
HAL Id: hal-02548272
https://hal.science/hal-02548272

Submitted on 20 Apr 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Scheduling with tails and deadlines
Francis Sourd, Wim Nuijten

To cite this version:
Francis Sourd, Wim Nuijten. Scheduling with tails and deadlines. [Research Report] lip6.1999.032,
LIP6. 1999. �hal-02548272�

https://hal.science/hal-02548272
https://hal.archives-ouvertes.fr

S
heduling with tails and deadlinesFran
is SourdLIP6, Université Pierre et Marie Curie, ParisFran
is.Sourd�lip6.frWim NuijtenILOG S.A., 9 rue de Verdun, 94253 Gentilly Cedexnuijten�ilog.frAbstra
tThis paper dis
usses s
heduling problems of operations with tails. While tails are usuallyused in the literature to model due dates or deadlines, we show it may be interesting to
onsider tails and deadlines as two di�erent things, espe
ially in shop problems. Then, wereview
lassi
al one ma
hine and parallel ma
hine problems to show whi
h problems
anbe still solved in polynomial time in presen
e of tails and deadlines. We show that bothdeadlines and tails
an e�
iently be modeled by a minimax obje
tive fun
tion fmax. Inthis way, several problems
an be solved in quadrati
 time but, by
onsidering the spe
i�
properties of tails and deadlines and introdu
ing spe
i�
 data stru
tures, we also show thatthese problems
an be solved in O(n logn) time. We also show that P jpj = 1; rj jfmax
anbe solved in O(n2) time.Keywords : s
heduling, release dates, deadlines, due dates, tails, minimax obje
tive fun
tion,shop s
heduling problem, lower bound.Introdu
tionLiterature distinguishes deadlines from due dates by the fa
t that a deadline must absolutely bemet [Pin95℄. Hen
e due dates are generally asso
iated with optimization
riteria su
h as lateness,tardiness or number of late jobs while deadlines are problem
onstraints. To our knowledge, onlylittle resear
h e�ort was devoted to problems in whi
h the operations have a due date and adeadline that is they may be
ompleted after their due date, but not after their deadline. In[HP94℄, the minimization of the weighted number of tardy jobs on a single ma
hine is studiedbut this problem is NP-
omplete even without deadlines. In [GPW97℄, polynomial algorithmsfor some preemptive variants of this problem are given. Moreover, in the latter problem, someoperations have a deadline while others have a due date. Thus, giving both deadlines and duedates to operations to be s
heduled appears to be an original approa
h, whi
h is shown in �1.3not to be purely theoreti
al. It gives powerful properties for shop problems.For the sake of
lear notations, we are not going to speak of due dates anymore. These duedates will be substituted by the
on
ept of tails whi
h is presented in Se
tion 1. Then we review
lassi
al one ma
hine (Se
tion 2) and parallel ma
hine (Se
tion 3) problems to show whi
h ones1

an be solved in polynomial time in presen
e of tails and deadlines. The di�erent
lasses ofproblems will be spe
i�ed by the well-known �j�j
-notation [GLLK79℄.1 S
heduling with tails1.1 NotationsIn all the problems
onsidered in this paper, a set O = f1; 2; � � � ; ng of n jobs is to be s
heduledeither on a single ma
hine M = f1g in Se
tion 2 or on a set of m parallel ma
hine M =f1; 2; � � � ;mg in Se
tion 3. A job (i; qi) is de�ned as a pair made of an operation (or a task)i and a tail qi. Ea
h operation i has a pro
essing time pi. It may also have a release date riand may be preemptive or not. When the operation i ends, the job is not
ompleted : someamount of work is ne
essary to
omplete the job � for example, transportation to the
ustomer.qi estimates the duration of this work. Hen
e, ei denotes the end time of operation i whileCi = ei + qi denotes the
ompletion time of job (i; qi). When no
onfusion is possible, the job(i; qi) will be simply denoted by i.The relationship between due dates and tails is well known. Let us
onsider a problem inwhi
h ea
h operation has no tail but a due date di. Its lateness is by de�nition Li = ei � di.Then, if we set qi = �di, the lateness of the operation i is equal to the
ompletion time of job(i; qi). As a
onsequen
e, the problems �j�jLmax and �j�; qj jCmax are equivalent. In this paper,we are going to introdu
e a deadline di for ea
h operation i. So in order to avoid
onfusion withdue dates, we will
onsider only tailed jobs.1.2 CriteriaIn this se
tion, we show that, when s
heduling with tails, the only useful optimization obje
tiveis the makespan. Problems with other
riteria
an be redu
ed to untailed problems. Therefore,in the rest of the paper, we will
onsider the minimization of the makespan, ex
ept to re
all someresults of
omplexity.1.2.1 Due-date-related
riteriaDue dates Dj
an be introdu
ed for tailed-jobs. So the lateness of a job j is Lj = Cj �Dj andthe maximum lateness is as usual Lmax = maxj2O Li.Proposition 1. �j�; qj jLmax and �j�; qj jCmax are equivalent.Proof. We have already shown that �j�; qj jCmax is equivalent to �j�jLmax. Let us
onsider afeasible s
hedule of the instan
e of the problem �j�; qj jLmax if whi
h ea
h job has a due dateDj . We now
onsider an instan
e of the problem �j�jLmax in whi
h ea
h operation j is given adue date Dj � qj. The lateness of j is ej � (Dj � qj) = Cj �Dj = Lj . Therefore �j�; qj jLmaxand �j�jLmax are equivalent, whi
h
ompletes the proof.For the reasons given in the proof, �j�; qj jPwiTi and �j�; qj jPwiUi are equivalent to�j�jPwiTi and �j�jPwiUi. 2

1.2.2 Mean and weighted �ow timeThe weighted �ow time for jobs is de�ned asPiwiCi = (Pi wiei)+(Piwiqi). Sin
ePiwiqi is a
onstant, �j�; qj jPwiCi is equivalent to �j�jPwiCi. Therefore, we do not give any algorithmsfor these
riteria.1.3 The importan
e of
onsidering deadlinesModels with deadlines and tails
an be helpful to �nd properties of s
heduling problems withseveral ma
hines (shop environment). A deadline for an operation on a ma
hine may
omefrom the problem de�nition or by dedu
tions resulting of the ma
hine saturation [CP89, NtL98℄.A tail
an represent the duration of a series of operations (on non
riti
al ma
hines) and/ortransportation times.

2

2Figure 1: Operations 1, 2, 3 and 4 on the same resour
e. 2 time units are required between theend of operations 3 and 4 and the start of 5.For instan
e, Figure 1 fo
uses on �ve operations of a more
ompli
ated shop problem. Ea
hline of the �gure represents an operation. For example, the �rst line refers to operation 1. Itsrelease date r1 is 3, its due date d1 is 10 and its pro
essing time p1 is 3. Moreover, we assumethat operations 1, 2, 3 and 4 are to be s
heduled on a single ma
hine. Finally, it is also assumedthat operation 5 must start at least 2 time units after the end of operations 3 and 4. If we setq3 = q4 = 2, operation 5 must start after max(C3; C4). Therefore, if we set q1 = q2 = �1, theoptimal solution of 1jrj ; dj ; qjjCmax for the set of operations f1; 2; 3; 4g is a lower bound on thestart time of operation 5. The reader
an easily verify that the minimum makespan (with tails)of this problem is 13.Unfortunately, 1jrj ; dj ; qjjCmax is NP-
omplete sin
e 1jrj ; dj jCmax is NP-
omplete [GJ77℄.For the same reason, 1jrj ; qj jCmax is also NP-
omplete but its preemptive relaxation
an besolved in O(n logn) time [Car82℄. Assuming that the deadlines are relaxed in our example,operations with a tail �1
an be s
heduled after all the other operations and the makespan ismin(r3; r4) + p3 + p4 +min(q3; q4) = 7. Thus, the relaxation of deadlines
an lead to signi�
antloss of information. The following se
tion presents two single ma
hine problems with tails anddeadlines that
an be solved in polynomial time.3

2 Single ma
hine problemsJa
kson's rule [Ja
55℄ that s
hedules �rst the operation with the smallest deadline
an solve twofamous one ma
hine problems with deadlines : the problem without release dates and withoutpreemptions and the problem with release dates and with preemptions. We show that both theseproblems
an be still solved e�
iently in presen
e of tailed operations. The two algorithms arebased on a transformation we �rst present.2.1 Expressing tails and deadlines with a minimax obje
tive fun
tionWe present an obje
tive fun
tion fmax that models both the tail and the deadline of ea
h opera-tion in O. Let us
onsider an operation j with a tail qj and a deadline dj , we de�ne the fun
tionfj : R 7�! R : t! fj(t) = � t+ qj if t � djb otherwiseb is a �big� problem-dependent
onstant that
an be de�ned as maxj2Ofdj + qjg. The obje
tivefun
tion fmax is then de�ned for any feasible s
hedule as maxj2O fj(ej).Obviously, an optimal solution of a s
heduling problem �j�; dj ; qjjCmax is also an optimalsolution of the problem �j�jfmax. Conversely, �j�; dj ; qj jCmax has no feasible solution if andonly if the optimum of �j�jfmax is b.2.2 Non-preemptive problem with pre
eden
e relationsLawler developed a simple algorithm to solve in O(n2) time the problem 1jpre
jfmax when thefun
tions fj are non-de
reasing [Law73℄. These
onditions are
learly satis�ed by the fun
tionsde�ned in � 2.1. Sin
e the fun
tions are non-de
reasing and there is no release date, there existsan optimal solution without idle time. In Lawler's algorithm, the sequen
e of operations is
onstru
ted in reverse order. The end time of the s
hedule is
learly t =Pj pj (
f Figure 2). Atea
h step of the algorithm, the � uns
heduled � operation i? that minimizes fi(t) is s
heduledbetween dates t� pi? and t is set to t� pi? . This is repeated until t be
omes 0.Figure 2 shows how f1, f2, f3 and f4
an be de�ned to s
hedule without preemption (andwithout rj) the four jobs de�ned in Figure 1. The latest end time of operations is emax =P4j=1 pj = 11, the makespan is max1�j�4 fj(ej) = e3 + q3 = 13. We
an noti
e that theprodu
ed s
hedule does not satisfy release date
onstraints.If we
onsider the problem without pre
eden
e
onstraints, we
an use the properties of ourfj fun
tions to improve the
omplexity of the problem :Theorem 2. 1jdj ; qjjCmax
an be solved in O(n logn) time.Proof. We introdu
e a heap A to store the operations available at date t and to �nd the operationwith the smallest tail.t Pi2O piA ;while t > 0 dofor ea
h k 62 A su
h that dk � t do A A [fkg4

16

14

12

10

8

6

4

2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

3214

hi

t

h3 = h4 h1h2

Figure 2: f1, f2, f3, f4 and an optimal s
hedule for operations in Figure 1

5

let i? be the operation with the smallest tail in AA A� fi?gi? s
heduled between t� pi? and tt t� pi?endEa
h operation k is inserted only on
e into A and is also deleted exa
tly on
e. Both operationsrequire O(logn) time so that the time
omplexity of this algorithm is O(n log n).This algorithm
an be adapted in presen
e of a pre
eden
e graph G(O; E). At ea
h step,the operation k must be inserted into A only if all its su

essors are s
heduled. Be
ause of theveri�
ation, the overall
omplexity of the algorithm is O((n+ jEj) log n). Moreover, if we assumethat the fun
tions fi are
ontinuous and if there are few interse
tions between them, it may beinteresting to maintain dynami
ally the sorted list of the values f1(t); f2(t); � � � ; fn(t), whi
h
anbe done with usual te
hniques of
omputational geometry. Hen
e, the
omplexity of 1jpre
jfmaxis O((n+ jEj+ a) log n) where a is the number of interse
tions between the fi fun
tions.2.3 The preemptive problem with release datesIn most s
heduling problems, release dates
annot be relaxed. Therefore, we are now interestedin the preemptive problem with release dates, tails and deadlines. We �rst present an algorithmdue to [BLLK83℄ that solves 1jprmp; pre
; rj jfmax in O(n2) time. It will be
alled bllrk in thispaper. The transformation in �2.1
an also be used to solve our problem with tails and deadlinesbut we show that the problem 1jprmp; rj; dj ; qj jCmax is solved in O(n log n) time.The exe
ution of the algorithm of bllrk for an instan
e of 6 operations is illustrated inFigure 3. This algorithm �rst s
hedules, without preemptions, the operations in the order oftheir release dates ri (step 1). This s
hedule, that we will
all the blo
k s
hedule,
onsists ofdi�erent blo
ks of operations (a blo
k is a maximum set of operations s
heduled
onse
utivelywithout idle time). The next step of the algorithm reorganizes the exe
ution of operations withinea
h blo
k (with preemption allowed). Assuming that two blo
ks are identi
al if and only if theyhave identi
al start time and end time and
ontain the same operations, the following lemma issatis�ed :Lemma 3 ([BLLK83℄). There exists an optimal solution of 1jprmp; pre
; rj jfmax whose blo
ksare identi
al to the blo
ks of the blo
k-s
hedule.Ea
h blo
k B of the blo
k-s
hedule is rearranged as follows :- if the blo
k
ontains only one operation, it is not rearranged ;- let s and t be respe
tively the start and end time of B and let i? be an operation in B,with no su

essor in B, that minimizes fi(t).� use a re
ursive
all to �nd an optimaol s
hedule Si? for the instan
e restri
ted to theoperations in Bnfi?g ;� s
hedule i? within the idle periods of Si? .6

i 1 2 3 4 5 6ri 0 1 5 6 15 17pi 6 2 3 2 3 1di 16 17 11 11 25 23qi 8 10 7 12 1 2
432

0 8 11 13 15 18 19

4

5 8 10

8

4

2

2 3 3

5 10

1

1

1

3

3

3 6

6

19

3

331 1 1

10 13510 3 6 8

42

331 1 1

10 13510 3 6 8

42

18

331 1 1

10 13510 3 6 8

42

15 18

8

42

(1)

(2)

(3)

(4)

(5)

(6)

(7)

1

5 5

6

6

6

5

6

17

17

Figure 3: An exe
ution of bllrk7

In order to solve a problem with n operations, the blo
k s
hedule is
onstru
ted in linear timeand, for ea
h blo
k B (with nB operations), the operation i? is s
heduled in O(nB) time on
ethe idle intervals are
omputed by the re
ursive
all. As a
onsequen
e, the time
omplexity ofthe algorithm is O(n2). It is also easy to prove that the solution found by this algorithm has atmost n � 1 preemptions. The optimality of the algorithm is proved by observing that for ea
hblo
k that ends at date t, fi?(t) is a lower bound for the minimum fmax. In the re
urren
e,only sub-problems of the initial problem are
onsidered so that all the fi?(t) values
omputed atea
h step are lower bounds. Sin
e the
onstru
ted s
hedule is feasible, the maximum fi?(t) valuefound during the algorithm is the optimal solution value.Exploiting the spe
ial properties of the fi fun
tions and using more elaborated stru
tures,we
reated an algorithm �
alled sn � that improves the
omplexity of the problem with tailsand deadlines.Theorem 4. The algorithm sn solves 1jprmp; rj; dj ; qj jCmax in O(n logn) time.The des
ription of sn requires additional notations that we introdu
e by illustrating itsexe
ution on one instan
e (Figure 4). First of all, we assume without loss of generality that theoperations are sorted in non-de
reasing order of their release dates. Hen
e, i � j implies ri � rj.If two operations i and j are s
heduled in the same blo
k B of the blo
k s
hedule, any operationk su
h that i � k < j is in B. For example, in Figure 3-(1), the two blo
ks are f1; 2; 3; 4g andf5; 6g. In the same way as bllrk , the blo
ks of the s
hedule provided by sn will be the sameas the blo
ks of the blo
k s
hedule.The blo
ks of the blo
k s
hedule are reorganized su

essively in reverse order and the opera-tions in ea
h blo
k are also s
heduled in reverse order. Figure 4 shows how the blo
k f1; 2; 3; 4g(see Figure 3) is s
heduled by sn . The blo
k f5; 6g is assumed to have already been s
heduledby sn . Let S� be the blo
k s
hedule of the uns
heduled operations and let T be the end timeof S�. Note that S� may violate the deadlines
onstraints. In the example, Fig. 3(1) representsS�, T = 13 and operation 4 ends after its deadline d4 = 11. p+i is the pro
essed time of i after T� ie the part of i that has already been s
heduled � and p�i = pi � p+i denotes the pro
essingtime of i before T � ie the part of i that has not been s
heduled yet. Let f be the operation withthe greatest release date su
h that rf +Pi�f p�i = T . Su
h a f exists sin
e the �rst operation ofthe last blo
k of S� satis�es this equality. Obviously, all the uns
heduled parts of the operationsi � f must be s
heduled between rf and T and no other operation
an be s
heduled in this timeinterval. The set of operations Bf = fi � f jp�i > 0g will be
alled the
urrent blo
k. In theexample, at T = 13, f = 1 and the
urrent blo
k is f1; 2; 3; 4g. Then sn sele
ts the operationi? 2 Bf with the smallest tail among the available operations A = fi j ri < T � dig = 1; 2. It�nds i? = 1. Finally, the algorithm determines whi
h �length� of i? must be s
heduled. We
anindeed noti
e that if 4 time units of operation 1 are s
heduled in time interval [9; 13℄, operations3 and 4
annot be s
heduled any more. In order to avoid to rea
h su
h a deadlo
k, we willintrodu
e for ea
h operation j 2 Bf the value �fj = rf +Pf�k<j p�k � rj , whi
h is the di�er-en
e between the start time of j in S� and its release date. In Fig. 4-(2), we
an observe thatea
h time one time unit of i? is s
heduled, the �fj-values are de
reased by one for all j > i?.Therefore, in Fig. 4-(3), on
e 3 time units of operation 1 are s
heduled, �13 = 0. It means thatr1 + p�1 + p�2 = r3 and r3 + p�3 + p�4 = T . So f3; 4g be
omes the
urrent blo
k (Fig. 4-(4)).8

3 4

13 4

61

2

(2)

(1)

(3)

13 421

1

1 2

13 41 2

(4)

T = 12p�2 = 2p�3 = 3p�4 = 2p�1 = 5 p+1 = 1p+4 = 0p+3 = 0p+2 = 0
�12 = 4 �13 = 2

r3

�12 = 5 �13 = 3
T = 13 =P4i=1 pip�2 = 2p�3 = 3p�4 = 2p�1 = 6 p+1 = 0p+4 = 0p+3 = 0p+2 = 0

�14 = 4

�14 = 5

0 10 13

0 5 7 10 12 13

131186510

p�3 = 3p�4 = 2 p+4 = 0p+3 = 0T = 10
p�2 = 2p�3 = 3p�4 = 2p�1 = 3 p+1 = 3p+4 = 0p+3 = 0p+2 = 0T = 10

r3 13100 Figure 4: The �rst steps of sn9

The s
heduling rule of sn may be formulated as follows : S
hedule in reverse order an availablejob of the
urrent blo
k whi
h has the smallest tail until one of the two events is met :1. the operation is
ompletely s
heduled ;2. one of the �fj be
omes 0.We now give a more formal des
ription of sn . As in the algorithm for the fmax obje
tivefun
tion, the blo
k s
hedule is �rst
onstru
ted. Then the pro
edure s
hedule_blo
k is
alled forea
h blo
k B of the blo
k s
hedule in de
reasing order of their start time. f is the operation withthe smallest release date in the blo
k (B = Bf). The end time T of B is equal to rf +Pi2B p�i .pro
edure s
hedule_blo
k(f; T)beginif T > rf thenbeginfor ea
h k 62 A and dk � T do A A [fkgQ(f;A) fi j i 2 A and rf � rigif Q(f;A) is empty then there is no feasible s
hedule elselet i? be an operation of Q(f;A) with a minimum taillet j? be an operation that minimizes f�fj j p�j > 0 and ri? < rjgt max�T � p�i? ; T ��fj?	let i? be the operation s
heduled in time interval [t; T [de
rease(i?; T � t)
ase t ofT � p�i? : A A� fi?gs
hedule_blo
k(f; t)T ��fj? : s
hedule_blo
k(j?; t)s
hedule_blo
k(f; rj?)endendifendThe pro
edure de
rease(i; Æ) will be des
ribed later. It de
reases the pro
essing time of i by Æ(ie : p�i p�i � Æ). Then it updates the data stru
ture to
al
ulate the values �ij.The
omplete proof of the validity and of the time
omplexity of Theorem 4 is quite longbe
ause it requires the introdu
tion of spe
i�
 data stru
tures. For this reason, it is given inappendix at the end of the paper. Here we only present a sket
h of this proof.The proof of validity is based upon the fa
t that s
hedule_blo
k provides a feasible s
hedulewhose makespan is a lower bound for the problem. The
onstru
ted s
hedule is shown to haveat most n � 1 preemptions. Two data stru
tures are then presented to
ompute i? and j? inO(log n) time. Both these stru
tures are also updated in O(log n) time. That eventually provesthat s
hedule_blo
k solves the problem in O(n log n) time.We
annot use the traditional heap data stru
ture to �nd i? and j? be
ause of the additional
onstraints �rf � ri� and �ri? < rj�. Moreover the �fj-values are not
onstant.At last, one
an observe that sn does not always produ
e the same s
hedule than bllrk .For instan
e, the operations 10

i ri di pi qi1 0 3 1 12 2 3 1 43 0 4 2 2yield two di�erent s
hedules with makespan 7.2.4 Preemptive or non-preemptive relaxation
2

0 6 9 11

3 1 4

3Figure 5: An optimal s
hedule for the non-preemptive problem with release dates.The polynomial algorithms presented in �2.2 and �2.3 o�er two means for
al
ulating a lowerbound for the earliest start time of operation 5 in Figure 1. First, we
an relax the release datesby setting r3 and r4 to 0 in order to deal with an instan
e of 1jdj ; qjjCmax. Otherwise, we
an
onsider the preemptive relaxation whi
h leads to an instan
e of 1jprmp; rj ; dj ; qj jCmax. We
anremark that the optimal makespan for both these problem is 13. 13 is also the makespan of the
orresponding instan
e of 1jrj ; dj ; qjjCmax as shown by Figure 5.What is the best relaxation to
hoose? It is not di�
ult to see that when all release dates areequal, the blo
k-s
hedule of operations in B�fi?g in �2.3 has only one blo
k. As a
onsequen
e,i? is not preempted and the
onstru
ted s
hedule has no preemptions. So, we
an
on
lude thatthe algorithm presented in �2.3 always �nds a greater makespan and then should be prefered toupdate the earliest start times.2.5 Flow-time and deadlinesIt is well known that 1jprmp; rjjPCj is polynomial [Bak74℄ but this problem be
omes NP-hardas soon as deadlines are added [DL93℄.3 Parallel ma
hine problemsIn the example presented in Figure 1, the four operations are to be s
heduled on a single ma
hine.However, the pro
ess presented in �1.3 is still valid when the prede
essors of the operationwhose earliest start time must be updated are to be s
heduled on parallel ma
hines. Hen
e,in this se
tion, the jobs (i; qi) are to be s
heduled on a ma
hine among a set of m ma
hinesM = f1; 2; � � � ;mg. As we did for single ma
hine problems, we will spe
i�
ally be interested inproblems with deadlines.The obje
tive fun
tion fmax is still very useful to model both tails and deadlines so that wewill mainly present simple extensions of existing algorithms for this
riterion.11

q1q2 q1q2q1q2 q1q2q1q2q1q2q1q2
1
2
3
4
5
6
7
8C :C � q2 < r1 < C � q1 < r2 < d2 < d1C � q2 < r1 < r2 < C � q1 < d2 < d1r1 < C � q2 < r2 < C � q1 < d2 < d1r1 < r2 < C � q2 < C � q1 < d2 < d1r1 < r2 < C � q2 < d2 < C � q1 < d1r1 < r2 < C � q2 < d2 < d1 < C � q1r1 < r2 < d2 < C � q2 < d1 < C � q1r1 < r2 < d2 < d1 < C � q2 < C � q1
C � q2 < C � q1 < r1 < r2 < d2 < d1

r1 r2 d2 d1R [D : q1q2

Figure 6: R, D, Q and C in the proof of Proposition 63.1 Unlimited number of ma
hinesSin
e it is NP-
omplete when m = 1, the non-preemptive s
heduling problem of tasks withrelease dates and deadlines on parallel ma
hines is NP-
omplete. Hen
e, we will be interested indi�erent relaxations of this problem. A
ommon idea when fa
ing a parallel ma
hine environmentis to relax the limitation on the number of ma
hines. We have then the (obvious) result :Proposition 5. The problem P1jpre
; rj jfmax
an be solved by the
riti
al path method.In shop problems, it is well known that if operation i pre
edes operation j then rj � ri + pi.These earliest start times are usually updated with Ford-Bellman's algorithm, whi
h is equivalentto the
riti
al path method. As a
onsequen
e, if we want to update the earliest start times ofan operation o by the pro
ess presented in �1.3, the
apa
ity
onstraint on the size of M mustnot be relaxed.3.2 Preemptive relaxation on unrelated ma
hinesInstead of relaxing the
apa
ity
onstraint, we
an relax the non-preemption assumption. Wehave then a polynomial problem even when the parallel ma
hines are unrelated :Proposition 6. The optimal solution of Rjprmp; rj; dj ; qj jCmax
an be
omputed in polynomialtime. 12

Proof. Let us de�ne the sets R = frj j j 2 Og, D = fdj j j 2 Og and Q = fCmax � qj j j 2 Og.If we suppose that the set R [D [Q is totally ordered, that is R [D [Q = ft1; t2; � � � ; t3ngwith t1 � t2 � � � � � t3n, we
an use the linear formulation for Rjprmp; rj; dj jCmax of [LL78℄ to
ompute the variables t(k)ij and Cmax where t(k)ij is the pro
essing time of operation i on ma
hinej within the interval [tk; tk+1℄. In other words, our problem
an be solved in polynomial timeon
e we know the total order on R[D[Q. We are going to show that there are at most O(n2)possible total orders on this set (see also Figure 6).First of all, we know that the sets R[D and Q are both totally ordered. Let us
onsider theset C = fC jC = t+ q; Cmax � q 2 Q; t 2 R [Dg. SojCj � jQj � jR [Dj 2 O(n2)Let C = f
1;
2; : : : ;
jCjg with
1 �
2 � � � � �
jCj. Let
0 = �1 and
jCj+1 = +1. For anyk � jCj, the
ondition
k � Cmax �
k+1 implies that the set R [D [Q is totally ordered. In
onsequen
e, we have at most jCj+2 possible total orders on R[D[Q. Using binary sear
h onthe values in C, the minimum Cmax whi
h gives a feasible s
hedule
an then be found by solvingat most O(log n) linear programs.This result is more a theoreti
al
omplexity result than a usable algorithm to solve theproblem. In parti
ular, it may not be used for deriving lower bounds for a shop problem in abran
h and bound s
heme. To our knowledge, there is no fast algorithm to solve this problem,even if the parallel ma
hines are identi
al or uniform � Qjprmp; ri; dij�
an be solved in O(mn3)time by redu
tion to a network �ow problem yet [FG86℄. For this reason, it may be of pra
ti
alinterest to �nd fast algorithms to
ompute lower bounds for these problems as [CP98℄ did forthe problem without deadlines P jprmp; ri; qijCmax.However, spe
ial
ases of the s
heduling problem with tails and deadlines on parallel ma
hines
an be e�
iently solved. In parti
ular, the next se
tion
onsiders that all the operations haveunit pro
essing time (pi = 1).3.3 Unit Exe
ution Time (UET) operationsWe will on
e more
onsider the obje
tive fun
tion fmax de�ned in �2.1 that
an model bothtails and deadlines. [GLLK79℄ have shown that Qjpi = 1jfmax
an be solved in O(n2) time byadapting Lawler's algorithm (�2.2). Let sj be the speed of ma
hine j and let us
onsider thetime intervals I(k; j) = [k=sj ; (k + 1)=sj ℄ for any k 2 N and any j 2M. I(k; j) will
ontain thekth operation s
heduled on ma
hine j. Obviously, there exists an optimal s
hedule
ontained inthe n intervals I(k; j) with the n smallest end times (k + 1)=sj . As for Lawler's algorithm, then operations are a�e
ted to these n intervals in reversed order : at ea
h step, the free intervalI(k; j) with the greatest end time (k + 1)=sj is allo
ated to the non-assigned operation i? thatminimizes fi((k + 1)=sj).In presen
e of release dates, the problem be
omes more di�
ult be
ause all the operations
annot be s
heduled in the n �rst time intervals. However, a variant of the algorithm presentedin �2.3 solves the problem with identi
al ma
hines P jpj = 1; rj jfmax.We now present this new algorithm. The m identi
al ma
hines are numbered from 1 to m.I(k; j) is the time interval (slot) [k; k+1[of ma
hine j. These slots are sorted in lexi
ographi
al13

i 1 2 3 4 5 6 7 8 9 10 11 12 13ri 1 3 3 3 3 3 4 4 5 6 6 6 7
1 2

3

4

5 8 10 13

6

7

9 11

12

t0 1 2 3 4 5 6 7 8 9 10

1

2

3

Figure 7: Blo
k-s
hedule of 13 UET operations on 3 ma
hinesorder, that is the su

essor of I(k; j) is :� I(k; j + 1) if j 6= mI(k + 1; 1) if j = mFor any slot I, there exist two integers k and j su
h that I = I(k; j). k and j are respe
tivelythe date and the ma
hine of slot I. The n operations are assumed to be sorted in the orderof their release dates. The following algorithm
onstru
ts a feasible (non optimal) s
hedule to
reate blo
ks of operations, that will play the same role as the blo
k-s
hedule in �2.3. In thisparallel ma
hine problem, a blo
k is de�ned as a maximum set of operations s
heduled withoutidle time in
onse
utive slots.pro
edure
reate_blo
ks(f1; � � � ; ng)beginI I(�1; 1)b 0for i 1 to n dobeginif ri > date of I then I I(ri; 1)b b+ 1Bb ;Bb Bb [figI su

essor of IendendThe s
hedule produ
ed by
reate_blo
ks is the blo
k s
hedule. Ea
h blo
k Bb is a set ofoperations to whi
h we
an asso
iate a start slot and an end slot : ea
h operation in Bb iss
heduled in one slot that is between the start slot and the end slot. Figure 7 presents a blo
ks
hedule of 13 UET operations on 3 ma
hines. This s
hedule has three blo
ks. The �rst blo
kas only one operation f1g. Its start and end slots are I(1; 1). The se
ond blo
k f2; � � � ; 9g startsat I(3; 1) and ends at I(5; 2). The last blo
k f10; � � � ; 13g starts at I(6; 1) and ends at I(7; 1).In what follows, two blo
ks will be stated as identi
al if they
ountain the same operations andhave identi
al start and end slots. With these de�nitions, we
an give a variant of Lemma 3 :14

Lemma 7. There exists an optimal solution of P jpj = 1; rj jfmax in whi
h the blo
ks are identi
alto the blo
ks of the blo
k-s
hedule.Proof. For an instan
e of P jpj = 1; rj jfmax, let us
onsider an optimal s
hedule Sopt and theblo
k s
hedule Sblo
k and assume that there exists a slot that is idle in one s
hedule and assignedin the other. Let I be the �rst of these slots. Sin
e no operation is delayed by
reate_blo
k,I is ne
essary idle in Sopt and assigned in Sblo
k. Let t be the date of I. If all the operationss
heduled after I in Sopt have a release date greater than t, the operation j assigned to the slotI in the blo
k s
hedule would also have a release date greater than t (from the de�nition of I),whi
h is a
ontradi
tion. Therefore, there exists an operation i in Sopt s
heduled after I withri � t. Job i
an be moved into idle slot I and the new s
hedule is also optimal be
ause fiis non-de
reasing. Iterating this pro
ess, an optimal s
hedule with the same blo
ks as Sblo
k isfound.We
an build an optimal s
hedule of a set S of UET operations by the following pro
edure :� if S has only one operation, s
hedule this operation at its release date� otherwise, let Bb be the blo
k(s)
omputed by the
all to the pro
edure
reate_blo
ks(S).For ea
h blo
k Bb :� let tb the date of the end slot of Bb� let i? 2 Bb that minimizes fi(tb + 1)� solve by a re
ursive
all the sub-problem with operations in Bb � fi?g� s
hedule i? in the idle slotThe proof of this algorithm is identi
al to the proof of the algorithm in �2.3. We have �nally theproperty :Proposition 8. P jpi = 1; rijfmax
an be solved in O(n2) time.The proof of Theorem 4
an easily be adapted to show that the problem P jpi = 1; ri; di; qijCmax
an be solved in O(n logn) time.Con
lusionIn this paper, we have dis
ussed s
heduling problems whose operations have both tails anddeadlines. We have presented several problems on single or parallel ma
hines that
an be solvedin polynomial time. We have shown that the obje
tive fun
tion fmax
an model both tailsand deadlines but the
omplexity of the problems
an be improved when we
onsider spe
i�
properties of the tails and deadlines. Moreover, we have shown P jpi = 1; rijfmax,
an be solvedin quadrati
 time.We plan to investigate further how to make the best use of the lower bounds presented in�1.3 in a bran
h and bound s
heme in order to solve shop s
heduling problems.15

A
knowledgements : The authors are indebted to Philippe Chrétienne for his
areful reading of theprevious versions of this paper. The work of the �rst author is partially �nan
ed by ILOG S.A., underresear
h
ontra
t ILOG/UPCM no. 980220.A Proof of Theorem 4First of all, we re
all the de�nition of �fj = rf +Pf�k<j p�k � rj where we assume that theoperations are sorted in the non de
reasing order of their release dates. Obviously, �fj =�fi + �ij for any i su
h that f � i � j. If f is the �rst operation of a blo
k B of a blo
ks
hedule, for any j 2 B, �fj � 0. Conversely, let us
onsider a set B of operations and let f 2 Bbe an operation with the smallest release date. If, for any j 2 B, �fj � 0 then it is easy to seethat the blo
k s
hedule has only one blo
k that starts at rf and ends at rf +Pk2B p�k . FromLemma 3, there is also an optimal s
hedule of B in
luded in this time interval.We are now going to prove that, for any blo
k B of the blo
k s
hedule, s
hedule_blo
kreturns an optimal s
hedule of the operations in B.A.1 Proof of
orre
tnessLet us
onsider a blo
k B of the blo
k s
hedule. Ea
h operation i of B has a pro
essing timep�i = pi and ` = Pi2B pi is the length of B. If B has only one operation f , this operation iss
heduled with no preemption at its release date : this s
hedule is optimal.We now
onsider that B has more than one operation. Let f be an operation of B with thesmallest release date and let T = rf+` be the end time of B. Let us assume that, for all blo
ks oflength ` < L, s
hedule_blo
k(f; T) produ
es an optimal s
hedule in
luded in the time interval[rf ; T ℄ and let us
onsider a blo
k B of length ` = L. In what follows, t and i? are the valuesde�ned in the des
ription of s
hedule_blo
k.- If t 6= T : s
hedule_blo
k s
hedules the operation i? between t and T . From the de�nitionof i?, T + qi? is a lower bound for the makespan of the s
hedule of B. Let us
onsider theset of operations B0 that
ontains the same operations that B with pro
essing timesp0i = � pi if i 6= i?pi? � (T � t) if i = i?For any feasible s
hedule of B, we
an build a feasible s
hedule of B0 by repla
ing T � tslots in whi
h i? is s
heduled by idle time. So the optimal makespan for B0 is less thanthe optimal makespan for B. Let us de�ne, for any j 2 B0, �0fj = rf +Pf�k<j p0k � rj.From this de�nition, if j � i?, �0fj = �fj � 0. If j > i?, �0fj = �fj � (T � t). Sin
eT � t � �fj? � �fj , �0fj � 0. So, the optimal s
hedule of B0
an be in
luded in timeinterval [rf ; t℄. Sin
e t � rf < L, s
hedule_blo
k �nds an optimal s
hedule of B0 and�nally the produ
ed s
hedule is optimal.- if t = T : sin
e pi? > 0, we ne
essarily have �fj? = 0 for some j? 2 B. Clearly, rf < rj? <T . Let us de�ne, B1 = fi 2 B j ri < rj?g and B2 = fi 2 B j ri � rj?g. B1 and B2 make a16

partition of B. From the de�nition of �fj? :rf +Xi2B1 pi = rj?rj? +Xi2B2 pi = TIn any optimal s
hedule of B in
luded in the time interval [rf ; T ℄, all the operations that arein B2 must be s
heduled in [rj? ; T ℄. Therefore, all the operations in B1 must be s
heduledin [rf ; rj? ℄. Sin
e B forms a blo
k, �fj � 0 for all j 2 B. So for any j 2 B1, �fj � 0 andfor any j 2 B2, �j?j = �fj? +�j?j = �fj � 0. Therefore the operations in B1 and in B2form ea
h one blo
k. The makespan of ea
h of these two blo
ks is of
ourse a lower boundof the makespan of the s
hedule of B. Sin
e rj? � rf < L and T � rj? < L , the produ
eds
hedule is optimal.To
on
lude, s
hedule_blo
k produ
es an optimal s
hedule for 1jprmp; rj; dj ; qjjCmax.A.2 Number of preemptionsLemma 9. A blo
k B s
heduled by s
hedule_blo
k has at most jBj � 1 preemptions.Proof. This lemma is obvious if B has only one operation. Let us suppose the lemma is valid forall B su
h that jBj < N and let us
onsider a blo
k B su
h that jBj = N . When s
hedule_blo
kis
alled :- if t = T � pi? , i? is s
heduled without premption. Then the blo
k B � fi?g is s
heduledbetween rf and t with at most (N �1)�1 preemptions. So the s
hedule has at most N �2preemptions (and of
ourse at most N � 1 preemptions).- if t = T � �fj?, only a part of i? is s
heduled, whi
h
auses one preemption. Then twonon-empty sub-blo
k B1 and B2 are s
heduled. jB1j < N and jB2j < N so the
onstru
teds
hedule has at most 1 + (jB1j � 1) + (jB2j � 1) = jBj � 1 preemptions.This result shows that, when s
heduling a blo
k B, s
hedule_blo
k is
alled O(jBj) times.We are now going to show that ea
h instru
tion of s
hedule_blo
k
an be exe
uted in O(logn)time, whi
h will show that ea
h blo
k B is s
heduled in O(jBj log n) time.A.3 Data stru
turesWe present in �A.3 two data strutures for maintaining minimum elements in dynami
 sets :- i? is an operation that minimizes fqi j i 2 A and f < ig- j? is an operation that minimizes f�fj j j 2 Bf and i? < jg17

[1,8)

[1,5) [5,8)

[1,3) [3,5) [5,7) [7,8)

[3,4) [6,7)[1,2) [2,3) [4,5) [5,6)Figure 8: The binary tree T for a set of 7 operationsBoth these stru
tures are based upon the same basi
 stru
ture, a binary tree T , whi
h isrepresented in Figure 8 for n = 7. This binary tree divides the set of operations into subsetsde�ned as follows. Ea
h node is denoted by a pair of integers [l; r) whi
h means that the subtreeof root [l; r)
overs the operations fl; l + 1; � � � ; r � 1g. In this way, the root of T is denoted by[1; n+ 1) and the leaf
orresponding to the only operation i is [i; i + 1). The left � resp. right� des
endant of node [l; r) is [l;m) � resp. [m; r) � where m = d l+r2 e. T is a binary tree withn leaves so it has at most 2n� 1 nodes.We now present how to use T to query for i? and j?. It is important to remember that then operations are numbered in the order of their release dates.A.3.1 Available operationsAt ea
h
all of the re
ursive pro
edure s
hedule_blo
k, the available operation with the shortesttail is sear
hed for (i?). We
annot use a heap stru
ture to store A be
ause of the additional
onstraint that is the operation must be in the
urrent blo
k (i? � f). It is also fruitless to
reate a heap for ea
h blo
k be
ause sub-blo
ks are
reated during the algorithm exe
ution. Sowe present an original data stru
ture based on T with the following properties :- an operation
an be inserted or removed in log(n) time;- i?
an be determined in log(n) time.At ea
h node [l; r) of T , we asso
iate an operation �[l; r) that minimizes fqi j i 2 A and l � i < rg.If this set is empty, �[l; r) = 0. By setting q0 = +1, we have the simple relation :q�[l;r) = min �q�[l;m); q�[m;r)� (1)The �[l; r)-values are initialized after that the blo
k s
hedule (that
ompletes at time T) is
omputed. The values of the n leaves are �[i; i + 1) = i if di > T and �[i; i + 1) = 0 otherwise.The O(n) inner nodes are initialized in topologi
al order with (1). So, the initialization pro
essis done in linear time. The data stru
ture also implements two update pro
edures to insert anoperation into A and to remove it from A. They are both based on (1) :pro
edure add((l; r); i) ;; A A [fig 18

beginif l = r � 1 then�[i; i+ 1) ielsem d l+r2 eif i < m then add((l;m); i) else add((m; r); i)if q�[l;m) � q�[m;r) then �[l; r) �[l;m) else �[l; r) �[m; r)endifendpro
edure remove((l; r); i) ;; A A� figbeginif l = r � 1 then�[i; i+ 1) 0elsem d l+r2 eif i < m then remove((l;m); i) else remove((m; r); i)if q�[l;m) � q�[m;r) then �[l; r) �[l;m) else �[l; r) �[m; r)endifendadd and remove are based on a di
hotomi
 sear
h. Their time
omplexity is
learly O(logn).The data stru
ture T must be able to �nd an operation i? that minimizes fqi j i 2 A and f � igin O(log n) time. We
an easily verify that the following fun
tion performs this task :fun
tion i_star((l; r); f)beginif l = r � 1 then return �[l; r)elsem d l+r2 eif f < m then i i_star((l;m); f)return i0 2 fi; �[m; r)g su
h that qi0 = min �qi; q�[m;r)�else return i_star((m; r); f)endifendA.3.2 Minimum �fjIn order to �nd j?, we de�ne, for any pair (�; �) of integers su
h that 1 � � < � � n + 1,�[�; �) = P��j<� p�j and �[�; �) = min��k<� (�[�; k)� rk). With these de�nitions, we have�fj? = rf +minj>i?(�fj � rj) = rf + �[f; i?) + �[i?; n+ 1). These values �[l; r) and �[l; r) areasso
iated at ea
h node [l; r). We have then the immediate re
urren
e relations :�[l; r) = �[l;m) + �[m; r) (2)�[l; r) = min (� (l;m) ; �[l;m) + � (m; r)) (3)On
e again, we
an initialize the �[l; r) and �[l; r) values for ea
h node of T by �rst initializingthe leaves as follows �[i; i+ 1) p�i and �[i; i+ 1) p�i � ri+1.19

All the �[l; r) and �[l; r) values in T must be updated ea
h time some p�i is de
reased. They
an be maintained in O(logn) time, as shown by this
omplete formulation of de
rease(i; Æ),also based on equations 2 and 3 :pro
edure de
rease(i; Æ)beginp�i p�i � Æde
rease_re
((1; N + 1); i; Æ)endpro
edure de
rease_re
((l; r); i; Æ)begin�[l; r) �[l; r) � Æif l = r � 1 thenif �[l; r) = 0 then �[l; r) 1else �[l; r) �[l; r)� Æelsem d l+r2 eif i < m then de
rease_re
((l;m); i; Æ)else de
rease_re
((m; r); i; Æ)�[l; r) min (�[l;m); �[l;m) + �[m; r))endifendSin
e �fj? = rf + �[f; i?) + �[i?; n + 1), we need two fun
tions able to
al
ulate for any i inthe
urrent blo
k the values �[f; i) and �[i; n+ 1). The �[f; i?)-value does not depend of j?. j?is the operation that minimizes the se
ond term �[i?; n + 1). This value does not depend of f .This de
omposition is the base of the query fun
tions.Sin
e �[f; i) = �[1; i) � �[1; f), we only present a fun
tion to
ompute �[1; i) in O(logn)time :fun
tion sigma((l; r); i)beginm d l+r2 eif m = r thenreturn �[l; r)elseif i < m then return sigma((l;m); i)else return �[l;m) + sigma((m; r); i)endifendThe fun
tion to
al
ulate �[i; n+ 1) = mu((1; n + 1); i) is quite similar. In order to shorten thealgorithm des
ription, we do not mention expli
itely how j? should be returned at the same timeas �[i; n+ 1).fun
tion mu((l; r); i)beginm d l+r2 eif m = l then 20

return �[l; r)elseif i < m then return min(mu((l;m); i); �[l;m) + �[m; r))else return �[l;m) + mu((m; r); i)endifendTherefore, we have shown the following lemma.Lemma 10. At ea
h
all of s
hedule_blo
k_re
, the tree data stru
ture T to whi
h are asso-
iated the values �[l; r), �[l; r) and �[l; r) :- is maintained in O(log(n)) time ;- �nds i? and qi? in O(logn) time ;- �nds j? and �fj? in O(log(n)) time.Moreover, the data stru
ture
an be initialized in linear time.A.4 Complexity of the algorithmWe �nish the proof of Theorem 4 by the analysis of the
omplexity of s
hedule_blo
k. Ea
hoperation is added only on
e toA so that the global
omplexity of all the exe
ution ofA A[fkgis O(n logn). From Lemma 10, it is
lear that all the other operations in s
hedule_blo
k ares
heduled in O(log n) time. For any value of i? or j?, ea
h event �t = T �pi?� and �t = T ��fj?�
an happen at most on
e : after the event �t = T � pi?�, i? is
ompletely s
heduled and notavailable anymore and after the event �t = T ��fj?�, j? be
omes the �rst operation of a new
urrent blo
k Bj? that is immediately s
heduled.Finally, this proves that 1jprmp; ri; di; qijCmax
an be solved in O(n logn) time.Referen
es[Bak74℄ K.R. Baker, Introdu
tion to sequen
ing and s
heduling, Wiley & Sons, 1974.[BLLK83℄ K.R. Baker, E.L. Lawler, J.K. Lenstra, and A.H.G. Rinnooy Kan, Preemptive s
hedul-ing of a single ma
hine to minimize maximum
ost subje
t to release dates and pre
e-den
e
onstraints, Operations Resear
h 26 (1983), 111�120.[Car82℄ J. Carlier, One ma
hine problem, European Journal of Operational Resear
h 11(1982), 42�47.[CP89℄ J. Carlier and E. Pinson, An algorithm for solving the job-shop problem, ManagementS
ien
e 35 (1989), no. 2, 164�176.[CP98℄ J. Carlier and E. Pinson, Ja
kson's pseudo-preemptive s
hedule for the Pmjri; qijCmaxs
heduling problem, Annals of Operations Resear
h 83 (1998), 41�58.21

[DL93℄ J. Du and J.Y.T. Leung, Minimizing mean �ow time with release time and deadline
onstraints, Journal of Algorithms 14 (1993), 45�68.[FG86℄ A. Federgruen and G. Groenevelt, Preemptive s
heduling of uniform ma
hines byordinary network �ow te
hniques, Management S
ien
e 32 (1986), 341�349.[GJ77℄ M.R. Garey and D.S. Johnson, Two-pro
essor s
heduling with start times and dead-lines, SIAM Journal on Computation 6 (1977), 416�426.[GLLK79℄ R.E. Graham, E.L. Lawler, J.K. Lenstra, and A.H.G. Rinnooy Kan, Optimizationand approximation in deterministi
 sequen
ing and s
heduling, Annals of Dis
reteMathemati
s 4 (1979), 287�326.[GPW97℄ V. Gordon, E. Potapneva, and F. Werner, Single ma
hine s
heduling with deadlines,release and due dates, Optimization 42 (1997), 219�244.[HP94℄ A.M.A. Hariri and C.N. Potts, Single ma
hine s
heduling with deadlines to minimizethe weighted number of tardy jobs, Management S
ien
e 40 (1994), 1712�19.[Ja
55℄ J.R. Ja
kson, S
heduling a produ
tion line to minimize manimum tardiness, Resear
hReport SPIKE-1989-2, Management S
ien
e Resear
h Proje
t, University of Califor-nia, Los Angeles, CA, 1955.[Law73℄ E.L. Lawler, Optimal sequen
ing of a single ma
hine subje
t to pre
eden
e
onstraints,Management S
ien
e 19 (1973), 544�546.[LL78℄ E.L. Lawler and J. Labetoulle, On preemptive s
heduling on unrelated paralel pro
es-sors by linear programming, Journal of the ACM 25 (1978), 612�619.[NtL98℄ W. Nuijten and C. Le Pape, Constraint-based job shop s
heduling with ilog s
hed-uler, Journal of Heuristi
s 3 (1998), 271�286.[Pin95℄ M. Pinedo, S
heduling : theory, algorithms, and systems, Prenti
e-Hall, 1995.

22

