsthis tool computes irariants using a adaptaeersion
of the general algorithm [9]. It is one of the very few implemented ones.
Transition irvariants computation off-SemiFlavs using a service from Great-
SPN.
Siphon and deadlés they can be computed using a service from GreatSPN or
using a BDD based implementation.
Liveness computatiomomputes if the net isvé (from any reachable state and
for any transition it is possible to reach a state from which the transitioa-is fi
ble).
Linear properties laracterization the aim of this tool is to compute a linear
characterization of the reachability set. When the resulting linear constraints
system exactly describes the reachability set, a message warns the user.
Colored Petri net unfoldingtransforms a colored Petri net into a Placai§i-
tion Petri net. The resulting net is a new model that can be displayed and ana-
lyzed. An option allows to suppress O-bounded places and nadfefi
transitions. This option uses a heuristic to compute those places (it is not based,
like the “suppression of 0-bounded places and non-firable transitions” service,
on linear programming). Another option allows to compute a pretty layout of
the resulting net.
McMillan unfolding this service computes an unfolding for a safe net (safety is
not \erified by the tool). This software has beemealeped by S. Rémer (from
Technische Uwiersitat Miinchen) and implements the algorithm defined by J.
Esparza, S. Romer & W. Vogler in [10]. This tool is also part of PEP [13].

Model checking:

- Geneation of the eadability graph, CTL and LTL queries@uation this tool

is based on PROD [28].

Geneation of the symbolicetadhability graph This service is based on a serv-
ice in GreatSPN. A Symbolic Reachability Graph (SRG) is a highly condensed
representation of the reachability graph built automatically from a sgsfi

of system in terms diVell-formed net. The building of such graph profits from
the presence of object symmetries to agape either states or actions within



symbolic representatts (equialence classes). The egaience relation
between states is based on structural symmetries that are directly read off from
the types of objects defined in the system specification. By definingrdent

types of actions for these types of objects, it can be ensured that states that are
equivalent let the future behavior of the system unchanged

3 Translation Strategies and Rules

One of the ky aspect of our work is to be able to translate a CO-OPN syzecifi
tion into a model more suitable for the analysis of properties. Hence, it is a way to
extract properties of CO-OPN specification without paying the price of analyzing the
original CO-OPN model. Then, properties computed on the «analysis model» can be
interpreted in the CO-OPN model. Petri nets are suitable as the analysisTocug-
port the analysis of specification, wevhachosen AMI-Net. Thus, the Petri net dialect
we have selected is AMI-Net.

Fig. 5. shows a typical translation scheme. The translation process has to cope
with the two aspects of CO-OPN (Petri nets and Algebraic data types, reslyecti
noted PN and ADT on the Figure). Please note that, due txphessieness of CO-

OPN, we consider geral translation schemes. Each one is dedicated tcetifeca-
tion of particular properties.

Semco.-opN
CO-OPN = PN y ADT TSCO-OPN’ PCO_OPN
Trn Tra ,
Tr =(Try, Tr) Interpretation
Semcpn
AMI-Net = PN, Color > RGcpn: Pepn

Fig. 5. The translation scheme.

The gray arrow in Fig. 5. corresponds to thédiclift way of proving a CO-OPN
speciftation. Hence, we exploit the correspondence between CO-OPAMdrdets.
For some propertieB, ;i OPco_ opn  We @im to pegwe can find a translation
such that the interpretation of AMI-Net properties is includedPip, ;4 (i.e.
InterpretatioPepp) 0P, 41ig ) where PcpN is such that
Semp\(Tr(CO-OPN) = (RG-ppnPepn -

Therefore, our goal is to find suitable transformations between CO-OPN and
AMI-Nets. We decompose this transformation in two discrete steps. The first one is
dewted to the translation of CO-OPN systems into standard (i.e. un-synchronized)
algebraic Petri nets (APNR9, 26], while the second one is dedicated to the translation



of algebras into colors. This situation is suggested in Fig. 6.

Id Tra

—
CO-OPN =PN, ADT APN , ADT AMI-Net = PN, Color
—

— >
TrN TrN'

Fig. 6. Detail of the CO-OPN to AMI-Nets translation.

The following sections present theykproblems of the transformation process
from CO-OPN to AMI-Nets, as well as its limitationd/e now provide translation
rules for the synchronization operations, as well as those dealing with axioms (recur
sive definitions, classes and algebraic values, etc.).

The detail of the translation between CO-OPN and algebraic ngeisigiFig. 7.
The translation is divided into two parts, the first is the construction of the computation
of the transaction by sub-nets. Each sub-net being connected to each other by fusion of
transition, the second step is the interpretation of the fusion operators in order to pro-
duce the resulting algebraic net..

TrBox
e
AXiOMco.opn <AXiomapy, FusionOpSet> ————— P Axiomupy
Inter
Tr

Fig. 7. Detail of the CO-OPN to Algebraic net translatiog.Tr

First of all, we must provide a simplified but formal description of the CO-OPN
notations, needed for the description of the translation rulgen@in algebraic speci-
fication ADT , gven a set of placeB , a set of transitions  and a set ofibera
axioms Axiomg.5opy denoted bywith sync: pre -~ post wheretOT is a transi-
tion, syncO Syn« is a synchronization builtver transitions by the simultaneous,
sequential and alternative operators:

tOT O syncO Syni (1)
s, s0Syncd s// s OSync (2)
s, sOSyncl s+ s 0Sync 3)
s, sSync s...s0Sync (4)

If pre and post are markings over the set of plabes , a CO-OPN specification is:

Spe¢oopn = [P, T, Axiomgqoppn ADTC (5)

Given axiomsAxiom,,, of form : pre - post , we define an algebraic net as:



SpeGpyn = [P, T, Axioms, p, ADTC (6)

Before going deeper into details about transformatio®ox Tr , Ireed , we
briefly introduces now the concepts of transactions - how they are s€&h@PN-
and transition fusion.

3.1 Synchronizations as Transactions

CO-OPN synchronizations can be considered as nested transathiersfore,
we first describe how a single synchronization can be translated into a transaction
using standard Petri net features. Fig. 8. shows an example of synchronization, where
transitionst anderv are fired simultaneously, as a transaction.

Transaction
prel_

Server

post2_

postl_

prel_

Fig. 8. Example of CO-OPN synchronization.

Fig. 9. shows the result of our translation procedure. we split transititmtwo
transitions:Tstart andrend , representing respeasyi the beginning and the end of
the transaction. Both transitions are fired sequentially. A similar transformation is
applied to transitioserv To respect the transaction concefdtart is associated with
ServStar and Tend is associated witbervEnc . Both associations are accomplished
by applying the transition fusion principle [1].



t - start o Transaction post2_

t- start -gnds

t-ends
s. serv- ends

prel_
serv- start

Server
re2_ post2_ serv

S. serv- start

Serv- start
serv- ends

prel_ postl_ sen

servl- start servl- ends

serv- ends

Fig. 9. Translated synchronization.

3.2 Transition Fusion

In order to collect the set of all the necessary fusion of transitions in , we defi
the syntactic fusion operator, denotedAnsionOpSe , with the following profile:
1

)
The semantic of the fusion of transition consists in the union of all the sets represent-
ing pre- and post-conditions of transitioname vdlved in the fusion operation.

This obviously produce a new pre- and post-condition, associated to the new transition
denoted byhame .

name# name...name, O Tn *

We are now able to express the transition fusion that is needed when decomposing
CO-OPNsynchronizations using our syntactic operator. The interpretation of this syn-

tactic operator on a set of axiom is given by Fugion operation, defined as follows:
Fusion: O (Axiomy ) X FusionOpSet- 0 (Axiom, p) (8)
Fusion( Ax nametname..name) = AxO {name: pre - pos} (9)

wherepre = [ Pre{ Ax namai andpost=_ [  Post Ax namp .
O<i<n+1 O<i<n+1
This operator is the basis of the translatio€@-OPNinto algebraic nets. Ner-
theless all problems are not solved yet, as the following remaining questions should be
stated:
« How to manage algebraic terms? (variables must convey the values)
¢ How to deal with the multiplicity of the axioms? (it is mainly a combinatorial
expansion of the fusion)
These questions will be illustrated through paradigmatic examples.



3.3 Translation of Synchronization ExpressionsT rBox

We defineTrBox the translation operation acting on synchronizatjgnegsions:

TrBox: Sync— Axiompy* O (FusionOpSetx T xT (10)

This operation is defined with the rufeans  dealing with simple coercion, and
recursiely by the rulesSim Seq andlt dealing with simultaneity, sequentiallity
and non-determinism respeagly. The translation produces axioms, operators of
fusion, and transitiongéctually, the translated elements can be seen as a kind of box,
with two transitions generically calletstart am@énd  (The last two elements in the
operation profile) acting as connectors. The semantics of these boxes must-be inter
preted as follows: the synchronization is fire-able if there exist - in the semantics of the
translated net - a fire-able sequence of transitions, the first element of whathris
and the last elemeritend

The rule for a simple coercion , call@dans is defined as follow (we assume
that transitionsTstart ant@fend are new for each application of the rule):

TrBox(t) = [1J, [, Tstart Tend !'ans (11)

The rule for the simultaneity of synchronizations and , calied , isedifi
as follow (we assume that each application of the rules produces newTisesns
Tend, temp, Sseq andSseg ):

rBox(s) = [Ax, Fus Sstart Send TrBox(s) = LIAX, Fus, Sstart, Send]
TrBox(s// s) = ChewAx newFus Tstart Tend

Sir (12)

Where:

newAx= AxJ AxU{Sseq: - temg U{Sseqg:temp- }
and
newFus= Fudl Fudl{Tstart# SstartSstart Sseq} U {Tend# SendSend Sseg}

The rule for the sequentiality of synchronizatieans &nd , caked , redefi
as follow (we assume that is the generic name for un-named transitions, and that
each application of the rules produces new itemsgart Tend temp; tem®2,
temps, Sseq , Sseg , Sseq andSseq2 ):

rBox(s) = LIAx, Fus Sstart Serd TrBox(s) = LIAX, Fus, Sstart, Send
TrBox(s...s) = ChewAx newFys Tstart Tead

Se (13)

Where:
newAx= AxO AX O {Sseq: - temp;} U{Sseq:temp; - temp,}

U {Sseq, : temp, — temp,} U {Sseq, : tempy - }



and
newFus= FusO FusO {Tstart# SstartSseq} O {& # Sseg Seng
O {e # Sstart Sseq} U {Tend# Send Sseq,}

The rule for the non-deterministic choice of synchronizations sand , called
Alt, is defined as follow (we assume tlaat is the generic name for un-named transi-
tions, and that each application of the rules produces new ftstas Teadd ):

‘rBox(s) = LIAx, Fus Sstart Send TrBox(s) = LIAX, Fus, Sstart Send | "
TrBox(s + ) = CAxO AX, newFus Tstart Terd Se (14)

Where:
newFus= FuslO FusO {Tstart# Sstar} O { Tstart# Sstart} It must be noted

that recursive definiﬁo%eé}%#n%?%%v%l{eTaerﬂgﬁxs end}_ Hence, we propose to handle

recursivity through net expansion; each level of recursion implies the adding of new
transitions in the translated net. For instance, consider the example depicted in Fig. 10.
showing iterators on naturals. The simple net is translated and expanded for two levels
of recursion.



t: Naturals;
t(succ(n)) with t(n): pren -> postn;
t(0) : pre0 -> postO;
Produces, for two iterations:
t(succ(n)): n= succ(n) & m=0 =>
pren/ 1, pren/ 2, pre0 -> postn/ 1, postn/2, postO0;
t(succ(n)): n=0 => pren/ 1, pre0d -> postn/1, postO;
t(0) : pre0 -> postO;
Which can be reduced by replacing equal by equal:
t (succ(succ(0))):
pren/ 1, pren/ 2, pre0 -> postn/1, postn/2, post0;
t(succ(0)): pren/1, pre0 -> postn/1, postO;
t(0) : pre0 -> postO;
Produces for 2 iterations and transition splitting:
t-start(succ(n)) : n= succ(m &m=0 =>
pren/1,pren/2,pre0 -> tenpl n, tenp2 m tenpO;
t-ends(succ(n)):
tenpl n ,tenp2 m tenp0-> postn/1, postn/2, postO;
t-start(succ(n)) : n=0 =
pren/1, pre0 -> tenpl n, tenpO;
t-ends(succ(n)): tenpl n, tenpO -> postn/1l, postO;
t-start(0) : pre0 -> tenpO;
t-ends(0) : tenpO -> postO;
Which can be reduced by replacing equal by equal:
t-start(succ(succ(0))) :
pren/1,pren/2,pre0 ->
tenpl succ(0), tenp2 0, tenpO;
t-ends(succ(succ(0))): tenpl succ(0) ,tenp2 0, tenpO ->
post n/ 1, post n/ 2, post O;
t-start(succ(0)) : pren/1, pre0 -> tenpl 0, tenpO;
t-ends(succ(0)): tenpl 0, tempO -> postn/1, postO;
t-start(0) : pre0O -> tenpO;
t-ends(0) : tenpO -> postO;

Fig. 10. Iterator on Naturals
3.4 Translation of Synchronizations:Tr
CO-OPNintroduces synchronization between transitions by means of the abstrac-
tion operator calledvith . This operator links arerg (in other words, a local transi-

tion) and a synchronization expression, the translation of which is given above.

We defineTr the translation operation acting on axioms, including the synchroni-
zations:

Tr: AXiom g opN — AXiom, py* O (FusionOpSelt (15)

This operation is defined with the rulith dealing with axioms including syn-



chronization, and with the ruithNoSyn« , taking care of un-synchronized axioms.

The rulewith is defined by the following rule (we assume that each application
of the rules produces new itersnp  ):

Tr(Ax) = UAX,, Fus;l] TrBox(s) = UAX,, Fus,, Sstart Send
Tr(AxO {t withs: cond[] pre- posk) = ChewAx newFus With (16)

Where:
newAx= Ax; O Ax,0{Tpre:condd pre- tempU{Tpre:temp- pos}t

and
newFus= FusO Fus, O {Tstart# Tpre Sstar} 0 { Tend# TpostSengd

The rule WithNoSyn« is defined by the following rule (we assume that each
application of the rules produces new itetasp  ):

Tr(Ax) = DAX,, Fus;[J
Tr(AxO{t:condd pre- posk) = ChewAx newF

Gs WithNoSyn an

Where:
newAx= Ax, O{Tpre:condl pre- tempU{Tpre:temp- pos}

and
newFus= FugU{Tstart# Tpre Sstar} U {Tend# TpostSengd

3.5 Interpretation of the fusion: Inter

The translation functiomr  does not ensure the computation of all axioms. It is
necessary to perform an interpretation of the transition fusion, as collected in the sec-
ond component of the result ® . This is done by the interpretation openatéon
which is based on the interpretation of the opergtaiion seefe ahcting on axi-
oms. Formally, we define the interpretation operation:

Inter : Axiom, o x O (FusionOpSelt— Axiom, py (18)

0

Inter(OAxO{f}, Fus—{f if Of OFus f ={t#¢t, ...t
Inter(l:le,FuQ):H (OAXD{f}, Fus—{f}D) i s f={t#t .t}
AX else

04d

3.6 Recursive Definitions

The interpretation operatiomter , as seenvabao not ceer recursie defni-
tions.We propose, for ng, to manage recursivity by admitting a bound to tkece-
tion of the recursie synchronizations, and by adopting ad-hoc techniquesaid a
conflcts between the partially computed data resulting from the varieelsderecur



sion.

Hence, we should obtain an approximation of the original semantics, with a static
limit in the re-application of recuss® synchronizations. For a set of axioms , we
denote byAx, g1 the new set of axioms reflecting this process of recursion reduc-
tion. Many work must still be done in this area ofdstications; we just can cite no
the following conjecture:

Conjecture of Buchs:Ax has no cycle§l Semantic6Ax, ,g) = Semanticé Ak
3.7 Templates

Class information are modelled by cartesian products of object references and
values. Methods include an additional parameter representing the object on which the
method is applied.

3.8 Taking into account Algebraic value in the Translation

The rule presented before must include algebraic value management, this is nec-
essary for keeping the same value for the variable in-$tert andt-end variables.
Intermediate place must be a cartesian product of the values of all the variables used in
botht-start andt-endaxioms.

3.9 Unfolding of Behavioural Axioms

In the axioms it is possible to unfold the conditions and parameter passing accord-
ing to the algebraic definitions. This process splits behavioural axioms in various cases
corresponding to the case of the algebraic definitions of the operators. This unfolding
is generally infinite; bounds must bedid depending on the interest of this decomposi-
tion. Unfolding can also be applied on selected operators depending on the goal of this
unfolding.

4 Case study 1: Communication Protocol

The first case study deals with a communication protocol problem and illustrates
the eficiengy of both CO-OPN and Petri nets to extract accurate information suitable
for a final implementation.

We would like to design a safe channel based on a single cable line. The usual
problem with a unique cable is that electric signals coming from various origins may
provoke collisions (message is lostp ensure a safe communication on the channel,
we propose the architecture of Fig. 11.

The channel relates twnterlocutorsthat communicate together. It is composed
of a control cableand acontroller that manages shared access to the chanaiel



cable (128 bits width). The controller is connected two each interlocutor with a dis-
crete control cable (3 bits width). There is one control cable per interlocutor. Interlocu-
tors cannot send a signal at the same time : they must ask first the line to the controller
that accepts or refuse (according to an implemented strategy).

Main Cable

_/ |
Interlocutor Interlocutor

Controller

Control Cable

Fig. 11. Structure of the line that composes a safe channel.

Interlocutors have to respect the following protocol:

(1) the default state for an interlocutor is listening to the main cable,

(2) when it wants to emit a signal, the interlocutor asks for the main cable,

(3) if the controller provides the main line, then, the interlocutor sends its message
and waits for an acknowledge,

(4) if the controller refuses the main line, then the interlocutor cannot get the line and
should retry and retries later on,

(5) interlocutors only send one message at a time,

(6) when an interlocutor gets its acknowledge, it frees the line for another use,

(7) Only messages passing through the main cable are acknowledged,

(8) The control cable is secure,

(9) Signal on the main cable can be lostwbeer we assume that connection
between the two interlocutors cannot be cut (message loss is bounded).

The table above provides the identification of signals passing through the cables.

Signal Signification Signal direction
name Interlocutor Controller
AMC Ask for main cable ®
RMC Refuse main cable v
PMC Provide main cable v
MSG Message V®
ACK Acknowledge v®
FMC Free the main cable D)
Fig. 12.

A typical execution scenarios is provided hereafter to illustrate ttpe=ated
behavior of a interlocutor according to specific situations.



Fig. 13. illustrates the behavior of a interlocutor that initiates a communication
when the controller provides the main cable. Then, the answer to AMC (demand) is
PMC. The interlocutor (here, 1) then sends the message to the other interlocutor (here,
2) and waits for an acknowledge. When it gets the acknowledge, it releases the main
cable (FMC).

controller interlocutor_2 interlocutor_1
AMC
PMC
MSG
ACK
FMC

Fig. 13. UML-like sequence diagram of an accepted connection

Let us state some properties we would like to verify on this system:

(i) the controller can never provide the line to more than one interlocutor,

(i) when an interlocutor decides to send a message, the othemays gkt it soon
or later.

4.1 The CO-OPN model

The CO-OPN model is composed of two classes, representing the controller and
the interlocutors. The controller class is rather simple, as shown in Fig. 14. It includes
two places denoting an idle and a busy state. Receptions of AMC and FMC trigger the
switch from a state to another. In addition, a reception of AMC in busy state triggers
the emission of a RMC.

receive_from _: ctriMessageinterlocutor

i.ctrlPMC
>0

receiveAMC fromii -_———
. tau3,

1
processAMC_

j.ctrlRMC

i

Controller

Fig. 14. CO-OPN description of the controller.

The case of the interlocutors is more complex, as shown in Fig. 15. In essence, an
interlocutor is composed of two parallel processes; the first process cares about the
reception of messages, while the second one cares about the emission.

The reception process, shown on the bottom of the figure, is a simple sequence of mes-
sages reception, repetions of message’s receptions (due to signal lost, an re-emis-



sions), and finally an ACK emission.

The emission process starts by asking the controller for the main cable, followed either

by RMC an retries, or by PMC and the message’s emission. At this time, the reception

process is stopped (the token in place "listen" is consumed) and new emissions cannot
be proceed (a resource in place "prio" is consumed). Then after a bounded number of
re-emissions (controlled trough the place "maxTmo") and the receptiorAGit§rthe

process ends and the interlocutor is ready to emit a new message, or i@ neasie

sages again (a token is produced into "listen"). In order to decsribe the class agcurately

we had to fix upper-bounds for free values in the system; in particular, we decided to

hawe at most two interlocutors (denoted by +i1" and "i2"), and three message’s re-
emissions.

sendButton : interlocutor  Ctrl_: ctriMessage

sendButtori ctrl RMC

. controller. receiveFMC from Self
- reEmitButton
O _Xx>0=true /—>@
i i i
N
. i N N
waitCable_ - N
O O "
startSend_

startEmessionProcess

.

reEmitButton  controller. receiveAMC from Self

v
\
1

receiveACK fromi

1
'
1
I
|
1
'
'
l
'
'
|
'
'
'
'
'
'
|
1
1
|
1
|
'

sendACKButton RN Y Interlocutor
receiveMSG from i NN
-
receive_from _: mainMessagenterlocutor \ \
- - sendACKButton . "
:\“\ \ ‘\ i . receiveMSG from Self
VN TS~ ________l.receiveACK fromself __.’ )
VAN T T T T T T T T m e B i
[N -
N~ TN e = .
el i . receiveMSGfromSelf .’

Fig. 15. CO-OPN description of the interlocutor

4.2 Checking template model: the skeleton

Petri net synthesis. The generation of the skeleton of both classes is straiglatfdrw



as shown in Fig. 16. and in Fig. 17.

Receive_AMC tau3_with_Ctrl_PMC
O ——
ProcessAMC

—

Receive_ AMC_2

> ]

Receive_FMC tau2_with_Ctrl_RMC

Busy

Idle @

> e

Fig. 16. Skeleton of the controller.

SendButton Ctrl_RMC ctrl PMC

max_tmo ReemitButton
M —

<

»_—1

taul
O—»U%Q WaitCable () waitAck
StartSend t
Listen ( -
@é/ Receive_ACK

L ProcessReception

| H

Receive_MSG Receive_MSG_2 SendACKButton

Fig. 17. Skeletton of an interlocutor

The skeleton itself is produced by collapsing both class skeletons, by means of
fusion of transition. In spite of the fact that the result is complex, as depickagl. in
18, the translation process itself is rather simple. The classes of the systibih e
sewen simple synchronizations, i.e. cohercions. Each of these cohercions is represented
by a new transition, resulting from the fusion of both the source and the target of the
cohercion.
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sents an interlocutor using the main cabWgg. can thus expect that some structural
invariant help us to pre this assertion. There are two interesting plavariants
involving place Busy provided by GreatSPN in CPN-AMI:

e Invariant 1: Idle+ Busy+WaitCable= 1

¢ Invariant 2: ProcessAMC?2 + Busy + ProcessReception + Listen = 1

They both prave that place "busy" is structurally 1-bounded. Then, a token cannot
be in more than one of places support of thegriants We can notice that the second
invariant corresponds to the sequential automaton of the controller.

The computation of structural bounds can also be used to check this assertion. in

CPN-AMI, the corresponding tool provides us with:

e Prio:[1...2]

e max_tmo:[0... 1]

e Listen:[0...2]

¢ ProcessReception : [0 ... 2]

e WaitAck : [0 ... 1]

e WaitCable : [0 ... 1]

e StartSend : [0 ... ]

e Busy:[0...1]

e Idle:[0...1]

e ProcessAMC : [0 ... 1]

e ProcessAMC2: [0 ... 1]

We also verify the fact that Busy marking cannot exceed one tdkeran also
deduce that the reachability graph of this Petri net is infinite, due to place StartSend.
This is normal: transition SendButton can be fired as many times as possible: it is the
interface with some external user.

Thus generation of the reachability graph is useless when we need temporal logic
to verify property(ii). An «injection mechanism» has to be introduced in the model in
order to roughly simulate a «normal» user that do not stacks SendBrétdrgeicler
that the system can affortb take benefits of the information carried in tokens (essen-
tially, identity of interlocutors), let us perform this operation on the skeleton+ in the
next section.

4.3 Checking instance model: the skeleton+

Petri net synthesis.

In essence, the skeleton+ is the skeleton augmented with informajemaling
the objet identifiers. In our case, wevbane controller and an indefinite number of
interlocutors. The skeleton+ of our system, depicted in Fig. 19., puts in evidence this
similarity; it is almots equals to the skeleton, the arcs of which are decorated with
object identifiers.
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Petri net analysis. As mentioned in the previous section, weéto enrich the Petri
net model with some environmental beloa This is an easy operation because the
ervironment modeling is quite simple therBo bound the number of SendButton
event, we introduce two places (Fig. 20.):

« Emitter_list it contains all potential emitters (i.e. all interlocutor instances). Itis a
precondition of the SendButton transition and a postcondition of the
SendACKButton_Receive_ ACK_Receive_Rk@sition that corresponds to the
end of a communication session (i.e. the line becomes available again),

* Receiver_listit contains all potential recedr. This place provides a value too
variable sl in the Petri net model. Of course, we for&eimiButtos guard that

i #zs1(i.e. no interlocutor uses the line to send a message to hinself)

SendButton

I
rd

p14>u

<sl> <>

Full system

@x < ————————— 1
| SendACKButton_Receive_ ACK_Receive_FM(

Receiver_list

(e
|

Emitter_list

Fig. 20. A first injection mechanism.

Checking of propertyii) can be done by means of two symmetrical CTL queries
corresponding to all possibilities in the system (1 send a message to 2 and 2 sends a
message to 1). Using PROD, the Petri-Net based model checker integrated in CPN-
AMI, they can be expressed as follow:

guery verbose AG(IfThen (StartSend ==<.1,2.> == 1,

AF (Emitter_list == <.2.>))) (29)
guery verbose AG(IfThen (StartSend ==<.2,1.> == 1,
AF (Emitter_list == <.1.>))) (20)

Textual interpretation of formulél9) is: «when interlocutor 1 decides to send a
message to interlocutor 2 (i.e. Send Button as been fired with the corresponding bind-
ing), all path in the future lead to a state where the message is acknowledged and the
line released (i.e. transitioBendACKButton_Receive_ ACK_Receive_H\ME been

1.If this guard is not set, the reachability graph contains two deadlocks that tri-
vially correspond to self emission of a message.



fired)».

Generation of the reachability graph provides the following information: 14
nodes, 30 arrows and O terminal nodes. These queries are not satisfied.

Let us consider quer§21), which is(19) with a «<EG» (at least one future leads
to) instead of a «AF» (meaning any future lead to).

query verbose AG(IfThen (StartSend ==<.1,2.> == 1,
AF (Emitter_list == <.2.>))) (21)

Query(21) is verified. Thus, apparently, the problem comes from the reemission
mechanism that allows for example the infinite firing of transition
ReemitButton_Receive_MSG The problem comes from that fact that skeleton+ dos
not contain sdfcient information about local variables in the CO-OPN spmatitin.
Here, such local variables are used to bound message loss. Thus, to chegiothis h
esis, we have to work on the valued model.

4.4 Checking valued model: the complete description
Petri net synthesis. Due to the fact that thexemple does not include algebral-v

ues, with the exception of the kind of messages, which are already handled &lthe sk
eton, the valued model is equals to the skeleton+, as shown in Fig. 26.
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Petri net analysis.

Let us now apply queried9) and(20) to the valued model (Fig. 21.) plus the
injection mechanism presented in the previous section (Fig. 20.). Generation of the
reachability graph provides the following information: 32 nodes, 72 arrows and O ter
minal nodes. Querigd9) and(20) are still not erified, (21) is. The problem was not
only due to the reemission mechanism.

Checking for loops in the reachability graph bring us to the following o@serv
tion:  We can infinitely ~ fire taul Receive_ AMC_2 and then
Ctrl_ RMC_tau2_with_Ctrl_ RMCIt means that an interlocutor may focus on getting
the line without listening for an incoming message. Then, if the other interlocutor has
the line and waits for an acknowledge to release it, therevsladk. Such aVielock
could be ®moided if there is a way for a\gn interlocutor to know when it can send a
message. That could be solved by introducing new constraints in a communication
protocol between the two interlocutans top of the protocol we are studying

Let us verify this hypothesis by changing the modeling of environmentatibeha
(Fig. 22.). In this new one, we consider a simple deterministic strategy: round robin.
Place Emmiter_list only contains one token (hete). Then, the successor of this
token will be produced when the message is sent (this is ¥@kip and so onThis
ping pong mechanism should never stop.

SendButton

|
I

[s1 4> il

<sl> <>

Full system

<—<i> —
| SendACKButton_Receive_ ACK_Receive_FM(

Receiver_list

\@%<Sl++l>
|

Emitter_list

Fig. 22. The elaborated injection mechanism.

Generation of the reachability graph for this new model provides theviotjo
information: 14 nodes, 20 arrows and 0 terminal nodes. Qué&8¥and(20) are \eri-
fied.



4.5 Conlusion from the analysis

The conclusion of thiserification procedure is that weugato change the proto-
col description and introduce a new hypothesis in point (10):
(10)There must be a deterministic mechanism that allow processes to know when the
can decide not to read from the line or a preamptiechanism that periodically
force an interlocutor to read from the main cable.

According to the erification we hae done, this extra point should insure a proper
execution of the protocol.

5 Case study 2: Accumulator

The second case study deals with the modeling of a single component, acting as a
provider of computing resource. This component must be able to accept a number, per
form a pre-defined operation, and finally detithe result. Oldously, this component
should then be able to process a new computing déth. regards to the first case
study this example cares about two new complex concepBDPN namely the
sequential synchronization and the reatgsynchronization. Moreer, this ekample
uses an algebraic data type with a complex operation, namely the addition.

More precisely, in this case study, we want to model a component obeying to the
following contract:

« the component has a port “start” accepting a natural number and starting a com-
putation;

« the component has a port “result” delivering the result as a natural number;

e the result is defined as the sum of the natural numbers less or equal than the
parameter;

« the component is designed to accept sequences of “start” followed by “result”.

We would like to check that this algorithm is convergent.
5.1 The CO-OPN model

The CO-OPNmodeling of the accumulator consists in a class, with two methods
corresponding to the two ports mentionedvehd he first port accepts values to be
computed, and put the result in a dedicated place, namely “r". The second psrt tak
the result from this place and delrs it. Looking at the class, we see that the first port,
“start”, has two behaviours:

« for a positve number “succ n”, after a transit through an apposite place “i”, a
recursion is performed to compute the result for the value “n”, which is used to

put the current result in place “r”;

« for a null number, i.e. the end of the recursion, the value zero (i.e. “zero”) is put in

place “r".



Accumulator
0. resultf

l startO

0. startn

-~

startsuccn !

Fig. 23. The “Cumulator” Class

It seems interesting to present now a CO-OPN model of the typidebrement
for this accumulator class, as this model may serve as the basis for the description of
the injection mechanism used during the formal analysis.

The typical environment is the class called "AccumulatorEnvironment" depicted
in Fig. 24. The instances of this class repeat continuously sequences of method calls on

"start” and "result". The model includes a place acting as a reservoir of possible param-
eters for the computation.

0. startn

0. resultm
Accumulator

AccumulatorEnvironment

n transl
p_

Fig. 24. The Accumulator Environment

5.2 Checking template model: the skeleton

Petri net synthesis. We first look on the template model, based on the skeleton of the
accumulator class. The skeleton is obtained by transition expansion and fusion.
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Fig. 25. The skeleton.

The first step in the process of skeleton generation consists in the expansion of the
sequential synchronizatione achige this goal by cutting "tau” in two transitions
connected through a place "tau_pi", reflecting the two steps of the sequence. Each of
these transitions are then fusionned with the apposite transition, reflecting the actual
synchronization at each step; this generates the transitions "tau with start n" and "tau
with result f'. Fig. 25. shows the resulting skeleton.

Petri net analysis. The cowergence of the algorithm can beerified if place
tau_with_start_n_seq_result_f igibounded. Let us apply the structural boun tool that
says it is not the case.

We can easily understand that a recursivity is not structurally bounded.udgreo
the end of a recursion can be decided using values of parameters. These values are not
expressed in the skeleton model. Thus, the property is not decidable.
Let us note that GreatSPN provides us wit two place invariants:
* Inj_placel+inj_place_intorresponds to the terminal case,
« i+r+Inj_placel corresponds to the general recursive case.
5.3 Checking instance model: the skeleton+
Petri net synthesis.
As mentioned before, this case study deals with the modeling of a single compo-
nent.Accordingly, the resulting CO-OPN system is composed of a single instance of

the class "Accumulor".

Hence, the skeleton+ and the skeleton are equals, except that each place and tran-



sition of the skeleton+ areverloaded with a constant object idemtifiwvith regards to
the skeleton. In other words, the skeleton+ and the skeleton are equivalent.

Petri net analysis. The analysis of the skeleton+ does not bring any more informa-
tion than the one of the skeleton. This is due to the fact that local variables of the
cumulator carry out to much information; thus, the skeleton+ is almost as empty as the
skeleton.

5.4 Checking valued model: the complete description
Petri net synthesis.

According to the translation strategy presented in Se&idhe valued model
integrates the unfolding of algebraic data types, as shown in Fig. 26. In addition, we

adopted here an ad-hoc strategy to associate partially computed values with their
recursive level (i.e. to simulate the recursive stack).

r <0>
r W Inj_trans1_begin_start_0
entier O‘ <0> Al
reservoir
ws > entier
<add_succ_n_f><f> <f>\ /y
U Inj_trans1l_end_Result_f
tau_with_result_f L <0>
— — > \<y>
<C> ‘
\ <C 1> Q entier <1>
tau_ transl _trigger .
cpt <1> Inj_placel
<succ_n>
tau_with_start_n_seq_result_f p|\
entier O€<l>ﬂ
<c++1>
<succ_n> <0>
x> <X
tau_with_start_n W <c>
[succ_n>1] (——
<Cc>
<succ_n--1> <succ_n> -/
‘ tau_with_start_0
<c++1
—<1>
entler /
<x> <x>4,O
Inj_trans1 begln start_x inj_place_int
[x>0] entier

Fig. 26. The valued model.



Petri net analysis. Once again, computation place bounds (after unfolding of the
colored Petri net) shows that pladau_with_start n_seq_result_f pi_entiés
unbounded. There is thus no structural bound but it is of interest to check if this struc-
tural bound if reached (structural bounds are sometimes larger than effective bounds).

Another way to check if the computation is eemyent is to ealuate the folla-
ing CTL query:

qguery verbose AG (IfThen (card(inj_place_int) == 1,
AF (card (Inj_placel) == 1))) (22)

Textual interpretation of formulé22) is: «when a computation is started (e.g. a
token is dropped in pladgj_place_int all future lead to a state where a new computa-
tion can be performed (i.e. for this model that performs only one computation at a
time, there is a token in platg_placel)».

Generation of the reachability graph for this new model provides theviiotjo
information: 91 nodes, 679 arrows and 0 terminal nodes. Query (22) is satisfied.

5.5 Conlusion from the analysis

We hare been able to perform somerification on the Petri net model generated
for the second case study.Wver conclusions are less optimistic than the ones of the
first case study.

Basically the main reason is the complexity of the model. While structural
bounds cannot be used to yeahe property we are expecting, weddo explore a
reachability graph having a bad complexity increase. Thus, it is almost impossible to
check the system for large values (for example 1000). Merethe computation of
structural properties on the corresponding P/T net (obtained by unfolding of the
Colored Petri net) is almost impossible because of the combinatorial explosion of the
resulted P/T net. This combinatorial explosion is illustrated by the table below.

Max value| Reachability Graph Unfolded P/T model
of N nodes arcs places Transitions Arcs

3 91 679 60 1746 9402

4 135 1543 93 8047 42875
5 190 3118 134 28778 152050
6 256 5734 183 85353 448017
7 333 9787 240 219754 114749(

Fig. 27.

This is a typical illustration of a lack in Petri nets: they are not suitable for the
management of numeric variables and computations. Thus, analysis poterdgigl is v
limited in this area.



Another point is the difculty to check that the algorithm produces a good result.
This means that the arithmetic «+» has to be implemented, which is not easy, espe-
cially for a large interval. Thus, this part of the work was dropped.

6 Conclusions

We have proposed in this paper a prototyping approach based on CO-OPN and
AMI-Nets (colored Petri Nets). CO-OPN, the entry point of our approach proposes a
high level description language based on semantic construction dedicated to the man-
agement of concurrent systems. It has the following nice features :

« it relies on a sound formal semantics that enables definition of expected- proper
ties;

« it proposes most of the main nice structuring capabilities expected from a object
oriented language.

These characteristics enable the use of Petri-nets asifecation formalism.
These Petri nets can be used transparently. Thus, our approach can be used without
having to be an expert in formal methods.

Our approach requires various formally defined translations from CO-OPN con-
structors into Petri nets elements. The resulting nets are likely to be analyzed using a
dedicated tool. In this paper, our examples have been analyzed with CPN-AMI [22].

Our experience shows that such an approach is of interest for some kinds of sys-
tems. Hovever some other lead to Petri net models that are too complex to be handled
efficiently automatically. In this last case, a deep knowledge of the Petri net formalism
is required to expect manual simplifications. In particular, we experienced that, the
more complex algebraic types are, the morfadift the analysis is. On the contrary
our approach remains very suitable to manage the control aspects of concurrent sys-
tems. This appears to be a lack observed in Petri nets (poor management of computa-
tional aspects).

We already started the implementation of a prototype tool allowing a semi-auto-
matic translation of CO-OPN models into Petri né¢s. must enhance now the theo-
retical aspects, the implementational aspects, as well as the methodological aspects of
our method. This will provide the system designer a guideue aa appropriate use
of such an approach.

References

[1] H. Bachaténe & J.M. Couvreur, "A Reference Model for Modular Colored Petri Nets", in
proceedings of IEEE/System, Man and Cybernetics International Conferernia®idiest,
France, October 1993



(2]

(3]

[4]

5]

(6]

[7]

(8]

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

R. Bastide, "Approaches in unifying Petri nets and the Object-oriékppdoach”,1st
Workshop on Object-oriented Programming and Models of Concyyréodno, Italy,
1995

O.Biberstein & D. Buchs, "Structured Algebraic Nets with Object-Orientation”,
Proceedings of the first international workshop on Object-Oriented Programming and
Models of of Concurreng in the 16th International Conference on Application and
Theory of Petri Nets, Torino, Italy, June 1995

O. Biberstein, D. Buchs & N. Guelfi, "Object-Oriented Nets witligebraic
Speciftations: The CO-OPN/2 FormalismTp appear inAdvances in Petri Nets on
Object-Orientation, G. Agha and F. De Cindio Eds, LNCS, 1999

M. Buffo, "Experiences in Coordination Programming", Proceedings of the workshops of
DEXA'98 (International Conference on Data base and Expert Sy#ppigations),
IEEE Computer Society, Vienna, Austria, Aug 1998

G. Chiola, C. Dutheillet, G. Franceschini & S. Haddad, Wgll-Formed Coloured Nets
and their Symbolic Reachability Graph", HighvieePetri Nets. Theory an&pplication.
Edited by K. Jensen G.Rozenberg, Springer Verlag 1991

G. Chiola, G. Franceschinis, R. Gaeta & M. Ribaudo, " GreatSPN 1.7: Graphical Editor
and Analyzer fofTimed and Stochastic Petri Nets", in Performance Evaluation, special
issue on Performance Modeling Tools, 24(1&2), pp47-68, November 1995

D. Coleman, P. Arnold, S. Bodoff, C. Dollin, H. Gilchrist, F. Hayes & P. Jeremaes
"Object-Oriented Development: the Fusion Method", Prenctice-Hall, 1994

J.M. Couvreur, "The general computation @ for coloured nets", 11th International
Conference on Application and Theory of Petri Nets, pp204-223, Paris, France, June 1990

J. Esparza, S. Romer &V. Vogler, "An Improvement of McMillan's Unfolding
Algorithm", in proceedings ofools and Algorithms for the Construction and Analysis of
Systems, LNCS 1055, pp 87-106, Springer Verlag, March 1996

W. Gibbs, "Software's Chronic Crisis," Scientific American, Sep. 1994, pp. 86-95

J. Goguen, "Requirements Engineering as the Reconciliation of Socialeghdical
Issues," in Requirements Engineering: Social @adhnical Issues, M. Jirotka and J.
Goguen eds., Academic Press, pp. 165-200, London, 1994

B. Grahlmann, “The State of PEP”, in the Proceedings of AMAST'98 (Algebraic
Methodology and Software Technology), LNCS 1548, Springer Verlag 1999

V. Janousek, "PNtalk: Object Orientation in Petri nets", in proccedings of European
Simulation Multiconference ESM'95, Prague, pp 196-200, June 1995

J.Kerr & R. Hunter, "Inside RAD", McGraw Hill, 1995

F.Kordon & J-L. Mounier, "FrameKit, an Ada Framark for a Fast Implementation of
CASE Environments", in proceedings of k&M/SIGAda ASSET'98 symposium, pp 42-
51, Monterey, USA, July 1998

E. Koutsofbs & S.C. North, "Drawing graphs with dofTechnical reportAT&T Bell
Laboratories, Murray Hill, NJ, 1993



(18]

[19]

[20]

[21]

[22]
(23]
[24]
[25]
[26]
[27]

(28]

[29]

C. Lakos & C.D. Keen, "An Open Software Engineering Environment Based on Object
Petri Nets", Technical Report TR95-6, Computer Science Departmemglsily of
Tasmania, Australia, 1995

N. Leveson, "Software Engineering: Stretching the Limits of Coripfg
Communications of the ACM, Vol 40(2), pp 129-131, February 1997

Lugi & J. Goguen, "Some Suggestions for Progress in Software Analysis, Synthesis and
Certification," in proceedings of the 6th International Conference on &aftw
Engineering and Knowledge Engineering, Knowledge Systems Institute, pp. 501-507,
Skokie, USA, 1994

Lugi & J. Goguen, "Formal Methods: Promises and Problems”, IEEE Softalré4,
N°1, pp 75-85, January 1997

MARS-Team. CPN-AMI Home page. http://www-src.lip6.fr/cpn-ami.
MARS-Team. Macao Home page. http://www-src.lip6.fr/macao

E. Rastor O. Roig, J. Cortadella & R.M. Badia, "Petri Net Analysis Using Boolean
Manipulation", in LNCS 815, SpringeYerlag, R.Valette (ed.), Proceedings 15th
International Conference on Application and Theory of Petri Nets, Zaragoza, Spain, 1994

T. Quatrani, "Visual Modeling with Rational Rose and UMAtdison-WesleyISBN: 0-
201-31016-3, 1998

W. Reisig, "Petri nets and algebraic specifications", In Theoretical Computer Science,
volume 80, pages 1-34. Elsevier, 1991.

Standish Group International, "Chaos 97 technical report”, Internal repaitgbde on
<http://www.standishgroup.com/chaos.html>, 1995

K. Varpaaniemi, J. Halme, K.Hiekkanen &Pyssysalo, "PROD reference manual”,
Technical Report B13, Helsinki Urdrsity of Technology Digital Systems Laborataory
Espoo, Finland, August 1995

J. Vautherin, "Un modele algébrique, basé sur les réseaux de Petri, pour I'étude des
systemes paralléles", PhD thesis, Université de Paris-Sud, LRI, 1985



