
HAL Id: hal-02548256
https://hal.science/hal-02548256v1

Submitted on 20 Apr 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Using the UML Language to Express the ODP
Enterprise Concepts

Xavier Blanc, Marie-Pierre Gervais, Raymonde Le-Delliou

To cite this version:
Xavier Blanc, Marie-Pierre Gervais, Raymonde Le-Delliou. Using the UML Language to Express the
ODP Enterprise Concepts. [Research Report] lip6.1999.024, LIP6. 1999. �hal-02548256�

https://hal.science/hal-02548256v1
https://hal.archives-ouvertes.fr

Using the UML Language to Express the ODP Enterprise
Concepts

X. Blanc(*+), M.P. Gervais(*), R. Le-Delliou(+)
Laboratoire d'Informatique de Paris 6 (*) — 8 rue du Capitaine Scott F75015 PARIS

EDF Research Division (+) — 1, av du Gnl De Gaulle F92141 CLAMART Cedex
Xavier.Blanc@lip6.fr, Marie-Pierre.Gervais@lip6.fr, Juliette.Le-Delliou@edf.fr

A b s t r a c t - Specifying is not a
gimmick, it is a real discipline that
of fers many advantages t o the
developers. I t is helpful to build,
m a n a g e a n d descr ibe applications.
Standards are now available such as
the OMG adoption of the UML notation
and the RM-ODP developed by ISO and
ITU-T. However these standards are
totally independent although they deal
with the same topic. In order to
conciliate these two approaches, we
propose in this paper a way to use the
UML notation to express the RM-ODP
enterprise concepts

I. INTRODUCTION

It is a fact that information systems become more
and more complex, they solve big problems and
enterprises are increasingly dependent on them. In
order to develop them efficiently, specifications o f
such systems are needed. Having a specification is
powerful for anybody who is concerned with
information systems. Specifications have many
advantages since they clarify understanding for
users, control the lifecycle and guide the
deployment of the system.

The OMG (Object Management Group), with the
standardisation o f UML (Unified Modeling
Language) attempts to improve the technology o f
specification [1]. UML is a meta-language used t o
specify information (like information on a
system). UML provides a lot of tools to build
specifications. This language enables a developer t o
express almost everything. It is a graphic language
that is very clear and simple. Another of its
advantages is that it is method-free, i.e., every
method can be expressed with UML.

UML proposes some graphical blocks to express
notions based on objects [2]. It gives blocks for
classes, objects, interfaces, component, etc. These

blocks are arranged into diagrams to express
semantic notions. The advantages of UML are
simplicity, extensibility of the language and
possibility of expressing a good deal of notions. The
fact that OMG elected this language as a
specification language is because of its efficiency.

On the other hand, ISO (International
Standardisation Organisation) a n d ITU-T
(International Telecommunication Union —
Telecommunication Sector) have elaborated the
RM-ODP standards (Reference Model of Open
Distributed Process) that focus on an architecture
framework for distributed systems and for their
specification [3]. These standards provide concepts
to specify open distributed systems [4]. They are
also method-free, in the sense that any method
using RM-ODP concepts can be applied.

The RM-ODP standards suggest to look at the
system from five viewpoints and to build five
complementary specifications [5]. Each of these
specifications presents an abstraction of a system
focusing on a specific purpose. According to these
five viewpoints, the modeller can build five
specifications tha t a re independent but
complementary. However, the RM-ODP concepts
are not trivial, they are very linked together and
it is very difficult for a new user to understand
them in order to build a specification making use
of them. Moreover, the standards are not
prescriptive, i.e., no notations are provided t o
establish specifications.

LIP6 with EDF has started a project that aims t o
create a methodology for building distributed
systems. This methodology will use the ODP
concepts as basic concepts and UML as a
specification language.

In this paper, we present the first results of this
work that focus on the enterprise viewpoint of the
RM-ODP. This viewpoint focuses on the scope, the
purpose and the policies of a system. When a
modeller specifies a system according to this
viewpoint, he/she builds a general representation
of the system. This representation could be used in
the first step of a method to build distributed
system.

In order to establish an enterprise specification,
the modeller needs a notation. Thus, we propose t o
express the RM-ODP enterprise concepts with the
UML notation. For this, we identify some rules o f
correspondence between ODP enterprise concept s
and UML blocks.

This paper is organised as follows. We first
present the main enterprise concepts of the RM-
ODP. Then we explain the rules we have defined t o
express these concepts with the UML notation.
Finally, we illustrate how to use these rules with
an example.

II. THE ENTERPRISE VIEWPOINT

In [5], the enterprise viewpoint is defined as a
viewpoint on an ODP system and its environment
that focuses on the purpose, scope and policies for
that system.

A specification of a system in its environment
according to the enterprise viewpoint, called an
enterprise specification, expresses the behaviour
of a system expected by its environment. It also
expresses the different policies that apply to the
system on behalf of its environment.

It should be noted that an enterprise specification
could be made either to construct a new system
that will be compliant to the specification or t o
represent an existing system. RM-ODP provides
concepts that enable a designer to establish such
specifications.

Many RM-ODP enterprise concepts are related t o
instances (e.g. object, community). In addition,
RM-ODP introduces specifications concepts such
as:
Template [6]: A template defines how some
things can be instantiated. However, a template
need not provide a complete prescription;
information may be derived from the context in

which the instantiation takes place, filling in
values for parameters of the template.
Type [6]: A type is a predicate that is satisfied
or not satisfied. A type of an <X> characterises a
collection of <X>.

For example, if a modeller wants to specify an
object, he can do it by describing the object
template or describing the object type.

In this document, we display the concepts that are
sufficient to build an enterprise specification. We
do not display in details all the concepts of the
enterprise viewpoint but we assume that most o f
enterprise specifications can be expressed with
these concepts.

Object [4]: It is the basic concept of the
enterprise viewpoint.
An object is a model of an entity. It has an identity,
a state and a behaviour. Objects can be used t o
represent different levels of abstraction. In a
specification, an object can represent a generic
car, and in another one, an object can represent a
specific car (the blue one, identified 123 ABD
123). The choice of the level of abstraction is
under the control of the modeller.
Although the concept of object is the basic notion,
an enterprise specification does not include
necessarily the description of objects. According t o
the level of details the designer wants to specify,
he/she can only specify types or templates o f
objects rather than objects themselves.

Action [4]: An action is something that happens.
An action can be either internal or interaction. An
interaction implies at least two objects. An
internal action takes place without the
participation of the environment of the object.
Actions can be used to represent different levels o f
abstraction: an action can be an atomic action (i.e.,
it cannot be decomposed) or an action can be a
sequence of atomic actions. The choice of the level
of abstraction is under the control of the modeller.
An action type expresses a specification of an
action.

Behaviour [4]: A behaviour is a set of actions
and constraints on when they appear.

Community [6]: This notion is fundamental in
an enterprise specification. When some objects are
grouped together to realise a common goal, they
constitute a community. An object must belong t o
at least one community and can belong to more than
one community.
It should be noted that a community C1 could be
represented as an object in another community C2.
This object is called a CEO (Community Equivalent
Object). This CEO is the abstraction of the
community C1 inside the community C2.

Objective [6]: An object belongs to a
community only i f i t participates to the
achievement of the objective of that community.
Each community has i ts own objective.
Communities do not share an objective, but two
communities may have the same objective.
Moreover, an objective of a community can be a
part of an objective of another community.

Role [4]: We have mentioned that an object can
belong to different communities. In each of these
communities, the object fulfils a role. Actually,
attached to a community is a set of roles. Each of
them identifies a behaviour, i.e., the set of actions
that must be achieved to carry out the objective.
Objects that fulfil these roles then populate the
community. A role can be seen as an object type: i f
an object fulfils a role, then it can satisfy the type
“can realise the behaviour identified by the role”.
It should be noted that the CEO is an object. So i t
belongs to a “larger” community in which i t
fulfils a role. This role, called the interface role,
is a representation of some services proposed by
the community represented by the CEO.

Policy [6]: policies are applied to objects, roles
and communities. There are two kinds of policies,
the policies for population and policies for
behaviour.
The policies for population give rules to link
objects and roles. Examples of such policies are:
“an object cannot fulfil two roles that are not
compatible” or “in this community, at least one
object must fulfil this role”.
The policies for the behaviour give rules on the
behaviour of objects or on the behaviour of roles.
For example, an action of the behaviour A cannot
be done before an action of the behaviour B.

These concepts can be summarised as follows:
• A community has one objective.
• To realise this objective, some behaviour

must be realised. This behaviour is identified
by roles.

• Objects, which fulfil a role in a community,
belong to the community.

• Policies can be applied to roles, objects and
communities.

These concepts enable the designer to describe
communi t ies a n d t he re fo re enterprise
specification.

To explain how to use these concepts together,
RM-ODP gives structuring rules [6]. We just
mention here some of them that are relevant for
this paper.

The first structuring rule we will examine is
tha t an enterprise specification includes
community specifications. One of them must be the
specification of the community in which the
system to be modelled is represented as an object.
This community, called the <S>community, is
composed of the system (represented as an object)
and of other objects that represent the
environment of the system. More generally, it is
considered that an enterprise specification is a set
of community specifications, one of them must be
the <S>community.

The other rule we look at is that a role could be
either an actor role or an artefact role. Moreover,
an actor role could be either a core role or an
environment role.

Briefly, objects fulfilling actor roles can initiate
interactions (i.e., they are actors) while objects
fulfilling artefact roles cannot.

The distinction between environment role and
core role is more interesting to build a CEO. When
a community is represented as a CEO in a larger
community, only objects that fulfil core roles
must compose this CEO. Object fulfilling
environment roles belong to the environment o f
the community, they do not have to populate the
CEO.

These structuring rules help the modeller to use
the concepts but they do not provide a design
methodology. RM-ODP is method-free, any method
using the RM-ODP concepts and the structuring
rules can be used to build an enterprise
specification.

On another hand, when a modeller wants to make
an enterprise specification, he can do it according
to two different approaches. One is the role
approach, it means that the roles are the basis
concepts of the specification. In this approach, the
modeller expresses first the behaviour of the
system according to roles. Then he associates the
roles with objects. The other approach is the
object approach, it means that the objects are the
basis concepts of the specification. In this
approach, the modeller expresses the different
entities that belong to the system.
The first approach is sum up in these two
sentences:

What actions must be made?
Which objects do actions?

The second one is sum up in these two sentences:
Which are the objects doing something?
What do these objects do?

As RM-ODP is method-free, our mapping is also
free from method. It can be used by any method
that matches to the RM-ODP concepts.

III. EXPRESSING ODP CONCEPTS WITH UML NOTATION

In this part, we will explain our approach to use
the UML to express an enterprise specification. We
will give rules of correspondence between ODP
enterprise concepts and UML blocks.

As it is possible to have different specifications
written with the UML language, there could be
different ways to map enterprise concepts onto
UML blocks [7] [8] [9]. However, we assume that
rules we defined ensure consistency and coherence
without any lose or addition of semantics. The
specification in UML has the same semantic as the
specification with natural language.

Object: We can say that an ODP object is like an
UML object [2]. An ODP object is a model of an
entity, it has a state, a behaviour and an identity.
An UML object has also a state, a behaviour and an
identity and it is a model of an entity.

Rule 1: “An ODP object is represented by
a UML object”.

In general, an enterprise specification is not
composed of objects but it is composed of object
templates or/and object types (as in UML, objects
are specified by their classes or interfaces).

Action: An action is something that happens.
Actions are always associated with at least one
object. Actions are ever executed by objects, and
we can compare an ODP action to a UML
operation [2]. An operation is an abstraction o f
something that an object can do. We think that
operations can represent the ODP actions. It should
be noted that a modeller should deal with action
specification or action type rather than with action
(ODP action means action occurrence).

Rule 2: “An ODP action is specified with a
UML operation”

Role: A role is an identifier for a behaviour,
which represents a set of actions and constraints
on when they appear. We said that an action is
represented by an operation (rule 2); but it seems
that no UML concept matches with the RM-ODP
role concept. This is why we choose to extend the
UML language with a new stereotype of class: the
stereotype “role”. A block with this stereotype
will represent a role. Semantically, the role
notion is close to the interface notion without the
notion of services.

Rule 3: “A role is a stereotype of class
that expresses a collection of operations. A
role can include constraints on operations
to tell when they may appear”.

Constraints on operations are represented by UML
notes.

Fig. 1 represents a RM-ODP role, named
“printer”. The behaviour represented by this role
is a single action (print), there is no constraint on
this action.

It should be noted that a role can be seen as an
object type. So, in an enterprise specification, an
object can be specified by a role or by an object
template. For example, if A is a role and B an
object template, an object O1 that fulfils the role
A, i.e. that realises all the actions of the role, can
be represented as O1:A, an object O2 that is an
instantiation of B can be represented as O2:B while
 :A represents an anonymous object that fulfils
A.

Community: A community is a set of objects.
These objects interact to realise the community’s
objective. A community specification must express
dynamic concepts and static concepts. Dynamic
concepts specify the behaviour of the community;
they are roles and behaviour policies. Static
concepts are policies of population and
relationship between roles and object templates.
We think that the better way to specify a
community with UML is to use a collaboration [2] .
The collaboration can express both dynamic and
static concepts. A collaboration is populated with
objects; we can express their classes and their
interfaces, we can also express the common
behaviour of the collaboration. From our point o f
view, a collaboration is populated with objects, we
can express their templates and their roles, and
we can also express the behaviour of the
community.

Rule 4: “ A community is specified by a
collaboration”

Fig. 2 represents a specification of a community.
In this community, anonymous objects must fulfil
four roles (A, B, C and D).

The interaction diagram expresses the behaviour
of this community, that is, an object fulfilling the
role A asks for the do1 action, then an object
fulfilling the role B asks for the do2 action etc. As
all these objects are anonymous objects, it is
possible to have a community that is compliant
with this community specification with only one
object.

This example of community specification is not
complete, the roles A, B, C and D must be specified
along with the objective of the community.

Objective: We cannot express the objective of a
community with a collaboration. We think that a
Use Case can express the objective of a community
[2]. A Use Case is a sequence of actions that a
system performs and that yields to a result
observable from the system environment. From
our point of view, a Use Case represents the
objective of a community.

Rule 5: “ The objective of a community is
represented by a Use Case”

Representing objectives as Use Cases is well-
suited with the choice of representing communities
as collaboration since a collaboration realises a
Use Case as well as a community realises an
objective.

The Fig. 3 shows a community specification and
i ts objective specification. The objective
specification is represented as a Use Case.

Fig. 1: An ODP role (printer) with one

2 :

3 :

 : A

 : B

 :

 :D

Fig. 2: A community with four objects.

« role
 »

printer

Policy: Policies are constraints or rules that
apply to roles, objects or communities. These
policies are like annotation on objects or roles, we
think that they are similar to notes [2] .
Expressing policies with OCL or other languages is
for further study. The Fig. 4 represents a policy
applied to a role, this role cannot be fulfilled by
human person.

Rule 6: “Policies are represented by
notes”

The six rules that we have stated are the basic
rules of our mapping. They are sufficient t o
express concepts of enterprise viewpoint. But
other ones are needed to express the structuring
rules of the enterprise viewpoint.

As mentioned previously, an enterprise
specification is a set of community specifications
but one of them must be the specification of the
<S>community. This community is composed of one
object that represents the system and of other
objects that represent the environment of the
system.

We suggest to represent the <S>community with a
Use Case diagram. We think that the approach of
the Use Case diagram is more familiar for the
modellers to specify such a community.

UML actors and Use Cases compose a Use Case
diagram [2]. UML actors represent the behaviour
of an entity that expects a result from the system

and Use Cases represent actions that the system
performs. In our mapping, an UML actor
represents an ODP environment role and a Use
Case represents the objective.

Fig. 5 represents a specification of a
<S>community. Three objects compose this
community, two o f them represent the
environment of the system and the last one
represents the system. The objective of the system
is represented by the union of the two Use Cases
(do1 and do2).

This specification of the <S>community is not
complete, the roles envI and envA must be
specified.

Rule 7: “An <S>community is represented
by a Use Case diagram”

The notions of actor, artefact, core and
environment roles are represented by different
stereotypes. A core role is represented by a “core
role” stereotype.

The way to express the link between a CEO and its
corresponding community is that the roles of the
CEO are some interface roles of its corresponding
community.

Rule 8: “Some interface roles of a
community must correspond to the roles
fulfilled by the corresponding CEO”.

IV. EXAMPLE: TRAVEL AGENCY

Do something

Fig. 3: A community that realises the
objective “Do something”.

« rol
e »

printe

Can’t be
fulfilled by

Fig. 4: A policy applied to a role
Fig. 5: Specification of an

 : envA : envI

do1

do2

A. Descript ion in a Natural Language

This example is a classic example in the world o f
the distributed systems that everybody can easily
understand. This enables one to understand our
mapping between ODP and UML.

This travel agency could be an electronic travel
agency or a travel agency of the real world. Its
domain is transport in general: plane, train, car
or boat. The customer asks for a trip and the goal
of the agency is to find a trip corresponding to the
customer’s wishes and to sell it to him/her. For
this, the customer describes the trip and gives the
description (with some constraints such as the
price) to the agency. The agency does its job and
hands an offer to the customer.
The behaviour of the agency is hidden to the
customer. Therefore the specification will
describe it.

The travel agency is an open distributed system.
It uses some services of other systems to fulfil the
customer’s wishes. We call “entity” the different
actors who act in this system. The customer of the
travel agency must be considered as an exception,
since he/she is not an entity acting in the system,
but a user of it. By extension, we include him/her
in the list of the entities given below.

The application is composed of several entities,
each of them performs some actions to realise the
objective. All these entities can be grouped into a
single system or they can belong to several
independent systems that interact.

This description is focused on the behaviour o f
the application and does not include any
information on the membership of the entities.
However, these information must be provided
when specifying the application with the ODP
concepts and with the UML notation.

The entities are:
USR: the user (or customer). He must describe
his trip and gives constraints on it. The customer
then gives his request to the travel agency. As
mentioned above, the USR belongs to the
environment of the travel agency.

PTA: The Personal Travel Assistant is an entity
that receives the request of the USR. It is the only
entity that interacts with the USR. For the USR,

the PTA represents the travel entity. The PTA can
interact with the DF and with the TBA.

DF : The Directory Facilitor is a database with
links to TBAs. When the PTA checks a trip, it asks
the DF to list TBAs.

TBAs: The Travel Broker Agents are entities that
know TSAs. The TBA asks the TSA to give an offer
that maps the customer’s request. The PTA deals
with the TBAs.

TSA: The Travel Service Agent is the entity that
proposes trips. It can be an Air Company or
anything like that.

The behaviour of the travel agency is as follows:
1 . The customer (USR) describes his/her trip

and gives some constraints. He/she gives
his/her description to his usual agency.

2. The PTA is the entity that receives the request
of the customer. It checks if the request is well
formed and then asks the DF to list some TBAs.

3 . The PTA gives to each TBA more information
about the tr ip. In fact, each TBA has its own
TSA contact and each TBA will perform
research for the trip.

4. The TBA asks its TSA an offer for the trip. I t
gives description and constraints of the trip t o
the TSA. The TSA gives an offer and the TBA
negotiates this offer to match the customer’s
wish. When it is done, the TBA temporarily
books the trip. This booking will be confirmed
later. Each of the TBAs does this job, then each
of them displays its best offer.

5. Each of the TBAs gives to the PTA its best offer.
The PTA chooses one offer among them. Then i t
tells to the concerned TBA to book definitively
the trip.

6. The USR validates the booking.
7 . The TBA books definitively the trip. All the

others cancel their booking.
8. The PTA gives the trip to the USR.

This configuration includes one PTA and some
TBAs. Each of the TBAs knows some TSAs. Each o f
the entities can be localised in a different place.

B. Specificat ion with ODP Concepts

We will specify this example with the ODP
enterprise concepts. This specification will be
done with natural language.

We have written two different specifications. In
the first one, the application “travel agency” is
considered as a single system that includes all the
entities. In the second one, it is composed of two
systems, one including the entity TSA while
another includes all the other entities.

The advantage is that the first specification
provides a simple example illustrating the use o f
the ODP concepts while the second example
provides a more complex specification illustrating
interactions between communities.

The notation used is a proprietor notation.
Comments will be written in italic while keywords
are in bold.

1) First Example: The Travel Agency is a single
system including all the ent it ies.

In an enterprise specification, there must be a
<S>community, as explained in the structuring
rules, i.e., a community in which the system is
represented as an object.

In this example, all the entities belong to the
system. So the <S>community is only composed o f
the system represented as an object and of the
customer (who is not an entity of the travel
agency).

This enterprise specification includes two
community specifications, each of them providing
a different level of abstraction. Thus, the
community specification named “travel agency as
an object”, i.e., the <S>community is very
abstract, while the specification of the community
named “travel agency in details” is more detailed.
This choice enables us to explain the notion of the
CEO. Here, the object that fulfils the role “travel
agency” in the <S>community is a CEO. The
corresponding community of this CEO is the
“travel agency in details” community.

Enterprise specification

This enterprise specification is composed of several
community specifications.

Community type <travel agency as an object >

This community specification is named <travel agency
as an object>. It is the <S>community.

Community behaviour <request for a trip>
USR requests to the travel agency for a trip
and then the travel agency offers to the USR
a trip that fits his wish.

This is the specification of the behaviour of the
community.

 Actor role <USR> is an environment role
 Action <request for a trip>
 Involves <travel agency>

The different roles of the community are enumerated:
USR is an actor environment role, its action is
<request for a trip>. An object that fulfils this role
will interact with an object that fulfils <travel
agency> role

 Actor role <travel agency> is a core role
 Action <find a trip that conforms to the
request>
 Involves <USR>

Community type <travel agency in details>

Community behaviour <find a trip>
The USR requests a trip, then the PTA asks to
the DF some TBAs. Each of the TBAs asks to
some TSAs to give an offer for the trip. Each
of the TBAs proposes its best result to the
PTA. The PTA takes the best-proposed result.
The PTA gives this best offer to the USR. The
user accepts or refuses the offer, if he
accepts then the corresponding TBA books the
trip to its TSA.

 Actor role <USR> is an environment role
 Action <request for a trip>
 Involves PTA
 Action <accept or deny an offer>
 Involves PTA

 Actor role <PTA> is a core role
 Action <ask to the DF>
 Involves DF
 Action <ask to the TBA>
 Involves TBA
 Action <take the best offer>
 Involves TBA
 Action <give the trip>
 Involves USR

Actor role <TBA> is a core role
 Action <ask to the TSA>
 Involves TSA
 Action <gives the best offer>

 Involves PTA

 Actor role <TSA> is a core role
 Action <offer trip>
 Involves TBA

 Actor role <DF> is a core role
 Action <gives TBA>
 Involves PTA

 Artefact role <TR> is a core role

This role represents the trip

2) Second example: The TSA is an independent system

In this specification, the TSA is an independent
system that interacts with the travel agency
system (composed of the PTA, DF and TBA
entities).

As this kind of configuration is very frequent, we
consider it in order to show how the enterprise
viewpoint deals with interactions between
systems.

The TSA is an independent system, so it has its
own enterprise specification. This specification
can be composed o f several community
specifications. However, for our purpose that is
the specification of the travel agency system
rather than the TSA enterprise specification, only
an abstract view will be useful. Thus, the
<S>community of the TSA specification is
sufficient.

This community has two roles, the role of the TSA
(the system) represented as an object and the role
of the customer. The role of the TSA represents the
services that the system exports to its
environment and the other role is the environment
role that represents the customer.

Enterprise specification

This is the specification of the TSA

Community type <TSA as an object>

Community behaviour <offer trip>
The CUStomer asks for a trip and the TSA
tells him if it has such a trip.
Actor role <CUS> is an environment role
 Action <ask for a trip>
 Involves TSA

 Actor role <TSA> is a core role

 Action <propose trip>
 Involves CUS

A modeller who wants to specify the travel agency
can make use of this TSA specification. To link this
specification with the specification of the travel
agency, an object of the travel agency community
should fulfil the role of the CUStomer of the TSA
system.

Enterprise specification

This is the specification of the travel agency.

Community type <travel agency as object >

In this specification, there is the <S>community named
travel agency as an object. This community
specification does not have to mention that the travel
agency interacts with the TSA system, since i t
represents the system as an object.

Community behaviour <request for a trip>
USR requests to the travel agency for a trip
and then the travel agency offers to the USR
a trip that conforms to his wish.

 Actor role <USR> is an environment role
 Action <request for a trip>
 Involves <travel agency>

 Actor role <travel agency> is a core role
 Action <find a trip that conforms to the
request>
 Involves <USR>

Community type <travel agency in details>

This is another community specification that belongs t o
the enterprise specification. This community
specification describes in details the behaviour of the
travel agency.

Community behaviour <find a trip>
The USR requests a trip, then the PTA asks
the DF for some TBAs. Each of the TBAs asks
to some TSAs to give an offer for the trip.
Each of the TBAs proposes its best result to
the PTA. The PTA takes the best-proposed
result. The PTA gives this best offer to the
USR. The user accepts or refuses the offer,
if he accepts then the corresponding TBA
books the trip to its TSA.

 Actor role <USR> is an environment role
 Action <request for a trip>
 Involves PTA
 Action <accepts or denies an offer>
 Involves PTA

 Actor role <PTA> is a core role
 Action <ask to the DF>
 Involves DF
 Action <ask to the TBA>

 Involves TBA
 Action <take the best offer>
 Involves TBA

 Actor role <TBA> is a core role
 Action <gives the best offer>
 Involves TSA
 Concerns USR
 Constraints Objects fulfilling this role
must fulfil the CUStomer role of the <TSA as
an object> community.

Here, we specify the fact that objects fulfilling this
role must fulfil the role “CUStomer” of the
community “TSA as an object”.

 Actor role <DF> is a core role
 Action <gives TBA>
 Involves PTA

 Artefact role <TR> is a core role

This specification shows how an interaction
between two systems can be specified.

C. Specificat ion with UML Language

The specifications shown here are semantically
the same as those in section 4.2.

1) First Example: The Travel Agency is a single
system including all the ent it ies.

As in part 4.2, the <S>community named “travel
agency as an object” has two roles, the role USR
and the role named “Travel Agency” (Fig. 6). To
complete this specification, the description of the
role USR and the role TA must be represented
graphically. We illustrate in Fig. 7 the
environment role USR with one operation “request
for a trip”.

Note that Fig.6 and Fig. 7 are parts of the
specification of the <S>community, that is itself a
part of the travel agency enterprise specification.
The latter includes the other community
specification named “travel agency in details”,
illustrated in Fig. 8.

As in part 4.2 roles are USR, TSA, DF, PTA and
TBA. To have a complete specification, these roles
must be specified.

Comments can be put in the specification t o
express RM-ODP policies or other things. Here,
there is one comment that expresses a population
policy.

We have identified that in the “travel agency as
an object” community, the object that fulfils the
role “Travel Agency” is a CEO. Its corresponding
community is the “travel agency in details”. The
CEO is a conceptual object, composed of a set o f

to sell a

to sell a trip

 :PTA

 :USR

 :TSA

1

2

3

4
5

6
7

8

There may
be more
than one

« env

Request
for a
trip()

Fig. 7: The role USR

Fig. 6: Specification of the
<S>community “travel agency as an

Fig. 8: Specification of the community
“travel agency in details”.

objects fulfilling core roles. These are TSA, DF,
TSA and TBA.

2) Second Example: The TSA is an independent
system.

The specifications shown here are semantically
the same as those in section 4.2.

As mentioned in section 4.2, the TSA is an
independent system that has its own enterprise
specification. This specification can be composed o f
several community specifications. As we are
interested in specifying the travel agency system,
we choose to bring only a part of the enterprise
specification of the TSA, that is its <S>community
specification, illustrating in Fig. 9. This
community has two roles, the role CUS that
represents the customer and the role TSA
representing the system.

This specification of the TSA is used by the
modeller who wants to specify the travel agency
system. The specification of the <S>community
“Travel agency as an object” is illustrated in Fig.
10. It is the same as the one obtained in the first
example (i.e., travel agency as a single system that
include all entities) since the <S>community
provides a very general view of the travel agency.
Differences between the two examples appear only
at a more detailed level, i.e., in the specification
“travel agency in details”, illustrated in Fig. 11.

In this specification, the object fulfilling the role
TSA must also fulfil the role CUS. This role belongs
the community “TSA as an object” (Fig. 9). Thus,
there is an interaction between communities. An
object belongs to the “travel agency in detail”
community and it belongs to the community “TSA
as an object” too. This means that if a community
is compliant to this specification, one of its object
must belong to a community that is compliant t o
the “TSA as an object” community.

V. CONCLUSION

The two examples of enterprise specification
presented above, first in natural language then in
our UML mapping enable us to conclude that
specifications with UML is simpler and clearer. I t
is simpler because it takes the advantage of the
UML notation that is to be very simple and very
clear. Thus this mapping offers a pleasant way to
express specifications with RM-ODP concepts.
Specifications take advantages of this mapping as
the UML notation gives them simplicity and they
are based on international concepts thanks to RM-
ODP.

Another advantage of this mapping is that it is
free from method. Every method that uses the
RM-ODP concepts can use this mapping.

VI. FURTHER WORK

The rules of correspondence presented in this
paper provide a notation to the RM-ODP
enterprise concepts. Some extensions need to be
provided, such as a more appropriate notation for
policies than UML notes currently used. We are
going to investigate the use of a language such as
OCL to express policies. These rules o f
correspondence also constitute a f irst step in the
creation of a method compliant with the RM-ODP
concepts and architecture.

This method will benefit from a graphical
notation (a little extension of the UML ones) as

 :CUS

Fig. 9: Specification of the
<S>community “TSA as an object”.

to sell a

Fig 10: Specification of the
<S>community “travel agency as an

To sell a trip

 :USR

 :TSA & CUS

1

2

3

6
7

8

It may
occur
more than

 :PTA

5
4

Fig. 11: Specification of the
community “travel agency in

Propose a

well as the use of the RM-ODP standards. The
latter provides a major advantage with its concept
of viewpoint and moreover the correspondence
between viewpoints. With such correspondences,
computational (or engineering) aspects can
emerge from the specification in the enterprise
viewpoint or vice versa.

Establishing such correspondence rules is the
next step of our work.

REFERENCES

[1] OMG UML Specification (draft) v1.3alphaR5
1999

[2] G. Booch, J.Rumbauch, I. Jacobson “The
Unified Modeling Language User Guide”, Addison
Wesley

[3] ISO/IEC, “ISO/IEC 10746-1 Information
Technology Basic Reference Model of Open
Distributed Processing Part 1: Overview ” ISO
ITU-T X.901 ISO/IEC DIS 10746-1, 1996

[4] ISO/IEC, “ISO/IEC 10746-2 Information
Technology Open Distributed Processing Reference
Model: Foundations”, 1996

[5] ISO/IEC, “ISO/IEC 10746-3 Information
Technology Open Distributed Processing Reference
Model: Architecture”, 1996

[6] ISO/IEC JTC1/SC7/WG3 3N65 “Working
Draft Washington Output 1999”

[7] OMG/UML, “UML Notation”
http://www.rational.com/uml/html/notation,
1997

[8] M.Belaunde, J-M. Cornily, E. Debeau, “An
RM-ODP based approach to modelling distributed
systems using UML and associated tools.” PARIS
Software & Systems Engineering.December 1998.

[9] J. Oldevik, A-J. Berre, “UML-Based
methodology for distributed systems” EDOC’98

