N

N

Decidability and Undecidability Results for Recursive
Petri Nets
Serge Haddad, Denis Poitrenaud

» To cite this version:

Serge Haddad, Denis Poitrenaud. Decidability and Undecidability Results for Recursive Petri Nets.
[Research Report] 1ip6.1999.019, LIP6. 1999. hal-02548232

HAL Id: hal-02548232
https://hal.science/hal-02548232
Submitted on 20 Apr 2020

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-02548232
https://hal.archives-ouvertes.fr

Decidability and Undecidability Results for
Recursive Petri Nets

Serge Haddad! and Denis Poitrenaud?

! LAMSADE - UPRESA 7024, Université Paris IX, Dauphine
Place du Maréchal De Lattre de Tassigny, 75775 Paris cedex 16
2 LIP6 - UMR 7606, Université Paris VI, Jussieu
4, Place Jussieu, 75252 Paris cedex 05

Abstract. Recursive Petri nets (RPNs) have been introduced to model
systems with dynamic structure. Whereas this model is a strict extension
of Petri nets, reachability in RPNs remains decidable. Here we focus on
three complementary theoretical aspects. At first, we develop decision
procedures for new properties like boundedness and finiteness and we
show that languages of RPNs are recursive. Then we study the expres-
siveness of RPNs proving that any recursively enumerable language may
be obtained as the image by an homomorphism of the intersection of a
regular language and a RPN language. Starting from this property, we de-
duce undecidability results including undecidablity for the kind of model
checking which is decidable for Petri nets. At last, we compare RPNs
with two other models combining Petri nets and context-free grammars
features showing that these models can be simulated by RPNs.

1 Introduction

Recently recursive Petri nets (RPNs) have been proposed for modeling plans
of agents in a multi-agent system [SH96]. A RPN has the same structure as
an ordinary one except that the transitions are partitioned into two categories:
elementary transitions and abstract transitions. Moreover a starting marking is
associated to each abstract transition and a semi-linear set of final markings is
defined. The semantics of such a net may be informally explained as follows.
In an ordinary net, a thread plays the token game by firing a transition and
updating the current marking (its internal state). In a RPN there is a dynamical
tree of threads (denoting the fatherhood relation) where each thread plays its
own token game. The step of a RPN is thus a step of one of its thread. If the
thread fires an elementary transition, then it updates its current marking using
the ordinary firing rule. If the thread fires an abstract transition, it consumes the
input tokens of the transition and generates a new child which begins its token
game with the starting marking of the transition. If the thread reaches a final
marking, it may terminate aborting its whole descent of threads and producing
(in the token game of its father) the output tokens of the abstract transition
which gave birth to him. In case of the root thread, one obtains an empty tree.

In [HP99], we have shown how to decide the reachability problem for RPNs
and we have studied the expressive power of RPNs proving that RPNs strictly
include the union of Petri nets and context-free grammars w.r.t. the generated
languages.

Here, we first define new decision procedures for important problems: bound-
edness, finiteness and recursivity of languages. The two first problems are no
more equivalent (unlike the similar problems for Petri nets) but remain de-
cidable. In labelled Petri nets, in order to decide if some word belongs to the
language, one builds the synchronized product of the automaton recognizing this
word and the Petri net. This product is itself a Petri net and one decides if some
markings are reachable. In RPNs such a method is impossible as the synchro-
nized product of an automaton and a RPN is not necessarily a RPN (see the
following paragraph). From a complexity point of view, since all our decision
procedures use the reachability procedure for Petri nets, none of them is primi-
tive recursive. Again this must be contrasted to the situation of Petri nets where
the boundedness problem is exponential space complete.

Then we study the expressive power of RPNs. Following the works of Pe-
terson [Pet81], we focus on finite word language aspects. At first, we show how
to simulate computations of a Turing machine by synchronizing a RPN and a
finite automaton. Building on this result, we establish that for any recursively
enumerable language one can define a RPN language, a regular language and
an homomorphism such that the former is the intersection of the latters via the
homomorphism. So RPNs are much closer to Turing machine than Petri nets
and context-free grammars. Indeed, the two latter models are closed under ho-
momorphism and intersection with regular languages whereas the same closure
applied to RPNs leads to Turing machines. A second important consequence is
about infinite state systems model checking. For Petri nets, Ezparza [Esp97] has
shown that the model checking of linear temporal logic on actions is decidable.
Such a model checking procedure is undecidable for RPNs even for a restricted
logic.

At last, we compare the model of RPNs with two other models combining
Petri nets and context-free grammars features. Net systems have been introduced
by A. Kiehn [Kie893] in order to study partial-order semantics and composition
of such systems. RPNs strictly include net systems w.r.t. to the language criteria.
Process algebra nets (PANs) is a model of process algebra which include Petri
nets and context-free grammars. In [May97], R. Mayr has shown that reachability
is decidable for PANs. Here we show that RPNs include also PANs whereas the
strict inclusion is an open problem. Due to the space restrictions, only sketches
of proof are given in the paper. However in appendixes, we give complete proofs
for the main propositions. These appendixes will be omitted in the final version.
A technical report including all proofs will soon appear.

2 Recursive Petri Nets

A recursive Petri net is defined by a tuple N = (P, T, W=, W+ ,T) where

— P is a finite set of places, T is a finite set of transitions.

A transition of T' can be either elementary or abstract. The sets of elementary
and abstract are respectively denoted by T.; and T, (with T = Ty W Ty
where @ denotes the disjoint union).

— W~ and W are the pre and post flow functions defined from P x T to IN.
2 is a labeling function which associates to each abstract transition an or-
dinary marking (i.e. an element of IN*’).

T is an effective semi-linear set of final markings.

An extended marking tr of a recursive Petri net N = (P, T,W~, W+ Q,7)
is a labeled tree tr = (V, M, E, A) where V is the set of vertices, M is a mapping
V - NP, E CV x V is the set of edges and A is a mapping E — T,. We
denote by vg(¢r) the root node of the extended marking ¢r. The edges E build a
tree i.e. for each v different from vo(¢r) there is one and only one (v',v) € E and
there is no (v,v9(tr)) € E. Any ordinary marking can be seen as an extended
marking composed by a unique node. The empty tree is denoted by L.

A marked recursive Petri net (N,tro) is a recursive net N associated to an
initial extended marking tro. This initial extended marking is usually a tree
reduced to a unique vertex.

For a vertex v of an extended marking, we denote by pred(v) its (unique)
predecessor in the tree (defined only if v is different from the root) and by Succ(v)
the set of its direct and indirect successors including v (Yv € V, Succ(v) = {v' €
V| (v,v") € E*} where E* denotes the reflexive and transitive closure of E).

A branch br of an extended marking tr is one of the subtrees rooted at a son
of v (tr). One can associate to a branch a couple (¢,¢r) where t is the abstract
transition which labels the edge leading to the subtree and tr the subtree taken
in isolation. Let us note that the couple (¢,tr) characterizes a branch.

In other words, given an extended marking ¢r, a branch br with its couple
(t,tr') fulfills : ¢r' is a sub-tree of tr verifying (vo(tr),vo(tr')) € E (i-e. in tr,
the root of ¢r' is a direct successor of the root of ¢r) and A(vo(tr),ve(tr')) =t
(i.e. in ¢r, the arc between the root of tr and ¢r' is labeled by t). Let us denote
by Branch(tr) the set of branches of an extended marking ¢r. The depth of an
extended marking is recursively defined as 0 for L, 1 for for a unique vertex and
(1 plus the maximum depth of its branches) for the general case.

An elementary step of a RPN may be either a firing of a transition or a
closing of a subtree. At first, a transition ¢ is enabled in a vertex v of an extended
marking ¢r iff Vp € P, M (v)(p) > W~ (p,t). The firing of an enabled transition ¢
from a vertex v of an extended marking tr = (V, M, E, A) leads to the extended
marking ¢t/ = (V' M', E', A’) depending on the type of ¢.

t is an elementary transition (t € Te;) The thread associated to v fires such
a transition as for ordinary Petri nets. The structure of the tree is unchanged.
Only the current marking of v is updated.

—V'=V ,E'=E ,Vec E,A'(e)
~ Vpe P,M'(v)(p) = M(v)(p) =W

Ale) Yo' € V\ {v}, M'(v') = M(v')
(p,t) + WH(p, 1)

t is an abstract transition (t € Tep) The thread associated to v consumes
the input tokens of t. It generates a new thread v’ with initial marking £2(¢) the
starting marking of ¢. Let us note that the identifier v’ is a fresh identifier absent
inV.

— V' =VU{v}, E' = EU{(v,v")},Ve€ E,A'(e) = Ale) , A'((v,v')) =
— V" € V\{v}, M'(v") = M(v"), ¥p € P, M'(v)(p) = M (v)(p) = W~ (p,
— M'(v') = Q(t)

t
t)

When a marking of a thread belongs to 7', the RPN may execute a cut step
denoted by 7. If the thread is associated to the root of the tree, this step leads
to the empty tree. In the other case, the subtree rooted at this thread is pruned
and the output tokens of the abstract transition which gave birth to the thread
are added to the marking of its father.

- V'=V\Succ(v) , EE=EnN(V'xV') ,Veec E',A’'(e) = A(e)
— Yo' e V'\ {pred(v)}, M'(v") = M (v")
= Vp € P, M'(pred(v))(p) = M (pred(v))(p) + W (p, A(pred(v), v))

We denote by tr—‘str' with t € TU{r} an elementary step of the RPN from t¢r
to tr’. A firing sequence is usually defined : a transition sequence o = tot1ts ... t,
is enabled from an extended marking tro (denoted by tro—Zs) iff there exists trq,
tra, ..., tr, such that tr;_; —tstr; for i € [1,n]. We define the depth of o as the
maximal depth of trq, tra, ..., tr,.

We denote by L(N,tro,Try) (where Try is a finite marking set) the set of
firing sequences of N from try to a marking of T'r¢. This set is called the language
of N. More generally, the languages we will consider are defined via a labeling
function. A labeled recursive Petri net is a recursive net and a labeling function
h defined from the transition set T'U {7} to an alphabet X' plus A (the empty
word). h is extended to sequences and then to languages. The language of a
labeled recursive Petri net is defined by h(L(N,tro, Tr¢)).

Part(°)

+

tsart = pinit pfault
+

pinit pfault

Y ={m|m(p,,)>0or m(p,,) >0}

Fig. 1. a simple recursive Petri net

The figure 1 shows the modeling of two similar transactions (represented by
two tokens in psiqrt). We represent an abstract transition by a double border
rectangle and its initial marking is indicated in a frame. A transaction is started

by the firing of the transition ts4.;. When initialized, the transaction may pro-
ceed locally by firing ¢;,cq; Or starts a new process by firing ¢7,,+. Each process
may achieve by reaching pe,q or aborts since prqu: is always marked. In the
latter case, the nested processes are also stopped due to the cut mechanism.

3 Decidability Results

3.1 Basic Results

The first step for tackling our decidability problems is to determine which words
may be generated by the firing of an abstract transition. We distinguish betwen
the general case and the case where the net initiated the abstract transition is
required to close itself (i.e. to reach a marking of 7).

Definition 1 (Closable abstract transition). An abstract transition ¢ of a
labeled RPN is closable w.r.t to a word w if there exists a firing sequence o
from £2(t) to L with h(o) = w. Such a sequence is called a closing sequence of
the abstract transition ¢ w.r.t. w. Closable!®)(t,w) is true if there is a closing
sequence of ¢t w.r.t w of depth < k. Closable(t,w) is true if there is a closing
sequence of ¢t w.r.t w. Closable(t) is true if there is a closing sequence of ¢ w.r.t.
some word w.

Definition 2 (Observable abstract transition). An abstract transition ¢ of
a labeled RPN is observable w.r.t to a word w if there exists a firing sequence
o from 2(t) to some marking with h(c) = w. Such a sequence is called an
observable sequence of the abstract transition ¢ w.r.t. w. Observable®) (t,w) is
true if there is an observable sequence of ¢ w.r.t w of depth < k. Observable(t, w)
is true if there is an observable sequence of t w.r.t w.

Proposition 3 (Closable and observable transitions). Let N be a labeled
RPN, let wy be a word then: Closable(t, wy), Observable(t,wo) and Closable(t)
are decidable.

Sketch of Proof. The complete proof is given in appendix 7.1.

We proceed by successive rounds. At each round we compute the relations
Closable'®) and Observable'® for all abstract transitions and all subwords of wy
(obtained by erasing letters) starting from Closable!*~1) and Observable*~1).
We stop if a round does not increase the relations. At first, as the number of
abstract transitions and the number of subwords are finite and each successful
round increases one of the relations Closable or Observable, the algorithm stops.
From the construction used in each round and informally described below, it is
clear that when the algorithm stops, the relations Closable and Observable are
stabilized.

We are looking for a sequence of depth k& starting from (2(¢) and producing the
subword w. If such a sequence exists, this word will be produced by a shuffle of
firing subsequences of depth < k in direct subtrees of the root and a subsequence

of the root level. So we try to find a sequence w.r.t. any shuffle decomposition of
w (there are only a finite number). The existence of subsequences in the inner
level is checked by the relations computed at the previous round. In order to
check the existence of the sequence at the root level, we define an ordinary net
obtained from the original RPN including ordinary copies of abstract transitions
which mimic the observable behaviours of the original abstract transitions at
the root level. Morevover we add places in order to ensure that any firing in
this net respects the precedence constraints of the chosen shuffle. We define as
final markings a semi-linear set depending on which relation we want to check.
At last we show that reaching the new semi-linear set in the ordinary net is
equivalent to producing the word w in the RPN (and reaching a marking of 77
in case of the Closable relation). In order to check Closable(t), we simply use
the homomorphism h which maps each letter to the empty word A and we check
Closable(t, X). a

3.2 Boundedness, Finiteness

In this section we focus on boundedness and finiteness of RPNs. The boundedness
property ensures that there is a bound for any place of any reachable extended
marking and the finiteness property states that the number of reachable extended
markings is finite. In Petri nets, these two properties are equivalent and decidable
in space exponential in the size of the net [Rac78]. In RPNs, the equivalence does
not hold but decidability remains for both properties. However, as we use in the
decision procedure a reachability test [May81,Kos82] for some Petri nets, the
complexity of our procedure does no more operate in primitive recursive space.

Proposition 4 (Boundedness of RPNs). The boundedness problem is de-
cidable for recursive Petri nets.

Sketch of Proof. Let us suppose that some place p is unbounded, then for any
integer n there is an extended reachable marking visited and a node of this
extended marking for which the marking of p is greater than n. One can notice
that the number of initial markings of nodes is finite (the initial markings of
nodes composing the initial extended marking and the initial markings associated
to abstract transitions). So the place p is unbounded in the root of some RPN
with the same structure as the original one and an initial extended marking
which may be: either a simple node labeled by some (2(t) where ¢ is enabled
in some extended reachable marking, or some subtree of the initial extended
marking.

Using a similar but simpler construction as given in the sketch of proof of
proposition 3, one can show that the enabling of a transition in a reachable
marking is decidable and that a place p is unbounded in the root of such a RPN
N iff p is unbounded in an ordinary Petri net derived from N. O

Proposition 5 (Finiteness of RPNs). The finiteness problem is decidable for
recursive Petri nets.

Sketch of Proof. The reachability set of a RPN is infinite iff either the RPN is
unbounded or it is bounded and the depth of reachable extended markings is
unbounded. From the previous proposition, we have just to decide for a bounded
RPN whether the depth is unbounded. We build a reachability graph until either
we finish the building or we find an extended marking ¢r such that there are two
“fresh” nodes of tr issued by the same abstract transition, one ancestor of the
other. We call a fresh node, a node which was not present in the initial extended
marking. As the RPN is bounded, this construction will terminate. One can show
that the termination in the second case is equivalent to the unboundedness of
the depth. O

3.3 Recursivity of languages

As explained in the introduction, unlike the situation in Petri nets, the recur-
sivity of the languages can not be proved using the reachability procedure for
RPNs. However it turns out that these languages are still recursive.

Proposition 6 (Recursivity of RPNs languages). The language of a labeled
recursive Petri net is recursive.

Sketch of Proof. At first, we observe that a sequence induces a classification of
branches (i.e. immediate subtrees of the root) of the initial state and the final
state: a permanent branch remains present during the whole sequence, a closed
branch is present initially but disappears, an opened branch appears during
the sequence and remains present. Then the word w produced by the sequence
may be decomposed in subwords, where each subword is associated to either
the root, either a branch or the firing of an abstract transition which fulfills the
corresponding Observable or Closable relation (see proposition 3). Let us note
that the number of classifications, decompositions and associations for a given
sequence and a word is finite.

So the algorithm checks the existence of a sequence for each classification,
decomposition and association. Inside a branch, it induces a recursive call, which
is ensured to terminate as the sum of the depths for initial and final states
decreases.

At the root level, the algorithm builds an ordinary net deduced from the
RPN and checks some reachable relation. Roughly speaking, the ordinary net
includes copies of elementary transitions for letters in the subword produced at
the root level, special copies of abstract transitions for the subwords produced
inside a closed or an opened branch or by the firing of an abstract transition. All
these copies are firable at most once. Copies of elementary transitions labeled
by the empty word and abstract transitions closable or observable w.r.t. to the
empty word are also inserted. At last, auxiliary places are added to take into
account the precedence relations between the beginnings and the ends of the
different subwords in the word. O

4 Undecidability Results

In this section, we first show how a RPN and a finite automaton can be con-
structed to mimic the behavior of any Turing machine. First, we define a RPN
Net(Tm) (see Fig. 2) for which its language is a superset of possible behaviors
of a Turing machine T'm. In the following, we restrict it by defining a regular
language to be “synchronized” with the RPN.

p(qJ p(a) tad) pq) ‘ p(f) halt(f) 7 clementary transition

& OO /::OT'D’%

Automaton State Part

t|| =3 abstract transition

LeftMoveAllowed \ / DCES)
EndRight(¢)

End

EndLeft

Left(€
® @ LeftActive

Left(c')

Right(g) Right(c) Right(c’)

Action Control Part

Fig. 2. a recursive Petri net modeling a superset of the Turing machine behaviors

The net is composed by two distinct parts. The upper part modelizes the
automaton of the Turing machine by a classical state machine and the lower one
its tape. There is one place p(q) per state ¢ of the Turing machine automaton
and p(c) per character of X' its alphabet (including e the blank). Moreover,
the three places RightActive, LeftActive and LeftMoveAllowed control the
possible transition firings in the different threads and the place End is used to
close nodes (different from the root) of extended markings.

A configuration of the Turing machine is represented by an extended marking
having two branches. Due to the structure of the net and the initial marking,
firing transitions is only possible either at the root level or in the leaves. The
state of the automaton is always stored in the root of the tree. For each letter
different from e and composing the state of the tape, there is a corresponding
node in the extended marking. The part of the tape which is before and includes
the tape head is stored in the left side of the tree beginning at the root and
the remaining part is in the right side. The letters of the left side of the tree
are stored in a descending way when an ascending order is used at the right
side. Moreover, the last node at the right has the place RightActive marked

and the last node at the left has the place Left Active marked. Finally, the place
LeftMoveAllowed is marked in the last left node if this one is different from the
root. This coding is illustrated in Fig. 3 with the three significant cases. Notice
that the first blank is always explicitly represented in the extended markings.

RightActive+ LeftActiver
+
pa)+p(c,) pla)+p(c,) P(E)+p(c,)
p(c, ?//Q p(c,)//Q Q \rst) %\(¢
.) QA)
1 1)
-1

e e
3 k¢

_ O
LeftActivetp(e) LeftActivetp(c;) RightActive+p(c
+LeftAllowed +L eftAllowed '

o

)
RightActive+p(c,)

€,C,.-G, a(e)” €€ 2..Ci.1 OC; G1--G(EF® qc,C,..G(E

Fig. 3. extended markings coding Turing machine configurations

We briefly describe each kind of transitions. The transitions {¢(g, ¢')} having
p(q) as input place and p(q') as output place simulate the state change of a step.
Moreover, for any terminal state f, the corresponding place p(f) has an output
transition halt(f) marking ppa:. Notice that, the firing of such transitions are
only possible at the root level. The transitions {¢(c, ¢')} having p(c) as input place
and p(c') as output place simulate the reading of ¢ followed by the writing of ¢’
on the tape of the machine. Notice, that transitions {¢(c,c')} have LeftActive
as input place. As this place is only marked in the last left node of the extended
marking, only this thread can fire such a transition. The transitions Left(c),
EndLeft, Right(c) and EndRight(c) modelize the moves of the tape and are
controlled by the place LeftMoveAllowed, LeftActive and RightActive.

The ordinary markings associated to abstract transitions of the model are
the following ones:

—VYae X, 2 (Left(a)) =p(a) + LeftActive + Le ft M ove Allowed
— VYa € X, 2 (Right (a)) = p(a) + RightActive

The final markings are defined by ¥ = {m | m(End) = 1 or m(ppa) = 1}.
Closing a node by marking End corresponds to a move on the tape whereas
marking ppq;; may be possible only at the root of the extended marking and
corresponds to reaching a terminal state of the machine.

The initial extended marking of Net(T'm) is reduced to a unique node labeled
with the ordinary marking p (qo) + p (€¢) + LeftActive + RightActive.

The simulation of a step of the Turing machine on the current extended
marking is illustrated in appendix 7.2. However this simulation requires firings
in different threads and as in RPNs threads are not synchronized, this net may
exhibit behaviors which are not simulations of the Turing machine.

As we want to simulate successful computations of the Turing machine, we
consider the language £ (Net (T'm), L) and so the set of sequences terminated by
the firing of a halt(f) transition followed by a cut 7. Among the firing sequences
of the RPN, the simulating firing sequences can be characterized by a regular
language. This language focuses on the simulation of successive steps of the
machine independently of the tape content and the state automaton since such
dependencies are ensured by the RPN. Let us call s a step of the machine.
It is characterized by five finite domain parameters (input and output states,
read and written characters and the move) and so there is only a finite number
of such steps. Let us call g(s) the finite set of RPN sequences simulating s (a
complete definition of g can be found in appendix 7.2). So the desired language is:
Reg (Tm) = (U, 59 (5)) " -Ujep halt (f)-7. The following proposition expresses
the correctness of our simulation (proved in appendix 7.2).

Proposition 7 (Simulation of successful computations). Let T'm be a Tur-
ing machine and o be a word of 6*. o is a successful computation of Tm iff

Iseq € L(Net(T'm), L) N [g(a). Ujep halt(f) -7

Corollary 8 (Emptiness Problem). The emptiness problem of the intersec-
tion between a (bounded) RPN language and a regular language is undecidable.

The next proposition (proved in appendix 7.2) shows that recursive Petri net
languages are much closer to Turing machine languages than context-free and
Petri net languages.

Proposition 9 (RPN languages & recursively enumerable languages).
Let L be a recursively enumerable language. One can build a (bounded) RPN
language L1, a regular language Lo and an homomorphism f such that L =

F(LinNLs).

The restrictions on the behaviour of the RPN that we have specified with
the regular language may also be specified by the linear temporal logic RTL (the
fragment of LTL which replaces the operator until by the operator sometimes).
So we also obtain an undecidability result for model checking of RPNs.

Proposition 10 (Model Checking Problem). Checking the truth of a RTL
formula on o (bounded) RPN is undecidable.

5 Comparison with other models

RPNs combine features of Petri nets and context-free grammars. So it is in-
teresting to compare RPNs with similar models. In her thesis, A. Kiehn has
introduced a model called net systems [Kie89b]. Net systems are a set of Petri
nets with special transitions denoted caller transitions which start a new Petri
net. A call to a Petri net may return if this net reach a final marking. All the

nets are required to be safe and the constraints associated to the final marking
ensure that a net may not return if it has engaged calls.

It is straightforward to simulate a net system by a RPN. Informally, we add
a place per net which loops on its transitions. The initial marking of the net
is extended by a token in this place. The final making set is simply the union
of final markings of the nets each one augmented by a token in its new place.
Moreover as the languages of Petri nets are not included in the the language of
net systems [Kie89b] we obtain the following proposition.

Proposition 11 (Net systems versus RPNs). The family of net systems lan-
guages is strictly included in the family of RPNs languages.

A Process Algebra Net (PAN) introduced by R. Mayr [May97] is defined as
follows. It has a constant € the empty term, a set of process variables Var =
{X,Y, Z, ...} and two operators: the sequential composition (.) (an associative
operator) and the parallel composition (||) (an associative and commutative op-
erator). A term is a syntactically valid expression built with the constant €, the
variables and the operators. Each net has a finite set of rules A of the form:

X0 | X oo Xo st

where X; is a variable, ¢ is a general term and a is an action which labels the
transition rule.

The semantics of a term is defined inductively. If the term is the left-hand
side of a rule then it may transform into the right-hand side. If the term is a
parallel composition of terms, (using if necessary the commutativity and the
associativity of the operator) it may transform itself by transforming one of its
term. If the term is a sequential composition of terms, it may transform itself
by transforming its first term. With the additional built-in equivalence e.t = t,
the second term of a sequential composition becomes active when the first term
becomes empty.

PAN is also an extension of context-free grammars and Petri nets (where a
variable denotes a token in the corresponding place and the right-hand side of a
rule is similar to the left-hand side). The main result for PANs is the decidability
of the reachability problem. The next proposition shows that RPNs include PANs
and thus that our reachability result subsumes the one for PANs [May97]. The
simulation of a PAN by a RPN which is the key for the proof of the proposition
is given in appendix 7.3.

Proposition 12 (PANs versus RPNs). The reachability problem for PANs
is reducible to the reachability problem for RPNs. The family of PANs languages
is included in the family of RPNs languages.

Whereas we do not know whether the inclusion is strict, we emphasize that
the main difference between RPNs and the two other models is the ability to
prune subtrees from the state. This mechanism is indispensable for the modeling
of plans in multi-agents systems [SH96].

6 Conclusion

In this work, we have studied theoretical features of recursive Petri nets which
complement the ones studied in [HP99] about reachability and expressivity. At
first we have shown how to decide boundedness, finiteness of a RPN and we have
proved that the languages of RPNs are recursive. Analyzing the expressiveness
of RPNs, we have proved that any recursively enumerable language may be ef-
fectively obtained by an homomorphism of the intersection of a regular language
and a RPN language. As a consequence, the general model checking for Petri nets
becomes undecidable even for a restricted temporal logic. At last, we have shown
that (to the best of our knowledge) RPN is the largest model including Petri
nets and context-free grammars for which the reachability remains decidable

We have summarized in Fig. 8 (given in appendix 7.4) the position of RPNs
relative to classical languages generators. We plan to extend our studies in two
different ways. On the one hand we want to add new features for recursive Petri
nets and examine whether the main properties of RPNs remain decidable. We
are interested to introduce some context when a thread is initiated (e.g. the
starting marking could depend from the depth in the tree). On the other hand,
we are looking for an intermediate model between RPN and PN for which model
checking remains decidable.

References

[Esp97] J. Esparza. Decidability of model checking for infinite-state concurrent sys-
tems. Acta Informatica, 34:85-107, 1997.

[HP99] S. Haddad and D. Poitrenaud. Theoretical aspects of recursive Petri nets. In
Proc. 20th Int. Conf. on Applications and Theory of Petri nets, volume 1639 of
Lecture Notes in Computer Science, pages 228-247, Williamsburg, VA, USA,
June 1999. Springer Verlag.

[Kie89a] A. Kiehn. Petri nets systems and their closure properties. In Advances in
Petri Nets 1989, volume 424 of Lecture Notes in Computer Science, pages
306-328. Springer Verlag, 1989.

[Kie89b] A. Kiehn. A structuring mechanism for Petri nets. Technical Report TUM-
18902, Technische Universitat Munchen, Germany, MARCH 1989.

[Kos82] S.R. Kosaraju. Decidability of reachability in vector addition systems. In
Proc. 14th Annual Symposium on Theory of Computing, pages 267-281, 1982.

[May81] E.W. Mayr. An algorithm for the general Petri net reachability problem. In
Proc. 13th Annual Symposium on Theory of Computing, pages 238—246, 1981.

[May97] R. Mayr. Combining Petri nets and PA-processes. In Theoretical Aspects of
Computer Software (TACS’97), volume 1281 of Lecture Notes in Computer
Science, pages 547-561, Sendai, Japan, 1997. Springer Verlag.

[Pet81] J. L. Peterson. Petri Net Theory and the Modelling of Systems. Prentice Hall,
1981.

[Rac78] C. Rackoff. The covering and boundedness problems for vector addition sys-
tems. Theoretical Computer Science, 6:223-231, 1978.

[SH96] A. El Fallah Seghrouchni and S. Haddad. A recursive model for distributed
planning. In Second International Conference on Multi- Agent Systems, Kyoto,
Japon, December 1996.

7 Appendixes

7.1 Proof of proposition 3

At first, we can transform any labelled RPN such that the language is unchanged
and the abstract transitions and the cut are labelled by the empty word. The fig-
ure 4 shows the transformation for an abstract transition : we split the transition
in an elementary one which is labeled by the character followed by a A-labeled
abstract one. The marked place freezes the token game between the two firings.
The transformation is similar for the cut.

Fig. 4. recursive Petri nets having same languages

Then, we give a formal definition of the different kinds of branches inside a
sequence.

Definition 13 (Permanent branch). Let tr, ¢r' be two extended markings
and o be a firing sequence from #r to tr'.

A couple of branches ((tq,trq), (ts,trs)) € Branch(tr) x Branch(tr') denotes a
permanent branch in o if vo(tr,) = vo(try).

The previous definition expresses that the node vy (tr,) is never removed by
a cut step in vg(¢r,). Remark that in this case, we have necessary t, = t.

If a branch is not permanent and occurs in the final marking then it has been
“opened” by an abstract transition.

Definition 14 (Opened branch). Let ¢tr, tr' be two extended markings and
o be a firing sequence from tr to tr'. A branch (ty,tr,) € Branch(tr') denotes
an opened branch in o if Y(t,,tr,) € Branch(tr),vo(tra) # vo(trs).

In the same way, if a branch is not permanent and occurs in the initial
marking then it has been ”closed” by a cut.

Definition 15 (Closed branch). Let tr, tr' be two extended markings and ¢
be a firing sequence from ¢r to tr'. A branch (t,,tr,) € Branch(tr) denotes an
closed branch in o if V(ty,try) € Branch(tr'),vo(trs) # vo(trs).

At last, some branches may appear in an intermediate marking and disappear
before the final marking.

Definition 16 (Transient branch). Let tr, tr' be two extended markings and
o be a firing sequence from ¢r to tr'. A branch (¢.,tr.) of an extended marking
tr'" visited by o is a transient branch if

Y(tq,trq) € Branch(tr) U Branch(tr'),vo(try) # vo(tre).

In this section, wy is a fixed word. A subword w’ of a word w is obtained
by erasing arbitrary characters in w. oy || o2 denotes a particular shuffle (clear
from the context) of o1 and 0.

Definition 17 (Partition of a word). Let w be a word,
then part = ({w;} ic(1..n},p0s, start, end, ind) is a partition of w iff :

— w is a shuffle of {w;}icq1.n},

—w=Q1..... Qo w1 = X (i.e. m = 0),
— V1 < j <m,pos(j) is the index of a; in w
- V2<i<n,

b wl#)H

e start(i) is the index of the first character of w; in w,
e end(i) is the index of the last character of w; in w,
— ind is an index which partitions the set {w;} ;c(2.n} in two (possibly empty)
subsets so that 2 < ind < n + 1.

The next definition which is indeed a construction of an ordinary Petri net
is the kernel of our method. This construction of a T'esting Petri net will enable
us to check closability and observability of order k, once the relations of order
k — 1 for all subwords have been computed. Let us note that there are numerous
but finite such nets associated to a word and abstract transition.

Definition 18 (Testing Petri Net). Let N = (P,7,W~,W™*,,7,h) be a
labeled recursive Petri net.

— let ¢ be an abstract transition of NV,

— let w be a word and part = ({w;} ic{1..n}, P0s, start, end, ind) be a partition
of w (with wy = ay.....),

— V1< j <m,let te; be an elementary transition of N with h(te;) = o,

— V2 <4 <ind,let ta; be an abstract transition such that C’losable(k_l)(tai, w;),

— Vind < i, let ta; be an abstract transition such that Observable(F=1) (tai,w;).

Then Ntest®) (N, t, part, {tej}ieqr..my> {tai}icq2..n}) an ordinary Petri net is
built by the following steps:

— its set of places is initialized to P with (2(¢) as initial marking,

— its set of transitions is initialized to the elementary transitions of N labeled
by A,

— for each abstract transition ta such that Closable(*=1(ta, \), ta is added as
an ordinary transition ta’ with the same input and output places,

— for each abstract transition ta, ta is added as an ordinary transition ta” with
the same input places and no output places,

— for each 1 < 7 < m, we add a transition t;- with the same inputs and outputs
as te; (some transitions may be duplicated here and after),

— for each 1 < j < m, we add a place p} with output transition ¢; and (if
1 < j) input transition ¢;_, . There is initially one token in pj,

— for each 2 < ¢ < ind, we add ¢; with the same input places as ta; but with
only one new output place p; and another transition ¢; which has p; as
input place and the same output places as ta;,

— for each ind <7 <n, we add ¢; with the same input places as ta; but with
no output place,

— for each 1 < j < m and each 2 < i < ind such that pos(j) < end(i) we add
a place p'(j, 1) which is a new output place of ¢’ and a new input place of tf

— for each 2 <4’ <n and each 2 < i < ind such that start(i') < end(i) we add
a place p*(i’,i) which is a new output place of t;; and a new input place of
t

— for each 1 < j < m and each 2 <1 < n such that pos(j) > start(i) we add a
place p” (i, j) which is a new output place of ¢; and a new input place of ¢’

— for each 1 < i <n,

e if i = 1 and m > 0, we add a new place PE™® such that PF"? is a new
output place of ¢/,

e if 2 <i < ind, we add a new place PE"? such that P"? is a new output
place of ti+,

e if ind < i < n, we add a new place PZ"? such that PF"? is a new output
place of t; .

Notation: When ever the context is clear, we denote by Ntest an ordinary
testing Petri net omitting the complete notation. Moreover, we associate to such
a net Ntest:

— a set of tuples Ab(Ntest) = {(ta, mode,wa)} where ta is an abstract transi-
tion used to introduce elementary transitions in Ntest,
mode € {Observable, Closable} denotes the required property for its intro-
duction and wa is the subword required to be produced in Ntest by the
transformation of ta. Let us note that a same abstract transition may occur
in different tuples.

— Sclos(Ntest) the semi-linear set of ordinary markings defined by {m | Im’ €
Y:m=m'+) PEm}.

— Sobs(Ntest) the semi-linear set of ordinary markings defined by {m | m >

S PEn).

Lemma 19. Let N = (P,T,W~,W*,02,7,h) be a labeled recursive Petri net
and w be a word. Yk > 0,Vt € Ty,

1. Closable'™™ (t,w) is true iff

— dpart = ({wi} ic{1..n}, POS, start, end, ind) and

w®=aca

w®=hd
w?=bc
wé=a

w = £GP

Fig. 5. an ordinary net Ntest

— INtest® (N, t, part, {tej}jeq1.mys {tai}icqa..ny) such that a marking of
Sclos(Ntest) is reachable.

Moreover, if Closable'*=1 (t,w) is false
then there is a tuple (ta, mode,wa) € Ab(Ntest) such that either mode =
Closable and Closable'*=2)(ta,wa) is false or mode = Observable and
Observable'*=2) (ta, wa) is false.

2. Observable™™ (t,w) is true iff

— dpart = ({wi}ic{1..n}, POS, start, end, ind) and

— INtest® (N, t, part, {tej}ieq1.mys {tai}icqa..ny) such that a marking of
Sobs(Ntest) is reachable.

Moreover, if Observable'*=V) (t,w) is false

then there is a tuple (ta, mode,wa) € Ab(Ntest) such that either mode =
Closable and Closable'*=2)(ta,wa) is false or mode = Observable and
Observable'*=2) (ta, wa) is false.

Proof. We only handle the case of the Closable relation, the other case follows
the same pattern.

— Let us suppose there exists a closing sequence o of ¢t w.r.t. to w of depth
< k. We are going to build a partition of w, a corresponding testing Petri
net Ntest and a sequence of reachability in this net leading to Sclos(Ntest).
Necessarily, the last firing of o is a cut at the root level of the extended
marking. let us considere the subsequence ¢’ of o obtained by removing
this cut. Since ¢’ starts from (2(t), there can only be opened and transient

branches. Furthermore, we can suppose that when the word produced by
the firings in a opened branch is the empty word, then the subsequence is
immediately fired since the new sequence produces the same word. Similarly,
we can suppose that the subsequence of a transient branch which produces
the empty word follows immediatly in w the firing of the opening abstract
transition. Indeed for the reachability relation, only the root level is affected
by the anticipation of the firings but here again it leads to increasing inter-
mediate markings with necessarily the same marking before the cut and the
new sequence produces the same word. Now we are in position to define a

partition part.
e We index from 2 to ind — 1 the transient branches which produce non-

empty words (ind — 2 is the number of such branches). w; is the word
produced by the it* branch.

e We index from ind to n the opened branches which produce non-empty
words (n — ind + 1 is the number of such branches). w; is the word
produced by the it* branch.

® Wi = Qi ...qy, is the word produced by the root level (which may be
A).

We d)enote by o, the subsequence at the root level and te; the elementary
transition which produces a;.

For i > 2, we denote by ta; the abstract transition which opens the "
branch and by o; the subsequence in the i** branch excluding the optionnal
last cut step. By construction, w is a shuffle of {w;} (with the pos, start and
end mappings usually defined).

e foralli € {2,ind—1}, 0; has a depth < k—1 and so Closable'* =) (ta;, w;)
is true.

e foralli € {ind,n}, o; has a depth < k—1 and so Observable*=) (ta;, w;)
is true.

The testing Petri net Ntest™) (N, t, part, {te;}je(1..m}, {tai}tic(2..n}) is now
uniquely defined. It remains only to exhibit the firing sequence in Ntest.
We iteratively transform o' into a sequence oyes; of transitions in Ntest. We

later demonstrate that it is a firing sequence.
e We considere a transient branch producing an empty word i.e.: o' =

s1.ta.oy.7.s2 where ta is the abstract transition opening the branch, o
is the sequence in the branch and 7 is the cut step closing the branch.
Then, the new ¢’ equals s;.ta’.ss.

e We considere an opened branch producing an empty word i.e.: o' =
s1.ta.oy.s2 where ta is the abstract transition opening the branch, oy is
the sequence in the branch. Then, the new ¢’ equals s;.ta”.s5.

e We considere the it" transient branch producing w; i.e.: o' = s;.ta;.(o; ||
s2).7.s3. Then, the new o' equals sl.tai_.SQ.taj'.s;g.

e We considere the i'" opened branch producing w; i.e.: o' = s;.ta;.(o; ||
s2). Then, the new o' equals s;.ta; .ss.

e for each 1 < j < m, the transition firing te; is changed into ¢/

After this transformation, the new sequence oy is a sequence of Ntest. Let

us show that it is a firing sequence reaching to Sclos(Ntest). We prove it by
examining the different subsets of places of Ntest.

o As 0.5 describes the effect of o’ at the root level, it is a firing sequence
w.r.t. to the copy of P in Ntest leading to a marking € 1"

e As o' produces the subword w; at the root level, the token in p] is
successively moved through p; by the firings of p; until P,

o As for 2 < i < ind, ta; is fired once and precedes the unique firing of
ta;r, a token is produced in p;r and moved to PFn4,

e Asforind <i<n, ta; is fired once, a token is produced in PFn4

e As for each 1 < j < m and each 2 < i < ind such that pos(j) < end() ,
in o’ the final transition of the i** branch must follow the firing of te;,
then in oy.5 the firing of t; must precede the firing of t;r. Thus a token
is first produced in p'(j,7) before is is consumed.

o As for each 2 <i' < n and each 2 <i < ind such that start(i’) < end(i)
in ¢’ the final transition of the i** branch must follow the opening of
the i'*" branch by the firing of ta;/, then in 0. the firing of ¢;; must
precede the firing of ;. Thus a token is first produced in p* (i',7) before
is is consumed.

e As for each 1 < j < m and each 2 < i < n such that pos(j) > start(i) ,
in o' the opening of the ‘" branch must precede the firing of te;, then in
Otest the firing of ¢, must precede the firing of t;-. Thus a token is first
produced in p” (i, j) before is is consumed.

which concludes the first part of the proof.

Let us suppose now that there is a Ntest and a sequence oy leading to
Sclos(Ntest). We will show how to build a closing sequence for ¢ and w of
order k. At first we associate to each abstract transition ta’ used in Ntest
to produce the empty word, its closing sequence of order k — 1, denoted oy,
and to each t; producing the subword w; its closing or observable sequence
of order k£ — 1 denoted o;. In case of a closing sequence, o; does not include
the cut step.

Then we construct the sequence o iteratively while ”writing” w and reading
simultaneously o.s: and the closing and observable sequences we will gen-
erate :

We start with o empty and at the beginning of g;.s;. The marking at the root
level will always correspond to the projection on P of the current marking
in Ntest ensuring that ¢ is firable.

e If the next transition in 0.5 corresponds to an elementary transition
of N associated to the empty word, we complete o by the firing of this
transition at the root level.

e if the next transition ta' in 0.5 corresponds to an abstract transition
ta then we complete o by the firing of ta.oy,.

e if the next transition ta” in o corresponds to an abstract transition
ta then we complete o by the firing of ta.

e if the next transition in oyes is t; then we complete o by the firing of ¢;
followed by the maximal prefix of o; composed by A-labelled transition;
we keep the suffix in the current state.

e if the next transition in o5 is t] then the place p] ensures that ¢;
has been fired and that either the current suffix ¢; is empty or we have
a suffix of o; in the current state where its first transition is labeled by
some character say ¢; the [** character of w. In the former case, we do
the cut step and in the latter case we proceed as follows.

Let us suppose that the next character to write is ¢y the I'th of w with
I' < I. cp cannot be associated to a transition ¢ used for w; as the

unmarked place p'(j,i) forbids the firing of ¢;. So ¢y is associated to
a word wy with ¢ > 1. The place p*(i’,i) ensures that ¢; has been
fired. Necessarily, ¢; labels to the next transition to fire in o so we
fire it followed by a maximal subsequence of A-labelled transitions in the
suffix. Iteratively, we are ensured to reach the index [in which case we fire
its corresponding transition followed again by a maximal subsequence of
A-labelled transitions. We repeat the procedure until we reach the end
of o; and so we can do the cut step.

e if the next transition in o5 is an elementary transition t} labeled by ¢
the I*" character of w. Let us suppose that the next character to write
is ¢y the I'th of w with I’ < 1. ¢y cannot be associated to a transition
t% used for w; as the unmarked place p’; forbids the firing of #}. So ¢
is associated to a word w; with ¢ > 1. The place p”(i,j) ensures that
t; has been fired. Necessarily, c;; corresponds to the next transition to
fire in o; so we fire it followed by the maximal subsequence of \-labelled
transitions in the sequence. Iteratively, we are ensured to reach the index
[in which case we fire .

e if we have reached the end oy, it can remain suffix of observable se-
quences in which case we fire them piecemeal following the order given

by w (let us recall that these sequences are independent).
At the end of o4cs: as we have reached Sclos(Ntest), the projection on P of

the marking at the root level of o € 7.

The additionnal assertion is straightforward since

if for all tuples (ta, mode,wa) € Ab(Ntest) then either mode = Closable and
Closable'* =) (ta, wa) is true or mode = Observable and Observable'*—2) (ta, wa)
is true then o is of order k — 1. O

Proof. (of proposition 8) We remark that

Vk < 0,t,w,Closable®™ (t,w) = Observable'® (t,w) = false. We proceed by
successive rounds, at each round we compute Closable'®) and Observable®)
from Closable*~1) and Observable*~1) trying for each item of the relations
all partitions and all testing nets. We stop if a round does not increase the
relations. At first, as the number of abstract transitions and the number of
subwords are finite and each sucessfull round of the external increases one of
the relation Closable or Observable, the algorithm stops. The correctness of the
algorithm follows directly from the previous lemma as it iteratively computes
the Closable®) and Observable®) relations and we know also that when it stops
these relation are stabilized. O

7.2 Proofs of section 4

Turing Machine A non-deterministic Turing machine is defined by a couple
Tm = (X,(Q,q, F,0)) where

— XY is an alphabet including a particular blank character e,
- {Q, qo, F, d) is an automaton where

e () is a set of states,

® ¢o € () is an initial state,

e F C (@ is a set of terminal states,

¢ 0 CQxXxQx(X\{e}) x{—,<,1} is a transition table.

A configuration of a Turing machine is defined by the current state of its tape
(i.e. an infinite word on X'), the current position ¢ € IN* of its tape head and the
current state ¢ of its automaton. By the Turing machine semantic and the initial
configuration, only a finite prefix of the tape is fulfilled by characters different to
the blank in any reachable configuration. Then a configuration is denoted by an
infinite sequence ¢ ...c;—1qc; ...c, (6)” where Vj € [1,n],c; # e. For a given
configuration m, we denote by g(m) the state of the automaton in m and by
¢(m) the finite word of characters different to e fulfilling the tape in m.

Initially, the tape is fulfilled by the character €, the tape head is positioned
on the head of the tape and the automaton is in the initial state qo (i.e. the
Turing machine is in the configuration go (€)™).

Asteps = (q,¢,q',c',d) € § from a configurationm = ¢ ...c;_1qc;...cp (€)
is enabled (denoted by m—23) iff ¢ = ¢; and (d =¢) = (i # 1). The character ¢
is called the input character.

Letm = ¢y ...ci—1q¢; ... cpn (€)™ be a configuration of T'm and s = (g, ¢i, ¢, ¢}, d)
a step enabled in m. The execution of s from m leads to the configuration '
(denoted by m—2ym') defined by:

—ifd=¢thenm' =c¢;...qci_1¢;...cy (€)
—ifd=—thenm' =c¢;...ci_1c}q...cn(
—ifd=tthenm' =c;...c; 1qci...cn (€)™

The character ¢ is called the output character. Enabling and execution notation
are usually extended to computations.

A computation of a Turing machine is a finite sequence of steps from the
initial configuration. We denote by Comp (Tm) = {o € §* | qo (6)™ -Z3} the
computation set of T'm.

Moreover, a computation is said to be successful if the automaton is in a
terminal state in the reached configuration. We denote by SuccComp(Tm) =
{o € Comp(Tm) : qo ()™ -Zym | g(m) € F} the set of successful computations
of a Turing Machine T'm.

The language of a Turing machine T'm, denoted by £(T'm), is the set of finite
words on X written on the tape by the successful computations (£L(T'm) = {c €
X* | 3o € SuccComp(Tm) : qo (6)F -Zsm A c = c(m)}).

Before developing proofs, we illustrate the effect of a step of the Turing
machine on the current extended marking, in the case where the tape head moves
to the right and the input character is not a blank, in Fig. 6. The execution of
such a step of the Turing machine is simulated by the firing of transitions of
Net(Tm) in different threads of the extended marking. The transition ¢(g,q")
is fired in the root of the extended marking. The transition ¢(¢,c¢’) and then
the abstract one Left(c;+1) are fired in the last left node. In the last right
node, the terminal transition EndRight(c;1+1) is also fired. Notice that firings
of different threads are independent and then can be fired in any order. This
sequence is a valid sequence to simulate the behavior of the Turing machine but,
as the synchronization between threads (as for the firings of EndRight(ci+1)
and Left(c;+1)) is impossible in recursive Petri nets, invalid simulations can be
easily exhibited.

p(@)+p(c,) p(a')+p(c,)
p(e) p(e)
3a.c)=®.c ~)
/ P(C,) T P(C,)

d Yec,) pe v
LeftMoveAllowed+ O\O Left(z,,) RightActive+p(g,,)
LeftActive+p(c;) "

RightActive+p(¢,,) LeftMoveAllowed+
LeftActive+p(c,,,)

Fig. 6. simulation of a step of a Turing machine

Now, we define the regular language Reg (I'm) on the transition set of the
RPN Net (T'm). We first define a mapping g from the transition table of T'm to
finite languages of Net(Tm).

Let geq'c'd € §, then:

—d=tand c#e= g(qeq'c'd) =t(c,). t(q,q)
d=1and c=€e= g(qeq'd'd) =t (e,c') .Right (¢) .t (¢
— d =< and ¢ # € = g (qcq¢’'dd) = EndLeft.7.Right (c
d =+ and ¢ = € = g(qeq'c'd) = EndLeft.T.Right (e
d
(

!

q,9
") t(q,q")

) Rl!]ht(") t(q,9")
Right (o) .1.Left (a)) .t (q,q")
4,4q')

—d==andc#e=g(qeq'cd) =t(c,d).) ex (En
—d=— and c=€e= g(qeq'dd) =t(e,c).Left (e) .t

As usual, we extend g to a morphism between languages. The regular lan-
guage Reg(Tm) denotes the encoding (via g) of possible successful computations
where a success is represented by the firing of a transition halt(f).

Reg (T'm) = (Us cs 9 (5))* - UfeF halt (f).T.

The following lemma expresses the correctness of our simulation.

Lemma 20 (Simulation of Turing machine computations). Let T'm be a
Turing machine and o be a word of §*.

1. If o is a computation of T'm leading to the configuration m then in Net(T'm)
there is a firing sequence seq € g(o) leading to tr(m).

2. If in Net(T'm) there is a firing sequence seq € g(o) then o is a computation
of Tm leading to a configuration m such that seq leads to tr(m).

Proof. By induction on n the length of o. The base case (n = 0) is trivial.
Suppose it is true for n. Let ¢ = o'.qcq'c'd. We only handle the case where
d=— and ¢ # e.

1. Suppose o is a computation of T'm of length n + 1 with ¢’ leading to m’ and
geq'c'd a step from m' to m. We already know that there is seq’ € g(m')
leading to tr(m') in Net(T'm). Starting from ¢r(m'), let us complete seq’ to
some firing sequence belonging to g(o).
tr(m') is described in Fig. 6. As in its left node, LeftActive and p(c) are
marked, t(c, ') is enabled and its firing unmarks p(c) and marks p(c¢’). In
the right node, RightActive and p(c;11) are marked, so EndRight(c;y1) is
enabled and its firing followed by a cut step prunes this node and marks
RighActive in the new right node. As LeftActive and LeftM oveAllowed
are marked in its left node, one can fire Left(c;1+1) unmarking Le ft Active
and creating a new left node. This node has for marking p(c;+1)+Left Active+
LeftMoveAllowed. At last, p(q) is marked in the root of tr(m') so one can
fire t(q, ¢') unmarking p(¢) and marking p(¢'). The obtained extended mark-
ing is exactly tr(m).

2. Let seq € g(o) be a firing sequence of Net(Trmn). By induction, we know that
o' is a computation of T'm leading to a configuration m' such that the prefix
of seq, seq’ € g(c') leads to tr(m’) in Net(T'm). Now we examine all the
ways to complete seq’ into a firing sequence € g(o) and we show that the
only possible completion is the subsequence described in the first part of the
proof and that it corresponds to a computation step of T'm in configuration
m' (i.e. ¢ is the input character and ¢ the current state automaton). By the
induction hypothesis, we know that seq’ leads to tr(m'). So the marked place
p(c) in the left node of tr(m’) corresponds to the input character ¢ in m' and
that the marked place p(q) in the root corresponds to the current automaton
state ¢. At first, the left node of ¢r(m') is the only one with LeftActive and
p(c) marked so ¢(c, ') is only enabled in the left node. The right node of
tr(m') is the only one with the place RightActive marked, as p(c;+1) is the
only marked place among p(c¢’’) places in this node, EndRight(c;+1) is the
only possible firing followed again by the cut step (the only one possible in
this state). Looking for the next firing Left(c;+1), we only find LeftActive
marked in the left node. At last, the only marked place p(q) is in the root
and so t(g,q") is enabled in this node.

Other cases are similar and even simpler. O

Now we are in position to characterize successful computations by our sim-
ulation.

Proof. (of proposition 7)

Let o be a successful computation leading to a configuration m having f € F'
as current state automaton. From the Lemma 20, there is a sequence seq’ € g(o)
leading to tr(m). As the place p(f) is marked in the root, halt(f) is enabled and
leads via a cut step to L.

Let seq be a sequence such that

seq € L(Net(T'm), L)N [g(a). Usep halt(f) 7] with (seq = seq'.halt(f))
From the Lemma 20, o is a computation of T'm leading to m such that seq’

leads to tr(m). As halt(f) is enabled in tr(m) iff p(f) is marked in its root, we
conclude that f is the current automaton state and then that ¢ is successful. O

It is worth to notice that the RPN simulating the Turing machine is a
bounded net. Indeed, this simulation is possible due to two factors, the recur-
siveness and the ability for parallel invocation of abstract transitions.

Proof. (of proposition 9)
Let T'm be a Turing machine generating £. At first, we construct a Turing
machine T'm’ corresponding to T'm which has the following behavior

1. Its first action consists to write a special mark c¢,, at the first position of the
tape and moves its tape head to the right.

2. It simulates T'm until T'm leads a terminal state. Special care must be taken
to avoid entering terminal state while the tape head is on the special mark
Cm-

3. It moves the tape head to the first position with the help of the special mark
Cm-

4. It moves to the right visiting a particular intermediate automaton state cor-
responding to the input character and it terminates when the first character
€ is read. As an example, if the state of the tape is abcba (€)™, the sequence
of automaton states which are visited is q.qpqcqpqaqe With g the unique
terminal state of T'm/'.

According to Prop. 7, for every successful computation of T'm’ corresponds
a word of L(Net(T'm', 1)) N Reg(T'm') and vice versa. For instance, let aab (¢)*
be an accepted word of T'm, the corresponding word is of the form

0. t(Gepnsley) - t(deyrGey) - - t(dey Gey) - - - t(dey» Ge) - - - halt(ge).T

where o is the sequence of Net (T'm') corresponding to the three first steps
of Tm' and the remainder of the sequence corresponds to fourth step.

Now taking £, as L(Net(T'm', 1)), L2 as Reg(T'm'), we define f as follows:

Ve, € X f (t(ge,qe)) = ¢ and otherwise f (t) = A

The result is now clear from the construction. O

We finally give a last corollary giving necessary conditions for a family of
languages to include RPNs languages.

Corollary 21 (Expressive power of RPNs). Any family of recursive lan-
guages closed by intersection with a regular language and by homomorphism can
not contain the family of recursive Petri net languages.

Proof. Immediate from Prop. 9. O

7.3 Simulation of a PAN

At first we remark than a general rule of a PAN can be written:
Vil YrSXo || Xyl ety || || tx -ty
The principles of the translation are the following ones:

— Independantly of the rules, places are defined for every variable.

— A special place ¢pt counts the number of branches in each vertex (it is incre-
mented before the opening and decremented after the closing of the branch)
which avoids to close a vertex which is not a leaf.

— Consequently, the semi-linear set of final markings is simply the empty mark-
ing.

— For the transaltion of the rule, an elementary transition is created which
consumes Y; || ...Yr acts as a and produces the X; , K.cpt and {pr} new
places associated to the translation of {ts.t] }.

— Then each p; is the input of a new abstract transition with r; a new place
as the output (meaning that the term ¢; has becomed empty) and g; a new
place as the starting marking of this abstract transition. This leads to a
recursive translation of an ”internal” rule g;—st;.

— So r; + cpt is marked at the closing of the branch associated to ¢; which
“activates” t}. This leads again to a recursive translation of an “internal”
rule r; || cpt—st!

Here is a the recursive algorithm translation of a rule.

Algorithm 7.1 Generate

Generate(Y: || ...Y7 25 X1 || ... Xy || tith || - || tr-t)
begin
for k:=1 to K do
pr := new Place();// pr is a local identifier
gr := new Place();// idem
r := new Place();// idem
new AbstractTransition(in : px,out : T, 2 : qi, label : €);
Generate(gr,—3t1);
Generate(ry, || cpt—>t},);
od
new ElementaryTransition(in : Y1 + ... + Yr,out : X1 + ... + X5 + p1 + ... + px + K.cpt,
label : a);
end

Now it remains to translate the initial term which can be done by simulating
a pseudo-rule with left-hand side a new place and right-hand side the initial
term. Here is the general translation of a PAN.

Algorithm 7.2 Translate

Translate(to, A)
begin
for each variable X occuring in A or to do
X := new Place();
od
cpt := new Place();
for each rule R € A do
Generate(R);
od
po := new Place();
Generate(po—to);
new InitialMarking(1.po);
new FinalMarking(0);
end

As an example, we give in figure 7 the translation of the rule:
X1 (X2 || X3).(Xa.(X2 || X3))

cpt

Fig. 7. Translation of a rule

7.4 Position of RPNs languages

—=— incomparable
. sriclyinduded
== equds

Undecidability of
_Emptiness
Decidability of

Emptiness

TM : Turing machine

CS: Context-sensitive grammars
CF : Context-free grammars

Reg : Regular grammars

m Reg : closure under intersection with Reg

h() : closure under homorphism

h(CS) =
Recursively h(RPN) Reg)
Brumerable | .. -
Recursive
CS(M Reg
cCsSe=——0 RPN Reg ®
h(RPN) RPN b
PN
CF ® L4

h(CF(MReg) h(PN) Reg)

Reg

Fig. 8. hierarchies of models

