
HAL Id: hal-02548232
https://hal.science/hal-02548232

Submitted on 20 Apr 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Decidability and Undecidability Results for Recursive
Petri Nets

Serge Haddad, Denis Poitrenaud

To cite this version:
Serge Haddad, Denis Poitrenaud. Decidability and Undecidability Results for Recursive Petri Nets.
[Research Report] lip6.1999.019, LIP6. 1999. �hal-02548232�

https://hal.science/hal-02548232
https://hal.archives-ouvertes.fr


Decidability and Undecidability Results forRecursive Petri NetsSerge Haddad1 and Denis Poitrenaud21 LAMSADE - UPRESA 7024, Universit�e Paris IX, DauphinePlace du Mar�echal De Lattre de Tassigny, 75775 Paris cedex 162 LIP6 - UMR 7606, Universit�e Paris VI, Jussieu4, Place Jussieu, 75252 Paris cedex 05Abstract. Recursive Petri nets (RPNs) have been introduced to modelsystems with dynamic structure. Whereas this model is a strict extensionof Petri nets, reachability in RPNs remains decidable. Here we focus onthree complementary theoretical aspects. At �rst, we develop decisionprocedures for new properties like boundedness and �niteness and weshow that languages of RPNs are recursive. Then we study the expres-siveness of RPNs proving that any recursively enumerable language maybe obtained as the image by an homomorphism of the intersection of aregular language and a RPN language. Starting from this property, we de-duce undecidability results including undecidablity for the kind of modelchecking which is decidable for Petri nets. At last, we compare RPNswith two other models combining Petri nets and context-free grammarsfeatures showing that these models can be simulated by RPNs.1 IntroductionRecently recursive Petri nets (RPNs) have been proposed for modeling plansof agents in a multi-agent system [SH96]. A RPN has the same structure asan ordinary one except that the transitions are partitioned into two categories:elementary transitions and abstract transitions. Moreover a starting marking isassociated to each abstract transition and a semi-linear set of �nal markings isde�ned. The semantics of such a net may be informally explained as follows.In an ordinary net, a thread plays the token game by �ring a transition andupdating the current marking (its internal state). In a RPN there is a dynamicaltree of threads (denoting the fatherhood relation) where each thread plays itsown token game. The step of a RPN is thus a step of one of its thread. If thethread �res an elementary transition, then it updates its current marking usingthe ordinary �ring rule. If the thread �res an abstract transition, it consumes theinput tokens of the transition and generates a new child which begins its tokengame with the starting marking of the transition. If the thread reaches a �nalmarking, it may terminate aborting its whole descent of threads and producing(in the token game of its father) the output tokens of the abstract transitionwhich gave birth to him. In case of the root thread, one obtains an empty tree.



In [HP99], we have shown how to decide the reachability problem for RPNsand we have studied the expressive power of RPNs proving that RPNs strictlyinclude the union of Petri nets and context-free grammars w.r.t. the generatedlanguages.Here, we �rst de�ne new decision procedures for important problems: bound-edness, �niteness and recursivity of languages. The two �rst problems are nomore equivalent (unlike the similar problems for Petri nets) but remain de-cidable. In labelled Petri nets, in order to decide if some word belongs to thelanguage, one builds the synchronized product of the automaton recognizing thisword and the Petri net. This product is itself a Petri net and one decides if somemarkings are reachable. In RPNs such a method is impossible as the synchro-nized product of an automaton and a RPN is not necessarily a RPN (see thefollowing paragraph). From a complexity point of view, since all our decisionprocedures use the reachability procedure for Petri nets, none of them is primi-tive recursive. Again this must be contrasted to the situation of Petri nets wherethe boundedness problem is exponential space complete.Then we study the expressive power of RPNs. Following the works of Pe-terson [Pet81], we focus on �nite word language aspects. At �rst, we show howto simulate computations of a Turing machine by synchronizing a RPN and a�nite automaton. Building on this result, we establish that for any recursivelyenumerable language one can de�ne a RPN language, a regular language andan homomorphism such that the former is the intersection of the latters via thehomomorphism. So RPNs are much closer to Turing machine than Petri netsand context-free grammars. Indeed, the two latter models are closed under ho-momorphism and intersection with regular languages whereas the same closureapplied to RPNs leads to Turing machines. A second important consequence isabout in�nite state systems model checking. For Petri nets, Ezparza [Esp97] hasshown that the model checking of linear temporal logic on actions is decidable.Such a model checking procedure is undecidable for RPNs even for a restrictedlogic.At last, we compare the model of RPNs with two other models combiningPetri nets and context-free grammars features. Net systems have been introducedby A. Kiehn [Kie89a] in order to study partial-order semantics and compositionof such systems. RPNs strictly include net systems w.r.t. to the language criteria.Process algebra nets (PANs) is a model of process algebra which include Petrinets and context-free grammars. In [May97], R. Mayr has shown that reachabilityis decidable for PANs. Here we show that RPNs include also PANs whereas thestrict inclusion is an open problem. Due to the space restrictions, only sketchesof proof are given in the paper. However in appendixes, we give complete proofsfor the main propositions. These appendixes will be omitted in the �nal version.A technical report including all proofs will soon appear.2 Recursive Petri NetsA recursive Petri net is de�ned by a tuple N = hP; T;W�;W+; 
; � i where



{ P is a �nite set of places, T is a �nite set of transitions.{ A transition of T can be either elementary or abstract. The sets of elementaryand abstract are respectively denoted by Tel and Tab (with T = Tel ] Tabwhere ] denotes the disjoint union).{ W� and W+ are the pre and post ow functions de�ned from P � T to IN.{ 
 is a labeling function which associates to each abstract transition an or-dinary marking (i.e. an element of INP ).{ � is an e�ective semi-linear set of �nal markings.An extended marking tr of a recursive Petri net N = hP; T;W�;W+; 
; � iis a labeled tree tr = hV;M;E;Ai where V is the set of vertices,M is a mappingV ! INP , E � V � V is the set of edges and A is a mapping E ! Tab. Wedenote by v0(tr) the root node of the extended marking tr. The edges E build atree i.e. for each v di�erent from v0(tr) there is one and only one (v0; v) 2 E andthere is no (v; v0(tr)) 2 E. Any ordinary marking can be seen as an extendedmarking composed by a unique node. The empty tree is denoted by ?.A marked recursive Petri net (N; tr0) is a recursive net N associated to aninitial extended marking tr0. This initial extended marking is usually a treereduced to a unique vertex.For a vertex v of an extended marking, we denote by pred(v) its (unique)predecessor in the tree (de�ned only if v is di�erent from the root) and by Succ(v)the set of its direct and indirect successors including v (8v 2 V; Succ(v) = fv0 2V j (v; v0) 2 E�g where E� denotes the reexive and transitive closure of E).A branch br of an extended marking tr is one of the subtrees rooted at a sonof v0(tr). One can associate to a branch a couple (t; tr) where t is the abstracttransition which labels the edge leading to the subtree and tr the subtree takenin isolation. Let us note that the couple (t; tr) characterizes a branch.In other words, given an extended marking tr, a branch br with its couple(t; tr0) ful�lls : tr0 is a sub-tree of tr verifying (v0(tr); v0(tr0)) 2 E (i.e. in tr,the root of tr0 is a direct successor of the root of tr) and A(v0(tr); v0(tr0)) = t(i.e. in tr, the arc between the root of tr and tr0 is labeled by t). Let us denoteby Branch(tr) the set of branches of an extended marking tr. The depth of anextended marking is recursively de�ned as 0 for ?, 1 for for a unique vertex and(1 plus the maximum depth of its branches) for the general case.An elementary step of a RPN may be either a �ring of a transition or aclosing of a subtree. At �rst, a transition t is enabled in a vertex v of an extendedmarking tr i� 8p 2 P;M(v)(p) �W�(p; t). The �ring of an enabled transition tfrom a vertex v of an extended marking tr = hV;M;E;Ai leads to the extendedmarking tr0 = hV 0;M 0; E0; A0i depending on the type of t.t is an elementary transition (t 2 Tel) The thread associated to v �res sucha transition as for ordinary Petri nets. The structure of the tree is unchanged.Only the current marking of v is updated.{ V 0 = V , E0 = E , 8e 2 E;A0(e) = A(e),8v0 2 V n fvg, M 0(v0) =M(v0){ 8p 2 P;M 0(v)(p) =M(v)(p)�W�(p; t) +W+(p; t)



t is an abstract transition (t 2 Tab) The thread associated to v consumesthe input tokens of t. It generates a new thread v0 with initial marking 
(t) thestarting marking of t. Let us note that the identi�er v0 is a fresh identi�er absentin V .{ V 0 = V [ fv0g , E0 = E [ f(v; v0)g , 8e 2 E;A0(e) = A(e) , A0((v; v0)) = t{ 8v00 2 V n fvg;M 0(v00) =M(v00), 8p 2 P;M 0(v)(p) =M(v)(p)�W�(p; t){ M 0(v0) = 
(t)When a marking of a thread belongs to � , the RPN may execute a cut stepdenoted by � . If the thread is associated to the root of the tree, this step leadsto the empty tree. In the other case, the subtree rooted at this thread is prunedand the output tokens of the abstract transition which gave birth to the threadare added to the marking of its father.{ V 0 = V n Succ(v) , E0 = E \ (V 0 � V 0) , 8e 2 E0; A0(e) = A(e){ 8v0 2 V 0 n fpred(v)g;M 0(v0) =M(v0){ 8p 2 P;M 0(pred(v))(p) =M(pred(v))(p) +W+(p;A(pred(v); v))We denote by tr t�!tr0 with t 2 T[f�g an elementary step of the RPN from trto tr0. A �ring sequence is usually de�ned : a transition sequence � = t0t1t2 : : : tnis enabled from an extended marking tr0 (denoted by tr0 ��!) i� there exists tr1,tr2, . . . , trn such that tri�1 ti�!tri for i 2 [1; n]. We de�ne the depth of � as themaximal depth of tr1, tr2, . . . , trn.We denote by L(N; tr0; T rf ) (where Trf is a �nite marking set) the set of�ring sequences ofN from tr0 to a marking of Trf . This set is called the languageof N . More generally, the languages we will consider are de�ned via a labelingfunction. A labeled recursive Petri net is a recursive net and a labeling functionh de�ned from the transition set T [ f�g to an alphabet � plus � (the emptyword). h is extended to sequences and then to languages. The language of alabeled recursive Petri net is de�ned by h(L(N; tr0; T rf )).
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Fig. 1. a simple recursive Petri netThe �gure 1 shows the modeling of two similar transactions (represented bytwo tokens in pstart). We represent an abstract transition by a double borderrectangle and its initial marking is indicated in a frame. A transaction is started



by the �ring of the transition tstart. When initialized, the transaction may pro-ceed locally by �ring tlocal or starts a new process by �ring tfork. Each processmay achieve by reaching pend or aborts since pfault is always marked. In thelatter case, the nested processes are also stopped due to the cut mechanism.3 Decidability Results3.1 Basic ResultsThe �rst step for tackling our decidability problems is to determine which wordsmay be generated by the �ring of an abstract transition. We distinguish betwenthe general case and the case where the net initiated the abstract transition isrequired to close itself (i.e. to reach a marking of � ).De�nition 1 (Closable abstract transition). An abstract transition t of alabeled RPN is closable w.r.t to a word w if there exists a �ring sequence �from 
(t) to ? with h(�) = w. Such a sequence is called a closing sequence ofthe abstract transition t w.r.t. w. Closable(k)(t; w) is true if there is a closingsequence of t w.r.t w of depth � k. Closable(t; w) is true if there is a closingsequence of t w.r.t w. Closable(t) is true if there is a closing sequence of t w.r.t.some word w.De�nition 2 (Observable abstract transition). An abstract transition t ofa labeled RPN is observable w.r.t to a word w if there exists a �ring sequence� from 
(t) to some marking with h(�) = w. Such a sequence is called anobservable sequence of the abstract transition t w.r.t. w. Observable(k)(t; w) istrue if there is an observable sequence of t w.r.t w of depth � k. Observable(t; w)is true if there is an observable sequence of t w.r.t w.Proposition 3 (Closable and observable transitions). Let N be a labeledRPN, let w0 be a word then: Closable(t; w0), Observable(t; w0) and Closable(t)are decidable.Sketch of Proof. The complete proof is given in appendix 7.1.We proceed by successive rounds. At each round we compute the relationsClosable(k) and Observable(k) for all abstract transitions and all subwords of w0(obtained by erasing letters) starting from Closable(k�1) and Observable(k�1).We stop if a round does not increase the relations. At �rst, as the number ofabstract transitions and the number of subwords are �nite and each successfulround increases one of the relations Closable or Observable, the algorithm stops.From the construction used in each round and informally described below, it isclear that when the algorithm stops, the relations Closable and Observable arestabilized.We are looking for a sequence of depth k starting from
(t) and producing thesubword w. If such a sequence exists, this word will be produced by a shu�e of�ring subsequences of depth < k in direct subtrees of the root and a subsequence



of the root level. So we try to �nd a sequence w.r.t. any shu�e decomposition ofw (there are only a �nite number). The existence of subsequences in the innerlevel is checked by the relations computed at the previous round. In order tocheck the existence of the sequence at the root level, we de�ne an ordinary netobtained from the original RPN including ordinary copies of abstract transitionswhich mimic the observable behaviours of the original abstract transitions atthe root level. Morevover we add places in order to ensure that any �ring inthis net respects the precedence constraints of the chosen shu�e. We de�ne as�nal markings a semi-linear set depending on which relation we want to check.At last we show that reaching the new semi-linear set in the ordinary net isequivalent to producing the word w in the RPN (and reaching a marking of �in case of the Closable relation). In order to check Closable(t), we simply usethe homomorphism h which maps each letter to the empty word � and we checkClosable(t; �). ut3.2 Boundedness, FinitenessIn this section we focus on boundedness and �niteness of RPNs. The boundednessproperty ensures that there is a bound for any place of any reachable extendedmarking and the �niteness property states that the number of reachable extendedmarkings is �nite. In Petri nets, these two properties are equivalent and decidablein space exponential in the size of the net [Rac78]. In RPNs, the equivalence doesnot hold but decidability remains for both properties. However, as we use in thedecision procedure a reachability test [May81,Kos82] for some Petri nets, thecomplexity of our procedure does no more operate in primitive recursive space.Proposition 4 (Boundedness of RPNs). The boundedness problem is de-cidable for recursive Petri nets.Sketch of Proof. Let us suppose that some place p is unbounded, then for anyinteger n there is an extended reachable marking visited and a node of thisextended marking for which the marking of p is greater than n. One can noticethat the number of initial markings of nodes is �nite (the initial markings ofnodes composing the initial extended marking and the initial markings associatedto abstract transitions). So the place p is unbounded in the root of some RPNwith the same structure as the original one and an initial extended markingwhich may be: either a simple node labeled by some 
(t) where t is enabledin some extended reachable marking, or some subtree of the initial extendedmarking.Using a similar but simpler construction as given in the sketch of proof ofproposition 3, one can show that the enabling of a transition in a reachablemarking is decidable and that a place p is unbounded in the root of such a RPNN i� p is unbounded in an ordinary Petri net derived from N . utProposition 5 (Finiteness of RPNs). The �niteness problem is decidable forrecursive Petri nets.



Sketch of Proof. The reachability set of a RPN is in�nite i� either the RPN isunbounded or it is bounded and the depth of reachable extended markings isunbounded. From the previous proposition, we have just to decide for a boundedRPN whether the depth is unbounded. We build a reachability graph until eitherwe �nish the building or we �nd an extended marking tr such that there are two\fresh" nodes of tr issued by the same abstract transition, one ancestor of theother. We call a fresh node, a node which was not present in the initial extendedmarking. As the RPN is bounded, this construction will terminate. One can showthat the termination in the second case is equivalent to the unboundedness ofthe depth. ut3.3 Recursivity of languagesAs explained in the introduction, unlike the situation in Petri nets, the recur-sivity of the languages can not be proved using the reachability procedure forRPNs. However it turns out that these languages are still recursive.Proposition 6 (Recursivity of RPNs languages). The language of a labeledrecursive Petri net is recursive.Sketch of Proof. At �rst, we observe that a sequence induces a classi�cation ofbranches (i.e. immediate subtrees of the root) of the initial state and the �nalstate: a permanent branch remains present during the whole sequence, a closedbranch is present initially but disappears, an opened branch appears duringthe sequence and remains present. Then the word w produced by the sequencemay be decomposed in subwords, where each subword is associated to eitherthe root, either a branch or the �ring of an abstract transition which ful�lls thecorresponding Observable or Closable relation (see proposition 3). Let us notethat the number of classi�cations, decompositions and associations for a givensequence and a word is �nite.So the algorithm checks the existence of a sequence for each classi�cation,decomposition and association. Inside a branch, it induces a recursive call, whichis ensured to terminate as the sum of the depths for initial and �nal statesdecreases.At the root level, the algorithm builds an ordinary net deduced from theRPN and checks some reachable relation. Roughly speaking, the ordinary netincludes copies of elementary transitions for letters in the subword produced atthe root level, special copies of abstract transitions for the subwords producedinside a closed or an opened branch or by the �ring of an abstract transition. Allthese copies are �rable at most once. Copies of elementary transitions labeledby the empty word and abstract transitions closable or observable w.r.t. to theempty word are also inserted. At last, auxiliary places are added to take intoaccount the precedence relations between the beginnings and the ends of thedi�erent subwords in the word. ut



4 Undecidability ResultsIn this section, we �rst show how a RPN and a �nite automaton can be con-structed to mimic the behavior of any Turing machine. First, we de�ne a RPNNet(Tm) (see Fig. 2) for which its language is a superset of possible behaviorsof a Turing machine Tm. In the following, we restrict it by de�ning a regularlanguage to be \synchronized" with the RPN.
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Fig. 2. a recursive Petri net modeling a superset of the Turing machine behaviorsThe net is composed by two distinct parts. The upper part modelizes theautomaton of the Turing machine by a classical state machine and the lower oneits tape. There is one place p(q) per state q of the Turing machine automatonand p(c) per character of � its alphabet (including � the blank). Moreover,the three places RightActive, LeftActive and LeftMoveAllowed control thepossible transition �rings in the di�erent threads and the place End is used toclose nodes (di�erent from the root) of extended markings.A con�guration of the Turing machine is represented by an extended markinghaving two branches. Due to the structure of the net and the initial marking,�ring transitions is only possible either at the root level or in the leaves. Thestate of the automaton is always stored in the root of the tree. For each letterdi�erent from � and composing the state of the tape, there is a correspondingnode in the extended marking. The part of the tape which is before and includesthe tape head is stored in the left side of the tree beginning at the root andthe remaining part is in the right side. The letters of the left side of the treeare stored in a descending way when an ascending order is used at the rightside. Moreover, the last node at the right has the place RightActive marked



and the last node at the left has the place LeftActive marked. Finally, the placeLeftMoveAllowed is marked in the last left node if this one is di�erent from theroot. This coding is illustrated in Fig. 3 with the three signi�cant cases. Noticethat the �rst blank is always explicitly represented in the extended markings.
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As we want to simulate successful computations of the Turing machine, weconsider the language L (Net (Tm) ;?) and so the set of sequences terminated bythe �ring of a halt(f) transition followed by a cut � . Among the �ring sequencesof the RPN, the simulating �ring sequences can be characterized by a regularlanguage. This language focuses on the simulation of successive steps of themachine independently of the tape content and the state automaton since suchdependencies are ensured by the RPN. Let us call s a step of the machine.It is characterized by �ve �nite domain parameters (input and output states,read and written characters and the move) and so there is only a �nite numberof such steps. Let us call g(s) the �nite set of RPN sequences simulating s (acomplete de�nition of g can be found in appendix 7.2). So the desired language is:Reg (Tm) = �Ss2� g (s)�� :Sf2F halt (f)�� . The following proposition expressesthe correctness of our simulation (proved in appendix 7.2).Proposition 7 (Simulation of successful computations). Let Tm be a Tur-ing machine and � be a word of ��. � is a successful computation of Tm i�9 seq 2 L(Net(Tm);?) \ hg(�):Sf2F halt(f) � �iCorollary 8 (Emptiness Problem). The emptiness problem of the intersec-tion between a (bounded) RPN language and a regular language is undecidable.The next proposition (proved in appendix 7.2) shows that recursive Petri netlanguages are much closer to Turing machine languages than context-free andPetri net languages.Proposition 9 (RPN languages & recursively enumerable languages).Let L be a recursively enumerable language. One can build a (bounded) RPNlanguage L1, a regular language L2 and an homomorphism f such that L =f (L1 \ L2).The restrictions on the behaviour of the RPN that we have speci�ed withthe regular language may also be speci�ed by the linear temporal logic RTL (thefragment of LTL which replaces the operator until by the operator sometimes).So we also obtain an undecidability result for model checking of RPNs.Proposition 10 (Model Checking Problem). Checking the truth of a RTLformula on a (bounded) RPN is undecidable.5 Comparison with other modelsRPNs combine features of Petri nets and context-free grammars. So it is in-teresting to compare RPNs with similar models. In her thesis, A. Kiehn hasintroduced a model called net systems [Kie89b]. Net systems are a set of Petrinets with special transitions denoted caller transitions which start a new Petrinet. A call to a Petri net may return if this net reach a �nal marking. All the



nets are required to be safe and the constraints associated to the �nal markingensure that a net may not return if it has engaged calls.It is straightforward to simulate a net system by a RPN. Informally, we adda place per net which loops on its transitions. The initial marking of the netis extended by a token in this place. The �nal making set is simply the unionof �nal markings of the nets each one augmented by a token in its new place.Moreover as the languages of Petri nets are not included in the the language ofnet systems [Kie89b] we obtain the following proposition.Proposition 11 (Net systems versus RPNs). The family of net systems lan-guages is strictly included in the family of RPNs languages.A Process Algebra Net (PAN) introduced by R. Mayr [May97] is de�ned asfollows. It has a constant � the empty term, a set of process variables V ar =fX;Y; Z; :::g and two operators: the sequential composition (:) (an associativeoperator) and the parallel composition (k) (an associative and commutative op-erator). A term is a syntactically valid expression built with the constant �, thevariables and the operators. Each net has a �nite set of rules � of the form:X1 k X2 k :::Xn a�!twhere Xi is a variable, t is a general term and a is an action which labels thetransition rule.The semantics of a term is de�ned inductively. If the term is the left-handside of a rule then it may transform into the right-hand side. If the term is aparallel composition of terms, (using if necessary the commutativity and theassociativity of the operator) it may transform itself by transforming one of itsterm. If the term is a sequential composition of terms, it may transform itselfby transforming its �rst term. With the additional built-in equivalence �:t = t,the second term of a sequential composition becomes active when the �rst termbecomes empty.PAN is also an extension of context-free grammars and Petri nets (where avariable denotes a token in the corresponding place and the right-hand side of arule is similar to the left-hand side). The main result for PANs is the decidabilityof the reachability problem. The next proposition shows that RPNs include PANsand thus that our reachability result subsumes the one for PANs [May97]. Thesimulation of a PAN by a RPN which is the key for the proof of the propositionis given in appendix 7.3.Proposition 12 (PANs versus RPNs). The reachability problem for PANsis reducible to the reachability problem for RPNs. The family of PANs languagesis included in the family of RPNs languages.Whereas we do not know whether the inclusion is strict, we emphasize thatthe main di�erence between RPNs and the two other models is the ability toprune subtrees from the state. This mechanism is indispensable for the modelingof plans in multi-agents systems [SH96].



6 ConclusionIn this work, we have studied theoretical features of recursive Petri nets whichcomplement the ones studied in [HP99] about reachability and expressivity. At�rst we have shown how to decide boundedness, �niteness of a RPN and we haveproved that the languages of RPNs are recursive. Analyzing the expressivenessof RPNs, we have proved that any recursively enumerable language may be ef-fectively obtained by an homomorphism of the intersection of a regular languageand a RPN language. As a consequence, the general model checking for Petri netsbecomes undecidable even for a restricted temporal logic. At last, we have shownthat (to the best of our knowledge) RPN is the largest model including Petrinets and context-free grammars for which the reachability remains decidableWe have summarized in Fig. 8 (given in appendix 7.4) the position of RPNsrelative to classical languages generators. We plan to extend our studies in twodi�erent ways. On the one hand we want to add new features for recursive Petrinets and examine whether the main properties of RPNs remain decidable. Weare interested to introduce some context when a thread is initiated (e.g. thestarting marking could depend from the depth in the tree). On the other hand,we are looking for an intermediate model between RPN and PN for which modelchecking remains decidable.References[Esp97] J. Esparza. Decidability of model checking for in�nite-state concurrent sys-tems. Acta Informatica, 34:85{107, 1997.[HP99] S. Haddad and D. Poitrenaud. Theoretical aspects of recursive Petri nets. InProc. 20th Int. Conf. on Applications and Theory of Petri nets, volume 1639 ofLecture Notes in Computer Science, pages 228{247, Williamsburg, VA, USA,June 1999. Springer Verlag.[Kie89a] A. Kiehn. Petri nets systems and their closure properties. In Advances inPetri Nets 1989, volume 424 of Lecture Notes in Computer Science, pages306{328. Springer Verlag, 1989.[Kie89b] A. Kiehn. A structuring mechanism for Petri nets. Technical Report TUM-I8902, Technische Universitat Munchen, Germany, MARCH 1989.[Kos82] S.R. Kosaraju. Decidability of reachability in vector addition systems. InProc. 14th Annual Symposium on Theory of Computing, pages 267{281, 1982.[May81] E.W. Mayr. An algorithm for the general Petri net reachability problem. InProc. 13th Annual Symposium on Theory of Computing, pages 238{246, 1981.[May97] R. Mayr. Combining Petri nets and PA-processes. In Theoretical Aspects ofComputer Software (TACS'97), volume 1281 of Lecture Notes in ComputerScience, pages 547{561, Sendai, Japan, 1997. Springer Verlag.[Pet81] J. L. Peterson. Petri Net Theory and the Modelling of Systems. Prentice Hall,1981.[Rac78] C. Racko�. The covering and boundedness problems for vector addition sys-tems. Theoretical Computer Science, 6:223{231, 1978.[SH96] A. El Fallah Seghrouchni and S. Haddad. A recursive model for distributedplanning. In Second International Conference on Multi-Agent Systems, Kyoto,Japon, December 1996.



7 Appendixes7.1 Proof of proposition 3At �rst, we can transform any labelled RPN such that the language is unchangedand the abstract transitions and the cut are labelled by the empty word. The �g-ure 4 shows the transformation for an abstract transition : we split the transitionin an elementary one which is labeled by the character followed by a �-labeledabstract one. The marked place freezes the token game between the two �rings.The transformation is similar for the cut.
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Fig. 4. recursive Petri nets having same languagesThen, we give a formal de�nition of the di�erent kinds of branches inside asequence.De�nition 13 (Permanent branch). Let tr, tr0 be two extended markingsand � be a �ring sequence from tr to tr0.A couple of branches ((ta; tra); (tb; trb)) 2 Branch(tr) � Branch(tr0) denotes apermanent branch in � if v0(tra) = v0(trb).The previous de�nition expresses that the node v0(tra) is never removed bya cut step in v0(tra). Remark that in this case, we have necessary ta = tb.If a branch is not permanent and occurs in the �nal marking then it has been\opened" by an abstract transition.De�nition 14 (Opened branch). Let tr, tr0 be two extended markings and� be a �ring sequence from tr to tr0. A branch (tb; trb) 2 Branch(tr0) denotesan opened branch in � if 8(ta; tra) 2 Branch(tr); v0(tra) 6= v0(trb).In the same way, if a branch is not permanent and occurs in the initialmarking then it has been "closed" by a cut.De�nition 15 (Closed branch). Let tr, tr0 be two extended markings and �be a �ring sequence from tr to tr0. A branch (ta; tra) 2 Branch(tr) denotes anclosed branch in � if 8(tb; trb) 2 Branch(tr0); v0(tra) 6= v0(trb).At last, some branches may appear in an intermediate marking and disappearbefore the �nal marking.



De�nition 16 (Transient branch). Let tr, tr0 be two extended markings and� be a �ring sequence from tr to tr0. A branch (tc; trc) of an extended markingtr00 visited by � is a transient branch if8(ta; tra) 2 Branch(tr) [Branch(tr0); v0(tra) 6= v0(trc).In this section, w0 is a �xed word. A subword w0 of a word w is obtainedby erasing arbitrary characters in w. �1 k �2 denotes a particular shu�e (clearfrom the context) of �1 and �2.De�nition 17 (Partition of a word). Let w be a word,then part = hfwig i2f1::ng; pos; start; end; indi is a partition of w i� :{ w is a shu�e of fwig i2f1::ng,{ w1 = �1: : : : :�m or w1 = � (i.e. m = 0),{ 81 � j � m; pos(j) is the index of �j in w{ 82 � i � n,� wi 6= �,� start(i) is the index of the �rst character of wi in w,� end(i) is the index of the last character of wi in w,{ ind is an index which partitions the set fwig i2f2::ng in two (possibly empty)subsets so that 2 � ind � n+ 1.The next de�nition which is indeed a construction of an ordinary Petri netis the kernel of our method. This construction of a Testing Petri net will enableus to check closability and observability of order k, once the relations of orderk�1 for all subwords have been computed. Let us note that there are numerousbut �nite such nets associated to a word and abstract transition.De�nition 18 (Testing Petri Net). Let N = hP; T;W�;W+; 
; �; hi be alabeled recursive Petri net.{ let t be an abstract transition of N ,{ let w be a word and part = hfwig i2f1::ng; pos; start; end; indi be a partitionof w (with w1 = �1: : : : :�m),{ 81 � j � m, let tej be an elementary transition of N with h(tej) = �j ,{ 82 � i < ind , let tai be an abstract transition such that Closable(k�1)(tai; wi),{ 8ind � i , let tai be an abstract transition such that Observable(k�1)(tai; wi).Then Ntest(k)(N; t; part; ftejgj2f1::mg; ftaigi2f2::ng) an ordinary Petri net isbuilt by the following steps:{ its set of places is initialized to P with 
(t) as initial marking,{ its set of transitions is initialized to the elementary transitions of N labeledby �,{ for each abstract transition ta such that Closable(k�1)(ta; �), ta is added asan ordinary transition ta0 with the same input and output places,{ for each abstract transition ta, ta is added as an ordinary transition ta00 withthe same input places and no output places,



{ for each 1 � j � m, we add a transition t0j with the same inputs and outputsas tej (some transitions may be duplicated here and after),{ for each 1 � j � m, we add a place p0j with output transition t0j and (if1 < j) input transition t0j�1 . There is initially one token in p01,{ for each 2 � i < ind , we add t�i with the same input places as tai but withonly one new output place p+i and another transition t+i which has p+i asinput place and the same output places as tai,{ for each ind � i � n , we add t�i with the same input places as tai but withno output place,{ for each 1 � j � m and each 2 � i < ind such that pos(j) < end(i) we adda place p0(j; i) which is a new output place of t0j and a new input place of t+i{ for each 2 � i0 � n and each 2 � i < ind such that start(i0) < end(i) we adda place p+(i0; i) which is a new output place of t�i0 and a new input place oft+i{ for each 1 � j � m and each 2 � i � n such that pos(j) > start(i) we add aplace p"(i; j) which is a new output place of t�i and a new input place of t0j{ for each 1 � i � n,� if i = 1 and m > 0, we add a new place PEnd1 such that PEnd1 is a newoutput place of t0m,� if 2 � i < ind, we add a new place PEndi such that PEndi is a new outputplace of t+i ,� if ind � i � n, we add a new place PEndi such that PEndi is a new outputplace of t�i .Notation: When ever the context is clear, we denote by Ntest an ordinarytesting Petri net omitting the complete notation. Moreover, we associate to sucha net Ntest:{ a set of tuples Ab(Ntest) = fhta;mode; waig where ta is an abstract transi-tion used to introduce elementary transitions in Ntest,mode 2 fObservable; Closableg denotes the required property for its intro-duction and wa is the subword required to be produced in Ntest by thetransformation of ta. Let us note that a same abstract transition may occurin di�erent tuples.{ Sclos(Ntest) the semi-linear set of ordinary markings de�ned by fm j 9m0 2� : m = m0 +PPEndi g.{ Sobs(Ntest) the semi-linear set of ordinary markings de�ned by fm j m �PPEndi g.Lemma 19. Let N = hP; T;W�;W+; 
; �; hi be a labeled recursive Petri netand w be a word. 8k � 0;8t 2 Tab,1. Closable(k)(t; w) is true i�{ 9part = hfwig i2f1::ng; pos; start; end; indi and
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Fig. 5. an ordinary net Ntest{ 9Ntest(k)(N; t; part; ftejgj2f1::mg; ftaigi2f2::ng) such that a marking ofSclos(Ntest) is reachable.Moreover, if Closable(k�1)(t; w) is falsethen there is a tuple hta;mode; wai 2 Ab(Ntest) such that either mode =Closable and Closable(k�2)(ta; wa) is false or mode = Observable andObservable(k�2)(ta; wa) is false.2. Observable(k)(t; w) is true i�{ 9part = hfwig i2f1::ng; pos; start; end; indi and{ 9Ntest(k)(N; t; part; ftejgj2f1::mg; ftaigi2f2::ng) such that a marking ofSobs(Ntest) is reachable.Moreover, if Observable(k�1)(t; w) is falsethen there is a tuple hta;mode; wai 2 Ab(Ntest) such that either mode =Closable and Closable(k�2)(ta; wa) is false or mode = Observable andObservable(k�2)(ta; wa) is false.Proof. We only handle the case of the Closable relation, the other case followsthe same pattern.{ Let us suppose there exists a closing sequence � of t w.r.t. to w of depth� k. We are going to build a partition of w, a corresponding testing Petrinet Ntest and a sequence of reachability in this net leading to Sclos(Ntest).Necessarily, the last �ring of � is a cut at the root level of the extendedmarking. let us considere the subsequence �0 of � obtained by removingthis cut. Since �0 starts from 
(t), there can only be opened and transient



branches. Furthermore, we can suppose that when the word produced bythe �rings in a opened branch is the empty word, then the subsequence isimmediately �red since the new sequence produces the same word. Similarly,we can suppose that the subsequence of a transient branch which producesthe empty word follows immediatly in w the �ring of the opening abstracttransition. Indeed for the reachability relation, only the root level is a�ectedby the anticipation of the �rings but here again it leads to increasing inter-mediate markings with necessarily the same marking before the cut and thenew sequence produces the same word. Now we are in position to de�ne apartition part.� We index from 2 to ind� 1 the transient branches which produce non-empty words (ind � 2 is the number of such branches). wi is the wordproduced by the ith branch.� We index from ind to n the opened branches which produce non-emptywords (n � ind + 1 is the number of such branches). wi is the wordproduced by the ith branch.� w1 = �1 : : : �m is the word produced by the root level (which may be�).We denote by �1 the subsequence at the root level and tej the elementarytransition which produces �j .For i � 2, we denote by tai the abstract transition which opens the ithbranch and by �i the subsequence in the ith branch excluding the optionnallast cut step. By construction, w is a shu�e of fwig (with the pos, start andend mappings usually de�ned).� for all i 2 f2; ind�1g, �i has a depth � k�1 and so Closable(k�1)(tai; wi)is true.� for all i 2 find; ng, �i has a depth � k�1 and so Observable(k�1)(tai; wi)is true.The testing Petri net Ntest(k)(N; t; part; ftejgj2f1::mg; ftaigi2f2::ng) is nowuniquely de�ned. It remains only to exhibit the �ring sequence in Ntest.We iteratively transform �0 into a sequence �test of transitions in Ntest. Welater demonstrate that it is a �ring sequence.� We considere a transient branch producing an empty word i.e.: �0 =s1:ta:��:�:s2 where ta is the abstract transition opening the branch, ��is the sequence in the branch and � is the cut step closing the branch.Then, the new �0 equals s1:ta0:s2.� We considere an opened branch producing an empty word i.e.: �0 =s1:ta:��:s2 where ta is the abstract transition opening the branch, �� isthe sequence in the branch. Then, the new �0 equals s1:ta00:s2.� We considere the ith transient branch producing wi i.e.: �0 = s1:tai:(�i ks2):�:s3. Then, the new �0 equals s1:ta�i :s2:ta+i :s3.� We considere the ith opened branch producing wi i.e.: �0 = s1:tai:(�i ks2). Then, the new �0 equals s1:ta�i :s2.� for each 1 � j � m, the transition �ring tej is changed into t0jAfter this transformation, the new sequence �test is a sequence of Ntest. Letus show that it is a �ring sequence reaching to Sclos(Ntest). We prove it byexamining the di�erent subsets of places of Ntest.



� As �test describes the e�ect of �0 at the root level, it is a �ring sequencew.r.t. to the copy of P in Ntest leading to a marking 2 � .� As �0 produces the subword w1 at the root level, the token in p01 issuccessively moved through p0j by the �rings of p0j until PEnd1 .� As for 2 � i < ind, ta�i is �red once and precedes the unique �ring ofta+i , a token is produced in p+i and moved to PEndi .� As for ind � i � n , ta�i is �red once, a token is produced in PEndi� As for each 1 � j � m and each 2 � i < ind such that pos(j) < end(i) ,in �0 the �nal transition of the ith branch must follow the �ring of tej ,then in �test the �ring of t0j must precede the �ring of t+i . Thus a tokenis �rst produced in p0(j; i) before is is consumed.� As for each 2 � i0 � n and each 2 � i < ind such that start(i0) < end(i)in �0 the �nal transition of the ith branch must follow the opening ofthe i0 th branch by the �ring of tai0 , then in �test the �ring of t�i0 mustprecede the �ring of t+i . Thus a token is �rst produced in p+(i0; i) beforeis is consumed.� As for each 1 � j � m and each 2 � i < n such that pos(j) > start(i) ,in �0 the opening of the ith branch must precede the �ring of tej , then in�test the �ring of t�i must precede the �ring of t0j . Thus a token is �rstproduced in p"(i; j) before is is consumed.which concludes the �rst part of the proof.{ Let us suppose now that there is a Ntest and a sequence �test leading toSclos(Ntest). We will show how to build a closing sequence for t and w oforder k. At �rst we associate to each abstract transition ta0 used in Ntestto produce the empty word, its closing sequence of order k� 1, denoted �taand to each ti producing the subword wi its closing or observable sequenceof order k � 1 denoted �i. In case of a closing sequence, �i does not includethe cut step.Then we construct the sequence � iteratively while "writing" w and readingsimultaneously �test and the closing and observable sequences we will gen-erate :We start with � empty and at the beginning of �test. The marking at the rootlevel will always correspond to the projection on P of the current markingin Ntest ensuring that � is �rable.� If the next transition in �test corresponds to an elementary transitionof N associated to the empty word, we complete � by the �ring of thistransition at the root level.� if the next transition ta0 in �test corresponds to an abstract transitionta then we complete � by the �ring of ta:�ta.� if the next transition ta00 in �test corresponds to an abstract transitionta then we complete � by the �ring of ta.� if the next transition in �test is t�i then we complete � by the �ring of tifollowed by the maximal pre�x of �i composed by �-labelled transition;we keep the su�x in the current state.



� if the next transition in �test is t+i then the place p+i ensures that t�ihas been �red and that either the current su�x �i is empty or we havea su�x of �i in the current state where its �rst transition is labeled bysome character say cl the lth character of w. In the former case, we dothe cut step and in the latter case we proceed as follows.Let us suppose that the next character to write is cl0 the l0th of w withl0 < l. cl0 cannot be associated to a transition t0j used for w1 as theunmarked place p0(j; i) forbids the �ring of t+i . So cl0 is associated toa word wi0 with i0 > 1. The place p+(i0; i) ensures that t�i0 has been�red. Necessarily, cl0 labels to the next transition to �re in �i0 so we�re it followed by a maximal subsequence of �-labelled transitions in thesu�x. Iteratively, we are ensured to reach the index l in which case we �reits corresponding transition followed again by a maximal subsequence of�-labelled transitions. We repeat the procedure until we reach the endof �i and so we can do the cut step.� if the next transition in �test is an elementary transition t0j labeled by clthe lth character of w. Let us suppose that the next character to writeis cl0 the l0th of w with l0 < l. cl0 cannot be associated to a transitiont0j0 used for w1 as the unmarked place p0j forbids the �ring of t0j . So cl0is associated to a word wi with i > 1. The place p"(i; j) ensures thatt�i has been �red. Necessarily, cl0 corresponds to the next transition to�re in �i so we �re it followed by the maximal subsequence of �-labelledtransitions in the sequence. Iteratively, we are ensured to reach the indexl in which case we �re t0j .� if we have reached the end �test, it can remain su�x of observable se-quences in which case we �re them piecemeal following the order givenby w (let us recall that these sequences are independent).At the end of �test as we have reached Sclos(Ntest), the projection on P ofthe marking at the root level of � 2 � .The additionnal assertion is straightforward sinceif for all tuples hta;mode; wai 2 Ab(Ntest) then either mode = Closable andClosable(k�2)(ta; wa) is true ormode = Observable and Observable(k�2)(ta; wa)is true then � is of order k � 1. utProof. (of proposition 3) We remark that8k � 0; t; w; Closable(k)(t; w) = Observable(k)(t; w) = false. We proceed bysuccessive rounds, at each round we compute Closable(k) and Observable(k)from Closable(k�1) and Observable(k�1) trying for each item of the relationsall partitions and all testing nets. We stop if a round does not increase therelations. At �rst, as the number of abstract transitions and the number ofsubwords are �nite and each sucessfull round of the external increases one ofthe relation Closable or Observable, the algorithm stops. The correctness of thealgorithm follows directly from the previous lemma as it iteratively computesthe Closable(k) and Observable(k) relations and we know also that when it stopsthese relation are stabilized. ut



7.2 Proofs of section 4Turing Machine A non-deterministic Turing machine is de�ned by a coupleTm = h�; hQ; q0; F; �ii where{ � is an alphabet including a particular blank character �,{ hQ; q0; F; �i is an automaton where� Q is a set of states,� q0 2 Q is an initial state,� F � Q is a set of terminal states,� � � Q�� �Q� (� n f�g)� f!; ; "g is a transition table.A con�guration of a Turing machine is de�ned by the current state of its tape(i.e. an in�nite word on �), the current position i 2 IN� of its tape head and thecurrent state q of its automaton. By the Turing machine semantic and the initialcon�guration, only a �nite pre�x of the tape is ful�lled by characters di�erent tothe blank in any reachable con�guration. Then a con�guration is denoted by anin�nite sequence c1 : : : ci�1qci : : : cn (�)1 where 8j 2 [1; n] ; cj 6= �. For a givencon�guration m, we denote by q(m) the state of the automaton in m and byc(m) the �nite word of characters di�erent to � ful�lling the tape in m.Initially, the tape is ful�lled by the character �, the tape head is positionedon the head of the tape and the automaton is in the initial state q0 (i.e. theTuring machine is in the con�guration q0 (�)1).A step s = (q; c; q0; c0; d) 2 � from a con�gurationm = c1 : : : ci�1qci : : : cn (�)1is enabled (denoted by m s�!) i� c = ci and (d = )) (i 6= 1). The character cis called the input character.Letm = c1 : : : ci�1qci : : : cn (�)1 be a con�guration of Tm and s = (q; ci; q0; c0i; d)a step enabled in m. The execution of s from m leads to the con�guration m0(denoted by m s�!m0) de�ned by:{ if d = then m0 = c1 : : : qci�1c0i : : : cn (�)1{ if d =! then m0 = c1 : : : ci�1c0iq : : : cn (�)1{ if d =" then m0 = c1 : : : ci�1qc0i : : : cn (�)1The character c0i is called the output character. Enabling and execution notationare usually extended to computations.A computation of a Turing machine is a �nite sequence of steps from theinitial con�guration. We denote by Comp (Tm) = f� 2 �� j q0 (�)1 ��!g thecomputation set of Tm.Moreover, a computation is said to be successful if the automaton is in aterminal state in the reached con�guration. We denote by SuccComp(Tm) =f� 2 Comp(Tm) : q0 (�)1 ��!m j q(m) 2 Fg the set of successful computationsof a Turing Machine Tm.The language of a Turing machine Tm, denoted by L(Tm), is the set of �nitewords on � written on the tape by the successful computations (L(Tm) = fc 2�� j 9� 2 SuccComp(Tm) : q0 (�)1 ��!m ^ c = c(m)g).



Before developing proofs, we illustrate the e�ect of a step of the Turingmachine on the current extended marking, in the case where the tape head movesto the right and the input character is not a blank, in Fig. 6. The execution ofsuch a step of the Turing machine is simulated by the �ring of transitions ofNet(Tm) in di�erent threads of the extended marking. The transition t(q; q0)is �red in the root of the extended marking. The transition t(c; c0) and thenthe abstract one Left(ci+1) are �red in the last left node. In the last rightnode, the terminal transition EndRight(ci+1) is also �red. Notice that �ringsof di�erent threads are independent and then can be �red in any order. Thissequence is a valid sequence to simulate the behavior of the Turing machine but,as the synchronization between threads (as for the �rings of EndRight(ci+1)and Left(ci+1)) is impossible in recursive Petri nets, invalid simulations can beeasily exhibited.
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1. If � is a computation of Tm leading to the con�guration m then in Net(Tm)there is a �ring sequence seq 2 g(�) leading to tr(m).2. If in Net(Tm) there is a �ring sequence seq 2 g(�) then � is a computationof Tm leading to a con�guration m such that seq leads to tr(m).Proof. By induction on n the length of �. The base case (n = 0) is trivial.Suppose it is true for n. Let � = �0:qcq0c0d. We only handle the case whered =! and c 6= �.1. Suppose � is a computation of Tm of length n+1 with �0 leading to m0 andqcq0c0d a step from m0 to m. We already know that there is seq0 2 g(m0)leading to tr(m0) in Net(Tm). Starting from tr(m0), let us complete seq0 tosome �ring sequence belonging to g(�).tr(m0) is described in Fig. 6. As in its left node, LeftActive and p(c) aremarked, t(c; c0) is enabled and its �ring unmarks p(c) and marks p(c0). Inthe right node, RightActive and p(ci+1) are marked, so EndRight(ci+1) isenabled and its �ring followed by a cut step prunes this node and marksRighActive in the new right node. As LeftActive and LeftMoveAllowedare marked in its left node, one can �re Left(ci+1) unmarking LeftActiveand creating a new left node. This node has for marking p(ci+1)+LeftActive+LeftMoveAllowed. At last, p(q) is marked in the root of tr(m0) so one can�re t(q; q0) unmarking p(q) and marking p(q0). The obtained extended mark-ing is exactly tr(m).2. Let seq 2 g(�) be a �ring sequence of Net(Tm). By induction, we know that�0 is a computation of Tm leading to a con�guration m0 such that the pre�xof seq, seq0 2 g(�0) leads to tr(m0) in Net(Tm). Now we examine all theways to complete seq0 into a �ring sequence 2 g(�) and we show that theonly possible completion is the subsequence described in the �rst part of theproof and that it corresponds to a computation step of Tm in con�gurationm0 (i.e. c is the input character and q the current state automaton). By theinduction hypothesis, we know that seq0 leads to tr(m0). So the marked placep(c) in the left node of tr(m0) corresponds to the input character c in m0 andthat the marked place p(q) in the root corresponds to the current automatonstate q. At �rst, the left node of tr(m0) is the only one with LeftActive andp(c) marked so t(c; c0) is only enabled in the left node. The right node oftr(m0) is the only one with the place RightActive marked, as p(ci+1) is theonly marked place among p(c00) places in this node, EndRight(ci+1) is theonly possible �ring followed again by the cut step (the only one possible inthis state). Looking for the next �ring Left(ci+1), we only �nd LeftActivemarked in the left node. At last, the only marked place p(q) is in the rootand so t(q; q0) is enabled in this node.Other cases are similar and even simpler. utNow we are in position to characterize successful computations by our sim-ulation.



Proof. (of proposition 7)Let � be a successful computation leading to a con�gurationm having f 2 Fas current state automaton. From the Lemma 20, there is a sequence seq0 2 g(�)leading to tr(m). As the place p(f) is marked in the root, halt(f) is enabled andleads via a cut step to ?.Let seq be a sequence such thatseq 2 L(Net(Tm);?) \ hg(�):Sf2F halt(f) � ] with (seq = seq0:halt(f))From the Lemma 20, � is a computation of Tm leading to m such that seq0leads to tr(m). As halt(f) is enabled in tr(m) i� p(f) is marked in its root, weconclude that f is the current automaton state and then that � is successful. utIt is worth to notice that the RPN simulating the Turing machine is abounded net. Indeed, this simulation is possible due to two factors, the recur-siveness and the ability for parallel invocation of abstract transitions.Proof. (of proposition 9)Let Tm be a Turing machine generating L. At �rst, we construct a Turingmachine Tm0 corresponding to Tm which has the following behavior1. Its �rst action consists to write a special mark cm at the �rst position of thetape and moves its tape head to the right.2. It simulates Tm until Tm leads a terminal state. Special care must be takento avoid entering terminal state while the tape head is on the special markcm.3. It moves the tape head to the �rst position with the help of the special markcm.4. It moves to the right visiting a particular intermediate automaton state cor-responding to the input character and it terminates when the �rst character� is read. As an example, if the state of the tape is abcba (�)1, the sequenceof automaton states which are visited is qaqbqcqbqaq� with q� the uniqueterminal state of Tm0.According to Prop. 7, for every successful computation of Tm0 correspondsa word of L(Net(Tm0;?))\Reg(Tm0) and vice versa. For instance, let aab (�)�be an accepted word of Tm, the corresponding word is of the form� : : : t(qcm ; qca) : : : t(qca ; qcb) : : : t(qcb ; qcb) : : : t(qcb ; q�) : : : halt(q�):�where � is the sequence of Net (Tm0) corresponding to the three �rst stepsof Tm0 and the remainder of the sequence corresponds to fourth step.Now taking L1 as L(Net(Tm0;?)), L2 as Reg(Tm0), we de�ne f as follows:8c; c0 2 �; f (t (qc; qc0)) = c and otherwise f (t) = �The result is now clear from the construction. utWe �nally give a last corollary giving necessary conditions for a family oflanguages to include RPNs languages.Corollary 21 (Expressive power of RPNs). Any family of recursive lan-guages closed by intersection with a regular language and by homomorphism cannot contain the family of recursive Petri net languages.



Proof. Immediate from Prop. 9. ut7.3 Simulation of a PANAt �rst we remark than a general rule of a PAN can be written:Y1 k :::YI a�!X1 k :::XJ k t1:t01 k ::: k tK :t0KThe principles of the translation are the following ones:{ Independantly of the rules, places are de�ned for every variable.{ A special place cpt counts the number of branches in each vertex (it is incre-mented before the opening and decremented after the closing of the branch)which avoids to close a vertex which is not a leaf.{ Consequently, the semi-linear set of �nal markings is simply the empty mark-ing.{ For the transaltion of the rule, an elementary transition is created whichconsumes Y1 k :::YI acts as a and produces the Xj , K:cpt and fpkg newplaces associated to the translation of ftk:t0kg.{ Then each pi is the input of a new abstract transition with ri a new placeas the output (meaning that the term ti has becomed empty) and qi a newplace as the starting marking of this abstract transition. This leads to arecursive translation of an "internal" rule qi ��!ti.{ So ri + cpt is marked at the closing of the branch associated to ti which\activates" t0i. This leads again to a recursive translation of an \internal"rule ri k cpt ��!t0iHere is a the recursive algorithm translation of a rule.Algorithm 7.1 GenerateGenerate(Y1 k :::YI a�!X1 k :::XJ k t1:t01 k ::: k tK :t0K)beginfor k := 1 to K dopk := new Place();// pk is a local identi�erqk := new Place();// idemrk := new Place();// idemnew AbstractTransition(in : pk; out : rk; 
 : qk; label : �);Generate(qk ��!tk);Generate(rk k cpt ��!t0k);od new ElementaryTransition(in : Y1 + :::+ YI ; out : X1 + :::+XJ + p1 + :::+ pK +K:cpt,label : a);endNow it remains to translate the initial term which can be done by simulatinga pseudo-rule with left-hand side a new place and right-hand side the initialterm. Here is the general translation of a PAN.



Algorithm 7.2 TranslateTranslate(t0; �)beginfor each variable X occuring in � or t0 doX := new Place();odcpt := new Place();for each rule R 2 � doGenerate(R);odp0 := new Place();Generate(p0 ��!t0);new InitialMarking(1:p0);new FinalMarking(0);endAs an example, we give in �gure 7 the translation of the rule:X1 ��!(X2 k X3):(X4:(X2 k X3))
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