
HAL Id: hal-02548260
https://hal.science/hal-02548260

Submitted on 20 Apr 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Observation of Distributed Computations: a Reflective
Approach for CORBA

Lionel Seinturier, Laurence Duchien

To cite this version:
Lionel Seinturier, Laurence Duchien. Observation of Distributed Computations: a Reflective Approach
for CORBA. [Research Report] lip6.1999.028, LIP6. 1999. �hal-02548260�

https://hal.science/hal-02548260
https://hal.archives-ouvertes.fr

Observation of Distributed Computations: a ReectiveApproach for CORBALionel Seinturier� - Laurence Duchien��� Univ. Paris 6, Lab. LIP6, 4 place Jussieu, 75252 Paris cedex 05, France�� CEDRIC-CNAM, 292 rue Saint-Martin, 75141 Paris cedex 03, FranceLionel.Seinturier@lip6.fr, Laurence.Duchien@cnam.frAbstractThis document describes some reective programming techniques to observe a distributedcomputation in a CORBA environment. First, we propose a new order relation to translatecausal dependencies in a distributed program. We generalize Lamport's Happened before rela-tion de�ned for message passing applications, to an object causal relation between distributedevents in an environment with synchronous and asynchronous method calls, method synchro-nizations and variable sharings. Second, we propose a reective approach to observe thisrelation. Finally, a tool is provided to display the causal dependencies graph of a distributedrun.Key Words: Causality, CORBA, Reection, OpenJava, Observation.1 IntroductionWith numerous entities distributed over a network, cooperative systems and applications writtenwith CORBA [OMG98] are quite complex and often generate a high volume of communication,numerous concurrent activities, and complex synchronization schemes. Programmers have tomaster many di�erent software techniques and the design, the development, the debug and theobservation of these applications become more and mode complex.In this document, we focus our attention on the observation of distributed runs in CORBAenvironments. Like in most existing studies, we do not assume that the system provides a globalclock or some perfectly synchronized local clocks. Hence, the observation of a run requires someadditional techniques to order distributed events. The partially ordered set approach used byLamport's Happened before relation provides a good solution for such a work. Based on this, nu-merous studies [LMC87][MC88][CL85][SM92][ACGS91] addressed the issue of the observation ofconsistent global states. Nevertheless, this relation mainly translates dependencies that are gen-erated by asynchronous communications. First, we can argue that environments such as CORBArather use synchronous communication schemes. Second, many other sources of dependencies ex-ist in distributed applications. For instance, the synchronization of concurrent methods introducesome dependencies that are not captured by the Happened before relation. In this document, wepresent an order relation called the object causal order. Its goal is to capture, not only communi-cation dependencies, but also synchronization dependencies, dependencies generated by dynamiccreations of threads, and transactional dependencies.This document extends previous works [PDFS95, DJ99], and proposes a reective approach toobserve the object causal order. [PDFS95] addressed this issue for the GUIDE [BBB+91] language.[DJ99] was a �rst study for CORBA/Java environments. This paper addresses the reective partof this work. Our target environment is based on the free CORBA ORB JacORB [Bro97], andon the OpenJava [TC98] reective language. OpenJava is an extension of the Java language that1

provides features (i.e. metaclasses) to introspect and to rede�ne the default semantics of a Javaprogram. We use it to transparently add some code to observe the object causal order.The document is divided as follows. Section 2 presents the background and the context ofour study. Section 3 de�nes the object causal order. Next, Section 4 gives the architecture ofour tool. Section 5 briey presents the stamping algorithm and the graphs that are generated.Finally, Section 6 presents our conclusions and some directions for future works.2 Background2.1 Order relationsThe �eld of order relations for distributed computations has been thoroughly studied. In [Lam78],Lamport introduces a model of sequential processes communicating by asynchronous point-to-point messages. The Happened before relation translates causal dependencies in such a model. Itis used for instance, for check-pointing, replaying or debugging distributed computations.Given a set E of local, send and receive events, the Happened before order relation, denotedby !, is the smallest transitive1 relation satisfying:� if a and b are events in the same process, and a was executed before b, then a! b,� if a is a send event by one process and b is the corresponding receive event by anotherprocess, then a! b.The notions of concurrent events and of consistent cuts can be de�ned according to this relation(the reader should refer, for instance, to [SM92] for more details). Most of the existing techniquesto compute causal dependencies and consistent cuts use vector stamps [Fid88][Mat88].2.2 CORBACORBA [OMG98], the standard Object Request Broker (ORB) from the OMG, proposes an archi-tecture that enables objects to transparently make and receive requests and replies in a distributedobject environment. It provides asynchronous (oneway) and synchronous remote method invoca-tions on objects via the ORB. Each object owns an interface described in the Interface DescriptionLanguage (IDL) and can be implemented in di�erent languages. On the object server side, theObject Adapter (OA) performs two tasks: (1) it dispatches the incoming method calls to theirserver objects and, (2) it provides several object activation policies that modify the way methodsare executed. For instance, multiple active objects can share the same servant, or only one objectat a time can be active on one servant, or each method invocation may be executed by a separateservant.Few CORBA environments o�er tools to correctly observe distributed computations. Projectssuch as MAScOTTE [MAS97], products such as IONA's OrbixOTM management services [Ion98]and Inprise's AppCenter [Inp99], or protocol analyzers such as [Tre99], propose some features toobserve requests and replies of remote method. GoodeWatch [GMG99] provides mechanisms tograb events occuring at the ORB level. Our tool goes a step further and, not only grabs ORBrelated events, but also provides a smart display through the detections of causal dependenciesbetween these events. As far as we know, none of the above mentioned tools perform such a work.2.3 ReectionP. Maes in [Mae87], de�nes reection as the ability of a system "to reason and to act upon itself".Reective programming languages such as CLOS [KdRB91], OpenC++ [Chi95], OpenJava [TC98]or Iguana [GC96] distinguish two levels of code: the base level that de�nes the basic functionalitiesof an application, and the meta level that provides a way to introspect the base level code and1 i.e. if a! b and b! c then a! c 2

to modify its default semantics. The base and the meta levels interact through interfaces and aprotocol called a metaobject protocol (MOP for short). The elements of the base level that can beaccessed and modi�ed at the meta level are said to be rei�ed. Most existing reective languagesreify method calls. Their default behaviors can then be extended to support for instance, localand remote calls. The extension is transparent to the base level which is unchanged. MOPs canbe classi�ed in two categories: compile time and run time. In the former case, the semanticsextension de�ned by the meta levels occurs during the compilation of the program, while in thelatter case, it occurs during its execution. Compile time MOPs such as OpenC++ v2 or OpenJavaprovide better performances, while programs developed with run time MOPs such as CLOS orIguana are more adaptable and exible.In the last few years reection has become popular in distributed computing as it provides aclear way to handle separation of concerns. Indeed, the numerous functionalities of a distributedprogram (e.g., communication, concurrency, replication, mobility) can be addressed separately indi�erent meta levels. In this paper, we use reection to transparently implement an observationservice for CORBA applications.3 Object causal orderAs pointed out in the introduction, we de�ne the object causal order (denoted by!o) as an exten-sion of Lamport's Happened before relation. The object causal order translates dependencies gen-erated by (1) sequential executions of operations, called local dependencies, (2) synchronous andasynchronous communications, called interaction dependencies, (3) dynamic creations of threads,called thread management dependencies, (4) method synchronizations, called intra-object depen-dencies, and (5) transactional orderings of read and write operations, called transactional de-pendencies. Paragraph 3.1 presents our system model. Next, Paragraph 3.2 de�nes the causaldependencies that we consider in such a system.3.1 ModelWe consider a system model of multi-threaded objets communicating through a CORBA ORB.We assume that these objects do not share any memory. We also assume that the system doesnot provide any global clock, nor any perfectly synchronized local clocks. The events that may begenerated by such a system are listed below:1. communication events: objects interact through remote method calls, either synchronous(two ways, blocking), or asynchronous (one way, non blocking). Six events are associatedwith these operations: method call, send, return, arrival, start, and end. The method callevent is the synchronous call of a method. The method return event is the return associatedwith such a call. The method send event is the asynchronous call of a method. The methodarrival event is generated when a method is received on the called object side. The methodstart event is generated when a called method starts. Finally, the method end event isgenerated when a method ends.2. thread management events: a distributed program is inherently concurrent. It dynamicallycreate and join threads. Four events are considered with these operations: thread start, run,end, and join. The thread start event is generated when a thread is created. The threadrun event is generated when a thread run begins. The thread end event is generated whena thread ends. Finally, the thread join event is generated when a thread join operation isperformed.3. synchronization events: multi-threaded objects may need to perform some synchronizations.For instance, when Java objects are considered, these synchronizations occur when a threadneeds to enter a synchronized method or a synchronized block of code, or when the wait andnotify method of the java.lang.Thread class are called. In our current model, only the �rst3

case (synchronized method) is addressed. We leave the other cases for future works. Threeevents (already mentioned above) are associated with these operations: method arrival, start,and end. Paragraph 3.2.4 de�nes how dependencies generated by synchronized methods canbe detected with these three events.4. read/write operations on shared variables: each of these operations is associated with anevent.3.2 Causal dependenciesCausal dependencies record order relations between events. These relations are needed when, forinstance, a replay service is to be applied to a distributed run. They are also used to constructa logical time for the system. As we do not assume any global clock, this logical clock stampsdistributed events. The Happened before relation performs such a work, but we argue that othercausal dependencies are needed. For instance, consider the case when two executions of a synchro-nized method are performed concurrently, and when one of these executions is delayed due to theother. If a replay service needs to rerun these executions in the same order, the causal dependencygenerated by the delay must be recorded.The object causal order, denoted by !o, is the smallest transitive relation satisfying the next�ve de�nitions. Figure 1 illustrates these de�nitions.3.2.1 Local dependenciesThis �rst source of dependencies comes from the sequential execution of events within a thread.The de�nition is the same as in Happened before.De�nition 1� If e1 and e2 are two events that belong to the same thread, and e1 is executed before e2, thene1 !o e2.3.2.2 Interaction dependenciesThe interaction source of order translates dependencies created by point-to-point, synchronous andasynchronous communications, between local and remote objects. It de�nes a property similar toLamport's Happened-before relation which assumes that "a message can not be delivered beforeits sending" [Lam78]. Here, the idea is that each event that is executed before a method call,happens before the execution of the called method. On the same way, each event that is executedafter a synchronous method call, happens after the execution of the called method.De�nition 2� If esc is a synchronous method call event, and ema its corresponding method arrival event,then esc !o ema.� If eac is an asynchronous method call event, and ema its corresponding method arrival event,then eac !o ema.� If eme is a method end event, and emr its corresponding method return event, then eme !oemr .3.2.3 Thread management dependenciesThread management dependencies create a link between a thread and its child threads, and be-tween a thread and a joined thread.De�nition 3 4

Synchronous method call

return

arrival start end

sync. call

Asynchronous method call

arrival start end

async. call

end

joinstart

run

Thread management

arrival start end

arrival

Method synchronization

start end

read write

writeread

Read/write operationsFigure 1: Causal dependencies de�ned in our system model5

� If ets is a thread start event and etr its corresponding thread run event, then ets !o etr.� If ete is a thread end event and etj a thread join event waiting for this thread end event, thenete !o etj.3.2.4 Synchronization dependenciesSynchronization dependencies record links between executions of a synchronized method. A syn-chronized method is allowed an exclusive access to its object. Any other thread that tries to accessthis object will be delayed until the previous execution exits the method. This synchronizationscheme introduces a causal dependency between two executions. The dependency can be detectedwhen a method start event can not be performed until an end event associated with the samesynchronized method is generated.De�nition 4� If eme is a method end event of a synchronized method, and ema and ems method arrivaland method start events of the same method, and if for the local object where the methodsare performed, eme occurs between ema and ems, then eme !o ems.3.2.5 Transactional dependenciesThe last source of dependencies comes from the sharing of variables. The basic idea is that read andwrite operations on a shared variable create dependencies between the threads that perform them.For instance, a read operation can be said to "observe" the e�ect of the previous write operation.Indeed, the result of the execution would not have been the same if the read had been performedbefore the write. The transactional relation translates the following dependencies: read-write,write-read, and write-write. As pointed out by the serializability theory (see for instance [BHG87]),a concurrent execution is legal, i.e. is equivalent to a sequential one, if and only if, the transactionaldependencies graph deduced from these rules is acyclic.De�nition 5� If er is a read event and ew the next write event on the same variable, then er !o ew.� If ew is a write operation and er the next read operation on the same variable, then ew !o er ,� If ew1 is a write operation and ew2 the next write operation on the same variable, thenew1 !o ew2.4 Observation serviceIn this section we present the prototype of our reective observation service for CORBA/Java ap-plications. The target ORB is the free ORB JacORB [Bro97], and the observation is implementedwith the OpenJava [TC98] reective language.4.1 ArchitectureOur architecture contains two basic components: an observer object, and an observer metaobject(see �gure 2). The third type of components mentioned in the �gure, observed objects, are theapplication level objects that need to be observed.The observer object is a standard CORBA object. There is one such object for each observedapplication. It owns an IDL interface with 11 asynchronous methods where each method recordsone of the events mentioned in Paragraph 3.1. The observer is implemented in Java and storeseach received event in a hastable of vectors. There is one vector per observed application levelobject, and one vector per shared observed variable.6

observer
metaobjects

objects
observed

observer
object

CORBA ORB

COSNaming
serverFigure 2: Architecture of the observation serviceAn observer metaobject is associated to each application level object that needs to be observed.It rei�es the elements needed to grab the 11 above mentioned events. Once an event is grabbed,the observer metaobject sends it to the observer object. The binding process between the observermetaobjects and the observer object is kept as simple as possible: the observer registers a well-known name with the CORBA naming service, and each observer metaobject lookups this name.The communication between the observer metaobjects and the observer object is performed bysome asynchronous method calls. Unless the CORBA speci�cations state that the semantics ofsuch calls is "best e�ort" (i.e. the calls may not be delivered), this mechanism is faster and lessintruisive than synchronous method calls.Transmitted dataWhen an observer metaobject noti�es the observer that an event occured, it transmits the CORBAreference of the observee object, the index of this event in the observee, and the index of the methodexecution in which this event occurred (each observer metaobject stores the number of events andthe number of method executions that have been generated so far). The observer object needs the�rst index to reconstruct the object local order, and the second one to associate each event to itsmethod execution (as objects are multi-threaded several executions of the same method may beperformed concurrently). Furthermore, for some events, additional parameters are transmitted tothe observer object (Table 1 summarizes the event types recorded and their additional parameters).1. An invocation key is recorded for each method call and method arrival event. This key,which contains the caller object reference, the caller method identi�er and an invocationnumber, allows the observer object to generate the dependency between the call and thearrival. This key needs to be piggy-backed on each method invocation between applicationlevel objects (indeed, when the method arrival event is generated at the server side, thiskey needs to be sent to the observer). We modi�ed the JacORB client stubs and serverskeletons generation code to transparently add this key. Some future works could tackle theuse of a more generic solution. For instance, the architectural framework of the JonathanORB [DHTS98] provides a mechanism to plug customized stub factories into the ORB.Another more portable solution could be to use some standard request level interceptor toperform this piggy-backing process.2. The parent thread identi�er is recorded for each thread run event. This data is needed togenerate a dependency between a thread start event and its corresponding thread run event.3. Finally, the identi�er and the object reference of a shared variable is transmitted to theobserver object each time a read or write operation is performed on a shared variable.7

Event type Description Additional parametersMethod call A method is called Invocation keyMethod return A method call is returnedMethod arrival A method is delivered Invocation keyMethod start A method beginsMethod end The method execution endsThread start A thread start is performedThread join A thread join is performedThread run A thread begins Parent thread idThread end A thread endsRead operation Read of a shared variable Id and obj ref of the shared variableWrite operation Write of a shared variable Id and obj ref of the shared variableTable 1: Grabbed events4.2 Observer metaobjects4.2.1 OpenJava meta featuresThe code needed to observe the 11 events of Table 1 is automatically added by some Open-Java [TC98] metaclasses. Like the Java reection API [Sun97], OpenJava provides a way tointrospect the components of a base level program. As shown in Figure 3, the root metaclass ofOpenJava is OJClass. The instantiates keyword is the only modi�cation needed to specify ameta link between a base level class and a metaclass.

elements

reification of

language
source-to-source

modifications
meta

link

class fooBaseLevel

 { ... }

 instantiates myMeta

 extends OJClass

 { ... }

class myMeta class OJClass fOJMethod[] getDeclaredMethods();void addField(OJField field);void addMethod(OJMethod field);void translateDefinition();Expression expandFieldRead(...);Expression expandFieldWrite(...);Expression expandMethodCall(...);: : :gFigure 3: Meta link with OpenJava and some selected methods from OJClassAmong other things, the interface of OJClass (see Figure 3) provides a getDeclaredMethodsmethod that returns a description of the base level methods. OpenJava goes a step further thanthe Java Reection API and provides a way to add methods or �elds (addMethod and addField), tomodify the methods body (OJMethod.setBody), or to alter the default semantics of any element inthe base level class (translateDe�nition). Finally, expand methods (expandFieldRead, expandField-Write and expandMethodCall), are automatically called each time respectively, a �eld variable isread, a �eld variable is written, and a method is called. By this way, OpenJava can be seen as aJava language source-to-source translator. 8

4.2.2 Observation processOur main metaclass (Observer) is the metaclass of any observed base level class. It extendsOJClass and customizes its default behavior by, (1) recording the method start and end events(translateDe�nition), (2) recording the read operation events (expandFieldRead), (3) recordingthe write operation events (expandFieldWrite), (4) recording the method call and return events(expandMethodCall). The method arrival event is recorded with a wrapper around any synchro-nized method. The thread related events are recorded with a wrapper class around the standardjava.lang.Thread class.The observer metaclass also de�nes a new keyword: traced. It is used as a modi�er for baselevel variables and methods that needs to be traced. By this way, programmers can reduce thevolume of trace informations by specifying at compilation time, some relevant elements to trace.Figure 4 gives the example of an observed class where only �elds variables f1 and f3, and methodm2 are traced. Events related to the other variables and methods are not grabbed.class fooToBeObserved instantiates Observer ftraced protected float f1;float f2;traced static int f3;void m1(float x);traced int m2(float x);gFigure 4: Fields and methods tagged with the traced modi�er are observedThe compile time reective feature of OpenJava is one of its bene�ts. As stated in Para-graph 2.3, metaobjects in such languages do not exist during program executions, but only duringcompilations. The advantage is that there is no execution overhead due to the use of a reectivelanguage. The only overhead introduced comes from the execution of asynchronous method callsto the observer object each time an event is generated.5 Stamping process and graphsThe causal dependencies of a distributed run are computed using vector timestamps. Each elementin a vector translates the ordering of events within an activity. In our model, an activity is anapplication level distributed thread of control that can be stretched on several servers when remotemethod calls are performed. Activities are created when the application creates threads to carryout new jobs or perform an asynchronous method call. As a distributed application is inherentlydynamic, the number of activities, and thus the size of the vector timestamps, are unknown untilthe end of the run.Next paragraph describes the way timestamp vectors are constructed. Paragraph 5.2 gives theupdate rules for these vectors. Finally, Paragraph 5.3 gives an overview of the graphs that aregenerated.5.1 Timestamp vectorsWe de�ne a timestamp vector TE for an event e as TEji = (teji;1; :::; teji;n), where n is the totalnumber of activities, i the identi�er of the activity and j the identi�er of the event. This vector isupdated each time an event is generated in activity i. In the following rules, we assume that thetotal number of activities n is known. 9

For each shared variable, we manage two vectors TW and TR: TWx = (twx;1; :::; twx;n) andTRx = (trx;1; :::; trx;n). These are respectively, the timestamp vector of the last write and thetimestamp vector of the last read on variable x.5.2 Rules to update timestamp vectorsThis paragraph gives the rules to update timestamp vectors. We assume that the execution orderof each activity and the sequential order of read and write operations on each shared variable areknown.Rule 1 thread start event and asynchronous method call event: let e, a thread start event or anasynchronous method call event, be the j-th event in activity i. Let q be the identi�er of thecreated thread or method call activity. The q-th element of TE1q is set to 1. To translate thedependency the other elements of TE1q are set to the values of corresponding elements of TEji .8q 2 [1; :::; p]; 8k 2 [1; ::; n]� k = q : te1q;k = 1k 6= q : te1q;k = teji;kRule 2 thread join event: let e, a thread join event, be the j-th event in activity i. Let q be theidenti�er of the thread, i is waiting for to die. The dependency generated by the last event ofthread q must be taken into account.8k 2 [1; :::; n](k = i : teji;k = tej�1i;k + 1k 6= i : teji;k =Max(telastq;k ; tej�1i;k)Rule 3 method start event: let a, a method start event, be the j-th event in activity i. If theconsidered method is synchronized, and if there exists a method end event eme whose timestampvector is TEpq , and a method arrival event ema of the same method, and if for the local objectswhere the events are generated, eme occurs between ema and e, then the i-th element of TEji isincreased, and its other elements are set to the maximum of the corresponding elements of TEj�1iand TEpq . 8k 2 [1; :::; n](k = i : teji;k = tej�1i;k + 1k 6= i : teji;k = Max(tej�1i;k ; tepq;k)Rule 4 read event: let e, a read event on variable x, be the j-th event in activity i. The i-thelement of TEji is increased and its other elements are set to the maximum of correspondingelements of vectors TEj�1i and TWx. TRx is also updated to record the read dependency for thenext write operation.8k 2 [1; :::; n](k = i : teji;k = trx;k = tej�1i;k + 1k 6= i : teji;k = trx;k = Max(tej�1i;k ; twx;k)Rule 5 write event: let e, a write event on variable x, be the j-th event in activity i. The i-th element of TEji is increased and its other elements are set to the maximum of correspondingelements of vectors TEj�1i , TWx and TRx. TWx records the timestamp of the last write operationand TRx is cleared to avoid redundant transitive dependencies.8k 2 [1; :::; n]8<: k = i : teji;k = twx;k = tej�1i;k + 1k 6= i : teji;k = twx;k = Max(tej�1i;k ; twx;k; trx;k)trx;k = 0Rule 6 other events: let E be the j-th event in activity i. We increase the i-th element of TEji .8k 2 [1; :::; n](k = i : teji;k = tej�1i;k + 1k 6= i : teji;k = tej�1i;k10

5.3 GraphsBased on the information sent by the observer metaobjects, a causal dependencies graph is gen-erated online by the observer object. It is then displayed with the VGJ [McC98] tool which is agraph viewer application. VGJ provides a framework to plug customized graph manipulation al-gorithms. We designed such an algorithm for our observation process: it instanciates the CORBAobserver object, records the events, and generates the graph. The graph is updated as new eventsare sent to the observer object, and as some new dependencies are detected. When a new activityis detected, either through a thread start event or an asynchronous method call, the timestampvector size of all previously received events is increased by one.We provide a panel with buttons to control the display of the graph. It can be paused,resumed and moved forward or backward. Note that this panel only controls the display, notthe computation itself. Even if the display is paused, the computation keeps running. Figure 5gives a screen snapshot of our tool2. A text description of the graphs can be generated in theGML [Him97] markup language (this is a built-in feature of VGJ). Each node in the graph is anevent. Each event is labelled with its timestamp vector. Edges are causal dependencies. Theyare labelled with the source event type, and the target event type. Event types are two letterswords (except for asynchronous method calls which are simply labelled with the letter s). The�rst letter translates the event category: t for thread, m for method and v for variable. The secondone translates the event type in its category: for instance, tj stands for thread join, ma standsfor method arrival, vw stands for variable write, etc. Each called method or created thread isdisplayed with a new line in the graph. This line is labelled with either the Java object referenceof the created thread, or the CORBA IOR (server IP address and port number) and the identi�erof the called method.6 ConclusionThis document presents a causality relation called the object causal order, for distributed ap-plications in a CORBA environment. This relation extends Lamport's Happened before relationby (1) considering both synchronous and asynchronous communications (Lamport only considersasynchronous ones), and (2) incorporating dependencies generated by communications, methodsynchronizations and variable sharings (Lamport only considers communications). By this way,we think that the object causal relation provides a better understanding of the semantics of dis-tributed applications.The second main point of our paper is that the relation is observed by taking advantageof the features of a reective language. As stated in Section 4, our target CORBA ORB isJacORB [Bro97] and our target reective language is OpenJava [TC98]. We developed someOpenJava metaclasses to transparently add the code needed to record our causal dependencies.These metaclasses reify events related to method calls and processings, thread management andread/write operations on shared variables. Events generated by the application are sent by thesemetaclasses to a global observer. Next, we de�ne vector timestamps for the generated events andwe provide an algorithm to compute the causal dependencies graph. Finally, our tool, which is anextension of the existing VGJ [McC98] viewer, displays this graph. It is updated online as newevents are sent to the observer.Several extensions can be considered for this work. First, algorithms could be added to checkglobal predicates (with techniques described for instance in [CG98] and [Gar97]). Second, sometools could be developed to �lter and to analyze more precisely the traces.2Our tool and some technical informations can be downloaded from our Web page: http://www-src.lip6.fr/homepages/Lionel.Seinturier/RCO/ 11

Figure 5: Screen snapshot of our tool12

References[ACGS91] M. Ahuja, T. Carlson, A. Gahlot, and D. Shands. Timestamping events for inferringa�ects relation and potential causality. In Proc. of COMPSAC'91, pages 606{611, 1991.[BBB+91] R. Balter, R. Balter, J. Bernadat, D. Decouchant, A. Duda, A. Freyssinet,S. Krakowiak, P. Le Dot, M. Meysembourg, H. Nguyen, E. Paire, M. Riveill, C. Roisin,X. Rousset de Pina, R. Scioville, and G. Vandome. Architecture and implementation ofGUIDE, an object-oriented distributed system. Computing Systems, 4(1):31{67, 1991.[BHG87] P.A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Recoveryin Database Systems. Addison-Wesley, 1987.[Bro97] G. Brose. JacORB: Implementation and design of a Java ORB. In Proc. of DAIS'97,September 1997. http://www.inf.fu-berlin.de/~brose/jacorb.[CG98] C.M. Chase and V. K. Garg. Detection of global predicates: Techniques and theirlimitations. Distributed Computing, 11, 1998.[Chi95] S. Chiba. A metaobject protocol for C++. In Proc. of OOPSLA'95, volume 30 ofSIGPLAN Notices, pages 285{299, October 1995.[CL85] K.M. Chandy and L. Lamport. Distributed snapshots : Determining global states ofdistributed systems. ACM Transac. on Computer Systems, 3(1):63{75, February 1985.[DHTS98] B. Dumant, F. Horn, F. Dang Tran, and J.B. St�efani. Jonathan: an open distributedprocessing environment in Java. In Proceedings of Middleware'98, 1998.http://www.objectweb.org.[DJ99] L. Duchien and E. Jeury. Observation in CORBA Java applications. In Proc. of theSession on Coordination at PDPTA'99, June 1999.[Fid88] C.J. Fidge. Timestamps in message-passing systems that preserve the partial ordering.In Proc. of the 11th Australian Computing Conf., February 1988.[Gar97] V.K. Garg. Observation and control for debugging distributed computations. In Proc.of AADEBUG'97, 1997.[GC96] B. Gowing and V. Cahill. Meta-object protocols for C++: The Iguana approach. InProc. of Reection'96, 1996.[GMG99] C. Gransart, P. Merle, and J.M. Geib. GoodeWatch: Supervision of CORBA appli-cations. In ECOOP'99 Workshop on Object-Orientation and Operating Systems, June1999.[Him97] M. Himsolt. GML: A portable graph �le format. Technical report, Univ. Passau, 1997.http://www.fmi.uni-passau.de/Graphlet/GML/gml-tr.html.[Inp99] Inprise. Inprise AppCenter. http://www.inprise.com/appcenter, 1999.[Ion98] Iona. OrbixOTM-Management Service.http://www.iona.com/info/products/orbixenter/orbixotm/index.html, 1998.[KdRB91] G. Kiczales, J. des Rivieres, and D.G. Bobrow. The Art of the Metaobject Protocol.MIT Press, 1991.[Lam78] L. Lamport. Time, clocks, and the ordering of events in a distributed system. CACM,21(7):558{565, July 1978.[LMC87] T.J. Leblanc and J.M. Mellor-Crummey. Debugging parallel programs with instantreplay. IEEE Transac. on Computers, 36(4):471{482, April 1987.13

[Mae87] P. Maes. Concepts and experiments in computational reection. In Proc. of OOP-SLA'87, volume 22 of SIGPLAN Notices, pages 147{155, December 1987.[MAS97] Introduction to MAScOTTE, Esprit Project 20804. White paper, May 1997.http://www.esrin.esa.it/MAScOTTE.[Mat88] F. Mattern. Virtual time and global states in distributed systems. In Proc. of the IntlConf. on Parallel and Distributed Algorithms, pages 215{226, 1988.[MC88] B.P. Miller and D.J. Choi. Breakpoints and halting in distributed programs. In Proc.of the 8th Intl Conf. on Distributed Computing Systems, pages 316{323, 1988.[McC98] C. McCreary. Drawing Graphs with VGJ. Auburn Univ., 1998.http://www.eng.auburn.edu/department/cse/research/graph drawing/graph drawing.html.[OMG98] OMG. The common object request broker: Architecture and speci�cation. OMG,February 1998.[PDFS95] P. Placide, L. Duchien, G. Florin, and L. Seinturier. A consistent global state algorithmto debug distributed object-oriented applications. In Proc. of AADEBUG'95, May1995.[SM92] R. Schwarz and F. Mattern. Detecting causal relationships in distributed computations:In search of the holy grail. Technical Report SFB 124 - 15/92, Univ. of Kaiserslautern,December 1992.[Sun97] Sun Microsystems. Java Core Reection, API and Speci�cation, February 1997.http://www.javasoft.com.[TC98] M. Tatsubori and S. Chiba. OpenJava 1.0 API and Speci�cation. Programming Lan-guage Lab., Univ. of Tsukuba, 1998.http://www.softlab.is.tsukuba.ac.jp/~mich/openjava.[Tre99] C. Treanor. IIOP Protocol Analyser.http://www-rst.int-evry.fr/~defude/analyseur-iiop.html, 1999.
14

