
HAL Id: hal-02548257
https://hal.science/hal-02548257

Submitted on 20 Apr 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Specifying and verifying the behavior of
telecommunications services

Jean-François Dauchez, Marie-Pierre Gervais

To cite this version:
Jean-François Dauchez, Marie-Pierre Gervais. Specifying and verifying the behavior of telecommuni-
cations services. [Research Report] lip6.1999.025, LIP6. 1999. �hal-02548257�

https://hal.science/hal-02548257
https://hal.archives-ouvertes.fr

This paper will be published in the 6th International Conference on Intelligence in Networks ICIN'2000

SPECIFYING AND VERIFYING THE BEHAVIOR OF

TELECOMMUNICATIONS SERVICES

Jean-Fran ois DAUCHEZ(*) and Marie-Pierre GERVAIS(**)

{Jean-Fran ois.Dauchez, Marie-Pierre.Gervais}@lip6.fr

Laboratoire d Informatique de Paris 6 (LIP6)

Universit Paris 6(*) - IUT Paris 5(**)

UPMC - LIP6

P le : M.S.I. SRC

8, rue du Capitaine Scott - F75015 Paris

Abstract

This paper presents the work currently achieved in the
ODAC

1
 project. This proposes to promote the agent

technology by defining methods and tools based on a
formal approach so that a designer of
telecommunications services can specify and implement
a new service in the form of a Multi-Agents System. It
aims at providing a methodology for specifying and
verifying the behavior of telecommunications services
based on the Reference Model of Open Distributed
Processing developed by the International
Standardization Organization (ISO) and the Inter-
national Telecommunication Union Telecommuni-
cation Standardization Sector (ITU-T).
Keywords: services creation, multi-agents systems
specification, validation and verification

1. Introduction
Telecommunications services creation, or
Service Engineering, is the subject of many
projects in the telecommunications community
(e.g., ITU-T, ETSI, TINA-C, RACE, ACTS or
EURESCOM). The common approach adopted
is to define an architecture and a
methodological framework with its support [1].
A major problem that designers have to face is a
consistency problem. There is no easy way for a
designer to define a new service in a system
because of compatibility problems between the
existing services and the new one. On the other
hand, various works aim to define systems based
on the agent technology and show encouraging
results [2]. Indeed, it is easier to define a service
with a greater abstraction level. However, these
systems are still less used because of the
maintenance problem or because of the
difficulties to debug such applications [8].
To help a telecommunications service designer
in his/her task, we propose to consider a
telecommunications service2 as a community of
agents. As an agent can be itself a community,

1 ODAC stands for Open Distributed Applications Construction
2 In the following, the telecommunication service to be

designed is identified by the term «system»

 the problem is then the control of the behavior
of all the system components.

The ODAC project proposes to promote the

agent technology to specify

telecommunications services [3]. It provides a

specification methodology based on the

Reference Model of Open Distributed

Processing (RM- ODP) that allows a clear

separation between the many concerns of the

system. To help this specification

methodology, there are tools provided to verify

a specification and to extract some qualitative

properties.

This paper describes the current work achieved

in the project. First, we define the various agent

characteristics considered. Then, we describe the

specification methodology that we are

proposing. Finally, we present validation and

verification activities that can be realized on

the specification.

2. The Agent Characteristics
The agent world is a wide study area and it is
difficult to enumerate all the different
definitions of the word ˙agent¨. We will stick
to the distributed artificial intelligence
definition: in our view, an agent is a software
entity that is autonomous, social, reactive, pro-
active and sometimes mobile [5]. A multi-
agents system is a community of agents working
together to meet an objective [4]. Each agent is
responsible for a part of the system objective,
in other words, the agent objectives are to reach
a part of the global objective. We consider the
agent objectives as the smallest possible part of
the system objective. The main reason of the
agent existence is that it must be able to achieve
at least one objective.

This paper will be published in the 6th International Conference on Intelligence in Networks ICIN'2000

An agent is autonomous in the sense that it has
the total control of its execution to achieve
the objectives. Thus it is able to control the
schedule of its tasks. However, this does not
mean it is able to compute all the needed tasks
to fulfill the objectives. It might also use
services provided by other agents.

An agent is social as it must be able to use and

to give back services from or to other agents.

We consider here two different ways t o

communicate. The first one takes place in a

relation client-server. An agent that needs t o

evaluate a process and which cannot do it by

itself must ask for it to another agent. This

request can be either some interrogations, i.e.,

there is a need for an answer, or some

announcements, i.e., no answer is needed. The

second way to communicate is the stream. In a

distributed system, the information can be held

by different parts of the system. A stream is a

way to distribute to the other participants the

information they need.

 An agent is reactive because of its responding

capabilities to the environment changes. These

can be related for example to its dependence on

other agent services. In an open system, the

existence of the services offered by an agent is

not continuous in time. So, in that case, an

agent can loose a service needed for its

objectives or can find a better service to achieve

them with a better quality.

An agent is pro-active means that an agent is

able to achieve its objectives whatever events,

reactions or interactions occur in the system. I t

has a guideline that enables it to achieve its

objectives by the execution of different tasks.

Thus it is able to refuse some interactions or

reactions to complete its objectives. This can be

seen as the fairness between different tasks,

some related to the provision of services while

others related to the objectives

accomplishment.

An agent is mobile when it can move in the

system to be close to the resource it needs. The

agent mobility, which is sometimes a

controversial point, can be justified by

performance improvements, rights increasing or

by changes made to its environment.

Movement implies the existence of an adequate

environment or the encapsulation of the agent

in a shell.

3. The ODAC Specification Methodology

Specifying telecommunications services by using

multi- agents system introduces problems of

maintenance difficulties such as modifications

of the specification. A project manager who

conducts the service design activities needs a

structured set of guidelines, a homogeneous

terminology, concepts with an efficient

abstraction power and a comprehensive and

incremental history of the project. The ODP

reference model fits these requirements by

proposing a panel of different viewpoints to

guide the designers [4]. The concepts are well

defined and they provide a level of abstraction

that permit to deal with the complexity of the

design process.

The ODAC specification methodology is based on

three ODP viewpoints, namely the enterprise,

information and computational viewpoints. The

specification of a new service consists in describing

this service according to the viewpoint concepts [3]. It

should be noted that although in ODP there is no

sequence between viewpoints, the methodology

recommends to start with the enterprise viewpoint as it

lets the designer to express the needs of his/her system.

We use it as the requirement engineering and the

analyses of the system. We introduce the

computational viewpoint as the service design. The

information viewpoint is used to describe the

information in the system as we will detail it

later.

3.1. Enterprise Specification

The enterprise specification describes the

systems in terms of objectives, roles, policies,

resources and communities [6].

Firstly, the service designer must determine the

service objective and then how to reach this

objective. This process can lead to the need of

refining this objective several times. The

refinement stops when elementary objectives

are identified and the decomposition is no more

possible.

This paper will be published in the 6th International Conference on Intelligence in Networks ICIN'2000

The designer assigns a role to each elementary

objective. This role is then responsible to fulfill

this objective.

A role implies some actions. For example, in a

virtual travel agency, one of the roles is to keep

up to date the file of a client after a transaction.

Actually, a flight can be cancelled and then

another travel has to be scheduled. So, to keep

it up to date means accepting a flight

cancellation message and asking to reschedule

the travel. The job is finished when the

departure announcement is received. Here, three

actions are defined for the role: receive a

cancellation, ask to compute a new travel and

receive the announcement departure.

Organizing the role actions determines the

behavior of this role.

The policies are the set of role interdictions,

permissions and obligations that a role respects

in the relation with other roles. They are part

of a contract. In our example, the role can

impose to a client (i.e., another role) the ticket

exchange.

Resources do not have behavior but they have a

lifecycle. The enterprise viewpoint specifies

which roles are responsible for the creation, the

use and the deletion of the resources in the

communities.

A set of roles and resources constitutes a

community. The communities have the same

characteristics as the roles, plus a resource

policy. The resource policy describes the

lifecycle of the community resources. The

actions of a community are the or a subset of

the actions of roles it contains. The behavior of

the community, called the activity, is a graph of

the community actions where an action is made

possible by the occurrence of all immediately

preceeding actions. The community contract is

the union of the roles contracts and eventually

some new interdictions, permissions or

obligations.

In the example of a virtual travel agency, the

roles defined, namely the travel agency, the

airplane company and the client constitutes a

community. They all want to accomplish the

same objective: the departure of the client.

We still did not explain the place of an agent in

this viewpoint. As we said, an agent is

autonomous. So it is the entity that

encapsulates the smallest objective of a role. I t

can encapsulate more than one. A community

for example can be encapsulated in an agent. An

aspect of the interaction is shown in the

community behavior. The fact that an agent is

intentional comes partially from the roles or

the communities behavior. Its intention is t o

realize the different actions as they are

described in the behavior.

3.2. Information Specification
The information specification describes the
information semantics and the processing
information semantics in a system. The
description is divided in three parts: invariant
schema, static schema and dynamic schema [6].
The invariant schema describes the boundary of
the different types. A type is a set of finite
values and can be composed of other types.
This schema enables the limitation of the
exchangeable values in the system. We use the
same kind of types as those defined in the
Interface Definition Language (IDL).

The static schema defines the kind of states the

agent can take and more especially the initial,

the final and eventually, some intermediate

values.

The dynamic schema describes the actions that

will modify the information. These actions

linked together permit to reach, starting from

the initial value described in the static schema,

the other values. An action has to be seen here

as an elementary action.

There is a correspondence between actions described

here and those defined previously in the enterprise

viewpoint. They are taken from the roles by defining

states they will reach. The information specification

describes essentially the pro-activity characteristic of

the agent. It also describes the evolution of the

agent’s knowledge.

3.3. Computational Specification
A computational specification describes the
functional decomposition of the system, in
distribution transparent terms, as [6]:

This paper will be published in the 6th International Conference on Intelligence in Networks ICIN'2000

• a configuration of agents;

• the internal actions of those agents;

• the interactions that occur among those

agents and that belongs to exported or

imported interfaces;

• environnement contracts represented in the

agents interfaces. They are the set of

actions (eventually restricted by parameters

types for example) exported conditionally

to find the associated imported interfaces.

As seen previously, agents interact through

interrogations, announcements and streams. As

ODP we put together interrogation and

announcement into a same pattern: the

operation.

Set of actions of the information specification

have a correspondence with operations. An

interrogation expresses the need for a result and

is composed of an invocation followed by a

termination. So, it is seen as a synchronous

action while an announcement can be seen as an

asynchronous action. The parameters and, for

the interrogation, the return values types are

defined in the information specification. The

operations are put together into interfaces that

show what services an agent can offer. Each

interface can require services from other

interfaces to be usable.

Produced streams are described with a type of

data and are put together in stream interfaces.

An agent is reactive. This viewpoint allows the

identifications of the events that the agents

need to consider. They are described in signal

interfaces: emitted or accepted signal interfaces.

When an agent must respond to a signal, it can

require other interfaces.

An agent is also social. In this viewpoint, it

identifies the interactions between the different

roles, the protocols they will use.

4. Verification and validation
The specification methodology presented above
is based on the separation of concerns reflected
in the viewpoint concept. This separation
simplifies the verification tasks. Actually, it
enables the designer to verify locally each
specification or part of it rather than verify the
global specification. The verification is based on

the system behavior analyze, that is the
behavior of the agents set. It consists in
verifying the properties expressed by the
designer and in validating a part of the entire
system [7].

4.1. Verification

The verification means to check if the system

will really do what it is expected to do. The

verification is applied to each viewpoint

specification and particularly to each part of it.

It is concerned to verify some properties such

as the violation of a behavior, the reachable

state, the reachable objective and pre- and post-

conditions verification.

4.1.1. Violation of a behavior

As soon as the enterprise specification is

available, roles behaviors are described in terms

of actions. Moreover, the constraints are

defined on the roles in terms of interdictions,

permission and obligations. It is then possible t o

check that the set of constraints does not lead

to deadlocks in the role behavior.

To realize this verification, behaviors and

contracts described in the enterprise

specification are automatically transformed into

Petri nets. An action becomes a transition. The

pre-conditions of a transition are the post-

conditions of the action that permits it and the

ones that preceed it. A post-condition is

generated each time an action permits another

one or each time an action has a successor. An

activity represents a connection between two or

more Petri nets. In that case, we divide the

Petri nets into independent parts and study each

of these independent parts as a new behavior.

With these Petri nets, if one permission is

missing, then their liveness is not ensured. We

must verify that a transition can be fired after

an obligation and also that a transition cannot

be fired after an interdiction.

We verify the behavior of the agent by

checking if all transitions are reachable from

the initial state. The set of these verification

tasks is achieved by using the CPN- AMI23

environment, that is a framework dedicated t o

3 available at www-src.lip6.fr/cpn-ami

This paper will be published in the 6th International Conference on Intelligence in Networks ICIN'2000

formalization of software development during

the lifecycle.

4.1.2. The state reachability

The information specification describes states

of the system and state changes in terms of

actions. It must be checked that each of these

states can be reached. This means that for a

given state by using the actions enabling the

state changes, at least one way to reach this

state must be founded. This way is a

permutation of a set of actions.

This allows the designer to verify that all the

needed actions have been described. It enforces

the specification by removing the unused

actions.

4.1.3. Objective reachability

Verifying that the objectives could be reached

means ensuring that the actions can be done

entirely. Helped by the computational

viewpoint description, we extract some Petri

nets that represent the actions. We have here

one action for one Petri net. So, a Petri net is

of a lower level than the one mentioned in the

Section ˙Violation of a Behavior¨. To avoid a

combinatory explosion of the set of system

states, instead of combining all these Petri nets,

we replace the place that links them by a

transition and a place. This transition simulates

the value of the replaced net. Then the

verification can be done more easily by

abstracting a behavior with the corresponding

action. Finally we verify that each action can

end with a final state that represents the post-

conditions of the action.

4.1.4. Pre- and post-conditions
verification

Pre- and post-conditions verification is realized

by using the behavior described in the

computational specification. It determines if

each invocation is done with the right types

(the pre-condition) and for each operation if

the data state will remain in their boundaries

(the post-condition).

4.2. Validation

Validation means that the system will do what it

is expected to and nothing more. The validation

is applied to each viewpoints specification. It is

concerned to check some properties such as the

identification of new services, the boundaries of

types and the identification of new behaviors.

4.2.1. Identification of new services

A T-invariant determines an invariant

associated with the transition. We want here t o

identify the T-invariants of the system modeled

as a Petri net built as mentioned in Section 4.1.

A T-invariant represents a behavior or a part of

it, so the designer must be able to identify the

semantics of these T-invariants and check if

these T- invariants are or not undesirable new

services.

4.2.2. Boundaries of types

In Section 4.1, verification of the pre- and

post- conditions aimed to verify the correction

of the pre- conditions of an action. Here, we

check if all the values defined in the pre-

conditions are used. Unused values are removed

from a pre-condition by a looping process until

no more values can be found. This does not

permit to find the smallest boundaries of the

types but it determines a reduction of the types.

Reducing the numbers of values used in the

system can enable the designer to identify a

design mistake in the semantics of the

concerned type.

4.2.3. Identification of new behaviors
We do not use here the same technique as we did
in the identification of new services. We check
that the links between the different actions in
the information specification and the behaviors
in the enterprise specification have a
correspondence in the computational
specification. They correspond to emission or
reception of signals, writing or reading of
information in streams or invocation of
operations. We check also that no new link or
behavior appears. This means that no agent can
emit or accept a signal (resp. write or read a
stream or invoke an operation) that has never
been described before.

This paper will be published in the 6th International Conference on Intelligence in Networks ICIN'2000

5. Conclusion

The objective of the ODAC project is to define

methods and tools based on a formal approach

so that a designer of telecommunication

services can specify and implement a new

service in the form of a multi-agents system.

Our goal is to complete the current approaches

of the telecommunications industry with the

agent paradigm enhanced with formal methods.

The benefit is to separate the responsibility

during the design process and to verify the

different properties expressed in each

viewpoint. The major contribution of ODAC is

the proposal for a specification methodology

conform with the ODP standards that supports

the formal verification. The methodology is

supported by an operational environment

currently developed. This will provide design

tools and will be integrated into the CPN-AMI2

environment that provides verification tools.

6. Reference
[1] S. Trigila et al., Service architectures and service

creation for integrated broadband communications,
Computer Communications, 18(11):838-848, 1995

[2] M. Wooldridge, J. Muller and M. Tambe, Agent
Theories, Architectures and Languages : A
Bibliography, in Proc. of the Intelligent Agents II,
IJCAI-95 Workshop on Agent Theories,
Architectures and Languages (ATAL’95), LNAI
n˚1037, Springer Verlag (Ed), Montreal, Canada,
August 1995

[3] A. Diagne and M.P. Gervais, Building
Telecommunications Services as Qualitative Multi-
Agent Systems the ODAC Project, in Proceedings of
the IEEE Globecom’98, Sydney, Australia,
November 1998

[4] ISO/IEC IS 10746-1 - ITU-T Rec. X901, ODP
Reference Model Part 1. Overview and Guide to Use,
May 1996

[5] M. Wooldridge. Agent-based Software Engineering.
In IEE Proceedings on Software Engineering, 144(1),
pages 26--37, February 1997

[6] ISO/IEC IS 10746-3 - ITU-T Rec. X903, ODP
Reference Model Part 3: Architecture, January 1995

[7] M.P. Gervais and A. Diagne, Enhancing
Telecommunications Service Engineering with
Mobile Agent Techology and Formal Methods, IEEE
Communications Magazine, Vol. 36, n˚ 7, pp38-43,
July 1998

[8] M. J. Wooldridge and N. R. Jennings (1998) "Pitfalls
of Agent-Oriented Development" Proc 2nd Int. Conf.
on Autonomous Agents (Agents-98), Minneapolis,
USA, 385-391

