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Decidability and Undecidability Results for Recursive Petri Nets

Recursive Petri nets (RPNs) have been introduced to model systems with dynamic structure. Whereas this model is a strict extension of Petri nets, reachability in RPNs remains decidable. Here we focus on three complementary theoretical aspects. At rst, we develop decision procedures for new properties like boundedness and niteness and we show that languages of RPNs are recursive. Then we study the expressiveness of RPNs proving that any recursively enumerable language may be obtained as the image by an homomorphism of the intersection of a regular language and a RPN language. Starting from this property, we deduce undecidability results including undecidablity for the kind of model checking which is decidable for Petri nets. At last, we compare RPNs with two other models combining Petri nets and context-free grammars features showing that these models can be simulated by RPNs.

Introduction

Recently recursive Petri nets (RPNs) have been proposed for modeling plans of agents in a multi-agent system SH96]. A RPN has the same structure as an ordinary one except that the transitions are partitioned into two categories: elementary transitions and abstract transitions. Moreover a starting marking is associated to each abstract transition and a semi-linear set of nal markings is de ned. The semantics of such a net may be informally explained as follows. In an ordinary net, a thread plays the token game by ring a transition and updating the current marking (its internal state). In a RPN there is a dynamical tree of threads (denoting the fatherhood relation) where each thread plays its own token game. The step of a RPN is thus a step of one of its thread. If the thread res an elementary transition, then it updates its current marking using the ordinary ring rule. If the thread res an abstract transition, it consumes the input tokens of the transition and generates a new child which begins its token game with the starting marking of the transition. If the thread reaches a nal marking, it may terminate aborting its whole descent of threads and producing (in the token game of its father) the output tokens of the abstract transition which gave birth to him. In case of the root thread, one obtains an empty tree.

In HP99], we have shown how to decide the reachability problem for RPNs and we have studied the expressive power of RPNs proving that RPNs strictly include the union of Petri nets and context-free grammars w.r.t. the generated languages.

Here, we rst de ne new decision procedures for important problems: boundedness, niteness and recursivity of languages. The two rst problems are no more equivalent (unlike the similar problems for Petri nets) but remain decidable. In labelled Petri nets, in order to decide if some word belongs to the language, one builds the synchronized product of the automaton recognizing this word and the Petri net. This product is itself a Petri net and one decides if some markings are reachable. In RPNs such a method is impossible as the synchronized product of an automaton and a RPN is not necessarily a RPN (see the following paragraph). From a complexity point of view, since all our decision procedures use the reachability procedure for Petri nets, none of them is primitive recursive. Again this must be contrasted to the situation of Petri nets where the boundedness problem is exponential space complete.

Then we study the expressive power of RPNs. Following the works of Peterson Pet81], we focus on nite word language aspects. At rst, we show how to simulate computations of a Turing machine by synchronizing a RPN and a nite automaton. Building on this result, we establish that for any recursively enumerable language one can de ne a RPN language, a regular language and an homomorphism such that the former is the intersection of the latters via the homomorphism. So RPNs are much closer to Turing machine than Petri nets and context-free grammars. Indeed, the two latter models are closed under homomorphism and intersection with regular languages whereas the same closure applied to RPNs leads to Turing machines. A second important consequence is about in nite state systems model checking. For Petri nets, Ezparza Esp97] has shown that the model checking of linear temporal logic on actions is decidable. Such a model checking procedure is undecidable for RPNs even for a restricted logic.

At last, we compare the model of RPNs with two other models combining Petri nets and context-free grammars features. Net systems have been introduced by A. Kiehn Kie89a] in order to study partial-order semantics and composition of such systems. RPNs strictly include net systems w.r.t. to the language criteria. Process algebra nets (PANs) is a model of process algebra which include Petri nets and context-free grammars. In May97], R. Mayr has shown that reachability is decidable for PANs. Here we show that RPNs include also PANs whereas the strict inclusion is an open problem. Due to the space restrictions, only sketches of proof are given in the paper. However in appendixes, we give complete proofs for the main propositions. These appendixes will be omitted in the nal version. A technical report including all proofs will soon appear.

Recursive Petri Nets

A recursive Petri net is de ned by a tuple N = hP; T; W ; W + ; ; i where { P is a nite set of places, T is a nite set of transitions. { A transition of T can be either elementary or abstract. The sets of elementary and abstract are respectively denoted by T el and T ab (with T = T el ] T ab where ] denotes the disjoint union). { W and W + are the pre and post ow functions de ned from P T to IN. { is a labeling function which associates to each abstract transition an ordinary marking (i.e. an element of IN P ).

{ is an e ective semi-linear set of nal markings.

An extended marking tr of a recursive Petri net N = hP; T; W ; W + ; ; i is a labeled tree tr = hV; M; E; Ai where V is the set of vertices, M is a mapping V ! IN P , E V V is the set of edges and A is a mapping E ! T ab . We denote by v 0 (tr) the root node of the extended marking tr. The edges E build a tree i.e. for each v di erent from v 0 (tr) there is one and only one (v 0 ; v) 2 E and there is no (v; v 0 (tr)) 2 E. Any ordinary marking can be seen as an extended marking composed by a unique node. The empty tree is denoted by ?.

A marked recursive Petri net (N; tr 0 ) is a recursive net N associated to an initial extended marking tr 0 . This initial extended marking is usually a tree reduced to a unique vertex.

For a vertex v of an extended marking, we denote by pred(v) its (unique) predecessor in the tree (de ned only if v is di erent from the root) and by Succ(v) the set of its direct and indirect successors including v (8v 2 V; Succ(v) = fv 0 2 V j (v; v 0 ) 2 E g where E denotes the re exive and transitive closure of E).

A branch br of an extended marking tr is one of the subtrees rooted at a son of v 0 (tr). One can associate to a branch a couple (t; tr) where t is the abstract transition which labels the edge leading to the subtree and tr the subtree taken in isolation. Let us note that the couple (t; tr) characterizes a branch.

In other words, given an extended marking tr, a branch br with its couple (t; tr 0 ) ful lls : tr 0 is a sub-tree of tr verifying (v 0 (tr); v 0 (tr 0 )) 2 E (i.e. in tr, the root of tr 0 is a direct successor of the root of tr) and A(v 0 (tr); v 0 (tr 0 )) = t (i.e. in tr, the arc between the root of tr and tr 0 is labeled by t). Let us denote by Branch(tr) the set of branches of an extended marking tr. The depth of an extended marking is recursively de ned as 0 for ?, 1 for for a unique vertex and

(1 plus the maximum depth of its branches) for the general case. An elementary step of a RPN may be either a ring of a transition or a closing of a subtree. At rst, a transition t is enabled in a vertex v of an extended marking tr i 8p 2 P; M(v)(p) W (p; t). The ring of an enabled transition t from a vertex v of an extended marking tr = hV; M; E; Ai leads to the extended marking tr 0 = hV 0 ; M 0 ; E 0 ; A 0 i depending on the type of t. t is an elementary transition (t 2 T el ) The thread associated to v res such a transition as for ordinary Petri nets. The structure of the tree is unchanged.

Only the current marking of v is updated.

{ V 0 = V , E 0 = E , 8e 2 E; A 0 (e) = A(e),8v 0 2 V n fvg, M 0 (v 0 ) = M(v 0 ) { 8p 2 P; M 0 (v)(p) = M(v)(p) W (p; t) + W + (p; t)
t is an abstract transition (t 2 T ab ) The thread associated to v consumes the input tokens of t. It generates a new thread v 0 with initial marking (t) the starting marking of t. Let us note that the identi er v 0 is a fresh identi er absent in V .

{ V 0 = V fv 0 g , E 0 = E f(v; v 0 )g , 8e 2 E; A 0 (e) = A(e) , A 0 ((v; v 0 )) = t { 8v 00 2 V n fvg; M 0 (v 00 ) = M(v 00 ), 8p 2 P; M 0 (v

)(p) = M(v)(p) W (p; t) { M 0 (v 0 ) = (t)
When a marking of a thread belongs to , the RPN may execute a cut step denoted by . If the thread is associated to the root of the tree, this step leads to the empty tree. In the other case, the subtree rooted at this thread is pruned and the output tokens of the abstract transition which gave birth to the thread are added to the marking of its father.

{ V 0 = V n Succ(v) , E 0 = E \ (V 0 V 0 ) , 8e 2 E 0 ; A 0 (e) = A(e) { 8v 0 2 V 0 n fpred(v)g; M 0 (v 0 ) = M(v 0 ) { 8p 2 P; M 0 (pred(v))(p) = M(pred(v))(p) + W + (p; A(pred(v); v))
We denote by tr t ! tr 0 with t 2 T f g an elementary step of the RPN from tr to tr 0 . A ring sequence is usually de ned : a transition sequence = t 0 t 1 t 2 : : : t n is enabled from an extended marking tr 0 (denoted by tr 0 ! ) i there exists tr 1 , tr 2 , . . . , tr n such that tr i 1 ti ! tr i for i 2 1; n]. We de ne the depth of as the maximal depth of tr 1 , tr 2 , . . . , tr n .

We denote by L(N; tr 0 ; Tr f ) (where Tr f is a nite marking set) the set of ring sequences of N from tr 0 to a marking of Tr f . This set is called the language of N. More generally, the languages we will consider are de ned via a labeling function. A labeled recursive Petri net is a recursive net and a labeling function h de ned from the transition set T f g to an alphabet plus (the empty word). h is extended to sequences and then to languages. The language of a labeled recursive Petri net is de ned by h(L(N; tr 0 ; Tr f )). The gure 1 shows the modeling of two similar transactions (represented by two tokens in p start ). We represent an abstract transition by a double border rectangle and its initial marking is indicated in a frame. A transaction is started by the ring of the transition t start . When initialized, the transaction may proceed locally by ring t local or starts a new process by ring t fork . Each process may achieve by reaching p end or aborts since p fault is always marked. In the latter case, the nested processes are also stopped due to the cut mechanism.

3 Decidability Results

Basic Results

The rst step for tackling our decidability problems is to determine which words may be generated by the ring of an abstract transition. We distinguish betwen the general case and the case where the net initiated the abstract transition is required to close itself (i.e. to reach a marking of ).

De nition 1 (Closable abstract transition). Proposition 3 (Closable and observable transitions). Let N be a labeled RPN, let w 0 be a word then: Closable(t; w 0 ), Observable(t; w 0 ) and Closable(t) are decidable. Sketch of Proof. The complete proof is given in appendix 7.1.

We proceed by successive rounds. At each round we compute the relations Closable (k) and Observable (k) for all abstract transitions and all subwords of w 0 (obtained by erasing letters) starting from Closable (k 1) and Observable (k 1) .

We stop if a round does not increase the relations. At rst, as the number of abstract transitions and the number of subwords are nite and each successful round increases one of the relations Closable or Observable, the algorithm stops.

From the construction used in each round and informally described below, it is clear that when the algorithm stops, the relations Closable and Observable are stabilized.

We are looking for a sequence of depth k starting from (t) and producing the subword w. If such a sequence exists, this word will be produced by a shu e of ring subsequences of depth < k in direct subtrees of the root and a subsequence of the root level. So we try to nd a sequence w.r.t. any shu e decomposition of w (there are only a nite number). The existence of subsequences in the inner level is checked by the relations computed at the previous round. In order to check the existence of the sequence at the root level, we de ne an ordinary net obtained from the original RPN including ordinary copies of abstract transitions which mimic the observable behaviours of the original abstract transitions at the root level. Morevover we add places in order to ensure that any ring in this net respects the precedence constraints of the chosen shu e. We de ne as nal markings a semi-linear set depending on which relation we want to check. At last we show that reaching the new semi-linear set in the ordinary net is equivalent to producing the word w in the RPN (and reaching a marking of in case of the Closable relation). In order to check Closable(t), we simply use the homomorphism h which maps each letter to the empty word and we check Closable(t; ). u t

Boundedness, Finiteness

In this section we focus on boundedness and niteness of RPNs. The boundedness property ensures that there is a bound for any place of any reachable extended marking and the niteness property states that the number of reachable extended markings is nite. In Petri nets, these two properties are equivalent and decidable in space exponential in the size of the net Rac78]. In RPNs, the equivalence does not hold but decidability remains for both properties. However, as we use in the decision procedure a reachability test May81,Kos82] for some Petri nets, the complexity of our procedure does no more operate in primitive recursive space.

Proposition 4 (Boundedness of RPNs). The boundedness problem is decidable for recursive Petri nets.

Sketch of Proof. Let us suppose that some place p is unbounded, then for any integer n there is an extended reachable marking visited and a node of this extended marking for which the marking of p is greater than n. One can notice that the number of initial markings of nodes is nite (the initial markings of nodes composing the initial extended marking and the initial markings associated to abstract transitions). So the place p is unbounded in the root of some RPN with the same structure as the original one and an initial extended marking which may be: either a simple node labeled by some (t) where t is enabled in some extended reachable marking, or some subtree of the initial extended marking.

Using a similar but simpler construction as given in the sketch of proof of proposition 3, one can show that the enabling of a transition in a reachable marking is decidable and that a place p is unbounded in the root of such a RPN N i p is unbounded in an ordinary Petri net derived from N. u t Proposition 5 (Finiteness of RPNs). The niteness problem is decidable for recursive Petri nets. Sketch of Proof. The reachability set of a RPN is in nite i either the RPN is unbounded or it is bounded and the depth of reachable extended markings is unbounded. From the previous proposition, we have just to decide for a bounded RPN whether the depth is unbounded. We build a reachability graph until either we nish the building or we nd an extended marking tr such that there are two \fresh" nodes of tr issued by the same abstract transition, one ancestor of the other. We call a fresh node, a node which was not present in the initial extended marking. As the RPN is bounded, this construction will terminate. One can show that the termination in the second case is equivalent to the unboundedness of the depth. u t

Recursivity of languages

As explained in the introduction, unlike the situation in Petri nets, the recursivity of the languages can not be proved using the reachability procedure for RPNs. However it turns out that these languages are still recursive.

Proposition 6 (Recursivity of RPNs languages). The language of a labeled recursive Petri net is recursive. Sketch of Proof. At rst, we observe that a sequence induces a classi cation of branches (i.e. immediate subtrees of the root) of the initial state and the nal state: a permanent branch remains present during the whole sequence, a closed branch is present initially but disappears, an opened branch appears during the sequence and remains present. Then the word w produced by the sequence may be decomposed in subwords, where each subword is associated to either the root, either a branch or the ring of an abstract transition which ful lls the corresponding Observable or Closable relation (see proposition 3). Let us note that the number of classi cations, decompositions and associations for a given sequence and a word is nite.

So the algorithm checks the existence of a sequence for each classi cation, decomposition and association. Inside a branch, it induces a recursive call, which is ensured to terminate as the sum of the depths for initial and nal states decreases.

At the root level, the algorithm builds an ordinary net deduced from the RPN and checks some reachable relation. Roughly speaking, the ordinary net includes copies of elementary transitions for letters in the subword produced at the root level, special copies of abstract transitions for the subwords produced inside a closed or an opened branch or by the ring of an abstract transition. All these copies are rable at most once. Copies of elementary transitions labeled by the empty word and abstract transitions closable or observable w.r.t. to the empty word are also inserted. At last, auxiliary places are added to take into account the precedence relations between the beginnings and the ends of the di erent subwords in the word.

u t 4 Undecidability Results

In this section, we rst show how a RPN and a nite automaton can be constructed to mimic the behavior of any Turing machine. First, we de ne a RPN Net(Tm) (see Fig. 2) for which its language is a superset of possible behaviors of a Turing machine Tm. In the following, we restrict it by de ning a regular language to be \synchronized" with the RPN. halt(f) p(q') p(q) t(q,q') EndRight( )

ε p( ) ε Left( ) ε p(q ) 0 Phalt
End elementary transition abstract transition

Fig. 2. a recursive Petri net modeling a superset of the Turing machine behaviors

The net is composed by two distinct parts. The upper part modelizes the automaton of the Turing machine by a classical state machine and the lower one its tape. There is one place p(q) per state q of the Turing machine automaton and p(c) per character of its alphabet (including the blank). Moreover, the three places RightActive, LeftActive and LeftMoveAllowed control the possible transition rings in the di erent threads and the place End is used to close nodes (di erent from the root) of extended markings.

A con guration of the Turing machine is represented by an extended marking having two branches. Due to the structure of the net and the initial marking, ring transitions is only possible either at the root level or in the leaves. The state of the automaton is always stored in the root of the tree. For each letter di erent from and composing the state of the tape, there is a corresponding node in the extended marking. The part of the tape which is before and includes the tape head is stored in the left side of the tree beginning at the root and the remaining part is in the right side. The letters of the left side of the tree are stored in a descending way when an ascending order is used at the right side. Moreover, the last node at the right has the place RightActive marked and the last node at the left has the place LeftActive marked. Finally, the place LeftMoveAllowed is marked in the last left node if this one is di erent from the root. This coding is illustrated in Fig. 3 with the three signi cant cases. Notice that the rst blank is always explicitly represented in the extended markings. We brie y describe each kind of transitions. The transitions ft(q; q 0 )g having p(q) as input place and p(q 0 ) as output place simulate the state change of a step. Moreover, for any terminal state f, the corresponding place p(f) has an output transition halt(f) marking p halt . Notice that, the ring of such transitions are only possible at the root level. The transitions ft(c; c 0 )g having p(c) as input place and p(c 0 ) as output place simulate the reading of c followed by the writing of c 0 on the tape of the machine. Notice, that transitions ft(c; c 0 )g have LeftActive as input place. As this place is only marked in the last left node of the extended marking, only this thread can re such a transition. The transitions Left(c), EndLeft, Right(c) and EndRight(c) modelize the moves of the tape and are controlled by the place LeftMoveAllowed, LeftActive and RightActive.

p(q)+p(c ) 1 p(c ) 2 p(q)+p(c ) 1 p(c ) n p(c ) i-1 p(c ) 2 ε p( ) i LeftActive+p(c ) +LeftAllowed i+1 RightActive+p(c ) 1 2 i-1 n i i+1 1 2 n p(q)+p(c )
The ordinary markings associated to abstract transitions of the model are the following ones: { 8 2 ; (Left ( )) = p ( ) + LeftActive + LeftMoveAllowed { 8 2 ; (Right ( )) = p ( ) + RightActive

The nal markings are de ned by = fm j m(End) = 1 or m(p halt ) = 1g.

Closing a node by marking End corresponds to a move on the tape whereas marking p halt may be possible only at the root of the extended marking and corresponds to reaching a terminal state of the machine.

The initial extended marking of Net(Tm) is reduced to a unique node labeled with the ordinary marking p (q 0 ) + p ( ) + LeftActive + RightActive.

The simulation of a step of the Turing machine on the current extended marking is illustrated in appendix 7.2. However this simulation requires rings in di erent threads and as in RPNs threads are not synchronized, this net may exhibit behaviors which are not simulations of the Turing machine.

As we want to simulate successful computations of the Turing machine, we consider the language L (Net (T m) ; ?) and so the set of sequences terminated by the ring of a halt(f) transition followed by a cut . Among the ring sequences of the RPN, the simulating ring sequences can be characterized by a regular language. This language focuses on the simulation of successive steps of the machine independently of the tape content and the state automaton since such dependencies are ensured by the RPN. Let us call s a step of the machine.

It is characterized by ve nite domain parameters (input and output states, read and written characters and the move) and so there is only a nite number of such steps. Let us call g(s) the nite set of RPN sequences simulating s (a complete de nition of g can be found in appendix 7.2). So the desired language is: Reg (T m) = S s 2 g (s) : S f2F halt (f) . The following proposition expresses the correctness of our simulation (proved in appendix 7.2).

Proposition 7 (Simulation of successful computations). Let Tm be a Turing machine and be a word of . is a successful computation of Tm i 9 seq 2 L(Net(Tm); ?) \ h g( ): S f2F halt(f) i Corollary 8 (Emptiness Problem). The emptiness problem of the intersection between a (bounded) RPN language and a regular language is undecidable.

The next proposition (proved in appendix 7.2) shows that recursive Petri net languages are much closer to Turing machine languages than context-free and Petri net languages.

Proposition 9 (RPN languages & recursively enumerable languages).

Let L be a recursively enumerable language. One can build a (bounded) RPN language L 1 , a regular language L 2 and an homomorphism f such that L = f (L 1 \ L 2 ).

The restrictions on the behaviour of the RPN that we have speci ed with the regular language may also be speci ed by the linear temporal logic RTL (the fragment of LTL which replaces the operator until by the operator sometimes).

So we also obtain an undecidability result for model checking of RPNs.

Proposition 10 (Model Checking Problem). Checking the truth of a RTL formula on a (bounded) RPN is undecidable.

Comparison with other models

RPNs combine features of Petri nets and context-free grammars. So it is interesting to compare RPNs with similar models. In her thesis, A. Kiehn has introduced a model called net systems Kie89b]. Net systems are a set of Petri nets with special transitions denoted caller transitions which start a new Petri net. A call to a Petri net may return if this net reach a nal marking. All the nets are required to be safe and the constraints associated to the nal marking ensure that a net may not return if it has engaged calls.

It is straightforward to simulate a net system by a RPN. Informally, we add a place per net which loops on its transitions. The initial marking of the net is extended by a token in this place. The nal making set is simply the union of nal markings of the nets each one augmented by a token in its new place. Moreover as the languages of Petri nets are not included in the the language of net systems Kie89b] we obtain the following proposition.

Proposition 11 (Net systems versus RPNs). The family of net systems languages is strictly included in the family of RPNs languages.

A Process Algebra Net (PAN) introduced by R. Mayr May97] is de ned as follows. It has a constant the empty term, a set of process variables V ar = fX; Y; Z; :::g and two operators: the sequential composition (:) (an associative operator) and the parallel composition (k) (an associative and commutative operator). A term is a syntactically valid expression built with the constant , the variables and the operators. Each net has a nite set of rules of the form: X 1 k X 2 k :::X n a ! t where X i is a variable, t is a general term and a is an action which labels the transition rule.

The semantics of a term is de ned inductively. If the term is the left-hand side of a rule then it may transform into the right-hand side. If the term is a parallel composition of terms, (using if necessary the commutativity and the associativity of the operator) it may transform itself by transforming one of its term. If the term is a sequential composition of terms, it may transform itself by transforming its rst term. With the additional built-in equivalence :t = t, the second term of a sequential composition becomes active when the rst term becomes empty.

PAN is also an extension of context-free grammars and Petri nets (where a variable denotes a token in the corresponding place and the right-hand side of a rule is similar to the left-hand side). The main result for PANs is the decidability of the reachability problem. The next proposition shows that RPNs include PANs and thus that our reachability result subsumes the one for PANs May97]. The simulation of a PAN by a RPN which is the key for the proof of the proposition is given in appendix 7.3. Proposition 12 (PANs versus RPNs). The reachability problem for PANs is reducible to the reachability problem for RPNs. The family of PANs languages is included in the family of RPNs languages.

Whereas we do not know whether the inclusion is strict, we emphasize that the main di erence between RPNs and the two other models is the ability to prune subtrees from the state. This mechanism is indispensable for the modeling of plans in multi-agents systems SH96].

In this work, we have studied theoretical features of recursive Petri nets which complement the ones studied in HP99] about reachability and expressivity. At rst we have shown how to decide boundedness, niteness of a RPN and we have proved that the languages of RPNs are recursive. Analyzing the expressiveness of RPNs, we have proved that any recursively enumerable language may be effectively obtained by an homomorphism of the intersection of a regular language and a RPN language. As a consequence, the general model checking for Petri nets becomes undecidable even for a restricted temporal logic. At last, we have shown that (to the best of our knowledge) RPN is the largest model including Petri nets and context-free grammars for which the reachability remains decidable

We have summarized in Fig. 8 (given in appendix 7.4) the position of RPNs relative to classical languages generators. We plan to extend our studies in two di erent ways. On the one hand we want to add new features for recursive Petri nets and examine whether the main properties of RPNs remain decidable. We are interested to introduce some context when a thread is initiated (e.g. the starting marking could depend from the depth in the tree). On the other hand, we are looking for an intermediate model between RPN and PN for which model checking remains decidable.

At rst, we can transform any labelled RPN such that the language is unchanged and the abstract transitions and the cut are labelled by the empty word. The gure 4 shows the transformation for an abstract transition : we split the transition in an elementary one which is labeled by the character followed by a -labeled abstract one. The marked place freezes the token game between the two rings. The transformation is similar for the cut. The previous de nition expresses that the node v 0 (tr a ) is never removed by a cut step in v 0 (tr a ). Remark that in this case, we have necessary t a = t b .

If a branch is not permanent and occurs in the nal marking then it has been \opened" by an abstract transition.

De nition 14 (Opened branch). Let tr, tr 0 be two extended markings and be a ring sequence from tr to tr 0 . A branch (t b ; tr b ) 2 Branch(tr 0 ) denotes an opened branch in if 8(t a ; tr a ) 2 Branch(tr); v 0 (tr a ) 6 = v 0 (tr b ).

In the same way, if a branch is not permanent and occurs in the initial marking then it has been "closed" by a cut.

De nition 15 (Closed branch). Let tr, tr 0 be two extended markings and be a ring sequence from tr to tr 0 . A branch (t a ; tr a ) 2 Branch(tr) denotes an closed branch in if 8(t b ; tr b ) 2 Branch(tr 0 ); v 0 (tr a ) 6 = v 0 (tr b ).

Υ

  Fig. 1. a simple recursive Petri net

Fig. 3 .

 3 Fig. 3. extended markings coding Turing machine con gurations
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  Fig. 4. recursive Petri nets having same languages

  An abstract transition t of a labeled RPN is closable w.r.t to a word w if there exists a ring sequence from (t) to ? with h( ) = w. Such a sequence is called a closing sequence of the abstract transition t w.r.t. w. Closable (k) (t; w) is true if there is a closing sequence of t w.r.t w of depth k. Closable(t; w) is true if there is a closing sequence of t w.r.t w. Closable(t) is true if there is a closing sequence of t w.r.t. some word w. Such a sequence is called an observable sequence of the abstract transition t w.r.t. w. Observable (k) (t; w) is true if there is an observable sequence of t w.r.t w of depth k. Observable(t; w) is true if there is an observable sequence of t w.r.t w.

De nition 2 (Observable abstract transition). An abstract transition t of a labeled RPN is observable w.r.t to a word w if there exists a ring sequence from (t) to some marking with h( ) = w.

7.1 Proof of proposition 3

At last, some branches may appear in an intermediate marking and disappear before the nal marking.

De nition 16 (Transient branch). Let tr, tr 0 be two extended markings and be a ring sequence from tr to tr 0 . A branch (t c ; tr c ) of an extended marking tr 00 visited by is a transient branch if 8(t a ; tr a ) 2 Branch(tr) Branch(tr 0 ); v 0 (tr a ) 6 = v 0 (tr c ).

In this section, w 0 is a xed word. A subword w 0 of a word w is obtained by erasing arbitrary characters in w. 1 k 2 denotes a particular shu e (clear from the context) of 1 and 2 .

De nition 17 (Partition of a word). Let w be a word, then part = hfw i g i2f1::ng ; pos; start; end; indi is a partition of w i :

{ w is a shu e of fw i g i2f1::ng , { w 1 = 1 : : : : : m or w 1 = (i.e. m = 0), { 81 j m; pos(j) is the index of j in w { 82 i n, w i 6 = , start(i) is the index of the rst character of w i in w, end(i) is the index of the last character of w i in w, { ind is an index which partitions the set fw i g i2f2::ng in two (possibly empty) subsets so that 2 ind n + 1.

The next de nition which is indeed a construction of an ordinary Petri net is the kernel of our method. This construction of a Testing Petri net will enable us to check closability and observability of order k, once the relations of order k 1 for all subwords have been computed. Let us note that there are numerous but nite such nets associated to a word and abstract transition.

De nition 18 (Testing Petri Net). Let N = hP; T; W ; W + ; ; ; hi be a labeled recursive Petri net.

{ let t be an abstract transition of N, { let w be a word and part = hfw i g i2f1::ng ; pos; start; end; indi be a partition of w (with w 1 = 1 : : : : : m ), { 81 j m, let te j be an elementary transition of N with h(te j ) = j , { 82 i < ind , let ta i be an abstract transition such that Closable (k 1) (ta i ; w i ), { 8ind i , let ta i be an abstract transition such that Observable (k 1) (ta i ; w i ).

Then Ntest (k) (N; t; part; fte j g j2f1::mg ; fta i g i2f2::ng ) an ordinary Petri net is built by the following steps:

{ its set of places is initialized to P with (t) as initial marking, { its set of transitions is initialized to the elementary transitions of N labeled by , { for each abstract transition ta such that Closable (k 1) (ta; ), ta is added as an ordinary transition ta 0 with the same input and output places, { for each abstract transition ta, ta is added as an ordinary transition ta 00 with the same input places and no output places, { for each 1 j m, we add a transition t 0 j with the same inputs and outputs as te j (some transitions may be duplicated here and after), { for each 1 j m, we add a place p 0 j with output transition t 0 j and (if 1 < j) input transition t 0 j 1 . There is initially one token in p 0 1 , { for each 2 i < ind , we add t i with the same input places as ta i but with only one new output place p + i and another transition t + i which has p + i as input place and the same output places as ta i , { for each ind i n , we add t i with the same input places as ta i but with no output place, { for each 1 j m and each 2 i < ind such that pos(j) < end(i) we add a place p 0 (j; i) which is a new output place of t 0 j and a new input place of t + i { for each 2 i 0 n and each 2 i < ind such that start(i 0 ) < end(i) { Sclos(Ntest) the semi-linear set of ordinary markings de ned by fm j 9m 0 2 : m = m 0 + P P End i g. { Sobs(Ntest) the semi-linear set of ordinary markings de ned by fm j m P P End i g.

Lemma 19. Let N = hP; T; W ; W + ; ; ; hi be a labeled recursive Petri net and w be a word. 8k 0; 8t 2 T ab , 1. Closable (k) (t; w) is true i { 9part = hfw i g i2f1::ng ; pos; start; end; indi and Moreover, if Closable (k 1) (t; w) is false then there is a tuple hta; mode; wai 2 Ab(Ntest) such that either mode = Closable and Closable (k 2) (ta; wa) is false or mode = Observable and Observable (k 2) (ta; wa) is false. 2. Observable (k) (t; w) is true i { 9part = hfw i g i2f1::ng ; pos; start; end; indi and { 9Ntest (k) (N; t; part; fte j g j2f1::mg ; fta i g i2f2::ng ) such that a marking of Sobs(Ntest) is reachable. Moreover, if Observable (k 1) (t; w) is false then there is a tuple hta; mode; wai 2 Ab(Ntest) such that either mode = Closable and Closable (k 2) (ta; wa) is false or mode = Observable and Observable (k 2) (ta; wa) is false.

Proof. We only handle the case of the Closable relation, the other case follows the same pattern. { Let us suppose there exists a closing sequence of t w.r.t. to w of depth k. We are going to build a partition of w, a corresponding testing Petri net Ntest and a sequence of reachability in this net leading to Sclos(Ntest).

Necessarily, the last ring of is a cut at the root level of the extended marking. let us considere the subsequence 0 of obtained by removing this cut. Since 0 starts from (t), there can only be opened and transient branches. Furthermore, we can suppose that when the word produced by the rings in a opened branch is the empty word, then the subsequence is immediately red since the new sequence produces the same word. Similarly, we can suppose that the subsequence of a transient branch which produces the empty word follows immediatly in w the ring of the opening abstract transition. Indeed for the reachability relation, only the root level is a ected by the anticipation of the rings but here again it leads to increasing intermediate markings with necessarily the same marking before the cut and the new sequence produces the same word. Now we are in position to de ne a partition part.

We index from 2 to ind 1 the transient branches which produce nonempty words (ind 2 is the number of such branches). w i is the word produced by the i th branch. We index from ind to n the opened branches which produce non-empty words (n ind + 1 is the number of such branches). w i is the word produced by the i th branch. w 1 = 1 : : : m is the word produced by the root level (which may be ).

We denote by 1 the subsequence at the root level and te j the elementary transition which produces j .

For i 2, we denote by ta i the abstract transition which opens the i th branch and by i the subsequence in the i th branch excluding the optionnal last cut step. By construction, w is a shu e of fw i g (with the pos, start and end mappings usually de ned).

for all i 2 f2; ind 1g, i has a depth k 1 and so Closable (k 1) (ta i ; w i ) is true.

for all i 2 find; ng, i has a depth k 1 and so Observable (k 1) (ta i ; w i ) is true.

The testing Petri net Ntest (k) (N; t; part; fte j g j2f1::mg ; fta i g i2f2::ng ) is now uniquely de ned. It remains only to exhibit the ring sequence in Ntest.

We iteratively transform 0 into a sequence test of transitions in Ntest. We later demonstrate that it is a ring sequence. We considere a transient branch producing an empty word i.e.: 0 = s 1 :ta: : :s 2 where ta is the abstract transition opening the branch, is the sequence in the branch and is the cut step closing the branch.

Then, the new 0 equals s 1 :ta 0 :s 2 .

We considere an opened branch producing an empty word i.e.: 0 = s 1 :ta: :s 2 where ta is the abstract transition opening the branch, is the sequence in the branch. Then, the new 0 equals s 1 :ta 00 :s 2 .

We considere the i th transient branch producing w i i.e.: 0 = s 1 :ta i :( i k s 2 ): :s 3 . Then, the new 0 equals s 1 :ta i :s 2 :ta + i :s 3 .

We considere the i th opened branch producing w i i.e.: 0 = s 1 :ta i :( i k s 2 ). Then, the new 0 equals s 1 :ta i :s 2 .

for each 1 j m, the transition ring te j is changed into t 0 j After this transformation, the new sequence test is a sequence of Ntest. Let us show that it is a ring sequence reaching to Sclos(Ntest). We prove it by examining the di erent subsets of places of Ntest.

As test describes the e ect of 0 at the root level, it is a ring sequence w.r.t. to the copy of P in Ntest leading to a marking 2 . As 0 produces the subword w 1 at the root level, the token in p 0 1 is successively moved through p 0 j by the rings of p 0 j until P End 1 .

As for 2 i < ind, ta i is red once and precedes the unique ring of ta + i , a token is produced in p + i and moved to P End i .

As for ind i n , ta i is red once, a token is produced in P End i As for each 1 j m and each 2 i < ind such that pos(j) < end(i) , in 0 the nal transition of the i th branch must follow the ring of te j , then in test the ring of t 0 j must precede the ring of t + i . Thus a token is rst produced in p 0 (j; i) before is is consumed. As for each 2 i 0 n and each 2 i < ind such that start(i 0 ) < end(i) in 0 the nal transition of the i th branch must follow the opening of the i 0 th branch by the ring of ta i 0 , then in test the ring of t i 0 must precede the ring of t + i . Thus a token is rst produced in p + (i 0 ; i) before is is consumed.

As for each 1 j m and each 2 i < n such that pos(j) > start(i) , in 0 the opening of the i th branch must precede the ring of te j , then in test the ring of t i must precede the ring of t 0 j . Thus a token is rst produced in p"(i; j) before is is consumed. which concludes the rst part of the proof. { Let us suppose now that there is a Ntest and a sequence test leading to Sclos(Ntest). We will show how to build a closing sequence for t and w of order k. At rst we associate to each abstract transition ta 0 used in Ntest to produce the empty word, its closing sequence of order k 1, denoted ta and to each t i producing the subword w i its closing or observable sequence of order k 1 denoted i . In case of a closing sequence, i does not include the cut step.

Then we construct the sequence iteratively while "writing" w and reading simultaneously test and the closing and observable sequences we will generate : We start with empty and at the beginning of test . The marking at the root level will always correspond to the projection on P of the current marking in Ntest ensuring that is rable.

If the next transition in test corresponds to an elementary transition of N associated to the empty word, we complete by the ring of this transition at the root level.

if the next transition ta 0 in test corresponds to an abstract transition ta then we complete by the ring of ta: ta . if the next transition ta 00 in test corresponds to an abstract transition ta then we complete by the ring of ta. if the next transition in test is t i then we complete by the ring of t i followed by the maximal pre x of i composed by -labelled transition; we keep the su x in the current state.

if the next transition in test is t + i then the place p + i ensures that t i has been red and that either the current su x i is empty or we have a su x of i in the current state where its rst transition is labeled by some character say c l the l th character of w. In the former case, we do the cut step and in the latter case we proceed as follows.

Let us suppose that the next character to write is c l 0 the l 0 th of w with l 0 < l. c l 0 cannot be associated to a transition t 0 j used for w 1 as the unmarked place p 0 (j; i) forbids the ring of t + i . So c l 0 is associated to a word w i 0 with i 0 > 1. The place p + (i 0 ; i) ensures that t i 0 has been red. Necessarily, c l 0 labels to the next transition to re in i 0 so we re it followed by a maximal subsequence of -labelled transitions in the su x. Iteratively, we are ensured to reach the index l in which case we re its corresponding transition followed again by a maximal subsequence of -labelled transitions. We repeat the procedure until we reach the end of i and so we can do the cut step.

if the next transition in test is an elementary transition t 0 j labeled by c l the l th character of w. Let us suppose that the next character to write is c l 0 the l 0 th of w with l 0 < l. c l 0 cannot be associated to a transition t 0 j 0 used for w 1 as the unmarked place p 0 j forbids the ring of t 0 j . So c l 0 is associated to a word w i with i > 1. The place p"(i; j) ensures that t i has been red. Necessarily, c l 0 corresponds to the next transition to re in i so we re it followed by the maximal subsequence of -labelled transitions in the sequence. Iteratively, we are ensured to reach the index l in which case we re t 0 j . if we have reached the end test , it can remain su x of observable sequences in which case we re them piecemeal following the order given by w (let us recall that these sequences are independent). At the end of test as we have reached Sclos(Ntest), the projection on P of the marking at the root level of 2 .

The additionnal assertion is straightforward since if for all tuples hta; mode; wai 2 Ab(Ntest) then either mode = Closable and Closable (k 2) (ta; wa) is true or mode = Observable and Observable (k 2) (ta; wa) is true then is of order k 1.

u t

Proof. (of proposition 3) We remark that 8k 0; t; w; Closable (k) (t; w) = Observable (k) (t; w) = false. We proceed by successive rounds, at each round we compute Closable (k) and Observable (k) from Closable (k 1) and Observable (k 1) trying for each item of the relations all partitions and all testing nets. We stop if a round does not increase the relations. At rst, as the number of abstract transitions and the number of subwords are nite and each sucessfull round of the external increases one of the relation Closable or Observable, the algorithm stops. The correctness of the algorithm follows directly from the previous lemma as it iteratively computes the Closable (k) and Observable (k) relations and we know also that when it stops these relation are stabilized. u t 7.2 Proofs of section 4 Turing Machine A non-deterministic Turing machine is de ned by a couple Tm = h ; hQ; q 0 ; F; ii where { is an alphabet including a particular blank character , { hQ; q 0 ; F; i is an automaton where Q is a set of states, q 0 2 Q is an initial state, F Q is a set of terminal states, Q Q ( n f g) f!; ; "g is a transition table.

A con guration of a Turing machine is de ned by the current state of its tape (i.e. an in nite word on ), the current position i 2 IN of its tape head and the current state q of its automaton. By the Turing machine semantic and the initial con guration, only a nite pre x of the tape is ful lled by characters di erent to the blank in any reachable con guration. Then a con guration is denoted by an in nite sequence c 1 : : : c i 1 qc i : : : c n ( ) 1 where 8j 2 1; n] ; c j 6 = . For a given con guration m, we denote by q(m) the state of the automaton in m and by c(m) the nite word of characters di erent to ful lling the tape in m.

Initially, the tape is ful lled by the character , the tape head is positioned on the head of the tape and the automaton is in the initial state q 0 (i.e. the Turing machine is in the con guration q 0 ( ) 1 ).

A step s = (q; c; q 0 ; c 0 ; d) 2 from a con guration m = c 1 : : : c i 1 qc i : : : c n ( ) 1 is enabled (denoted by m s ! ) i c = c i and (d = ) ) (i 6 = 1). The character c is called the input character.

Let m = c 1 : : : c i 1 qc i : : : c n ( ) 1 be a con guration of Tm and s = (q; c i ; q 0 ; c 0 i ; d) a step enabled in m. The execution of s from m leads to the con guration m 0 (denoted by m s ! m 0 ) de ned by: { if d = then m 0 = c 1 : : : qc i 1 c 0 i : : : c n ( ) 1 { if d =! then m 0 = c 1 : : : c i 1 c 0 i q : : : c n ( ) 1 { if d =" then m 0 = c 1 : : : c i 1 qc 0 i : : : c n ( ) 1 The character c 0 i is called the output character. Enabling and execution notation are usually extended to computations.

A computation of a Turing machine is a nite sequence of steps from the initial con guration. We denote by Comp (T m) = f 2 j q 0 ( ) 1 ! g the computation set of Tm.

Moreover, a computation is said to be successful if the automaton is in a terminal state in the reached con guration. We denote by SuccComp(Tm) = f 2 Comp(Tm) : q 0 ( ) 1 ! m j q(m) 2 Fg the set of successful computations of a Turing Machine Tm.

The language of a Turing machine Tm, denoted by L(Tm), is the set of nite words on written on the tape by the successful computations (L(T m) = fc 2 j 9 2 SuccComp(Tm) : q 0 ( ) 1 ! m ^c = c(m)g).

Before developing proofs, we illustrate the e ect of a step of the Turing machine on the current extended marking, in the case where the tape head moves to the right and the input character is not a blank, in Fig. 6. The execution of such a step of the Turing machine is simulated by the ring of transitions of Net(Tm) in di erent threads of the extended marking. The transition t(q; q 0 ) is red in the root of the extended marking. The transition t(c; c 0 ) and then the abstract one Left(c i+1 ) are red in the last left node. In the last right node, the terminal transition EndRight(c i+1 ) is also red. Notice that rings of di erent threads are independent and then can be red in any order. This sequence is a valid sequence to simulate the behavior of the Turing machine but, as the synchronization between threads (as for the rings of EndRight(c i+1 ) and Left(c i+1 )) is impossible in recursive Petri nets, invalid simulations can be easily exhibited.

Left(c ) Fig. 6. simulation of a step of a Turing machine Now, we de ne the regular language Reg (T m) on the transition set of the RPN Net (T m). We rst de ne a mapping g from the transition table of Tm to nite languages of Net(Tm).

Let qcq 0 c 0 d 2 , then: { d =" and c 6 = ) g (qcq 0 c 0 d) = t (c; c 0 ) :t (q; q 0 ) { d =" and c = ) g (qcq 0 c 0 d) = t ( ; c 0 ) :Right ( ) :t (q; q 0 ) { d = and c 6 = ) g (qcq 0 c 0 d) = EndLeft: :Right (c 0 ) :t (q; q 0 ) { d = and c = ) g (qcq 0 c 0 d) = EndLeft: :Right ( ) :Right (c 0 ) :t (q; q 0 ) { d =! and c 6 = ) g (qcq 0 c 0 d) = t(c; c 0 ): P 2 (EndRight ( ) : :Left ( )) :t (q; q 0 ) { d =! and c = ) g (qcq 0 c 0 d) = t ( ; c 0 ) :Left ( ) :t (q; q 0 ) As usual, we extend g to a morphism between languages. The regular language Reg(Tm) denotes the encoding (via g) of possible successful computations where a success is represented by the ring of a transition halt(f).

Reg (T m) = S s 2 g (s) : S f2F halt (f) : .

The following lemma expresses the correctness of our simulation.

Lemma 20 (Simulation of Turing machine computations). Let Tm be a Turing machine and be a word of .

1. If is a computation of Tm leading to the con guration m then in Net(Tm)

there is a ring sequence seq 2 g( ) leading to tr(m). 2. If in Net(Tm) there is a ring sequence seq 2 g( ) then is a computation of Tm leading to a con guration m such that seq leads to tr(m).

Proof. By induction on n the length of . The base case (n = 0) is trivial. Suppose it is true for n. Let = 0 :qcq 0 c 0 d. We only handle the case where d =! and c 6 = .

1. Suppose is a computation of Tm of length n+1 with 0 leading to m 0 and qcq 0 c 0 d a step from m 0 to m. We already know that there is seq 0 2 g(m 0 ) leading to tr(m 0 ) in Net(Tm). Starting from tr(m 0 ), let us complete seq 0 to some ring sequence belonging to g( ). tr(m 0 ) is described in Fig. 6. As in its left node, LeftActive and p(c) are marked, t(c; c 0 ) is enabled and its ring unmarks p(c) and marks p(c 0 ). In the right node, RightActive and p(c i+1 ) are marked, so EndRight(c i+1 ) is enabled and its ring followed by a cut step prunes this node and marks RighActive in the new right node. As LeftActive and LeftMoveAllowed are marked in its left node, one can re Left(c i+1 ) unmarking LeftActive and creating a new left node. This node has for marking p(c i+1 )+LeftActive+ LeftMoveAllowed. At last, p(q) is marked in the root of tr(m 0 ) so one can re t(q; q 0 ) unmarking p(q) and marking p(q 0 ). The obtained extended marking is exactly tr(m).

2. Let seq 2 g( ) be a ring sequence of Net(Tm). By induction, we know that 0 is a computation of Tm leading to a con guration m 0 such that the pre x of seq, seq 0 2 g( 0 ) leads to tr(m 0 ) in Net(Tm). Now we examine all the ways to complete seq 0 into a ring sequence 2 g( ) and we show that the only possible completion is the subsequence described in the rst part of the proof and that it corresponds to a computation step of Tm in con guration m 0 (i.e. c is the input character and q the current state automaton). By the induction hypothesis, we know that seq 0 leads to tr(m 0 ). So the marked place p(c) in the left node of tr(m 0 ) corresponds to the input character c in m 0 and that the marked place p(q) in the root corresponds to the current automaton state q. At rst, the left node of tr(m 0 ) is the only one with LeftActive and p(c) marked so t(c; c 0 ) is only enabled in the left node. The right node of tr(m 0 ) is the only one with the place RightActive marked, as p(c i+1 ) is the only marked place among p(c 00 ) places in this node, EndRight(c i+1 ) is the only possible ring followed again by the cut step (the only one possible in this state). Looking for the next ring Left(c i+1 ), we only nd LeftActive marked in the left node. At last, the only marked place p(q) is in the root and so t(q; q 0 ) is enabled in this node.

Other cases are similar and even simpler.

u t

Now we are in position to characterize successful computations by our simulation.

Proof. (of proposition 7) Let be a successful computation leading to a con guration m having f 2 F as current state automaton. From the Lemma 20, there is a sequence seq 0 2 g( ) leading to tr(m). As the place p(f) is marked in the root, halt(f) is enabled and leads via a cut step to ?.

Let seq be a sequence such that seq 2 L(Net(Tm); ?) \ h g( ): S f2F halt(f) ] with (seq = seq 0 :halt(f)) From the Lemma 20, is a computation of Tm leading to m such that seq 0 leads to tr(m). As halt(f) is enabled in tr(m) i p(f) is marked in its root, we conclude that f is the current automaton state and then that is successful. u t It is worth to notice that the RPN simulating the Turing machine is a bounded net. Indeed, this simulation is possible due to two factors, the recursiveness and the ability for parallel invocation of abstract transitions. Proof. (of proposition 9) Let Tm be a Turing machine generating L. At rst, we construct a Turing machine Tm 0 corresponding to Tm which has the following behavior 1. Its rst action consists to write a special mark c m at the rst position of the tape and moves its tape head to the right.

2. It simulates Tm until Tm leads a terminal state. Special care must be taken to avoid entering terminal state while the tape head is on the special mark c m .

3. It moves the tape head to the rst position with the help of the special mark c m .

4. It moves to the right visiting a particular intermediate automaton state corresponding to the input character and it terminates when the rst character is read. As an example, if the state of the tape is abcba ( ) 1 , the sequence of automaton states which are visited is q a q b q c q b q a q with q the unique terminal state of Tm 0 . According to Prop. 7, for every successful computation of Tm 0 corresponds a word of L(Net(Tm 0 ; ?)) \ Reg(Tm 0 ) and vice versa. For instance, let aab ( ) be an accepted word of Tm, the corresponding word is of the form : : : t(q cm ; q ca ) : : : t(q ca ; q c b ) : : : t(q c b ; q c b ) : : : t(q c b ; q ) : : : halt(q ): where is the sequence of Net (T m 0 ) corresponding to the three rst steps of Tm 0 and the remainder of the sequence corresponds to fourth step. Now taking L 1 as L(Net(Tm 0 ; ?)), L 2 as Reg(Tm 0 ), we de ne f as follows: 8c; c 0 2 ; f (t (q c ; q c 0 )) = c and otherwise f (t) = The result is now clear from the construction.

u t

We nally give a last corollary giving necessary conditions for a family of languages to include RPNs languages.

Corollary 21 (Expressive power of RPNs). Any family of recursive languages closed by intersection with a regular language and by homomorphism can not contain the family of recursive Petri net languages.

Proof. Immediate from Prop. 9. u t

Simulation of a PAN

At rst we remark than a general rule of a PAN can be written: Y 1 k :::Y I a ! X 1 k :::X J k t 1 :t 0 1 k ::: k t K :t 0 K The principles of the translation are the following ones:

{ Independantly of the rules, places are de ned for every variable. { A special place cpt counts the number of branches in each vertex (it is incremented before the opening and decremented after the closing of the branch) which avoids to close a vertex which is not a leaf.

{ Consequently, the semi-linear set of nal markings is simply the empty marking.

{ For the transaltion of the rule, an elementary transition is created which consumes Y 1 k :::Y I acts as a and produces the X j , K:cpt and fp k g new places associated to the translation of ft k :t 0 k g. { Then each p i is the input of a new abstract transition with r i a new place as the output (meaning that the term t i has becomed empty) and q i a new place as the starting marking of this abstract transition. This leads to a recursive translation of an "internal" rule q i ! t i . { So r i + cpt is marked at the closing of the branch associated to t i which \activates" t 0 i . This leads again to a recursive translation of an \internal" rule r i k cpt ! t 0 i Here is a the recursive algorithm translation of a rule. Algorithm 7.1 Generate Generate(Y1 k :::YI a ! X1 k :::XJ k t1:t 0 1 k ::: k tK:t 0 K ) begin for k := 1 to K do p k := new Place();// p k is a local identi er q k := new Place();// idem r k := new Place();// idem new AbstractTransition(in : p k ; out : r k ; : q k ; label : ); Generate(q k ! t k ); Generate(r k k cpt ! t 0 k ); od new ElementaryTransition(in : Y1 + ::: + YI; out : X1 + ::: + XJ + p1 + ::: + pK + K:cpt, label : a); end Now it remains to translate the initial term which can be done by simulating a pseudo-rule with left-hand side a new place and right-hand side the initial term. Here is the general translation of a PAN. Algorithm 7.2 Translate Translate(t0; ) begin for each variable X occuring in or t0 do X := new Place(); od cpt := new Place(); for each rule R 2 do Generate(R); od p0 := new Place(); Generate(p0 ! t0); new InitialMarking(1:p0); new FinalMarking(0); end

As an example, we give in gure 7 the translation of the rule: X 1 ! (X 2 k X 3 ):(X 4 :(X 2 k X 3 ))