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Sheduling with tails and deadlinesFranis SourdLIP6, Université Pierre et Marie Curie, ParisFranis.Sourd�lip6.frWim NuijtenILOG S.A., 9 rue de Verdun, 94253 Gentilly Cedexnuijten�ilog.frAbstratThis paper disusses sheduling problems of operations with tails. While tails are usuallyused in the literature to model due dates or deadlines, we show it may be interesting toonsider tails and deadlines as two di�erent things, espeially in shop problems. Then, wereview lassial one mahine and parallel mahine problems to show whih problems anbe still solved in polynomial time in presene of tails and deadlines. We show that bothdeadlines and tails an e�iently be modeled by a minimax objetive funtion fmax. Inthis way, several problems an be solved in quadrati time but, by onsidering the spei�properties of tails and deadlines and introduing spei� data strutures, we also show thatthese problems an be solved in O(n logn) time. We also show that P jpj = 1; rj jfmax anbe solved in O(n2) time.Keywords : sheduling, release dates, deadlines, due dates, tails, minimax objetive funtion,shop sheduling problem, lower bound.IntrodutionLiterature distinguishes deadlines from due dates by the fat that a deadline must absolutely bemet [Pin95℄. Hene due dates are generally assoiated with optimization riteria suh as lateness,tardiness or number of late jobs while deadlines are problem onstraints. To our knowledge, onlylittle researh e�ort was devoted to problems in whih the operations have a due date and adeadline that is they may be ompleted after their due date, but not after their deadline. In[HP94℄, the minimization of the weighted number of tardy jobs on a single mahine is studiedbut this problem is NP-omplete even without deadlines. In [GPW97℄, polynomial algorithmsfor some preemptive variants of this problem are given. Moreover, in the latter problem, someoperations have a deadline while others have a due date. Thus, giving both deadlines and duedates to operations to be sheduled appears to be an original approah, whih is shown in �1.3not to be purely theoretial. It gives powerful properties for shop problems.For the sake of lear notations, we are not going to speak of due dates anymore. These duedates will be substituted by the onept of tails whih is presented in Setion 1. Then we reviewlassial one mahine (Setion 2) and parallel mahine (Setion 3) problems to show whih ones1



an be solved in polynomial time in presene of tails and deadlines. The di�erent lasses ofproblems will be spei�ed by the well-known �j�j-notation [GLLK79℄.1 Sheduling with tails1.1 NotationsIn all the problems onsidered in this paper, a set O = f1; 2; � � � ; ng of n jobs is to be sheduledeither on a single mahine M = f1g in Setion 2 or on a set of m parallel mahine M =f1; 2; � � � ;mg in Setion 3. A job (i; qi) is de�ned as a pair made of an operation (or a task)i and a tail qi. Eah operation i has a proessing time pi. It may also have a release date riand may be preemptive or not. When the operation i ends, the job is not ompleted : someamount of work is neessary to omplete the job � for example, transportation to the ustomer.qi estimates the duration of this work. Hene, ei denotes the end time of operation i whileCi = ei + qi denotes the ompletion time of job (i; qi). When no onfusion is possible, the job(i; qi) will be simply denoted by i.The relationship between due dates and tails is well known. Let us onsider a problem inwhih eah operation has no tail but a due date di. Its lateness is by de�nition Li = ei � di.Then, if we set qi = �di, the lateness of the operation i is equal to the ompletion time of job(i; qi). As a onsequene, the problems �j�jLmax and �j�; qj jCmax are equivalent. In this paper,we are going to introdue a deadline di for eah operation i. So in order to avoid onfusion withdue dates, we will onsider only tailed jobs.1.2 CriteriaIn this setion, we show that, when sheduling with tails, the only useful optimization objetiveis the makespan. Problems with other riteria an be redued to untailed problems. Therefore,in the rest of the paper, we will onsider the minimization of the makespan, exept to reall someresults of omplexity.1.2.1 Due-date-related riteriaDue dates Dj an be introdued for tailed-jobs. So the lateness of a job j is Lj = Cj �Dj andthe maximum lateness is as usual Lmax = maxj2O Li.Proposition 1. �j�; qj jLmax and �j�; qj jCmax are equivalent.Proof. We have already shown that �j�; qj jCmax is equivalent to �j�jLmax. Let us onsider afeasible shedule of the instane of the problem �j�; qj jLmax if whih eah job has a due dateDj . We now onsider an instane of the problem �j�jLmax in whih eah operation j is given adue date Dj � qj. The lateness of j is ej � (Dj � qj) = Cj �Dj = Lj . Therefore �j�; qj jLmaxand �j�jLmax are equivalent, whih ompletes the proof.For the reasons given in the proof, �j�; qj jPwiTi and �j�; qj jPwiUi are equivalent to�j�jPwiTi and �j�jPwiUi. 2



1.2.2 Mean and weighted �ow timeThe weighted �ow time for jobs is de�ned asPiwiCi = (Pi wiei)+(Piwiqi). SinePiwiqi is aonstant, �j�; qj jPwiCi is equivalent to �j�jPwiCi. Therefore, we do not give any algorithmsfor these riteria.1.3 The importane of onsidering deadlinesModels with deadlines and tails an be helpful to �nd properties of sheduling problems withseveral mahines (shop environment). A deadline for an operation on a mahine may omefrom the problem de�nition or by dedutions resulting of the mahine saturation [CP89, NtL98℄.A tail an represent the duration of a series of operations (on non ritial mahines) and/ortransportation times.

2

2Figure 1: Operations 1, 2, 3 and 4 on the same resoure. 2 time units are required between theend of operations 3 and 4 and the start of 5.For instane, Figure 1 fouses on �ve operations of a more ompliated shop problem. Eahline of the �gure represents an operation. For example, the �rst line refers to operation 1. Itsrelease date r1 is 3, its due date d1 is 10 and its proessing time p1 is 3. Moreover, we assumethat operations 1, 2, 3 and 4 are to be sheduled on a single mahine. Finally, it is also assumedthat operation 5 must start at least 2 time units after the end of operations 3 and 4. If we setq3 = q4 = 2, operation 5 must start after max(C3; C4). Therefore, if we set q1 = q2 = �1, theoptimal solution of 1jrj ; dj ; qjjCmax for the set of operations f1; 2; 3; 4g is a lower bound on thestart time of operation 5. The reader an easily verify that the minimum makespan (with tails)of this problem is 13.Unfortunately, 1jrj ; dj ; qjjCmax is NP-omplete sine 1jrj ; dj jCmax is NP-omplete [GJ77℄.For the same reason, 1jrj ; qj jCmax is also NP-omplete but its preemptive relaxation an besolved in O(n logn) time [Car82℄. Assuming that the deadlines are relaxed in our example,operations with a tail �1 an be sheduled after all the other operations and the makespan ismin(r3; r4) + p3 + p4 +min(q3; q4) = 7. Thus, the relaxation of deadlines an lead to signi�antloss of information. The following setion presents two single mahine problems with tails anddeadlines that an be solved in polynomial time.3



2 Single mahine problemsJakson's rule [Ja55℄ that shedules �rst the operation with the smallest deadline an solve twofamous one mahine problems with deadlines : the problem without release dates and withoutpreemptions and the problem with release dates and with preemptions. We show that both theseproblems an be still solved e�iently in presene of tailed operations. The two algorithms arebased on a transformation we �rst present.2.1 Expressing tails and deadlines with a minimax objetive funtionWe present an objetive funtion fmax that models both the tail and the deadline of eah opera-tion in O. Let us onsider an operation j with a tail qj and a deadline dj , we de�ne the funtionfj : R 7�! R : t! fj(t) = � t+ qj if t � djb otherwiseb is a �big� problem-dependent onstant that an be de�ned as maxj2Ofdj + qjg. The objetivefuntion fmax is then de�ned for any feasible shedule as maxj2O fj(ej).Obviously, an optimal solution of a sheduling problem �j�; dj ; qjjCmax is also an optimalsolution of the problem �j�jfmax. Conversely, �j�; dj ; qj jCmax has no feasible solution if andonly if the optimum of �j�jfmax is b.2.2 Non-preemptive problem with preedene relationsLawler developed a simple algorithm to solve in O(n2) time the problem 1jprejfmax when thefuntions fj are non-dereasing [Law73℄. These onditions are learly satis�ed by the funtionsde�ned in � 2.1. Sine the funtions are non-dereasing and there is no release date, there existsan optimal solution without idle time. In Lawler's algorithm, the sequene of operations isonstruted in reverse order. The end time of the shedule is learly t =Pj pj (f Figure 2). Ateah step of the algorithm, the � unsheduled � operation i? that minimizes fi(t) is sheduledbetween dates t� pi? and t is set to t� pi? . This is repeated until t beomes 0.Figure 2 shows how f1, f2, f3 and f4 an be de�ned to shedule without preemption (andwithout rj) the four jobs de�ned in Figure 1. The latest end time of operations is emax =P4j=1 pj = 11, the makespan is max1�j�4 fj(ej) = e3 + q3 = 13. We an notie that theprodued shedule does not satisfy release date onstraints.If we onsider the problem without preedene onstraints, we an use the properties of ourfj funtions to improve the omplexity of the problem :Theorem 2. 1jdj ; qjjCmax an be solved in O(n logn) time.Proof. We introdue a heap A to store the operations available at date t and to �nd the operationwith the smallest tail.t Pi2O piA  ;while t > 0 dofor eah k 62 A suh that dk � t do A  A [ fkg4
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Figure 2: f1, f2, f3, f4 and an optimal shedule for operations in Figure 1
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let i? be the operation with the smallest tail in AA  A� fi?gi? sheduled between t� pi? and tt t� pi?endEah operation k is inserted only one into A and is also deleted exatly one. Both operationsrequire O(logn) time so that the time omplexity of this algorithm is O(n log n).This algorithm an be adapted in presene of a preedene graph G(O; E). At eah step,the operation k must be inserted into A only if all its suessors are sheduled. Beause of theveri�ation, the overall omplexity of the algorithm is O((n+ jEj) log n). Moreover, if we assumethat the funtions fi are ontinuous and if there are few intersetions between them, it may beinteresting to maintain dynamially the sorted list of the values f1(t); f2(t); � � � ; fn(t), whih anbe done with usual tehniques of omputational geometry. Hene, the omplexity of 1jprejfmaxis O((n+ jEj+ a) log n) where a is the number of intersetions between the fi funtions.2.3 The preemptive problem with release datesIn most sheduling problems, release dates annot be relaxed. Therefore, we are now interestedin the preemptive problem with release dates, tails and deadlines. We �rst present an algorithmdue to [BLLK83℄ that solves 1jprmp; pre; rj jfmax in O(n2) time. It will be alled bllrk in thispaper. The transformation in �2.1 an also be used to solve our problem with tails and deadlinesbut we show that the problem 1jprmp; rj; dj ; qj jCmax is solved in O(n log n) time.The exeution of the algorithm of bllrk for an instane of 6 operations is illustrated inFigure 3. This algorithm �rst shedules, without preemptions, the operations in the order oftheir release dates ri (step 1). This shedule, that we will all the blok shedule, onsists ofdi�erent bloks of operations (a blok is a maximum set of operations sheduled onseutivelywithout idle time). The next step of the algorithm reorganizes the exeution of operations withineah blok (with preemption allowed). Assuming that two bloks are idential if and only if theyhave idential start time and end time and ontain the same operations, the following lemma issatis�ed :Lemma 3 ([BLLK83℄). There exists an optimal solution of 1jprmp; pre; rj jfmax whose bloksare idential to the bloks of the blok-shedule.Eah blok B of the blok-shedule is rearranged as follows :- if the blok ontains only one operation, it is not rearranged ;- let s and t be respetively the start and end time of B and let i? be an operation in B,with no suessor in B, that minimizes fi(t).� use a reursive all to �nd an optimaol shedule Si? for the instane restrited to theoperations in Bnfi?g ;� shedule i? within the idle periods of Si? .6
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In order to solve a problem with n operations, the blok shedule is onstruted in linear timeand, for eah blok B (with nB operations), the operation i? is sheduled in O(nB) time onethe idle intervals are omputed by the reursive all. As a onsequene, the time omplexity ofthe algorithm is O(n2). It is also easy to prove that the solution found by this algorithm has atmost n � 1 preemptions. The optimality of the algorithm is proved by observing that for eahblok that ends at date t, fi?(t) is a lower bound for the minimum fmax. In the reurrene,only sub-problems of the initial problem are onsidered so that all the fi?(t) values omputed ateah step are lower bounds. Sine the onstruted shedule is feasible, the maximum fi?(t) valuefound during the algorithm is the optimal solution value.Exploiting the speial properties of the fi funtions and using more elaborated strutures,we reated an algorithm � alled sn � that improves the omplexity of the problem with tailsand deadlines.Theorem 4. The algorithm sn solves 1jprmp; rj; dj ; qj jCmax in O(n logn) time.The desription of sn requires additional notations that we introdue by illustrating itsexeution on one instane (Figure 4). First of all, we assume without loss of generality that theoperations are sorted in non-dereasing order of their release dates. Hene, i � j implies ri � rj.If two operations i and j are sheduled in the same blok B of the blok shedule, any operationk suh that i � k < j is in B. For example, in Figure 3-(1), the two bloks are f1; 2; 3; 4g andf5; 6g. In the same way as bllrk , the bloks of the shedule provided by sn will be the sameas the bloks of the blok shedule.The bloks of the blok shedule are reorganized suessively in reverse order and the opera-tions in eah blok are also sheduled in reverse order. Figure 4 shows how the blok f1; 2; 3; 4g(see Figure 3) is sheduled by sn . The blok f5; 6g is assumed to have already been sheduledby sn . Let S� be the blok shedule of the unsheduled operations and let T be the end timeof S�. Note that S� may violate the deadlines onstraints. In the example, Fig. 3(1) representsS�, T = 13 and operation 4 ends after its deadline d4 = 11. p+i is the proessed time of i after T� ie the part of i that has already been sheduled � and p�i = pi � p+i denotes the proessingtime of i before T � ie the part of i that has not been sheduled yet. Let f be the operation withthe greatest release date suh that rf +Pi�f p�i = T . Suh a f exists sine the �rst operation ofthe last blok of S� satis�es this equality. Obviously, all the unsheduled parts of the operationsi � f must be sheduled between rf and T and no other operation an be sheduled in this timeinterval. The set of operations Bf = fi � f jp�i > 0g will be alled the urrent blok. In theexample, at T = 13, f = 1 and the urrent blok is f1; 2; 3; 4g. Then sn selets the operationi? 2 Bf with the smallest tail among the available operations A = fi j ri < T � dig = 1; 2. It�nds i? = 1. Finally, the algorithm determines whih �length� of i? must be sheduled. We anindeed notie that if 4 time units of operation 1 are sheduled in time interval [9; 13℄, operations3 and 4 annot be sheduled any more. In order to avoid to reah suh a deadlok, we willintrodue for eah operation j 2 Bf the value �fj = rf +Pf�k<j p�k � rj , whih is the di�er-ene between the start time of j in S� and its release date. In Fig. 4-(2), we an observe thateah time one time unit of i? is sheduled, the �fj-values are dereased by one for all j > i?.Therefore, in Fig. 4-(3), one 3 time units of operation 1 are sheduled, �13 = 0. It means thatr1 + p�1 + p�2 = r3 and r3 + p�3 + p�4 = T . So f3; 4g beomes the urrent blok (Fig. 4-(4)).8
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The sheduling rule of sn may be formulated as follows : Shedule in reverse order an availablejob of the urrent blok whih has the smallest tail until one of the two events is met :1. the operation is ompletely sheduled ;2. one of the �fj beomes 0.We now give a more formal desription of sn . As in the algorithm for the fmax objetivefuntion, the blok shedule is �rst onstruted. Then the proedure shedule_blok is alled foreah blok B of the blok shedule in dereasing order of their start time. f is the operation withthe smallest release date in the blok (B = Bf ). The end time T of B is equal to rf +Pi2B p�i .proedure shedule_blok(f; T )beginif T > rf thenbeginfor eah k 62 A and dk � T do A  A [ fkgQ(f;A) fi j i 2 A and rf � rigif Q(f;A) is empty then there is no feasible shedule elselet i? be an operation of Q(f;A) with a minimum taillet j? be an operation that minimizes f�fj j p�j > 0 and ri? < rjgt max�T � p�i? ; T ��fj?	let i? be the operation sheduled in time interval [t; T [derease(i?; T � t)ase t ofT � p�i? : A  A� fi?gshedule_blok(f; t)T ��fj? : shedule_blok(j?; t)shedule_blok(f; rj?)endendifendThe proedure derease(i; Æ) will be desribed later. It dereases the proessing time of i by Æ(ie : p�i  p�i � Æ). Then it updates the data struture to alulate the values �ij.The omplete proof of the validity and of the time omplexity of Theorem 4 is quite longbeause it requires the introdution of spei� data strutures. For this reason, it is given inappendix at the end of the paper. Here we only present a sketh of this proof.The proof of validity is based upon the fat that shedule_blok provides a feasible shedulewhose makespan is a lower bound for the problem. The onstruted shedule is shown to haveat most n � 1 preemptions. Two data strutures are then presented to ompute i? and j? inO(log n) time. Both these strutures are also updated in O(log n) time. That eventually provesthat shedule_blok solves the problem in O(n log n) time.We annot use the traditional heap data struture to �nd i? and j? beause of the additionalonstraints �rf � ri� and �ri? < rj�. Moreover the �fj-values are not onstant.At last, one an observe that sn does not always produe the same shedule than bllrk .For instane, the operations 10



i ri di pi qi1 0 3 1 12 2 3 1 43 0 4 2 2yield two di�erent shedules with makespan 7.2.4 Preemptive or non-preemptive relaxation
2
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3Figure 5: An optimal shedule for the non-preemptive problem with release dates.The polynomial algorithms presented in �2.2 and �2.3 o�er two means for alulating a lowerbound for the earliest start time of operation 5 in Figure 1. First, we an relax the release datesby setting r3 and r4 to 0 in order to deal with an instane of 1jdj ; qjjCmax. Otherwise, we anonsider the preemptive relaxation whih leads to an instane of 1jprmp; rj ; dj ; qj jCmax. We anremark that the optimal makespan for both these problem is 13. 13 is also the makespan of theorresponding instane of 1jrj ; dj ; qjjCmax as shown by Figure 5.What is the best relaxation to hoose? It is not di�ult to see that when all release dates areequal, the blok-shedule of operations in B�fi?g in �2.3 has only one blok. As a onsequene,i? is not preempted and the onstruted shedule has no preemptions. So, we an onlude thatthe algorithm presented in �2.3 always �nds a greater makespan and then should be prefered toupdate the earliest start times.2.5 Flow-time and deadlinesIt is well known that 1jprmp; rjjPCj is polynomial [Bak74℄ but this problem beomes NP-hardas soon as deadlines are added [DL93℄.3 Parallel mahine problemsIn the example presented in Figure 1, the four operations are to be sheduled on a single mahine.However, the proess presented in �1.3 is still valid when the predeessors of the operationwhose earliest start time must be updated are to be sheduled on parallel mahines. Hene,in this setion, the jobs (i; qi) are to be sheduled on a mahine among a set of m mahinesM = f1; 2; � � � ;mg. As we did for single mahine problems, we will spei�ally be interested inproblems with deadlines.The objetive funtion fmax is still very useful to model both tails and deadlines so that wewill mainly present simple extensions of existing algorithms for this riterion.11
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r1 r2 d2 d1R [ D : q1q2

Figure 6: R, D, Q and C in the proof of Proposition 63.1 Unlimited number of mahinesSine it is NP-omplete when m = 1, the non-preemptive sheduling problem of tasks withrelease dates and deadlines on parallel mahines is NP-omplete. Hene, we will be interested indi�erent relaxations of this problem. A ommon idea when faing a parallel mahine environmentis to relax the limitation on the number of mahines. We have then the (obvious) result :Proposition 5. The problem P1jpre; rj jfmax an be solved by the ritial path method.In shop problems, it is well known that if operation i preedes operation j then rj � ri + pi.These earliest start times are usually updated with Ford-Bellman's algorithm, whih is equivalentto the ritial path method. As a onsequene, if we want to update the earliest start times ofan operation o by the proess presented in �1.3, the apaity onstraint on the size of M mustnot be relaxed.3.2 Preemptive relaxation on unrelated mahinesInstead of relaxing the apaity onstraint, we an relax the non-preemption assumption. Wehave then a polynomial problem even when the parallel mahines are unrelated :Proposition 6. The optimal solution of Rjprmp; rj; dj ; qj jCmax an be omputed in polynomialtime. 12



Proof. Let us de�ne the sets R = frj j j 2 Og, D = fdj j j 2 Og and Q = fCmax � qj j j 2 Og.If we suppose that the set R [ D [ Q is totally ordered, that is R [ D [ Q = ft1; t2; � � � ; t3ngwith t1 � t2 � � � � � t3n, we an use the linear formulation for Rjprmp; rj; dj jCmax of [LL78℄ toompute the variables t(k)ij and Cmax where t(k)ij is the proessing time of operation i on mahinej within the interval [tk; tk+1℄. In other words, our problem an be solved in polynomial timeone we know the total order on R[D[Q. We are going to show that there are at most O(n2)possible total orders on this set (see also Figure 6).First of all, we know that the sets R[D and Q are both totally ordered. Let us onsider theset C = fC jC = t+ q; Cmax � q 2 Q; t 2 R [Dg. SojCj � jQj � jR [ Dj 2 O(n2)Let C = f1; 2; : : : ; jCjg with 1 � 2 � � � � � jCj. Let 0 = �1 and jCj+1 = +1. For anyk � jCj, the ondition k � Cmax � k+1 implies that the set R [ D [ Q is totally ordered. Inonsequene, we have at most jCj+2 possible total orders on R[D[Q. Using binary searh onthe values in C, the minimum Cmax whih gives a feasible shedule an then be found by solvingat most O(log n) linear programs.This result is more a theoretial omplexity result than a usable algorithm to solve theproblem. In partiular, it may not be used for deriving lower bounds for a shop problem in abranh and bound sheme. To our knowledge, there is no fast algorithm to solve this problem,even if the parallel mahines are idential or uniform � Qjprmp; ri; dij� an be solved in O(mn3)time by redution to a network �ow problem yet [FG86℄. For this reason, it may be of pratialinterest to �nd fast algorithms to ompute lower bounds for these problems as [CP98℄ did forthe problem without deadlines P jprmp; ri; qijCmax.However, speial ases of the sheduling problem with tails and deadlines on parallel mahinesan be e�iently solved. In partiular, the next setion onsiders that all the operations haveunit proessing time (pi = 1).3.3 Unit Exeution Time (UET) operationsWe will one more onsider the objetive funtion fmax de�ned in �2.1 that an model bothtails and deadlines. [GLLK79℄ have shown that Qjpi = 1jfmax an be solved in O(n2) time byadapting Lawler's algorithm (�2.2). Let sj be the speed of mahine j and let us onsider thetime intervals I(k; j) = [k=sj ; (k + 1)=sj ℄ for any k 2 N and any j 2M. I(k; j) will ontain thekth operation sheduled on mahine j. Obviously, there exists an optimal shedule ontained inthe n intervals I(k; j) with the n smallest end times (k + 1)=sj . As for Lawler's algorithm, then operations are a�eted to these n intervals in reversed order : at eah step, the free intervalI(k; j) with the greatest end time (k + 1)=sj is alloated to the non-assigned operation i? thatminimizes fi((k + 1)=sj).In presene of release dates, the problem beomes more di�ult beause all the operationsannot be sheduled in the n �rst time intervals. However, a variant of the algorithm presentedin �2.3 solves the problem with idential mahines P jpj = 1; rj jfmax.We now present this new algorithm. The m idential mahines are numbered from 1 to m.I(k; j) is the time interval (slot) [k; k+1[ of mahine j. These slots are sorted in lexiographial13
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Figure 7: Blok-shedule of 13 UET operations on 3 mahinesorder, that is the suessor of I(k; j) is :� I(k; j + 1) if j 6= mI(k + 1; 1) if j = mFor any slot I, there exist two integers k and j suh that I = I(k; j). k and j are respetivelythe date and the mahine of slot I. The n operations are assumed to be sorted in the orderof their release dates. The following algorithm onstruts a feasible (non optimal) shedule toreate bloks of operations, that will play the same role as the blok-shedule in �2.3. In thisparallel mahine problem, a blok is de�ned as a maximum set of operations sheduled withoutidle time in onseutive slots.proedure reate_bloks(f1; � � � ; ng)beginI  I(�1; 1)b 0for i 1 to n dobeginif ri > date of I then I  I(ri; 1)b b+ 1Bb  ;Bb  Bb [ figI  suessor of IendendThe shedule produed by reate_bloks is the blok shedule. Eah blok Bb is a set ofoperations to whih we an assoiate a start slot and an end slot : eah operation in Bb issheduled in one slot that is between the start slot and the end slot. Figure 7 presents a blokshedule of 13 UET operations on 3 mahines. This shedule has three bloks. The �rst blokas only one operation f1g. Its start and end slots are I(1; 1). The seond blok f2; � � � ; 9g startsat I(3; 1) and ends at I(5; 2). The last blok f10; � � � ; 13g starts at I(6; 1) and ends at I(7; 1).In what follows, two bloks will be stated as idential if they ountain the same operations andhave idential start and end slots. With these de�nitions, we an give a variant of Lemma 3 :14



Lemma 7. There exists an optimal solution of P jpj = 1; rj jfmax in whih the bloks are identialto the bloks of the blok-shedule.Proof. For an instane of P jpj = 1; rj jfmax, let us onsider an optimal shedule Sopt and theblok shedule Sblok and assume that there exists a slot that is idle in one shedule and assignedin the other. Let I be the �rst of these slots. Sine no operation is delayed by reate_blok,I is neessary idle in Sopt and assigned in Sblok. Let t be the date of I. If all the operationssheduled after I in Sopt have a release date greater than t, the operation j assigned to the slotI in the blok shedule would also have a release date greater than t (from the de�nition of I),whih is a ontradition. Therefore, there exists an operation i in Sopt sheduled after I withri � t. Job i an be moved into idle slot I and the new shedule is also optimal beause fiis non-dereasing. Iterating this proess, an optimal shedule with the same bloks as Sblok isfound.We an build an optimal shedule of a set S of UET operations by the following proedure :� if S has only one operation, shedule this operation at its release date� otherwise, let Bb be the blok(s) omputed by the all to the proedure reate_bloks(S).For eah blok Bb :� let tb the date of the end slot of Bb� let i? 2 Bb that minimizes fi(tb + 1)� solve by a reursive all the sub-problem with operations in Bb � fi?g� shedule i? in the idle slotThe proof of this algorithm is idential to the proof of the algorithm in �2.3. We have �nally theproperty :Proposition 8. P jpi = 1; rijfmax an be solved in O(n2) time.The proof of Theorem 4 an easily be adapted to show that the problem P jpi = 1; ri; di; qijCmaxan be solved in O(n logn) time.ConlusionIn this paper, we have disussed sheduling problems whose operations have both tails anddeadlines. We have presented several problems on single or parallel mahines that an be solvedin polynomial time. We have shown that the objetive funtion fmax an model both tailsand deadlines but the omplexity of the problems an be improved when we onsider spei�properties of the tails and deadlines. Moreover, we have shown P jpi = 1; rijfmax, an be solvedin quadrati time.We plan to investigate further how to make the best use of the lower bounds presented in�1.3 in a branh and bound sheme in order to solve shop sheduling problems.15



Aknowledgements : The authors are indebted to Philippe Chrétienne for his areful reading of theprevious versions of this paper. The work of the �rst author is partially �naned by ILOG S.A., underresearh ontrat ILOG/UPCM no. 980220.A Proof of Theorem 4First of all, we reall the de�nition of �fj = rf +Pf�k<j p�k � rj where we assume that theoperations are sorted in the non dereasing order of their release dates. Obviously, �fj =�fi + �ij for any i suh that f � i � j. If f is the �rst operation of a blok B of a blokshedule, for any j 2 B, �fj � 0. Conversely, let us onsider a set B of operations and let f 2 Bbe an operation with the smallest release date. If, for any j 2 B, �fj � 0 then it is easy to seethat the blok shedule has only one blok that starts at rf and ends at rf +Pk2B p�k . FromLemma 3, there is also an optimal shedule of B inluded in this time interval.We are now going to prove that, for any blok B of the blok shedule, shedule_blokreturns an optimal shedule of the operations in B.A.1 Proof of orretnessLet us onsider a blok B of the blok shedule. Eah operation i of B has a proessing timep�i = pi and ` = Pi2B pi is the length of B. If B has only one operation f , this operation issheduled with no preemption at its release date : this shedule is optimal.We now onsider that B has more than one operation. Let f be an operation of B with thesmallest release date and let T = rf+` be the end time of B. Let us assume that, for all bloks oflength ` < L, shedule_blok(f; T ) produes an optimal shedule inluded in the time interval[rf ; T ℄ and let us onsider a blok B of length ` = L. In what follows, t and i? are the valuesde�ned in the desription of shedule_blok.- If t 6= T : shedule_blok shedules the operation i? between t and T . From the de�nitionof i?, T + qi? is a lower bound for the makespan of the shedule of B. Let us onsider theset of operations B0 that ontains the same operations that B with proessing timesp0i = � pi if i 6= i?pi? � (T � t) if i = i?For any feasible shedule of B, we an build a feasible shedule of B0 by replaing T � tslots in whih i? is sheduled by idle time. So the optimal makespan for B0 is less thanthe optimal makespan for B. Let us de�ne, for any j 2 B0, �0fj = rf +Pf�k<j p0k � rj.From this de�nition, if j � i?, �0fj = �fj � 0. If j > i?, �0fj = �fj � (T � t). SineT � t � �fj? � �fj , �0fj � 0. So, the optimal shedule of B0 an be inluded in timeinterval [rf ; t℄. Sine t � rf < L, shedule_blok �nds an optimal shedule of B0 and�nally the produed shedule is optimal.- if t = T : sine pi? > 0, we neessarily have �fj? = 0 for some j? 2 B. Clearly, rf < rj? <T . Let us de�ne, B1 = fi 2 B j ri < rj?g and B2 = fi 2 B j ri � rj?g. B1 and B2 make a16



partition of B. From the de�nition of �fj? :rf +Xi2B1 pi = rj?rj? +Xi2B2 pi = TIn any optimal shedule of B inluded in the time interval [rf ; T ℄, all the operations that arein B2 must be sheduled in [rj? ; T ℄. Therefore, all the operations in B1 must be sheduledin [rf ; rj? ℄. Sine B forms a blok, �fj � 0 for all j 2 B. So for any j 2 B1, �fj � 0 andfor any j 2 B2, �j?j = �fj? +�j?j = �fj � 0. Therefore the operations in B1 and in B2form eah one blok. The makespan of eah of these two bloks is of ourse a lower boundof the makespan of the shedule of B. Sine rj? � rf < L and T � rj? < L , the produedshedule is optimal.To onlude, shedule_blok produes an optimal shedule for 1jprmp; rj; dj ; qjjCmax.A.2 Number of preemptionsLemma 9. A blok B sheduled by shedule_blok has at most jBj � 1 preemptions.Proof. This lemma is obvious if B has only one operation. Let us suppose the lemma is valid forall B suh that jBj < N and let us onsider a blok B suh that jBj = N . When shedule_blokis alled :- if t = T � pi? , i? is sheduled without premption. Then the blok B � fi?g is sheduledbetween rf and t with at most (N �1)�1 preemptions. So the shedule has at most N �2preemptions (and of ourse at most N � 1 preemptions).- if t = T � �fj?, only a part of i? is sheduled, whih auses one preemption. Then twonon-empty sub-blok B1 and B2 are sheduled. jB1j < N and jB2j < N so the onstrutedshedule has at most 1 + (jB1j � 1) + (jB2j � 1) = jBj � 1 preemptions.This result shows that, when sheduling a blok B, shedule_blok is alled O(jBj) times.We are now going to show that eah instrution of shedule_blok an be exeuted in O(logn)time, whih will show that eah blok B is sheduled in O(jBj log n) time.A.3 Data struturesWe present in �A.3 two data strutures for maintaining minimum elements in dynami sets :- i? is an operation that minimizes fqi j i 2 A and f < ig- j? is an operation that minimizes f�fj j j 2 Bf and i? < jg17
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[3,4) [6,7)[1,2) [2,3) [4,5) [5,6)Figure 8: The binary tree T for a set of 7 operationsBoth these strutures are based upon the same basi struture, a binary tree T , whih isrepresented in Figure 8 for n = 7. This binary tree divides the set of operations into subsetsde�ned as follows. Eah node is denoted by a pair of integers [l; r) whih means that the subtreeof root [l; r) overs the operations fl; l + 1; � � � ; r � 1g. In this way, the root of T is denoted by[1; n+ 1) and the leaf orresponding to the only operation i is [i; i + 1). The left � resp. right� desendant of node [l; r) is [l;m) � resp. [m; r) � where m = d l+r2 e. T is a binary tree withn leaves so it has at most 2n� 1 nodes.We now present how to use T to query for i? and j?. It is important to remember that then operations are numbered in the order of their release dates.A.3.1 Available operationsAt eah all of the reursive proedure shedule_blok, the available operation with the shortesttail is searhed for (i?). We annot use a heap struture to store A beause of the additionalonstraint that is the operation must be in the urrent blok (i? � f). It is also fruitless toreate a heap for eah blok beause sub-bloks are reated during the algorithm exeution. Sowe present an original data struture based on T with the following properties :- an operation an be inserted or removed in log(n) time;- i? an be determined in log(n) time.At eah node [l; r) of T , we assoiate an operation �[l; r) that minimizes fqi j i 2 A and l � i < rg.If this set is empty, �[l; r) = 0. By setting q0 = +1, we have the simple relation :q�[l;r) = min �q�[l;m); q�[m;r)� (1)The �[l; r)-values are initialized after that the blok shedule (that ompletes at time T ) isomputed. The values of the n leaves are �[i; i + 1) = i if di > T and �[i; i + 1) = 0 otherwise.The O(n) inner nodes are initialized in topologial order with (1). So, the initialization proessis done in linear time. The data struture also implements two update proedures to insert anoperation into A and to remove it from A. They are both based on (1) :proedure add((l; r); i) ;; A  A [ fig 18



beginif l = r � 1 then�[i; i+ 1) ielsem d l+r2 eif i < m then add((l;m); i) else add((m; r); i)if q�[l;m) � q�[m;r) then �[l; r) �[l;m) else �[l; r) �[m; r)endifendproedure remove((l; r); i) ;; A  A� figbeginif l = r � 1 then�[i; i+ 1) 0elsem d l+r2 eif i < m then remove((l;m); i) else remove((m; r); i)if q�[l;m) � q�[m;r) then �[l; r) �[l;m) else �[l; r) �[m; r)endifendadd and remove are based on a dihotomi searh. Their time omplexity is learly O(logn).The data struture T must be able to �nd an operation i? that minimizes fqi j i 2 A and f � igin O(log n) time. We an easily verify that the following funtion performs this task :funtion i_star((l; r); f)beginif l = r � 1 then return �[l; r)elsem d l+r2 eif f < m then i i_star((l;m); f)return i0 2 fi; �[m; r)g suh that qi0 = min �qi; q�[m;r)�else return i_star((m; r); f)endifendA.3.2 Minimum �fjIn order to �nd j?, we de�ne, for any pair (�; �) of integers suh that 1 � � < � � n + 1,�[�; �) = P��j<� p�j and �[�; �) = min��k<� (�[�; k)� rk). With these de�nitions, we have�fj? = rf +minj>i?(�fj � rj) = rf + �[f; i?) + �[i?; n+ 1). These values �[l; r) and �[l; r) areassoiated at eah node [l; r). We have then the immediate reurrene relations :�[l; r) = �[l;m) + �[m; r) (2)�[l; r) = min (� (l;m) ; �[l;m) + � (m; r)) (3)One again, we an initialize the �[l; r) and �[l; r) values for eah node of T by �rst initializingthe leaves as follows �[i; i+ 1) p�i and �[i; i+ 1) p�i � ri+1.19



All the �[l; r) and �[l; r) values in T must be updated eah time some p�i is dereased. Theyan be maintained in O(logn) time, as shown by this omplete formulation of derease(i; Æ),also based on equations 2 and 3 :proedure derease(i; Æ)beginp�i  p�i � Æderease_re((1; N + 1); i; Æ)endproedure derease_re((l; r); i; Æ)begin�[l; r) �[l; r) � Æif l = r � 1 thenif �[l; r) = 0 then �[l; r) 1else �[l; r) �[l; r)� Æelsem d l+r2 eif i < m then derease_re((l;m); i; Æ)else derease_re((m; r); i; Æ)�[l; r) min (�[l;m); �[l;m) + �[m; r))endifendSine �fj? = rf + �[f; i?) + �[i?; n + 1), we need two funtions able to alulate for any i inthe urrent blok the values �[f; i) and �[i; n+ 1). The �[f; i?)-value does not depend of j?. j?is the operation that minimizes the seond term �[i?; n + 1). This value does not depend of f .This deomposition is the base of the query funtions.Sine �[f; i) = �[1; i) � �[1; f), we only present a funtion to ompute �[1; i) in O(logn)time :funtion sigma((l; r); i)beginm d l+r2 eif m = r thenreturn �[l; r)elseif i < m then return sigma((l;m); i)else return �[l;m) + sigma((m; r); i)endifendThe funtion to alulate �[i; n+ 1) = mu((1; n + 1); i) is quite similar. In order to shorten thealgorithm desription, we do not mention expliitely how j? should be returned at the same timeas �[i; n+ 1).funtion mu((l; r); i)beginm d l+r2 eif m = l then 20



return �[l; r)elseif i < m then return min(mu((l;m); i); �[l;m) + �[m; r))else return �[l;m) + mu((m; r); i)endifendTherefore, we have shown the following lemma.Lemma 10. At eah all of shedule_blok_re, the tree data struture T to whih are asso-iated the values �[l; r), �[l; r) and �[l; r) :- is maintained in O(log(n)) time ;- �nds i? and qi? in O(logn) time ;- �nds j? and �fj? in O(log(n)) time.Moreover, the data struture an be initialized in linear time.A.4 Complexity of the algorithmWe �nish the proof of Theorem 4 by the analysis of the omplexity of shedule_blok. Eahoperation is added only one toA so that the global omplexity of all the exeution ofA  A[fkgis O(n logn). From Lemma 10, it is lear that all the other operations in shedule_blok aresheduled in O(log n) time. For any value of i? or j?, eah event �t = T �pi?� and �t = T ��fj?�an happen at most one : after the event �t = T � pi?�, i? is ompletely sheduled and notavailable anymore and after the event �t = T ��fj?�, j? beomes the �rst operation of a newurrent blok Bj? that is immediately sheduled.Finally, this proves that 1jprmp; ri; di; qijCmax an be solved in O(n logn) time.Referenes[Bak74℄ K.R. Baker, Introdution to sequening and sheduling, Wiley & Sons, 1974.[BLLK83℄ K.R. Baker, E.L. Lawler, J.K. Lenstra, and A.H.G. Rinnooy Kan, Preemptive shedul-ing of a single mahine to minimize maximum ost subjet to release dates and pree-dene onstraints, Operations Researh 26 (1983), 111�120.[Car82℄ J. Carlier, One mahine problem, European Journal of Operational Researh 11(1982), 42�47.[CP89℄ J. Carlier and E. Pinson, An algorithm for solving the job-shop problem, ManagementSiene 35 (1989), no. 2, 164�176.[CP98℄ J. Carlier and E. Pinson, Jakson's pseudo-preemptive shedule for the Pmjri; qijCmaxsheduling problem, Annals of Operations Researh 83 (1998), 41�58.21
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