Lionel Seinturier
email: lionel.seinturier@lip6.fr

Laurence Duchien
email: laurence.duchien@cnam.fr

Observation of Distributed Computations: a Re ective Approach for CORBA

Keywords: Causality, CORBA, Re ection, OpenJava, Observation

This document describes some re ective programming techniques to observe a distributed computation in a CORBA environment. First, we propose a new order relation to translate causal dependencies in a distributed program. We generalize Lamport's Happened before relation de ned for message passing applications, to an object causal relation between distributed events in an environment with synchronous and asynchronous method calls, method synchronizations and variable sharings. Second, we propose a re ective approach to observe this relation. Finally, a tool is provided to display the causal dependencies graph of a distributed run.

Introduction

With numerous entities distributed over a network, cooperative systems and applications written with CORBA OMG98] are quite complex and often generate a high volume of communication, numerous concurrent activities, and complex synchronization schemes. Programmers have to master many di erent software techniques and the design, the development, the debug and the observation of these applications become more and mode complex.

In this document, we focus our attention on the observation of distributed runs in CORBA environments. Like in most existing studies, we do not assume that the system provides a global clock or some perfectly synchronized local clocks. Hence, the observation of a run requires some additional techniques to order distributed events. The partially ordered set approach used by Lamport's Happened before relation provides a good solution for such a work. Based on this, numerous studies LMC87] MC88] CL85] SM92] ACGS91] addressed the issue of the observation of consistent global states. Nevertheless, this relation mainly translates dependencies that are generated by asynchronous communications. First, we can argue that environments such as CORBA rather use synchronous communication schemes. Second, many other sources of dependencies exist in distributed applications. For instance, the synchronization of concurrent methods introduce some dependencies that are not captured by the Happened before relation. In this document, we present an order relation called the object causal order. Its goal is to capture, not only communication dependencies, but also synchronization dependencies, dependencies generated by dynamic creations of threads, and transactional dependencies.

This document extends previous works PDFS95, DJ99], and proposes a re ective approach to observe the object causal order. PDFS95] addressed this issue for the GUIDE BBB + 91] language. DJ99] was a rst study for CORBA/Java environments. This paper addresses the re ective part of this work. Our target environment is based on the free CORBA ORB JacORB Bro97], and on the OpenJava TC98] re ective language. OpenJava is an extension of the Java language that provides features (i.e. metaclasses) to introspect and to rede ne the default semantics of a Java program. We use it to transparently add some code to observe the object causal order.

The document is divided as follows. Section 2 presents the background and the context of our study. Section 3 de nes the object causal order. Next, Section 4 gives the architecture of our tool. Section 5 brie y presents the stamping algorithm and the graphs that are generated. Finally, Section 6 presents our conclusions and some directions for future works.

Background

Order relations

The eld of order relations for distributed computations has been thoroughly studied. In Lam78], Lamport introduces a model of sequential processes communicating by asynchronous point-topoint messages. The Happened before relation translates causal dependencies in such a model. It is used for instance, for check-pointing, replaying or debugging distributed computations.

Given a set E of local, send and receive events, the Happened before order relation, denoted by !, is the smallest transitive1 relation satisfying: if a and b are events in the same process, and a was executed before b, then a ! b, if a is a send event by one process and b is the corresponding receive event by another process, then a ! b.

The notions of concurrent events and of consistent cuts can be de ned according to this relation (the reader should refer, for instance, to SM92] for more details). Most of the existing techniques to compute causal dependencies and consistent cuts use vector stamps Fid88] Mat88].

CORBA

CORBA OMG98], the standard Object Request Broker (ORB) from the OMG, proposes an architecture that enables objects to transparently make and receive requests and replies in a distributed object environment. It provides asynchronous (oneway) and synchronous remote method invocations on objects via the ORB. Each object owns an interface described in the Interface Description Language (IDL) and can be implemented in di erent languages. On the object server side, the Object Adapter (OA) performs two tasks: (1) it dispatches the incoming method calls to their server objects and, (2) it provides several object activation policies that modify the way methods are executed. For instance, multiple active objects can share the same servant, or only one object at a time can be active on one servant, or each method invocation may be executed by a separate servant.

Few CORBA environments o er tools to correctly observe distributed computations. Projects such as MAScOTTE MAS97], products such as IONA's OrbixOTM management services Ion98] and Inprise's AppCenter Inp99], or protocol analyzers such as Tre99], propose some features to observe requests and replies of remote method. GoodeWatch GMG99] provides mechanisms to grab events occuring at the ORB level. Our tool goes a step further and, not only grabs ORB related events, but also provides a smart display through the detections of causal dependencies between these events. As far as we know, none of the above mentioned tools perform such a work.

Re ection P. Maes in Mae87

], de nes re ection as the ability of a system "to reason and to act upon itself". Re ective programming languages such as CLOS KdRB91], OpenC++ Chi95], OpenJava TC98] or Iguana GC96] distinguish two levels of code: the base level that de nes the basic functionalities of an application, and the meta level that provides a way to introspect the base level code and to modify its default semantics. The base and the meta levels interact through interfaces and a protocol called a metaobject protocol (MOP for short). The elements of the base level that can be accessed and modi ed at the meta level are said to be rei ed. Most existing re ective languages reify method calls. Their default behaviors can then be extended to support for instance, local and remote calls. The extension is transparent to the base level which is unchanged. MOPs can be classi ed in two categories: compile time and run time. In the former case, the semantics extension de ned by the meta levels occurs during the compilation of the program, while in the latter case, it occurs during its execution. Compile time MOPs such as OpenC++ v2 or OpenJava provide better performances, while programs developed with run time MOPs such as CLOS or Iguana are more adaptable and exible.

In the last few years re ection has become popular in distributed computing as it provides a clear way to handle separation of concerns. Indeed, the numerous functionalities of a distributed program (e.g., communication, concurrency, replication, mobility) can be addressed separately in di erent meta levels. In this paper, we use re ection to transparently implement an observation service for CORBA applications.

Object causal order

As pointed out in the introduction, we de ne the object causal order (denoted by ! o) as an extension of Lamport's Happened before relation. The object causal order translates dependencies generated by (1) sequential executions of operations, called local dependencies, (2) synchronous and asynchronous communications, called interaction dependencies, (3) dynamic creations of threads, called thread management dependencies, (4) method synchronizations, called intra-object dependencies, and (5) transactional orderings of read and write operations, called transactional dependencies. Paragraph 3.1 presents our system model. Next, Paragraph 3.2 de nes the causal dependencies that we consider in such a system.

Model

We consider a system model of multi-threaded objets communicating through a CORBA ORB. We assume that these objects do not share any memory. We also assume that the system does not provide any global clock, nor any perfectly synchronized local clocks. The events that may be generated by such a system are listed below:

1. communication events: objects interact through remote method calls, either synchronous (two ways, blocking), or asynchronous (one way, non blocking). Six events are associated with these operations: method call, send, return, arrival, start, and end. The method call event is the synchronous call of a method. The method return event is the return associated with such a call. The method send event is the asynchronous call of a method. The method arrival event is generated when a method is received on the called object side. The method start event is generated when a called method starts. Finally, the method end event is generated when a method ends. 2. thread management events: a distributed program is inherently concurrent. It dynamically create and join threads. Four events are considered with these operations: thread start, run, end, and join. The thread start event is generated when a thread is created. The thread run event is generated when a thread run begins. The thread end event is generated when a thread ends. Finally, the thread join event is generated when a thread join operation is performed. 3. synchronization events: multi-threaded objects may need to perform some synchronizations.

For instance, when Java objects are considered, these synchronizations occur when a thread needs to enter a synchronized method or a synchronized block of code, or when the wait and notify method of the java.lang.Thread class are called. In our current model, only the rst case (synchronized method) is addressed. We leave the other cases for future works. Three events (already mentioned above) are associated with these operations: method arrival, start, and end. Paragraph 3.2.4 de nes how dependencies generated by synchronized methods can be detected with these three events. 4. read/write operations on shared variables: each of these operations is associated with an event.

Causal dependencies

Causal dependencies record order relations between events. These relations are needed when, for instance, a replay service is to be applied to a distributed run. They are also used to construct a logical time for the system. As we do not assume any global clock, this logical clock stamps distributed events. The Happened before relation performs such a work, but we argue that other causal dependencies are needed. For instance, consider the case when two executions of a synchronized method are performed concurrently, and when one of these executions is delayed due to the other. If a replay service needs to rerun these executions in the same order, the causal dependency generated by the delay must be recorded. The object causal order, denoted by ! o , is the smallest transitive relation satisfying the next ve de nitions. Figure 1 illustrates these de nitions.

Local dependencies

This rst source of dependencies comes from the sequential execution of events within a thread. The de nition is the same as in Happened before.

De nition 1

If e 1 and e 2 are two events that belong to the same thread, and e 1 is executed before e 2 , then e 1 ! o e 2 .

Interaction dependencies

The interaction source of order translates dependencies created by point-to-point, synchronous and asynchronous communications, between local and remote objects. It de nes a property similar to Lamport's Happened-before relation which assumes that "a message can not be delivered before its sending" Lam78]. Here, the idea is that each event that is executed before a method call, happens before the execution of the called method. On the same way, each event that is executed after a synchronous method call, happens after the execution of the called method.

De nition 2

If e sc is a synchronous method call event, and e ma its corresponding method arrival event, then e sc ! o e ma . If e ac is an asynchronous method call event, and e ma its corresponding method arrival event, then e ac ! o e ma . If e me is a method end event, and e mr its corresponding method return event, then e me ! o e mr .

Thread management dependencies

Thread management dependencies create a link between a thread and its child threads, and between a thread and a joined thread. If e ts is a thread start event and e tr its corresponding thread run event, then e ts ! o e tr . If e te is a thread end event and e tj a thread join event waiting for this thread end event, then e te ! o e tj .

De nition 3

Synchronization dependencies

Synchronization dependencies record links between executions of a synchronized method. A synchronized method is allowed an exclusive access to its object. Any other thread that tries to access this object will be delayed until the previous execution exits the method. This synchronization scheme introduces a causal dependency between two executions. The dependency can be detected when a method start event can not be performed until an end event associated with the same synchronized method is generated.

De nition 4

If e me is a method end event of a synchronized method, and e ma and e ms method arrival and method start events of the same method, and if for the local object where the methods are performed, e me occurs between e ma and e ms , then e me ! o e ms .

Transactional dependencies

The last source of dependencies comes from the sharing of variables. The basic idea is that read and write operations on a shared variable create dependencies between the threads that perform them. For instance, a read operation can be said to "observe" the e ect of the previous write operation. Indeed, the result of the execution would not have been the same if the read had been performed before the write. The transactional relation translates the following dependencies: read-write, write-read, and write-write. As pointed out by the serializability theory (see for instance BHG87]), a concurrent execution is legal, i.e. is equivalent to a sequential one, if and only if, the transactional dependencies graph deduced from these rules is acyclic.

De nition 5

If e r is a read event and e w the next write event on the same variable, then e r ! o e w . If e w is a write operation and e r the next read operation on the same variable, then e w ! o e r , If e w1 is a write operation and e w2 the next write operation on the same variable, then e w1 ! o e w2 .

Observation service

In this section we present the prototype of our re ective observation service for CORBA/Java applications. The target ORB is the free ORB JacORB Bro97], and the observation is implemented with the OpenJava TC98] re ective language.

Architecture

Our architecture contains two basic components: an observer object, and an observer metaobject (see gure 2). The third type of components mentioned in the gure, observed objects, are the application level objects that need to be observed.

The observer object is a standard CORBA object. There is one such object for each observed application. It owns an IDL interface with 11 asynchronous methods where each method records one of the events mentioned in Paragraph 3.1. The observer is implemented in Java and stores each received event in a hastable of vectors. There is one vector per observed application level object, and one vector per shared observed variable. An observer metaobject is associated to each application level object that needs to be observed. It rei es the elements needed to grab the 11 above mentioned events. Once an event is grabbed, the observer metaobject sends it to the observer object. The binding process between the observer metaobjects and the observer object is kept as simple as possible: the observer registers a wellknown name with the CORBA naming service, and each observer metaobject lookups this name. The communication between the observer metaobjects and the observer object is performed by some asynchronous method calls. Unless the CORBA speci cations state that the semantics of such calls is "best e ort" (i.e. the calls may not be delivered), this mechanism is faster and less intruisive than synchronous method calls.

Transmitted data

When an observer metaobject noti es the observer that an event occured, it transmits the CORBA reference of the observee object, the index of this event in the observee, and the index of the method execution in which this event occurred (each observer metaobject stores the number of events and the number of method executions that have been generated so far). The observer object needs the rst index to reconstruct the object local order, and the second one to associate each event to its method execution (as objects are multi-threaded several executions of the same method may be performed concurrently). Furthermore, for some events, additional parameters are transmitted to the observer object (Table 1 summarizes the event types recorded and their additional parameters).

1. An invocation key is recorded for each method call and method arrival event. This key, which contains the caller object reference, the caller method identi er and an invocation number, allows the observer object to generate the dependency between the call and the arrival. This key needs to be piggy-backed on each method invocation between application level objects (indeed, when the method arrival event is generated at the server side, this key needs to be sent to the observer). We modi ed the JacORB client stubs and server skeletons generation code to transparently add this key. Some future works could tackle the use of a more generic solution. For instance, the architectural framework of the Jonathan ORB DHTS98] provides a mechanism to plug customized stub factories into the ORB. Another more portable solution could be to use some standard request level interceptor to perform this piggy-backing process. 2. The parent thread identi er is recorded for each thread run event. This data is needed to generate a dependency between a thread start event and its corresponding thread run event. 3. Finally, the identi er and the object reference of a shared variable is transmitted to the observer object each time a read or write operation is performed on a shared variable. The code needed to observe the 11 events of Table 1 is automatically added by some Open-Java TC98] metaclasses. Like the Java re ection API Sun97], OpenJava provides a way to introspect the components of a base level program. As shown in Figure 3, the root metaclass of OpenJava is OJClass. The instantiates keyword is the only modi cation needed to specify a meta link between a base level class and a metaclass. Among other things, the interface of OJClass (see Figure 3) provides a getDeclaredMethods method that returns a description of the base level methods. OpenJava goes a step further than the Java Re ection API and provides a way to add methods or elds (addMethod and addField), to modify the methods body (OJMethod.setBody), or to alter the default semantics of any element in the base level class (translateDe nition). Finally, expand methods (expandFieldRead, expandField-Write and expandMethodCall), are automatically called each time respectively, a eld variable is read, a eld variable is written, and a method is called. By this way, OpenJava can be seen as a Java language source-to-source translator.

Observation process

Our main metaclass (Observer) is the metaclass of any observed base level class. It extends OJClass and customizes its default behavior by, (1) recording the method start and end events (translateDe nition), (2) recording the read operation events (expandFieldRead), (3) recording the write operation events (expandFieldWrite), (4) recording the method call and return events (expandMethodCall). The method arrival event is recorded with a wrapper around any synchronized method. The thread related events are recorded with a wrapper class around the standard java.lang.Thread class.

The observer metaclass also de nes a new keyword: traced. It is used as a modi er for base level variables and methods that needs to be traced. By this way, programmers can reduce the volume of trace informations by specifying at compilation time, some relevant elements to trace. Figure 4 gives the example of an observed class where only elds variables f1 and f3, and method m2 are traced. Events related to the other variables and methods are not grabbed. The compile time re ective feature of OpenJava is one of its bene ts. As stated in Paragraph 2.3, metaobjects in such languages do not exist during program executions, but only during compilations. The advantage is that there is no execution overhead due to the use of a re ective language. The only overhead introduced comes from the execution of asynchronous method calls to the observer object each time an event is generated.

Stamping process and graphs

The causal dependencies of a distributed run are computed using vector timestamps. Each element in a vector translates the ordering of events within an activity. In our model, an activity is an application level distributed thread of control that can be stretched on several servers when remote method calls are performed. Activities are created when the application creates threads to carry out new jobs or perform an asynchronous method call. As a distributed application is inherently dynamic, the number of activities, and thus the size of the vector timestamps, are unknown until the end of the run.

Next paragraph describes the way timestamp vectors are constructed. Paragraph 5.2 gives the update rules for these vectors. Finally, Paragraph 5.3 gives an overview of the graphs that are generated.

Timestamp vectors

We de ne a timestamp vector T E for an event e as T E j i = (te j i;1 ; :::; te j i;n), where n is the total number of activities, i the identi er of the activity and j the identi er of the event. This vector is updated each time an event is generated in activity i. In the following rules, we assume that the total number of activities n is known.

For each shared variable, we manage two vectors T W and T R: T W x = (tw x;1 ; :::; tw x;n) and T R x = (tr x;1 ; :::; tr x;n). These are respectively, the timestamp vector of the last write and the timestamp vector of the last read on variable x.

Rules to update timestamp vectors

This paragraph gives the rules to update timestamp vectors. We assume that the execution order of each activity and the sequential order of read and write operations on each shared variable are known.

Rule 1 thread start event and asynchronous method call event: let e, a thread start event or an asynchronous method call event, be the j-th event in activity i. Let q be the identi er of the created thread or method call activity. The q-th element of T E 1 q is set to 1. To translate the dependency the other elements of T E 1 q are set to the values of corresponding elements of T E j i .

8q 2 1; :::; p]; 8k 2 1; ::; n] k = q : te 1 q;k = 1 k 6 = q : te 1 q;k = te j i;k

Rule 2 thread join event: let e, a thread join event, be the j-th event in activity i. Let q be the identi er of the thread, i is waiting for to die. The dependency generated by the last event of thread q must be taken into account.

8k 2 1; :::; n] (k = i : te j i;k = te j 1 i;k + 1 k 6 = i : te j i;k = M ax(te last q;k ; te j 1 i;k)

Rule 3 method start event: let a, a method start event, be the j-th event in activity i. If the considered method is synchronized, and if there exists a method end event e me whose timestamp vector is T E p q , and a method arrival event e ma of the same method, and if for the local objects where the events are generated, e me occurs between e ma and e, then the i-th element of T E j i is increased, and its other elements are set to the maximum of the corresponding elements of T E j 1 i and T E p q .

8k 2 1; :::; n] (k = i : te j i;k = te j 1 i;k + 1 k 6 = i : te j i;k = M ax(te j 1 i;k ; te p q;k)

Rule 4 read event: let e, a read event on variable x, be the j-th event in activity i. The i-th element of T E j i is increased and its other elements are set to the maximum of corresponding elements of vectors T E j 1 i and T W x . T R x is also updated to record the read dependency for the next write operation. 8k 2 1; :::; n] (k = i : te j i;k = tr x;k = te j 1 i;k + 1 k 6 = i : te j i;k = tr x;k = M ax(te j 1 i;k ; tw x;k)

Rule 5 write event: let e, a write event on variable x, be the j-th event in activity i. The ith element of T E j i is increased and its other elements are set to the maximum of corresponding elements of vectors T E j 1 i , T W x and T R x . T W x records the timestamp of the last write operation and T R x is cleared to avoid redundant transitive dependencies. 8k 2 1; :::; n] 8 < : k = i : te j i;k = tw x;k = te j 1 i;k + 1 k 6 = i : te j i;k = tw x;k = M ax(te j 1 i;k ; tw x;k ; tr x;k) tr x;k = 0 Rule 6 other events: let E be the j-th event in activity i. We increase the i-th element of T E j i .

8k 2 1; :::; n] (k = i : te j i;k = te j 1 i;k + 1 k 6 = i : te j i;k = te j 1 i;k

Graphs

Based on the information sent by the observer metaobjects, a causal dependencies graph is generated online by the observer object. It is then displayed with the VGJ McC98] tool which is a graph viewer application. VGJ provides a framework to plug customized graph manipulation algorithms. We designed such an algorithm for our observation process: it instanciates the CORBA observer object, records the events, and generates the graph. The graph is updated as new events are sent to the observer object, and as some new dependencies are detected. When a new activity is detected, either through a thread start event or an asynchronous method call, the timestamp vector size of all previously received events is increased by one. We provide a panel with buttons to control the display of the graph. It can be paused, resumed and moved forward or backward. Note that this panel only controls the display, not the computation itself. Even if the display is paused, the computation keeps running. Figure 5 gives a screen snapshot of our tool2 . A text description of the graphs can be generated in the GML Him97] markup language (this is a built-in feature of VGJ). Each node in the graph is an event. Each event is labelled with its timestamp vector. Edges are causal dependencies. They are labelled with the source event type, and the target event type. Event types are two letters words (except for asynchronous method calls which are simply labelled with the letter s). The rst letter translates the event category: t for thread, m for method and v for variable. The second one translates the event type in its category: for instance, tj stands for thread join, ma stands for method arrival, vw stands for variable write, etc. Each called method or created thread is displayed with a new line in the graph. This line is labelled with either the Java object reference of the created thread, or the CORBA IOR (server IP address and port number) and the identi er of the called method.

Conclusion

This document presents a causality relation called the object causal order, for distributed applications in a CORBA environment. This relation extends Lamport's Happened before relation by (1) considering both synchronous and asynchronous communications (Lamport only considers asynchronous ones), and (2) incorporating dependencies generated by communications, method synchronizations and variable sharings (Lamport only considers communications). By this way, we think that the object causal relation provides a better understanding of the semantics of distributed applications.

The second main point of our paper is that the relation is observed by taking advantage of the features of a re ective language. As stated in Section 4, our target CORBA ORB is JacORB Bro97] and our target re ective language is OpenJava TC98]. We developed some OpenJava metaclasses to transparently add the code needed to record our causal dependencies. These metaclasses reify events related to method calls and processings, thread management and read/write operations on shared variables. Events generated by the application are sent by these metaclasses to a global observer. Next, we de ne vector timestamps for the generated events and we provide an algorithm to compute the causal dependencies graph. Finally, our tool, which is an extension of the existing VGJ McC98] viewer, displays this graph. It is updated online as new events are sent to the observer.

Several extensions can be considered for this work. First, algorithms could be added to check global predicates (with techniques described for instance in CG98] and Gar97]). Second, some tools could be developed to lter and to analyze more precisely the traces.

Figure 1 :

 1 Figure 1: Causal dependencies de ned in our system model

Figure 2 :

 2 Figure 2: Architecture of the observation service

Figure 3 :

 3 Figure 3: Meta link with OpenJava and some selected methods from OJClass

Figure 4 :

 4 Figure 4: Fields and methods tagged with the traced modi er are observed

Figure 5 :

 5 Figure 5: Screen snapshot of our tool

i.e. if a ! b and b ! c then a ! c

Our tool and some technical informations can be downloaded from our Web page: http://wwwsrc.lip6.fr/homepages/Lionel.Seinturier/RCO/