N
N

N

HAL

open science

Scheduling with tails and deadlines

Francis Sourd, Wim Nuijten

» To cite this version:

Francis Sourd, Wim Nuijten. Scheduling with tails and deadlines. [Research Report] lip6.1999.032,

LIP6. 1999. hal-02548272

HAL Id: hal-02548272
https://hal.science/hal-02548272
Submitted on 20 Apr 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-02548272
https://hal.archives-ouvertes.fr

Scheduling with tails and deadlines

Francis Sourd

LIP6, Université Pierre et Marie Curie, Paris
Francis.Sourd@lip6.fr

Wim Nuijten
ILOG S.A., 9 rue de Verdun, 94253 Gentilly Cedex

nuijten@ilog.fr

Abstract

This paper discusses scheduling problems of operations with tails. While tails are usually
used in the literature to model due dates or deadlines, we show it may be interesting to
consider tails and deadlines as two different things, especially in shop problems. Then, we
review classical one machine and parallel machine problems to show which problems can
be still solved in polynomial time in presence of tails and deadlines. We show that both
deadlines and tails can efficiently be modeled by a minimax objective function f,4,- In
this way, several problems can be solved in quadratic time but, by considering the specific
properties of tails and deadlines and introducing specific data structures, we also show that
these problems can be solved in O(nlogn) time. We also show that Plp; = 1,7}|fmaee can
be solved in O(n?) time.

Keywords: scheduling, release dates, deadlines, due dates, tails, minimax objective function,
shop scheduling problem, lower bound.

Introduction

Literature distinguishes deadlines from due dates by the fact that a deadline must absolutely be
met [Pin95]. Hence due dates are generally associated with optimization criteria such as lateness,
tardiness or number of late jobs while deadlines are problem constraints. To our knowledge, only
little research effort was devoted to problems in which the operations have a due date and a
deadline that is they may be completed after their due date, but not after their deadline. In
[HP94], the minimization of the weighted number of tardy jobs on a single machine is studied
but this problem is NP-complete even without deadlines. In [GPW97|, polynomial algorithms
for some preemptive variants of this problem are given. Moreover, in the latter problem, some
operations have a deadline while others have a due date. Thus, giving both deadlines and due
dates to operations to be scheduled appears to be an original approach, which is shown in §1.3
not to be purely theoretical. It gives powerful properties for shop problems.

For the sake of clear notations, we are not going to speak of due dates anymore. These due
dates will be substituted by the concept of tails which is presented in Section 1. Then we review
classical one machine (Section 2) and parallel machine (Section 3) problems to show which ones

can be solved in polynomial time in presence of tails and deadlines. The different classes of
problems will be specified by the well-known «|f3|y-notation |GLLKT79|.

1 Scheduling with tails

1.1 Notations

In all the problems considered in this paper, a set O = {1,2,--- ,n} of n jobs is to be scheduled
either on a single machine M = {1} in Section 2 or on a set of m parallel machine M =
{1,2,--- ,m} in Section 3. A job (i,¢;) is defined as a pair made of an operation (or a task)
1 and a tail ¢;. Each operation ¢ has a processing time p;. It may also have a release date r;
and may be preemptive or not. When the operation 7 ends, the job is not completed: some
amount of work is necessary to complete the job — for example, transportation to the customer.
q; estimates the duration of this work. Hence, e; denotes the end time of operation ¢ while
C; = e; + ¢; denotes the completion time of job (i,g;). When no confusion is possible, the job
(i,q;) will be simply denoted by 3.

The relationship between due dates and tails is well known. Let us consider a problem in
which each operation has no tail but a due date d;. Its lateness is by definition L; = e¢; — d;.
Then, if we set ¢; = —d;, the lateness of the operation ¢ is equal to the completion time of job
(4,¢;). As a consequence, the problems «|f|Lyq, and o, ¢j|Cpae are equivalent. In this paper,
we are going to introduce a deadline d; for each operation ¢. So in order to avoid confusion with
due dates, we will consider only tailed jobs.

1.2 Criteria

In this section, we show that, when scheduling with tails, the only useful optimization objective
is the makespan. Problems with other criteria can be reduced to wuntailed problems. Therefore,
in the rest of the paper, we will consider the minimization of the makespan, except to recall some
results of complexity.

1.2.1 Due-date-related criteria

Due dates D; can be introduced for tailed-jobs. So the lateness of a job j is L; = C; — D; and
the maximum lateness is as usual Ly = max;jco L;.

Proposition 1. |3, q;|Lmae and B, qj|Cpas are equivalent.

Proof. We have already shown that |3, ¢j|Cpas is equivalent to «|f|Lmaes. Let us consider a
feasible schedule of the instance of the problem «|f8, ¢j|Lmqy if which each job has a due date
D;. We now consider an instance of the problem «|f|Lmq, in which each operation j is given a
due date D; — ¢;. The lateness of j is e; — (D; — qj) = C; — D; = Lj. Therefore |3, ¢;|Lmax
and «|f|Lpas are equivalent, which completes the proof. O

For the reasons given in the proof, «|f,q;|> w;T; and «|B,q;| > w;U; are equivalent to
alfB] > wiT; and «|f|) w;U;.

1.2.2 Mean and weighted flow time

The weighted flow time for jobs is defined as) ; w;C; = (D, wie;) + (D_; wig;). Since), wig; is a
constant, |3, q;| > w;C; is equivalent to «|B] Y w;C;. Therefore, we do not give any algorithms
for these criteria.

1.3 The importance of considering deadlines

Models with deadlines and tails can be helpful to find properties of scheduling problems with
several machines (shop environment). A deadline for an operation on a machine may come
from the problem definition or by deductions resulting of the machine saturation [CP89, NtL98].
A tail can represent the duration of a series of operations (on non critical machines) and/or
transportation times.

]
3 7 5 6 7 8 9 10
2
3 7 5 6 7 8 9
3
0 I 2 3 4 5 6 7 8 9 0 11 2 1B
4
L 2 3 4 5 6 7 8 9 0 1 2 13 14
2
5
2 5 6 7 8 9 10 11 12 13 14
X X X X x X x X

Figure 1: Operations 1, 2, 3 and 4 on the same resource. 2 time units are required between the
end of operations 3 and 4 and the start of 5.

For instance, Figure 1 focuses on five operations of a more complicated shop problem. Each
line of the figure represents an operation. For example, the first line refers to operation 1. Its
release date r1 is 3, its due date d; is 10 and its processing time p; is 3. Moreover, we assume
that operations 1, 2, 3 and 4 are to be scheduled on a single machine. Finally, it is also assumed
that operation 5 must start at least 2 time units after the end of operations 3 and 4. If we set
g3 = q4 = 2, operation 5 must start after max(Cs,Cy). Therefore, if we set ¢y = g2 = —o0, the
optimal solution of 1|r;,d;,q;|Cras for the set of operations {1,2,3,4} is a lower bound on the
start time of operation 5. The reader can easily verify that the minimum makespan (with tails)
of this problem is 13.

Unfortunately, 1|rj,d;, qj|Cmaz is NP-complete since 1|rj,d;|Crez is NP-complete [GJ77].
For the same reason, 1|rj,qj|Ciaes is also NP-complete but its preemptive relaxation can be
solved in O(nlogn) time [Car82]. Assuming that the deadlines are relaxed in our example,
operations with a tail —oo can be scheduled after all the other operations and the makespan is
min(rs,r4) + p3 + p4 + min(gs, q4) = 7. Thus, the relaxation of deadlines can lead to significant
loss of information. The following section presents two single machine problems with tails and
deadlines that can be solved in polynomial time.

2 Single machine problems

Jackson’s rule |Jac55| that schedules first the operation with the smallest deadline can solve two
famous one machine problems with deadlines: the problem without release dates and without
preemptions and the problem with release dates and with preemptions. We show that both these
problems can be still solved efficiently in presence of tailed operations. The two algorithms are
based on a transformation we first present.

2.1 Expressing tails and deadlines with a minimax objective function

We present an objective function fy,4, that models both the tail and the deadline of each opera-
tion in O. Let us consider an operation j with a tail ¢; and a deadline d;, we define the function
fi i R—R:
[t+g it <d;
b= f5(t) = { b otherwise

bis a “big” problem-dependent constant that can be defined as max;jco{d; + ¢;}. The objective
function fy,44 is then defined for any feasible schedule as max;co f;(e;).

Obviously, an optimal solution of a scheduling problem «|3,d;, q;|Crqq is also an optimal
solution of the problem «|B|fmaz. Conversely, «|B,d;,q;|Cias has no feasible solution if and
only if the optimum of «|B| fimaez is b.

2.2 Non-preemptive problem with precedence relations

Lawler developed a simple algorithm to solve in O(n?) time the problem 1|prec|fmae When the
functions f; are non-decreasing [Law73|. These conditions are clearly satisfied by the functions
defined in § 2.1. Since the functions are non-decreasing and there is no release date, there exists
an optimal solution without idle time. In Lawler’s algorithm, the sequence of operations is
constructed in reverse order. The end time of the schedule is clearly ¢t = 3. p; (cf Figure 2). At
each step of the algorithm, the — unscheduled — operation ¢* that minimizes f;(¢) is scheduled
between dates t — p;x and ¢ is set to ¢ — p;x. This is repeated until ¢ becomes 0.

Figure 2 shows how fi, fa, f3 and fy can be defined to schedule without preemption (and
without r;) the four jobs defined in Figure 1. The latest end time of operations is epqy =
E?:M’j = 11, the makespan is max<;<4 fj(e;) = ez + g3 = 13. We can notice that the
produced schedule does not satisfy release date constraints.

If we consider the problem without precedence constraints, we can use the properties of our
fj functions to improve the complexity of the problem:

Theorem 2. 1|d;, qj|Cpaz can be solved in O(nlogn) time.

Proof. We introduce a heap A to store the operations available at date ¢ and to find the operation
with the smallest tail.

t < Z,‘eopi
A0
while ¢t > 0 do
for each k ¢ A such that d, >t do A + AU {k}

123456 7 8 91011121314151617 1819 20

CEDEDED

Figure 2: f1, fo, f3, f4 and an optimal schedule for operations in Figure 1

let i* be the operation with the smallest tail in A
A~ A-{i*}
i* scheduled between t — p;~ and ¢
t 41— pi»
end

Each operation k is inserted only once into A and is also deleted exactly once. Both operations
require O(logn) time so that the time complexity of this algorithm is O(nlogn). O

This algorithm can be adapted in presence of a precedence graph G(O, E). At each step,
the operation k& must be inserted into A only if all its successors are scheduled. Because of the
verification, the overall complexity of the algorithm is O((n+|E|) logn). Moreover, if we assume
that the functions f; are continuous and if there are few intersections between them, it may be
interesting to maintain dynamically the sorted list of the values fi(t), f2(t), - , fn(t), which can
be done with usual techniques of computational geometry. Hence, the complexity of 1|prec| fimaz
is O((n + |E| + a) logn) where a is the number of intersections between the f; functions.

2.3 The preemptive problem with release dates

In most scheduling problems, release dates cannot be relaxed. Therefore, we are now interested
in the preemptive problem with release dates, tails and deadlines. We first present an algorithm
due to [BLLK83] that solves 1|prmp, prec, 75| fmaz in O(n?) time. It will be called BLLRK in this
paper. The transformation in §2.1 can also be used to solve our problem with tails and deadlines
but we show that the problem 1|prmp,r;,d;, q;|Cpmaz is solved in O(nlogn) time.

The execution of the algorithm of BLLRK for an instance of 6 operations is illustrated in
Figure 3. This algorithm first schedules, without preemptions, the operations in the order of
their release dates 7; (step 1). This schedule, that we will call the block schedule, consists of
different blocks of operations (a block is a maximum set of operations scheduled consecutively
without idle time). The next step of the algorithm reorganizes the execution of operations within
each block (with preemption allowed). Assuming that two blocks are identical if and only if they
have identical start time and end time and contain the same operations, the following lemma is
satisfied :

Lemma 3 (|BLLKS83]). There exists an optimal solution of 1|prmp, prec, | fmae whose blocks
are identical to the blocks of the block-schedule.

Each block B of the block-schedule is rearranged as follows:
- if the block contains only one operation, it is not rearranged ;

- let s and t be respectively the start and end time of B and let 4* be an operation in B,
with no successor in B, that minimizes f;(t).

- use a recursive call to find an optimaol schedule S;« for the instance restricted to the
operations in B\{i*};

- schedule 7* within the idle periods of Sj«.

17

<
-

O Of
N DN
ot
D
—
ot

25 23

SIS
—
SEREN
—_ =
SES
—
—_
—
—_

[N

o —
N

o p—
w

15

18

19

IN
© p——
w

Ej
N

®
w
5r—
=

| —

Ej
IS
o p——
w

[

Figure 3: An execution of BLLRK

15

17 18

17 18

19

In order to solve a problem with n operations, the block schedule is constructed in linear time
and, for each block B (with np operations), the operation ¢* is scheduled in O(np) time once
the idle intervals are computed by the recursive call. As a consequence, the time complexity of
the algorithm is O(n?). It is also easy to prove that the solution found by this algorithm has at
most n — 1 preemptions. The optimality of the algorithm is proved by observing that for each
block that ends at date ¢, f;«(t) is a lower bound for the minimum f,,4,. In the recurrence,
only sub-problems of the initial problem are considered so that all the f;«(¢) values computed at
each step are lower bounds. Since the constructed schedule is feasible, the maximum f;«(¢) value
found during the algorithm is the optimal solution value.

Exploiting the special properties of the f; functions and using more elaborated structures,
we created an algorithm — called SN — that improves the complexity of the problem with tails
and deadlines.

Theorem 4. The algorithm SN solves 1|prmp,r;j,d;, q;|Cpmaez in O(nlogn) time.

The description of SN requires additional notations that we introduce by illustrating its
execution on one instance (Figure 4). First of all, we assume without loss of generality that the
operations are sorted in non-decreasing order of their release dates. Hence, ¢ < j implies r; < rj.
If two operations ¢ and j are scheduled in the same block B of the block schedule, any operation
k such that i < k < j is in B. For example, in Figure 3-(1), the two blocks are {1,2,3,4} and
{5,6}. In the same way as BLLRK , the blocks of the schedule provided by SN will be the same
as the blocks of the block schedule.

The blocks of the block schedule are reorganized successively in reverse order and the opera-
tions in each block are also scheduled in reverse order. Figure 4 shows how the block {1,2,3,4}
(see Figure 3) is scheduled by sN . The block {5,6} is assumed to have already been scheduled
by SN . Let §~ be the block schedule of the unscheduled operations and let T" be the end time
of §7. Note that S~ may violate the deadlines constraints. In the example, Fig. 3(1) represents
S7, T = 13 and operation 4 ends after its deadline d4 = 11. pzf" is the processed time of i after T’
— e the part of 7 that has already been scheduled — and p;” = p; — pi+ denotes the processing
time of ¢ before T'— ie the part of ¢ that has not been scheduled yet. Let f be the operation with
the greatest release date such that ry + EiZf p; =T. Such a f exists since the first operation of
the last block of S~ satisfies this equality. Obviously, all the unscheduled parts of the operations
¢ > f must be scheduled between r; and 1" and no other operation can be scheduled in this time
interval. The set of operations By = {i > f|p; > 0} will be called the current block. In the
example, at 7' = 13, f = 1 and the current block is {1,2,3,4}. Then sN selects the operation
i* € By with the smallest tail among the available operations A = {i|r; < T < d;} = 1,2. It
finds ¢* = 1. Finally, the algorithm determines which “length” of ¢* must be scheduled. We can
indeed notice that if 4 time units of operation 1 are scheduled in time interval [9, 13], operations
3 and 4 cannot be scheduled any more. In order to avoid to reach such a deadlock, we will
introduce for each operation j € By the value Ay; = ry + Zf§k<j P, — 74, which is the differ-
ence between the start time of j in S~ and its release date. In Fig. 4-(2), we can observe that
each time one time unit of ¢* is scheduled, the Ay;-values are decreased by one for all j > 7*.
Therefore, in Fig. 4-(3), once 3 time units of operation 1 are scheduled, Ay = 0. It means that
r+p; +p, =rsand r3+p; +p, =T. So {3,4} becomes the current block (Fig. 4-(4)).

T:13:E?:1pi

(1) py =6 pT =0
py =2 py =0
+

Pz =3 pz =0
Py =2 pF =0

0 1 5 6 8 11 13
A12:5
Az =3
A14:5
T=12
(2) pl_:5 pi":
Py =2 pg':O
pg_:3 p;:O
+

p4_:2 Py =

0 1 5 6 7 10 12 13
A12 =4
Az =2
A14 =4

T =10

(3) pl_ =3 pi"
pz_ =2 p; =
Py = Py =

p4_:2 py =

0 rs 10 13
T =10
p3s =3 i
@ i =2 | v
(
| 3 ‘ 4 ‘ 1]
0 ry 10 13

Figure 4: The first steps of SN

The scheduling rule of SN may be formulated as follows : Schedule in reverse order an available
job of the current block which has the smallest tail until one of the two events is met :

1. the operation is completely scheduled ;
2. one of the Ay; becomes 0.

We now give a more formal description of SN . As in the algorithm for the f,,4, objective
function, the block schedule is first constructed. Then the procedure schedule_block is called for
each block B of the block schedule in decreasing order of their start time. f is the operation with
the smallest release date in the block (B = By). The end time T" of B is equal to 7y + > ;g p; -

procedure schedule_block(f,T)
begin
if "> ry then
begin
for each k ¢ Aand di, > T do A+ AU {k}
A(f, A) « {ilie Aand ry <r;}
if Q(f, A) is empty then there is no feasible schedule else
let i* be an operation of Q(f, A) with a minimum tail
let j* be an operation that minimizes {Ay; |p; >0 and ry» <7}
t + max{T—p;,T— Afj*}
let i* be the operation scheduled in time interval [¢, T
decrease(i*,T —t)
case t of
T-—pn A A-{i*}
schedule_block(f,t)
T — Ayj« : schedule_block(j*t)
schedule_block(f,r;+)
end
endif

end

The procedure decrease(i,d) will be described later. It decreases the processing time of ¢ by §
(ie: p; < p; —9). Then it updates the data structure to calculate the values A;;.

The complete proof of the validity and of the time complexity of Theorem 4 is quite long
because it requires the introduction of specific data structures. For this reason, it is given in
appendix at the end of the paper. Here we only present a sketch of this proof.

The proof of validity is based upon the fact that schedule_block provides a feasible schedule
whose makespan is a lower bound for the problem. The constructed schedule is shown to have
at most n — 1 preemptions. Two data structures are then presented to compute ¢* and j* in
O(logn) time. Both these structures are also updated in O(logn) time. That eventually proves
that schedule_block solves the problem in O(nlogn) time.

We cannot use the traditional heap data structure to find 7* and j* because of the additional
constraints “ry < r;” and “rj= <r;”. Moreover the Ayj;-values are not constant.

At last, one can observe that SN does not always produce the same schedule than BLLRK .
For instance, the operations

10

o3
&
S

[N TS

1
1
2
3

SN O
= W W
NSRRI

yield two different schedules with makespan 7.

2.4 Preemptive or non-preemptive relaxation

<

‘ | | |
0 3 6 9 11
Figure 5: An optimal schedule for the non-preemptive problem with release dates.

The polynomial algorithms presented in §2.2 and §2.3 offer two means for calculating a lower
bound for the earliest start time of operation 5 in Figure 1. First, we can relax the release dates
by setting 73 and 74 to 0 in order to deal with an instance of 1|d;, ¢;|Cyae. Otherwise, we can
consider the preemptive relaxation which leads to an instance of 1{prmp,r;, d;, ¢;|Cpaez- We can
remark that the optimal makespan for both these problem is 13. 13 is also the makespan of the
corresponding instance of 1|r;,d;, ¢j|Cmaes as shown by Figure 5.

What is the best relaxation to choose? It is not difficult to see that when all release dates are
equal, the block-schedule of operations in B —{i*} in §2.3 has only one block. As a consequence,
i* is not preempted and the constructed schedule has no preemptions. So, we can conclude that
the algorithm presented in §2.3 always finds a greater makespan and then should be prefered to
update the earliest start times.

2.5 Flow-time and deadlines

It is well known that 1{prmp,r;|>_ C; is polynomial [Bak74| but this problem becomes NP-hard
as soon as deadlines are added [DL93|.

3 Parallel machine problems

In the example presented in Figure 1, the four operations are to be scheduled on a single machine.
However, the process presented in §1.3 is still valid when the predecessors of the operation
whose earliest start time must be updated are to be scheduled on parallel machines. Hence,
in this section, the jobs (4,q;) are to be scheduled on a machine among a set of m machines
M ={1,2,--- ;m}. As we did for single machine problems, we will specifically be interested in
problems with deadlines.

The objective function f,,q, is still very useful to model both tails and deadlines so that we
will mainly present simple extensions of existing algorithms for this criterion.

11

RUD: "™ "2 2 4

q1

q2
q1

q2
q1

q2
q1

q2
91

q2

q2
q1

‘I2‘
C:

C—-g2<C—=qg1<r1<rp<dz<dy

cy C‘2 c3 Cfl C§ C§ cr cg
' ' '

Figure 6: R, D, Q and C in the proof of Proposition 6

3.1 Unlimited number of machines

Since it is NP-complete when m = 1, the non-preemptive scheduling problem of tasks with
release dates and deadlines on parallel machines is NP-complete. Hence, we will be interested in
different relaxations of this problem. A common idea when facing a parallel machine environment
is to relax the limitation on the number of machines. We have then the (obvious) result :

Proposition 5. The problem Poo|prec,r;|fmaes can be solved by the critical path method.

In shop problems, it is well known that if operation ¢ precedes operation j then r; > r; + p;.
These earliest start times are usually updated with Ford-Bellman’s algorithm, which is equivalent
to the critical path method. As a consequence, if we want to update the earliest start times of
an operation o by the process presented in §1.3, the capacity constraint on the size of M must
not be relaxed.

3.2 Preemptive relaxation on unrelated machines

Instead of relaxing the capacity constraint, we can relax the non-preemption assumption. We
have then a polynomial problem even when the parallel machines are unrelated :

Proposition 6. The optimal solution of Rlprmp,r;j,d;,q;j|Cmas can be computed in polynomial
time.

12

Proof. Let us define the sets R = {r;|j € O}, D ={d;|j € O} and Q = {Crez — q;|j € O}.
If we suppose that the set R UD U Q is totally ordered, that is RUD U Q = {t1,t9, - ,t3,}
with ¢; <9 <--- < t3,, we can use the linear formulation for R|prmp,r;,d;|Cpas of [LL78] to
compute the variables tg-c) and Cjqz Where tg-g) is the processing time of operation 4 on machine
j within the interval [tg,tx+1]. In other words, our problem can be solved in polynomial time
once we know the total order on RUD U Q. We are going to show that there are at most O(n?)
possible total orders on this set (see also Figure 6).

First of all, we know that the sets RUD and Q are both totally ordered. Let us consider the

set C={C|C=t+4+¢q,Cpaz —q € Q,t € RUD}. So
IC| < Q] x |[RUD| € O(n?)

Let C = {c1,¢2,... ¢} with e1 < ep < -+ < ¢l Let ¢g = —o00 and ¢¢j4; = +oo. For any
k < |C|, the condition ¢ < Chpge < cg4+1 implies that the set R UD U Q is totally ordered. In
consequence, we have at most |C|+ 2 possible total orders on R UD U Q. Using binary search on
the values in C, the minimum C);,4, which gives a feasible schedule can then be found by solving
at most O(logn) linear programs. O

This result is more a theoretical complexity result than a usable algorithm to solve the
problem. In particular, it may not be used for deriving lower bounds for a shop problem in a
branch and bound scheme. To our knowledge, there is no fast algorithm to solve this problem,
even if the parallel machines are identical or uniform — Q|prmp, r;, d;]— can be solved in O(mn?3)
time by reduction to a network flow problem yet [FG86|. For this reason, it may be of practical
interest to find fast algorithms to compute lower bounds for these problems as [CP98| did for
the problem without deadlines P|prmp, r;, ¢;|Cnaz-

However, special cases of the scheduling problem with tails and deadlines on parallel machines
can be efficiently solved. In particular, the next section considers that all the operations have
unit processing time (p; = 1).

3.3 Unit Execution Time (UET) operations

We will once more consider the objective function fi,q, defined in §2.1 that can model both
tails and deadlines. [GLLKT79] have shown that Q|p; = 1|fmae can be solved in O(n?) time by
adapting Lawler’s algorithm (§2.2). Let s; be the speed of machine j and let us consider the
time intervals I(k,j) = [k/s;; (k + 1)/s;] for any & € N and any j € M. I(k,j) will contain the
E*™™ operation scheduled on machine j. Obviously, there exists an optimal schedule contained in
the n intervals I(k,j) with the n smallest end times (k + 1)/s;. As for Lawler’s algorithm, the
n operations are affected to these n intervals in reversed order: at each step, the free interval
I(k,j) with the greatest end time (k + 1)/s; is allocated to the non-assigned operation i* that
minimizes f;((k +1)/s;).

In presence of release dates, the problem becomes more difficult because all the operations
cannot be scheduled in the n first time intervals. However, a variant of the algorithm presented
in §2.3 solves the problem with identical machines Plp; = 1,7}|fmaaz-

We now present this new algorithm. The m identical machines are numbered from 1 to m.
I(k,7) is the time interval (slot) [k,k + 1[of machine j. These slots are sorted in lexicographical

13

i 1 2 3 4 5 6 7 8 9 10 11 12 13
r, 1 3 3 3 3 3 4 4 5 6 6 6 7
1
2
3

Figure 7: Block-schedule of 13 UET operations on 3 machines

order, that is the successor of I(k,j) is:

I(k,j+1) ifj#m
I(k+1,1) ifj=m

For any slot I, there exist two integers &k and j such that I = I(k, 7). k and j are respectively
the date and the machine of slot I. The n operations are assumed to be sorted in the order
of their release dates. The following algorithm constructs a feasible (non optimal) schedule to
create blocks of operations, that will play the same role as the block-schedule in §2.3. In this
parallel machine problem, a block is defined as a maximum set of operations scheduled without
idle time in consecutive slots.

procedure create_blocks({l,---,n})
begin
I+ I(-1,1)
b+ 0
for i <+ 1 ton do
begin
if r; > date of I then I < I(r;,1)
b+—b+1
Bb < w
By < By U {’L}
I + successor of I
end
end

The schedule produced by create_blocks is the block schedule. Each block By is a set of
operations to which we can associate a start slot and an end slot: each operation in By is
scheduled in one slot that is between the start slot and the end slot. Figure 7 presents a block
schedule of 13 UET operations on 3 machines. This schedule has three blocks. The first block
as only one operation {1}. Its start and end slots are I(1,1). The second block {2,---,9} starts
at 1(3,1) and ends at 1(5,2). The last block {10,---,13} starts at I(6,1) and ends at I(7,1).
In what follows, two blocks will be stated as identical if they countain the same operations and
have identical start and end slots. With these definitions, we can give a variant of Lemma 3:

14

Lemma 7. There exists an optimal solution of P|p; = 1,7} fmaez in which the blocks are identical
to the blocks of the block-schedule.

Proof. For an instance of Plp; = 1,7}|fmaz, let us consider an optimal schedule S,y and the
block schedule Spjock and assume that there exists a slot that is idle in one schedule and assigned
in the other. Let I be the first of these slots. Since no operation is delayed by create_block,
I is necessary idle in Sypy and assigned in Spiock. Let ¢ be the date of I. If all the operations
scheduled after I in S have a release date greater than ¢, the operation j assigned to the slot
I in the block schedule would also have a release date greater than ¢ (from the definition of I),
which is a contradiction. Therefore, there exists an operation ¢ in Sy scheduled after I with
r; < t. Job ¢ can be moved into idle slot I and the new schedule is also optimal because f;
is non-decreasing. Iterating this process, an optimal schedule with the same blocks as Spiock 1S
found. O

We can build an optimal schedule of a set S of UET operations by the following procedure :
e if S has only one operation, schedule this operation at its release date

e otherwise, let By, be the block(s) computed by the call to the procedure create blocks(S).
For each block By:

— let t, the date of the end slot of B,
let * € By that minimizes f;(t, + 1)

— solve by a recursive call the sub-problem with operations in By, — {i*}

— schedule 7* in the idle slot

The proof of this algorithm is identical to the proof of the algorithm in §2.3. We have finally the
property :

Proposition 8. P|p; = 1,7;|fimaz can be solved in O(n?) time.

The proof of Theorem 4 can easily be adapted to show that the problem P|p; = 1,7, d;, ¢i|Crax
can be solved in O(nlogn) time.

Conclusion

In this paper, we have discussed scheduling problems whose operations have both tails and
deadlines. We have presented several problems on single or parallel machines that can be solved
in polynomial time. We have shown that the objective function f,q, can model both tails
and deadlines but the complexity of the problems can be improved when we consider specific
properties of the tails and deadlines. Moreover, we have shown P|p; = 1, 7| fmaz, can be solved
in quadratic time.

We plan to investigate further how to make the best use of the lower bounds presented in
§1.3 in a branch and bound scheme in order to solve shop scheduling problems.

15

Acknowledgements: The authors are indebted to Philippe Chrétienne for his careful reading of the
previous versions of this paper. The work of the first author is partially financed by ILOG S.A., under
research contract ILOG/UPCM no. 980220.

A Proof of Theorem 4

First of all, we recall the definition of Ay; = r; + Ef§k<j p, — 1 where we assume that the
operations are sorted in the non decreasing order of their release dates. Obviously, Ay, =
Ay + A;j for any 4 such that f <4 < j. If f is the first operation of a block B of a block
schedule, for any j € B, Ay; > 0. Conversely, let us consider a set B of operations and let f € B
be an operation with the smallest release date. If, for any 57 € B, Ay; > 0 then it is easy to see
that the block schedule has only one block that starts at ry and ends at ry + >, zp, . From
Lemma 3, there is also an optimal schedule of B included in this time interval.

We are now going to prove that, for any block B of the block schedule, schedule_block
returns an optimal schedule of the operations in B.

A.1 Proof of correctness

Let us consider a block B of the block schedule. Each operation ¢ of B has a processing time
p; =p; and £ = Y . pp; is the length of B. If B has only one operation f, this operation is
scheduled with no preemption at its release date: this schedule is optimal.

We now consider that B has more than one operation. Let f be an operation of B with the
smallest release date and let T' = ry +£ be the end time of B. Let us assume that, for all blocks of
length ¢ < L, schedule_block(f,T') produces an optimal schedule included in the time interval
[rf,T] and let us consider a block B of length ¢ = L. In what follows, ¢ and * are the values
defined in the description of schedule_block.

- If t # T : schedule_block schedules the operation i* between ¢ and 7T'. From the definition
of *, T' + g;» is a lower bound for the makespan of the schedule of B. Let us consider the
set of operations B’ that contains the same operations that B with processing times

i if § # i*
Pi= p = (T—1t) ifi=q¢*

For any feasible schedule of B, we can build a feasible schedule of B’ by replacing T — ¢
slots in which 7* is scheduled by idle time. So the optimal makespan for B’ is less than
the optimal makespan for B. Let us define, for any j € B, A'fj =TF+ D ke Py — T
From this definition, if j < i*, A’fj = Ay >0, If j > 47, A’fj = Ayj — (T —t). Since
T —t< Apjr < Ay, Ifj > 0. So, the optimal schedule of B’ can be included in time
interval [r¢,t]. Since ¢ —ry < L, schedule_block finds an optimal schedule of B’ and
finally the produced schedule is optimal.

- if t = T': since p;= > 0, we necessarily have Ay;« = 0 for some 5% € B. Clearly, ry < rj- <
T. Let us define, By = {i € B|r; < rj~} and By = {i € B|r; > rj=}. By and By make a

16

partition of B. From the definition of Ay« :

rf—I—Zpi = 1)

1EB

rpe+ Y pi = T

1EB2

In any optimal schedule of B included in the time interval [r¢, T}, all the operations that are
in By must be scheduled in [rj«,T]. Therefore, all the operations in B; must be scheduled
in [ry,r;+]. Since B forms a block, Ay; > 0 for all j € B. So for any j € By, Afj >0 and
for any j € B, Aj«j = Agj» + Ajj = Ap; > 0. Therefore the operations in By and in B
form each one block. The makespan of each of these two blocks is of course a lower bound
of the makespan of the schedule of B. Since rj» —ry < L and T'— rj= < L , the produced
schedule is optimal.

To conclude, schedule_block produces an optimal schedule for 1|prmp,r;,d;,q;|Cnaz-

A.2 Number of preemptions

Lemma 9. A block B scheduled by schedule_block has at most |B| — 1 preemptions.

Proof. This lemma is obvious if B has only one operation. Let us suppose the lemma is valid for
all B such that |B| < N and let us consider a block B such that |B| = N. When schedule_block
is called :

- if ¢ =T — p;», i* is scheduled without premption. Then the block B — {i*} is scheduled
between ry and ¢ with at most (/N —1) — 1 preemptions. So the schedule has at most N —2
preemptions (and of course at most N — 1 preemptions).

- if t =T — Ayj+, only a part of 4* is scheduled, which causes one preemption. Then two
non-empty sub-block B; and By are scheduled. |Bi| < N and |Bz| < N so the constructed
schedule has at most 1+ (|B1| — 1) + (|B2| — 1) = |B| — 1 preemptions.

O

This result shows that, when scheduling a block B, schedule_block is called O(|B]) times.
We are now going to show that each instruction of schedule_block can be executed in O(logn)
time, which will show that each block B is scheduled in O(|B|logn) time.

A.3 Data structures

We present in §A.3 two data strutures for maintaining minimum elements in dynamic sets:
- 4 is an operation that minimizes {¢;|i € A and f < i}

- j* is an operation that minimizes {Ay;|j € By and i* < j}

17

Figure 8: The binary tree T for a set of 7 operations

Both these structures are based upon the same basic structure, a binary tree 7, which is
represented in Figure 8 for n = 7. This binary tree divides the set of operations into subsets
defined as follows. Each node is denoted by a pair of integers [I,) which means that the subtree
of root [I,r) covers the operations {l,l +1,--- ,r — 1}. In this way, the root of 7 is denoted by
[1,n + 1) and the leaf corresponding to the only operation i is [i,¢ + 1). The left — resp. right
— descendant of node [I,r) is [, m) — resp. [m,r) — where mn = [H£]. T is a binary tree with
n leaves so it has at most 2n — 1 nodes.

We now present how to use T to query for +* and j*. It is important to remember that the
n operations are numbered in the order of their release dates.

A.3.1 Available operations

At each call of the recursive procedure schedule_block, the available operation with the shortest
tail is searched for (i*). We cannot use a heap structure to store A because of the additional
constraint that is the operation must be in the current block (i* > f). It is also fruitless to
create a heap for each block because sub-blocks are created during the algorithm execution. So
we present an original data structure based on T with the following properties :

- an operation can be inserted or removed in log(n) time;
- 4* can be determined in log(n) time.

At each node [I,7) of T, we associate an operation ¢[[,) that minimizes {¢; |7 € A and | <i < r}.
If this set is empty, ¢[l,7) = 0. By setting gy = +o00, we have the simple relation :

Aflr) = min (QL[l,m)a QL[m,r)) (1)

The [l,r)-values are initialized after that the block schedule (that completes at time 7T') is
computed. The values of the n leaves are ([i,i + 1) = if d; > T and ¢[i,7 + 1) = 0 otherwise.
The O(n) inner nodes are initialized in topological order with (1). So, the initialization process
is done in linear time. The data structure also implements two update procedures to insert an
operation into A and to remove it from A. They are both based on (1):

procedure add((l,7),7) ;; A<+ AU{i}

18

begin
ifl=r—1 then
tfi, i+ 1) 4
else
m + [55]
if i < m then add((l,m),i) else add((m,r),1)
if ¢,1,m) < Qpm,r) then ([l,7) < i[l,m) else ([l,7) < i[m,7)
endif

end

procedure remove((l,r),i) ;; A<+ A—{i}
begin
ifl=r—1then
tfiyi+ 1)« 0
else
m |'H'T’"]
if i < m then remove((l,m),) else remove((m,r),1)
if ¢,11,m) < Qm,r) then ([l,7) < u[l,m) else ([l,7) < t[m,7)
endif
end

add and remove are based on a dichotomic search. Their time complexity is clearly O(logn).
The data structure 7 must be able to find an operation * that minimizes {g; |i € A and f <}
in O(logn) time. We can easily verify that the following function performs this task :

function i_star((l,7), f)

begin
if l =r —1 then return ([l,r)
else
m |'H'T’"]

if f <m then i<« i_star((l,m), f)
return i’ € {i,¢[m,r)} such that g; = min (qi, qb[mv,‘))
else return i_star((m,r), f)
endif

end

A.3.2 Minimum Afj

In order to find j*, we define, for any pair (A, p) of integers such that 1 < X\ < p < n + 1,
oA p) = Yoacj<pp; and p[A p) = miny<k<, (0[N k) —rg). With these definitions, we have
Apjr =1+ minjsi(op; — 1) =15+ o[f,5) + p[i*,n + 1). These values o[l,r) and p[l,r) are
associated at each node [I,7). We have then the immediate recurrence relations :
oll,r) = o[l,m)+o[m,r) (2)
pll,r) = min(p(l,m),oll,m) + pu(m,r)) (3)

Once again, we can initialize the o[l,7) and ul[l,r) values for each node of T by first initializing
the leaves as follows of[i,i + 1) <= p; and pli,i +1) < p, — rip1.

19

All the o[l,r) and p[l,r) values in 7 must be updated each time some p; is decreased. They
can be maintained in O(logn) time, as shown by this complete formulation of decrease(s,?),
also based on equations 2 and 3:

procedure decrease(i, J)

begin
Py < p; =0
decrease_rec((1,N + 1),1,0)
end

procedure decrease_rec((l,7),1,0)
begin
oll,r) « o[l,r) = ¢
ifl=r—1 then
if o[l,r) = 0 then u[l,r) < oo
else ull,r) < pll,r) =96
else
m + [55]
if i < m then decrease_rec((l,m),i,0)
else decrease_rec((m,r),i,d)
ll,) < min (ull, m); ofl,m) + plm, 1))
endif

end

Since Agj» = rp + of,7*) + p[i*,n + 1), we need two functions able to calculate for any 7 in
the current block the values o[f,4) and u[i,n 4+ 1). The o[f,:*)-value does not depend of j*. j*
is the operation that minimizes the second term p[i*,n 4 1). This value does not depend of f.
This decomposition is the base of the query functions.

Since o[f,i) = o[l,i) — o1, f), we only present a function to compute o[l,4) in O(logn)
time:

function sigma((l,r),1)
begin
m e [42]
if m =r then
return o[l,)
else
if i < m then return sigma((I,m),7)
else return o[l,m) + sigma((m,r),?)
endif

end

The function to calculate u[i,n + 1) = mu((1,n + 1),7) is quite similar. In order to shorten the
algorithm description, we do not mention explicitely how j5* should be returned at the same time
as pli,n +1).

function mu((l,r),)

begin
m fHTT]
if m =1 then

20

return p[l,)
else
if i < m then return min(mu((l,m),); o[l,m) + p[m,r))
else return o[l,m) + mu((m,r),?)
endif

end

Therefore, we have shown the following lemma.

Lemma 10. At each call of schedule_block_rec, the tree data structure T to which are asso-
ciated the values u[l,r), o[l,r) and p[l,r) :

- is maintained in O(log(n)) time;
- finds i* and q;» in O(logn) time;
- finds j* and Agj« in O(log(n)) time.

Moreover, the data structure can be initialized in linear time.

A.4 Complexity of the algorithm

We finish the proof of Theorem 4 by the analysis of the complexity of schedule_block. Each
operation is added only once to A so that the global complexity of all the execution of A4 < AU{k}
is O(nlogn). From Lemma 10, it is clear that all the other operations in schedule_block are
scheduled in O(logn) time. For any value of ¢* or j*, each event “¢ = T —p;+” and “t =T — Ay;+”
can happen at most once: after the event “t = T — p;x”, ¢* is completely scheduled and not
available anymore and after the event “¢ = T — Ay;.”, 7 becomes the first operation of a new
current block Bj+ that is immediately scheduled.
Finally, this proves that 1|prmp,r;, d;, gi|Cmaes can be solved in O(nlogn) time.

References

[Bak74] K.R. Baker, Introduction to sequencing and scheduling, Wiley & Sons, 1974.

[BLLKS83| K.R.Baker, E.L. Lawler, J.K. Lenstra, and A.H.G. Rinnooy Kan, Preemptive schedul-
ing of a single machine to minimize mazimum cost subject to release dates and prece-
dence constraints, Operations Research 26 (1983), 111-120.

[Car82| J. Carlier, One machine problem, European Journal of Operational Research 11
(1982), 42-47.

[CP&9] J. Carlier and E. Pinson, An algorithm for solving the job-shop problem, Management
Science 35 (1989), no. 2, 164-176.

[CP9g| J. Carlier and E. Pinson, Jackson’s pseudo-preemptive schedule for the Pm|r;, ¢;|Craq
scheduling problem, Annals of Operations Research 83 (1998), 41-58.

21

[DL93]

[FGS6]

(GJ77]

[GLLK79]

[GPWO7T]

[HPY4]

[Jach5]

[Law73]

[LL78|

INtLOS|

[Pin95|

J. Du and J.Y.T. Leung, Minimizing mean flow time with release time and deadline
constraints, Journal of Algorithms 14 (1993), 45-68.

A. Federgruen and G. Groenevelt, Preemptive scheduling of uniform machines by
ordinary network flow techniques, Management Science 32 (1986), 341-349.

M.R. Garey and D.S. Johnson, Two-processor scheduling with start times and dead-
lines, STAM Journal on Computation 6 (1977), 416-426.

R.E. Graham, E.L. Lawler, J.K. Lenstra, and A.H.G. Rinnooy Kan, Optimization
and approximation in deterministic sequencing and scheduling, Annals of Discrete
Mathematics 4 (1979), 287-326.

V. Gordon, E. Potapneva, and F. Werner, Single machine scheduling with deadlines,
release and due dates, Optimization 42 (1997), 219-244.

A .M.A. Hariri and C.N. Potts, Single machine scheduling with deadlines to minimize
the weighted number of tardy jobs, Management Science 40 (1994), 1712-19.

J.R. Jackson, Scheduling a production line to minimize manimum tardiness, Research
Report SPIKE-1989-2, Management Science Research Project, University of Califor-
nia, Los Angeles, CA, 1955.

E.L. Lawler, Optimal sequencing of a single machine subject to precedence constraints,
Management Science 19 (1973), 544-546.

E.L. Lawler and J. Labetoulle, On preemptive scheduling on unrelated paralel proces-
sors by linear programming, Journal of the ACM 25 (1978), 612—619.

W. Nuijten and C. Le Pape, Constraint-based job shop scheduling with 1LOG SCHED-
ULER, Journal of Heuristics 3 (1998), 271-286.

M. Pinedo, Scheduling : theory, algorithms, and systems, Prentice-Hall, 1995.

22

