N

N

Minimizing the earliness and tardiness cost of a
sequence of tasks on a single machine
Philippe Chrétienne

» To cite this version:

Philippe Chrétienne. Minimizing the earliness and tardiness cost of a sequence of tasks on a single
machine. [Research Report] 1ip6.1999.007, LIP6. 1999. hal-02548214

HAL Id: hal-02548214
https://hal.science/hal-02548214
Submitted on 20 Apr 2020

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-02548214
https://hal.archives-ouvertes.fr

Minimizing the Earliness and Tardiness Cost of a
Sequence of Tasks on a Single Machine.

Philippe Chrétienne

March 23, 1999

Abstract

Assume that n tasks must be processed by one machine in a fixed
sequence. The processing time, the preferred starting time and the
earliness and tardiness costs per time unit are known for each task.
The problem is to allocate each task a starting time such that the to-
tal cost incurred by the early and tardy tasks is minimum. Garey et
al. have proposed a nice O(nlogn) algorithm for the special case of
symmetric and task-independent costs. In this paper we first extend
that algorithm to the case of asymmetric and task-independent cost
without increasing its worst-case complexity. For the general case of
asymmetric and task-dependent costs, we propose an O(n?®logn) algo-
rithm based on a strong dominance property that yields to efficiently
model the scheduling problem as a minimum cost path in a valued
directed acyclic gaph.

1 Introduction

Due to their numerous applications, scheduling problems where the tasks
incurred a cost both if they are early or tardy have received much attention.
As an example, in a just-in-time production, a piece that is finished before
its delivery time incurs an inventory cost while it incurs a backlog cost if
it is finished after its delivery time. Moreover, there are many production
systems where there is a priori no evidence for the inventory and backlog
per time unit costs to be equal or not to depend on the individual tasks.
Many variants of that problem have been studied [5],[1],[6],[7], [8],[9] and
quite good surveys such as [2],[3],[4] show the amount and the diversity of
the research in this field.

In this paper, we revisit the basic problem where a finite set of tasks must

be processed on a single machine in a given order. Each task has a given
preferred starting time and its earliness or tardiness in a schedule is the
deviation about that preferred starting time. We assume that an early or
tardy task incurs a cost which is proportional to the corresponding earliness
or tardiness value. However, the corresponding per-time-unit earliness and
tardiness costs need neither be equal nor be independent of the individual
tasks.

The main reference for this problem concerns the secial case of symmet-
ric and task-independent costs: Garey et al. [1] have developped a nice
(O(nlogn) algorithm that iterates a transformation that allows to compute
an optimal schedule for the problem restricted to its ¢ + 1 first tasks from
the problem restricted its first ¢ tasks.

We propose here an algorithm with the same complexity that extends the
algorithm in [1] to asymmetric costs. For the general problem with asym-
metric and task-dependent costs , we use a convexity property of the cost
function of an allocated block and a strong necessary condition on the start-
ing times of the allocated blocks in an strongly left-adjusted optimal schedule
to first model the problem as the search of a minimum-cost path in a di-
rected acyclic graph called the indivisible blocks graph and then derive an
O(n*logn) algorithm.

Section 1 defines the scheduling problem and its main notations. Section
2 briefly recalls the algorithm in [1] for symmetric and task-independent
costs. Section 3 presents the extension of that algorithm to asymmetric and
task-independent costs. Section 5 gives an algorithm for asymmetric and
task-dependent costs.

2 Definitions and notations

n non-preemptive tasks Ty, - -+, T, must be processed by a single machine in
a given order, for example the order (1,---,n). For each task 7}, we denote
by p; its processing time, by w; its preferred starting time, and respectively
by a; and r; its per time-unit earliness and tardiness costs. The task T;
started at time ¢; incurs a cost ¢;(t;) defined by:

o ai(wi — ti) if t; <w;
ci(ti) = { ri(t; —w) if > w

The problem is to allocate a starting time to each task so as to minimize
the total cost D", ¢;(t;).

A block of S is a left and right maximal list B = (1}, T;41,- -+, 1) of tasks
performed without any intermediate delay in S. Thus a schedule S is also a
list ((By,s1),--, (Bs,sp)) of (block,date) pairs called allocated blocks such
that:

1. By---By=(1T1,---,T),)

2. for any k € {2,---,b}, s > sp—1 + p(Bg—1)-

where p(Bj) = ZTiEBk p; and where si is the starting time of the first task
of By.

Let S = ((B1,51),- -, (Bp,s5)) be a schedule. We denote respectively by
b(S), sx(S), fx(S) and ng(S) the number of blocks, the starting time of the
k™ block, the completion time of the k" block and the index of the last
task of the k" block. When there is no ambiguity to which schedule they
refer, the reference to S will be omitted in these notations.

If (B,s) is an allocated block, the subsets of the early tasks, on-time tasks
and tardy tasks in (B, s) are respectively denoted by A(B,s), H(B,s) and
R(B,s).

The cost of (B, s) is denoted by cp(s) whereas the cost of S is denoted by
c(5). The following property concerns the shape of the time function cp(t).

Property 1 cg(t) is a conver and piecewise linear time function.

Proof. — Let B = (Ty,---,Tk) and for any k € {1,---, K} let 7 be eequal
to Zf;ll p; with by convention 7y = 0. For any k € {1,---, K}, the starting
time of task T} within the allocated block (B,t) is thus m; +¢. Let X be
a subset of the tasks in B, we denote by r(X) the value 3 7 oy r; and we
define h(X) and a(X) in the same way. Let A(t), H(t), R(t) be respectively
the subsets of early, on-time and tardy tasks in (B,1).

Since the individual cost of the task T; within (B,¢) is a continuous time
function on [0, 400] (see Figure 1), cp(t) is also a continuous time function
on [0, +oo.

Let 8y = 0, we define 8, as the smallest time t > #;_q such that at least one
task in A(fx_1) is on-time at t. Let Ay, Hy, R be the subsets of the early,
on-time and tardy tasks in (B,0;) and let ¢ = cp(6;). We have for any
(S [Ok—h Ok[

cB(t) = cpoy + (t = 0r—1) (r(Ro U (UFZ3 H;) — a(Ao \ USZ] H))).
Let ur = (r(RoU (U;:éHj) —a(Ao\ U;:llHj); we get for any ¢ € [Oy_1, Ox[:
CB(t) =cr_1+ uk(t — Ok—l)- (1)

costof T in(B,t) costof T in(B,t)
| A

slope: E

y-
L

T

Case wy~T; 20 Case w—Tj <0

A % ®

Figure 1: Cost functions

Let r be the number of terms of the sequence ;. Every task is tardy from
time 6, on. So for any ¢ € [6,, +oc[, we have:

cB(t) = ¢, + (t — 6,)r(B). 2)

From (1), (2) and since ¢p(t) is a continuous time function on [0, 4oo[, we
get that cg(t) is piecewise linear. Moreover the slopes ug, k € {1,---,r} of
the successive pieces are strictly increasing since we have:

wp — ug—y = r(Hg—1) + a(Hp—1) > 0.

So cp(t) is a piecewise linear and convex time function. n

We derive from Property (1) that there is a unique time instant ap such
that:

Ve >0, cplag —¢) > cp(ap) and cg(ap +¢€) > cplap).

In what follows, we denote by vp the value cg(ap). Figure 1 shows a pair
of values (ap,vB).

The following three operations on a schedule S = ((By, s1), -+, (Bs, 5)) will
appear to be quite useful (see Figure 2):

e LEFTSHIFT(S, By, si,t), where By is a prefix of By, and fi_; <
t < sy, is the schedule we get by left shifting (Bj, s;) until it becomes
(B 1);

o RIGHTSHIFT(S,B ks, s+ p(By) —p(B"k),t), where B”j, is a suffix
of By and si + p(Bg) — p(B”k) <t < Sk41, is the schedule we get by
right-shifting (B”k, sk + p(Bk) — p(B”k)) until it becomes (B”j,1);

o LEFTSHIFT&MERGE(S, By, si), where Bj is a prefix of By and
k > 1, is the schedule we get by left shifting (Bj,, s;) until it becomes

/ .
(Bk 3 fk— 1) 3
B' B"
s [] [] -
s
‘ LEFTSHIFT(S,B's.t)
B B"
IS [] >~
t
B' B"
s [] [] -
s u
‘ RIGHTSHIFT(S,B",u,v)
B' B"
s [] [| -
s u v
B' B"
s [] [] -
s
‘ LEFTSHIFT&MERGE(S,B',s)
B' B"
s [1 -

Figure 2: 3 basic operations on a schedule

Let S = ((B1,51),- -, (B, sp)) be aschedule. The allocated block (B, si) is
said to be left-adjusted if for any time ¢t € [fy_1, s[, the inequality cp, () >
¢B, (sx) (where by convention fy = 0) is satisfied. By extension, the schedule

S itself is said to be left-adjusted if all its allocated blocks are left-adjusted.
The following property shows that there is an optimal schedule which is
left-adjusted.

Property 2 Left-adjusted schedules make a dominant subset.

Proof. — Let S = ((By,s1), -, (Bp, 5)) be an non left-adjusted opti-
mal schedule. Since S is optimal, for any k € {1,---,b}, we have Vt €
[fi—1, 5k, B, (t) > ¢p,(sk). Since S is not left-adjusted, let ko be the first
non left-adjusted alllocated block and let v be the smallest time in [fr,—1, Sk, [
such that cp, (1) = ¢, (Sk,). We then define the schedule 5" as follows.
Ifv> fr,—1 then "= LEFTSHIFT(S, By, Sk,,v). From the definition of
v, we know that the allocated block (By,,v) of S is left-adjusted.

If v = fry—1 and kg > 1 then S’ = LEFTSHIFT&MERGE(S, By, Sk,)-
Since (Bjyy—1,8k,—1) is left-adjusted in S and cp, (sk) = cp, (v) we get
from Property 1 that the allocated block (Bg,—1 Bk, Sk,—1) is left-adjusted
in S’

If v=fr,—1 and ko =1 then S' = LEFTSHIFT(S, By, s1,0).

Let us denote respectively by " and k, the number of allocated blocks and
the index of the first non left-adjusted allocated block in S’. Whatever the
case, we have b’ — k[, < b — ko. So, after iterating the process at most b — kg
times we get an optimal and left-adjusted schedule. "

3 Symmetric and task-independent costs

Garey et al. have proposed in [1] an O(nlogn) algorithm for the special
case when for any task T;, a; = r; = 1. This algorithm, that will be called
GTW in the rest of the paper computes an optimal left-adjusted schedule
S? of the restriction of the problem to its first ¢ + 1 tasks from an optimal
left-adjusted schedule S of the restriction of the problem to its first ¢ tasks
as follows:

1. if weyr > fb(gl)(Sl) then S? is got by creating the allocated block
((Ty41), wy+1) and adding it to S*;

2. ifwypr < fb(gl)(Sl) then let S the schedule we get by adding the task
T,+1 as the last task of the last allocated block of S?.
If the last allocated block of .S has less tardy tasks than on-time or
early tasks then S% = §.

Otherwise the last allocated block of S is left-shifted until its starting

time ¢ matches one of the three following events:

El: t=0;

E2: the number of tardy tasks of the shifted block strictly decreases
at time ;

E3: (¢ is the completion time of the one-but-last block of S*.

In case of event E1 or E2, S? = LEFTSHIFT(S, By(sy, sp(s),)5 in
case of event E3, S? = LEFTSHIFT&MERGE(S, By(s)s Si(5))-

The above GTW algorithm is illustrated on Figure 3 that shows the 6 first
iterations associated with the following input data.

v [1203|4516 7|89 1011|1213]|14 |15
Py 2 2211215 |1]2]?2
w; (41781531314 |16|18 11915 |16 | 17|18

—_
—_

iteration 1

| - | T2 | iteration 2

T3 iteration 3

—
iRy
—
N

—
-
—
N

T3 iteration 4

[n | m | [13] 14 [75| iterations
| T | T2 | T3 | T4 | T5 | T6 | iteration 6
0 2 5 6 8 9 11 tin:

Figure 3: the GTW algorithm

-1

The correctness of GTW mainly results from the following property whose
proof is in [1]

Property 3 The schedule provided by iteration k of GTW is a left-adjusted
optimal schedule for the restriction of the problem to its k first tasks.

In [1], the authors also note that their algorithm may be simply extended
to the case when the execution cost of task T is w;c;(t;).

4 Asymmetric and task-independent costs

4.1 The EXT-GTW algorithm

This section proposes an extension of GTW called EXT-GTW for the case
when for any task T}, we have a; = @ and r; = r where it is only assumed that
a and r are non negative. Let (B, s) be an allocated block. The inequalities

LEFT(B,s) et RIGHT (B, s) are defined by:
LEFT(B,s): a(A(B,s)+ H(B,s)) —rR(B,s) > 0;
RIGHT(B,s): r(R(B,s)+ H(B,s)) — aA(B,s) > 0.

where A(B,s), H(B,s) et R(B,s) are respectively the number of early, on-
time and tardy tasks in (B, s).

The algorithm EXT-GTW differs from GTW by the block invariant satisfied
by all the allocated blocks at each iteration and by the fact that within
each iteration EXT-GTW may repeat the merging process as long as the
last allocated block of the running schedule does not satisfy the invariant.
As for GTW, we describe the generic step of EXT-GTW that provides an
optimal schedule S? of the restriction of the problem to its first ¢ + 1 tasks
from an optimal schedule S! of the restriction of the problem to its first ¢
tasks.

1. if weyr > fb(gl)(Sl) then S? is got by creating the allocated block
((Ty+1), wy+1) and adding it to S*;

2. ifwypr < fb(gl)(Sl) then let S be the schedule we get by making task
T,+1 be the last task of the last allocated block of S!.
(a) If LEFT(Sys)) is true, then S = S.
(b) Otherwise, the last allocated block of S is shifted to the left as
long as its starting time ¢ matches one of the three following events:

F1: t=0;
F2: LEFT(Sys)) is true;
F3: ¢ is the completion time of the one-but-last allocated block of S.

If F1 or F2 occurs, then S? = LEFTSHIFT(S, Bysy, t). 1If F3
occurs then S := LEFTSHIFT&MERGE(S, By(s), Sp(5)) and return
to 2.(a).

An allocated block (B, s) is said to be left-optimal if for any (B’, s) where B’
is a prefix of B, the inequality LEFT(B’, s)is true. An allocated block (B, s)
is said to be right-optimal if for any (B”, s+p(B)—p(B”)) where B” is a suffix
of B, the inequality RIGHT (B”,s+ p(B) — p(B”)) is true. An allocated
block (B, s) is said to be quasi left-optimal if LEFT (B, s) is false and if for
any (B’',s) where B’ is a proper prefix of B, the inequality LEFT (B, s) is
true. The following property gives a strong structural condition met by the
optimal and left-adjusted schedules.

Property 4 Let S = ((B1,51), -+, (Bs, sp)) be an optimal and left-adjusted
schedule. Any allocated block (By, sy) such that s, > 0 is left and right
optimal. Moreover if s1 = 0 then the allocated block (B, s1) is right-optimal.

Proof. — Assume that s; > 0 and that (B, si) is not left-optimal. There
is a prefix B} of By such that LEFT (B, sg) is false. There also exists a
sufficiently small € > 0 such that:

1. R(By, sy —€) = R(By, sk),
2. the schedule 8" = LEFTSHIFT (B, s, si — €) is feasible.

From the definition of ¢ we have:
c(S") = ¢(S) + e(a(A(By, si) + H(By, s)) — rR(By, sk))

since the tardy tasks of (B], s; — €) are the tardy tasks of (Bj, si), the early
tasks of (B}, si —¢€) are the early or on-time tasks in (B}, s;) and there is no
on-time task in (B}, sy —¢€). As LEFT (B, s) is false, we have ¢(S’) < ¢(9),
what contradicts the optimality of S.

Assume that sy > 0 and that (B, sg) is not right-optimal. Let uy = s; +
p(Bg) — p(B”g). There is a suffix B”j de By, such that RIGHT (B”j, uy) is
false. There also exists a sufficiently small ¢ > 0 such that:

1. .A(B”k, UL + 6) = .A(B”k, uk),

2. the schedule S” = RIGHTSHIFT(B” i, ug, ur + €) is feasible.

From the definition of ¢ we have:
c(97)=¢(S) + e(r(R(B"k,ur) + H(B" g, ur)) — aA(B” g, ug))

since the early tasks of (B”y,uy + €) are the early tasks of (B”,ux), the
tardy tasks of (B”k, uj + €) are the tardy or on-time tasks of (B”j, ux) and
there is no on-time task in (B”y,ur —€). As RIGHT (B”j, u) is false, we
have ¢(S”) < ¢(5), what contradicts the optimality of 5.

If s; = 0, the same argument as before applied to a suffix of By yields a
contradiction to the optimality of S if the allocated block (Bji,s;) is not
right-optimal. "

We now prove a dominance property of the left-optimal allocated blocks,
a symmetric property of the right-optimal allocated blocks and a theorem
that more generally applies to the right and left optimal allocated blocks.

Theorem 1 Let (B,s) be a left-optimal allocated block. The cost of any
schedule of B whose last task completes at most at time f = s+ p(B) is not
less than the cost of (B, s).

Proof. — Let us assume that B = (T1,---,7,). Let o be an arbitrary
schedule of B whose last task completes at most at time f. Let u; be the
starting time of T; in (B, s), v; be the starting time of T} in 0 and A; = u;—v;.
From the assumptions on o we derive that for any i € {1,---,n}, A; > 0
and

Ap<e- <Ay

If T} is early or on-time in (B, s), its cost in o is exactly aA; larger than in
(B, s), otherwise T} is tardy in (B, s) and its cost in o is at most rA; less
than in (B, s). So if ¢; is the cost of (B, s) and ¢; the cost of o, we have:

co > ¢+ af > A —r(DAY

T;€A(B,s)UH(B,s) T;€R(B,s)

We thus have to prove that:

af Z Ay) —r(Z A) >0 (3)

T;€A(B,s)UH(B,s) T;€R(B,s)

For any k € {1,---,n}, let us denote by By the prefix (Ty,---,T%), by
Ap =A{Ti,---,Ti,, } the subset of early or on-time tasks in (By,s) and by

10

Ry =A{T;,-- '7Tjrk} the subset of the tardy tasks in (By,s). Without loss
of generality, we assume that

i< <, and Ji< - <Ji,.

Let ap = maxje{17...7k}{2—i} and let k* the smallest index in {1,---,k} such
that Z—J = ay. Notice that ay is well-defined for any & € {1,---,n}: indeed
we ha\]/e aay — rry > 0 since (B, s) is left-optimal and a; +ry = 1. We thus
get that ¢; = 1 and r; = 0 (1} is early in (B, s)), from which we conclude
that a; > 0 for any k € {1,---,n}.

Let us define by 7 the following transportation problem:

e A is the set of suppliers and the availability of each supplier is rg«,
e Ry is the set of demands and the amount of each demand is ag+,

e the demands must be exactly fullfilled,

e a transportation arc (1;,1;) € Ay X Ry is feasible if ¢ < j.

Such a transportation program is shown in Figure 4.
The following property shows that the transportation problems 7, are
feasible.

Propriété 1 For any k € {1,---,n}, the problem Ty is feasible.

Proof. — 77 is feasible since Ry = 0.

Assume now that ¥j is a feasible solution of 7 and let us consider the two
following cases about the feasiblity of 7i1; depending on whether Tjiq is
an early or on-time task or a tardy task in (B, s).

First case: Try1 € Apy1.
We then have (k + 1)* = k* and problem 7y has one more supplier (line
ar + 1) than 7i. Since the availability of the suppliers are the same in 7y
and in Tgy1, 2 is also feasible solution for Tgyq.

Second case: Ty4q1 € Riy1-
Let us consider two subcases depending on whether (k+1)* = k* or (k+1)" =
k+1.
First subcase: (k4 1)* = k™.

We then have
Tk+1 _ T‘k—|—1 < T

api1 ap A

11

T4 T7 T9 T10 T11 T13 T14 T15 T16 T18 T19120 T21

T1 |8 |5

T2 3 8 2

T3 6 7

T5 118 |4

T6 4 8 (1

T8 7|6

T12 2 |83

T17 5 8

Bk=(T1,T2,T3,T4,T5,T6,T7,78,T9,T10,T11,7T12,T13,T14,7T15,T16,T17,7T18,T19,T20,T21)
Ak=(T1,T2,T3,T5,T6,T8,T12,T17)
Rk=(T4,T7,T9,T10,T11,T13,T14,T15,T16,T18,T19,T20,T21)

availability of each task in Ak: 13;

demand of each task in Bk: 8;

fordidden cells in grey;

a(k)=13/8; k*=21.
Figure 4: A transportation program 7Ty,

Tk+1 has one more demand (column r; 4 1) than 7;. The availability of the
suppliers and the amounts of the demands are the same in 7 and in Tg4q.
Since on one hand all the cells of the last column of 74, are feasible and on
the other hand the difference ryxar — ap+ri between the total avalailability
and the total demand of 7 is at least azp+ from the above inequality, ¥ may
be extended into a feasible solution ¥j4q1 of Triq.

Second subcase: (k+ 1) =k 4 1.

In Tk41, the availability of each of the aj suppliers is r; + 1 and the amount
of each of the ri + 1 demands is ai. So, from the definition of k* we get:

; 1
Lo et (4)
a; ay

VJE {17"'7k}7

Assume that 1+ rp = grar + pr where 0 < pp < ai. We then build line by
line a solution Xj41 of Tiyq as follows:

e the gr 4+ 1 first cells of the first line are respectively ag,---,ag, pr
whereas the other cells of that line are null; we then define ¢(1) = ¢x+1
and p(1) = pi.

12

e assume that the [— 1 first lines of 711 are built;
If p(l = 1) + pr. < aj then the values of the ¢ + 1 cells whose column
numbers are ¢(I — 1),---,¢c(l — 1) + qx are respectively

ar — p(l— 1), ap, -, ap, p(I = 1) + py

wheras the other cells of line [are null; we then define ¢({) = ¢({—1)+qx
and p(l) = p(I = 1) + py.

If p({ = 1) + pr. > aj then the values of the ¢ + 2 cells whose column
numbers are ¢(I —1),---,¢(l = 1) + qx + 1 are respectively

ak_P(l_1)7ak7"'7ak7/0(l_1)‘|‘,0k_ak

whereas the other cells of line [are null; we then define ¢(l) = ¢(I —

D+ g b1 and p(l) = pll~ 1) + i — .

The lines containing g, — 1 (respectively ¢i) intermediate cells with value
ay, are said to be of type 1 (respectively type 2). The following invariant is
easily verified:

Property 5 When line | is built, the demands of columns 1 to ¢(l) — 1 are
satisfied and 0 < p(1) < ag.

On the example of Figure 4, we have ry+1 = 13, ax, = 8, (k+1)* = k+1 = 21,
Ofy1 = 18—3, gr = 1 and pp = 5. The solution built for 731 in written in the
transportation array. Lines 1,3,6,8 are of type 1, lines 2,4,5,7 are of type
2.

Y41 is a feasible solution of 744 if and only if its non-zero valued cells are
feasible cells. We first show that there are exactly rp + 1 columns with at
least one non-zero cell and we prove next that every non-zero valued cell of
Y41 is a feasible cell.

Let €' be the number of columns with a non-zero valued cell in ¥;4q. From
the definition of ¥zy1, the demands of the C' — 1 first columns are exactly
fullfilled whereas the last column receives p(ay). Since in ¥jq each of the
ayp suppliers sends its whole availability 1 + rp, we have:

(1+re)ar = (C' = Dag + p(ax)
Since 0 < p(ax) < ag, the previous inequality implies p(ar) = ar and C' =

1+ rg.
Let us call the line separating the feasible cells from the unfeasible cells

13

of the transportation array the borderline I' of Try1 (see Figure 4). For
any line [, let y; be the greatest column number such that the point with
coordinates ([,y;) in the transportation array belongs to F.

The following property shows that the non-zero cells in 3., are feasible
cells of Tp4q .

Property 6 For any linel € {1, - a5 — 1}, we have y; < ¢(l) — 1.

Proof. — Let us consider the first line. We have ¢(1) = ¢4 + 1. The point
(1,y1) on F'is associated with a prefix B, such that r; = y; and a;, = 1.
We then get from (4) that:

k
y1<f]k+p—§%+1
ay

The first line thus satisfies the property.

Assume now that among the [first lines, there are [y lines of type 1 and [
lines of type 2. We then have p(I) = l1pr + l2(pr — ai).

If

p(l) + ar. = (L + V)pr + L (pr — ar) < ax (5)

then the line [+ 1 is of type 1 and we have ¢(I+1) = (I4+1)gx + 2+ 1. The
point ({4 1,y41) on I’ corresponds to a prefix B, such that rj =y
and a;, = [+ 1. Since from (4) we have:

Yi+1
[+1

<f]k—|-p—k
ag

We get from (5) that yi41 < ({4+1)gr+Il2+1 and thus that y;41 < c¢(I4+1)—1.
It

p(l) + ar. = (L + V)pr + L (pr — ar) > ax (6)
then line [is of type 2 and we have ¢({ 4+ 1) = ({ 4+ 1)qx + {3 + 2. The point

(I +1,y141) on F corresponds to a prefix Bj_, such that r;, , = y1 and
a;, =1+ 1. From (4) we get:

Yi+1
[+1

< Gk + Lk
ay
Since p(I) + ar < 2ay, we have (I + 1)pg — lzar, < 2ay, which rewrites

(l+1)'0—’“§l+2

ag

14

We thus have yj41 < ({4+1)gr+1242 and yj41 < ¢(I+1)—1. That completes
the proof of Property 6. "

To conclude the proof of Property 1, notice that if ¥, is not feasible, there
necessarily exists a line [€ {1,---,a; — 1} such that y; > ¢(!). We thus get
from 6 that X4 is a feasible solution. n

Recall that in order to prove Theorem 1, we have to prove the inequality

(3):
a(Z Ay) —r(Z A) >0

T;€A(B,s)UH(B,s) T;€R(B,s)

where B = (1T3,---,1),) and (B,s) is a left-optimal allocated block. Since
(B, s) is left-optimal, we have aa,* —rr,» > 0. A sufficient condition for (3)

(S A = (Y A > 0. (7)

182

But from Property 1, we know that 7, has a feasible solution ni.,l €
{1,---,an},c € {1,---,r,}. Let J(I) (respectively I(c)) the column (re-
spectively line) numbers associated with a feasible cell of line [(respectively
column ¢). We have:

Vie{l, - a.} ZcEJ(l) Nie < T
Vee {l,---,r,} Dolel(e) Me = G
V(Z,C),ZE{1,'--,an},C€J(1) Ail ZA]‘C
V(l,e),le{l, - a,},c g J() n..=0

For any line [€ {1,---,a,}, we thus have:

roe g, > Z nyed;, .
ceJ(l)

By summing all these inequalities we get:

which rewrites:

Since the inequality (7) is satisfied, the same is true for inequality (3), what
completes the proof of Theorem 1. "

15

The right-optimal allocated blocks satisfy the following symmetrical prop-
erty.

Theorem 2 Let (B,s) be a right-optimal allocated block. The cost of any
schedule of B whose first task starts at least at time s is not less than the
cost of (B, s).

Proof. — Since that proof is quite similar to the proof of Theorem 1, we
only give its global scheme. Let B = (T,,---,T1) and let 7 be an arbitrary
schedule of B whose first task starts at least at time s. Let w; and v;
be respectively the starting times of task 7} in (B,s) and in 7. From the
assumptions on 7 we get that A; = v; — w; > 0 and that

Ap<e- <Ay

Let ¢; and ¢y be respectively the costs of (B,s) and 7. If T} is on-time or
tardy in (B, s), its cost in 7 is exactly rA; larger, otherwise if it is early in
(B, s), its cost in 7 is at most aA; less. We thus have:

co > cp+r(> Aj)—a(> Ay

T;eR(B,s)UH(B,s) T;€A(B,s)

and we must prove that:

r(Z A;) —af Z A) >0 (8)

T;€R(B,s)UH(B,s) T;€A(B,s)

For each k € {1,---,n}, let By be the suffix (T, ---,T11), Rx={T1},, - '7Tirk}
be the set of the early tasks on-time and tardy tasks of (By, s+ > pi)
and Ag={T},,---, T}, } be the set of the early tasks of (B, s+ >>iLj1 pi)-
Without any loss of generality we assume that

1< <y e 1< e <,

Let 8, = maxj€{17...7k}{i—j} and k be the smallest index of {1,---,k} such
that Z—j = [Br. We notice that (3 is defined for each k£ € {1,---,n}: indeed
we have a1 +r; = 1 and rr; — aay > 0 since (B, s) is right-optimal, we thus
have r; = 1 et a3 = 0 (7} is tardy), from which we get that r; > 0 for any
ke{l,---,n}.

Let us define the transportation problem Uy where:

e Ry is the set of suppliers and the availability of each supplier is a;,

16

o Aj is the set of demands and the amount of each demand is r;,

e the demands must be exactly fullfilled,
e a transportation arc (1;,1;) € Ay X Ry is feasible if ¢ < j.

We then have the symmetrical property of Property 1 whose proof, which
is analog to that of Property 1 is omitted:

Property 7 For any k € {1,---,n}, Uy has a feasible solution.
Since (B, s) is right-optimal, we have
rry — aay > 0.

A sufficient condition for (8) to be satisfied is that:

an(Z Ay) = ra(Z A;) > 0. (9)

But the feasibility of ¢, implies that (9) is satisfied, what completes the
proof of 2. "

Theorems 1 and 2 may be generalized to left and right optimal allocated
blocks as follows:

Theorem 3 Let (B,s) be a left and right optimal allocated block. The cost
of (B, s) is at most the cost of an arbitrary schedule of B.

Proof. — Let ¢ be an arbitrary schedule of B. If ¢ completes at most at time
s+ p(B) (respectively starts at least at time s), Theorem 1 (respectively 2)
shows ¢p(s) < ¢(o). Otherwise, there is a prefix B’ of B such that the last
task of B’ is completed in ¢ at most at time s + p(B’) and such that the
first task of the compementary suffix B” of B’ in B is started at least at
time s + p(B’). Let o’ (respectively ¢”) be the restriction of o to the tasks
of B’ (respectively B”). Since (B’, s) is left-optimal, we have cp/(s) < ¢(0”)
from Theorem 1. Since (B”, s+ p(B) —p(B”)) is right-optimal, we get from
Theorem 2 that ¢g»(s+p(B) —p(B”)) < ¢(0”). We thus may conclude that
cg(s) < c(o). n

17

4.2 Correctness of EXT.GTW

We show in this section that if S is a left-adjusted optimal schedule for the
restriction of the problem to its first ¢ tasks, then the schedule S$? provided
by the generic step of EXT.GTW is also a left-adjusted optimal schedule for
the restriction of the problem to its first ¢ + 1 first tasks.

In order to prove the correctness of EXT.GTW, we assume that for any
ke {l,---,b(S1)}, the restriction S[1, .., ng(S1)] of ST toits & first allocated
blocks is optimal and left-adjusted for the task sequence (T3, - - -, Tnk(sl)) and
we show the same is true for S2.

If weyr < fb(sl)(Sl), let SO be the first schedule built by the generic step of
EXT.GTW by adding task 7,41 to the last allocated block of S!. Then if
EXT.GTW performs K mergings, let Sl, S SE the intermediate schedules
we got just after these mergings. Notice that if K > 1, then S? is either
SE or results from the occurrence of event F1 or event F2 during the left
shift of the last allocated block of SE. Let ¥ be an arbitrary schedule for
the tasks sequence (T4,---,T,41). Before we examine the different issues
of the generic step of EXT.GTW, we give two properties that will simplify
the proof: the first shows that an allocated block remains right-optimal and
quasi left-optimal when it is left-shifted as long as the initially tardy tasks
remain tardy.

Property 8 Let (D,u) be a right optimal and quasi left-optimal allocated
block and let v < u. If R(D,v) = R(D,u) then (D,v) is right optimal and
quasi left-optimal.

Proof. — Let Ay, Hy, Ry (respectively Ag, Hy, R3) the number of early, on-
time and tardy tasksin (D, u) (respectively (D, v)). Since each tardy task of
(D, u) is still tardy in (D, v), we have Ay = Ay + Hy, Hy =0 and Ry = R;y.
Since LEFT(D,u) is false, we have a(4; + H1) < rRy and so we get

Q(AQ + H2) < rRy (10)

which implies that LEFT (D, v) is false.

Consider a proper prefix D" of D and let A}, H{, R} (respectively A}, H}, RY)
be the number of early, on-time and tardy tasks in (D', u) (respectively
(D',v)). Since any tardy task in (D', u) is still tardy in (D', v), we get:
Ay = Al + H{, H, = 0 and R, = R|. As LEFT (D', u) is true, we have
a(A{+H{) > rR} and so a(AS+Hj) > rRY, which implies that LEFT (D', v)
is true. Thus (D, v) is quasi left-optimal.

18

Let D” be a proper suffix of D. We denote by A7y, H”; and R”; (respec-
tively A9, H”3 and R”3) the number of early, on-time and tardy tasks
n (D”,u+ p(D) — p(D”)) (respectively (D”, v+ p(D) — p(D”))). Let D
be the complementary proper prefix of D” in D. Since each tardy task
n (D, u) is still tardy in (D,v), we have: Ay = Ay + Hy, Hy = 0 and
R2 = Ry. As LEFT(D v) is true, we have a(A2 + HQ) > rRQ, which
rewrites a(—Az + A"y — Hy + H”3) < r(—Rz + R”2). By summing that
inequality to inequality (10), we get a(A”2 + H”3) > rR”;, which implies
r(R’24+ H”3) > aA” and so RIGHT (D", v+ p(D) — p(D”)) is true.
For the suffix D itself, inequality (10) directly implies that r(Ry+ H3z) > aA;
and so RIGHT (D, v) is true. (D, v) is thus a right-optimal allocated block.

The second property whose simple proof is omitted concerns the merging
of a right-optimal and quasi left-optimal allocated block with a left and
right-optimal allocated block.

Property 9 Let (F,u) be a left and right-optimal allocated block and let
(D,u+ p(F)) a right-optimal and quasi left-optimal allocated block. The al-
located block (E'D, u) is right-optimal. Moreover, (E D, u) is also left-optimal
(respectively quasi left-optimal) if LEFT(ED,u) is true (respectively false).

We now analyze the different issues of the generic step of EXT.GTW.

Case 1: w1 > frs(Sh)

We have 0(52) = ¢(.S1) since the cost of the last allocated block of S is zero
and since ¢(S1) < ¢(X[1, .., ¢]) from the induction. Since ¢(2) > ¢(X[1, ..,),
we have ¢(X) > ¢(5?). So S? is optimal and left-adjusted.

Case 2: w1 < frs1)(Sh) et LEFT(SS(SO)) is true

If the last allocated block of S' does not start at time 0, then from the
induction and Property 4, that allocated block is left and right-optimal. It
is then easy to verify that the last allocated block of SO which is obtained
from the last allocated block of S by adding the tardy task T,41 is left
and right-optimal too. Let [be the index of the last task of the last-but-
one allocated block of S!'. From the induction, we have C(SO[l7 L) =
c(SY1,..,[] < ¢([1,..,{]. Moreover we get from Theorems 1,2 and 3 that
the cost ¢[SO[l +1, .., ¢+ 1] of the last allocated block of SO is at most equal

19

to ¢(S[l 4 1, ..,q+ 1]. We thus have ¢(S°) < ¢().

If the last allocated block of S! starts at time 0 (indeed S! has exactly one
allocated block), then from the induction and Property 4, this bloc is right-
optimal. Since the single allocated block making S0 is also right-optimal,
we get from Theorem 3 that ¢(5°) < ¢(X).

Cas 3: wyp1 < fys)(S') et LEFT(SS(SO)) is false

For each k € {0,---, K}, let (Dy,tx) be the last allocated block of the inter-
mediate schedule $% and let respectively ag, hy, rx be the number of early,
on-time and tardy tasks of (Dy,).

From Property 9, the allocated block (Dy, t) is right-optimal and quasi left-
optimal since on the one hand LEFT (D, tg) is false and on the other hand
this block results from adding to the last allocated block of S (which from
the induction is left and right-optimal) task T}y, which is a right-optimal
and quasi left-optimal allocated block.

For any k € {1,---, K — 1}, the allocated block (Dy,?) is right-optimal
and quasi left-optimal since on the one hand LEFT(Dy,ty) is false and
on the other hand this block results from left-shifting (Dy_1,tx—1) (under
the assumptions of Property 8) and the merging of an allocated block S!
(which from the induction is left and right optimal with the allocated block
(Dg—1,v) (where v < t5_1), which is from Property 8, a right-optimal and
quasi left-optimal allocated block.

Let us now consider the allocated block (D, tx). Properties 8 and 9 yield
that this block is right and left-optimal (respectively right and quasi left
optimal) if LEFT (D, tx) is true (respectively false).

If LEFT(Dg,t) is true, then S? = SKIf p is the number of tasks in
Dk, we have S?[1,..,q+ 1 —p] = S[1,..,¢+ 1 — p]. From the induction,
we have ¢(SY[1,..,q+ 1 —p]) < ¢(Z[1,..,g+ 1 — p]). Moreover since the
last allocated block of S? is right and left-optimal, Theorem 3 implies that
c(SMg—p+2,.,q+1]) <c(Xlg—p+2,..,q+1)).

If LEFT(Dg,tk) is false, then there is one more block left-shifting that
completes by the occurrence of event F1 or F3.

If F1 occurs, the associated left-shifting matches the assumptions of Prop-
erty 8 and S? has a single allocated block that starts at time 0 and is
right-optimal. We then get from Theorem 2 that ¢(5?%) < ¢(X).

If F2 occurs, the last allocated block of S? results from the left-shifting
of (Dg,tx) but this shift stops because the number of tardy tasks of the
shifted allocated block strictly decreases.

20

Notice first that for any k € {0, -- -, K}, the inequality a(ar+hg)—r(rg—1) >
0 is true. Indeed it is true by the definition of aqg, hg and rg for £ = 0. Let
us assume it is true at the end of the (k — 1)"* merging and let ’, &’ and /
be respectively the number of early, on-time and tardy tasks of the allocated
block of S' that is merged during the k" merging. We then have hy = A/,
ap = aj_1 +hi_1+a and rp = rp_1 +r’. Since the merged allocated block
of S1is left-optimal we have a(a’+h’) —rr’ > 0 and since from the induction
we have a(ax—1 + hg—1) — r(rp—1 — 1) > 0, we get by summing these two
inequalities a(ay + hg) — r(ry — 1) > 0.
We thus have:

alag + hi) —r(rg—1) > 0. (11)

Let (Dg,v) (where v < tx) be the last allocated block of 5% and let A, H et
R be respectively the number of early, on-time and tardy tasks of (Dg,v).
Assume that @ > 1 tasks that are tardy in (D, tx) are on-time in (Dg, v).
The allocated block (Dp,v) itself satisfies A = ax + hx, H = z and R =
rix — x. From Property (11) we get

a(A+ H)—-rR=alax + hg) —r(rg — 1)+ az +r(z —1).

Since @ > 1, LEFT (D, v) is true. Moreover since LEFT (D, tx) is false,
we have that r(R+ H) — aA = rrg — a(ax + hyx) is strictly positive, what
implies that RIGHT (Dg, v) is true too.

Let D' be a proper prefix of Dg. Let A}, H{, R} be respectively the number
of early, on-time and tardy tasks of (D' tx) and let A}, H)}, R, be respec-
tively the number of early, on-time and tardy tasks of (D', v). Let y > 0 be
the number of tardy tasks of (D', tf) that are on-time in (D', v). We have
AL =AY, H, = H{ +y and R, = R} —y. We thus get that

a(Ay + Hy) = rRy = a(A} + Hy) = rBy +y(r + a)

what shows that LEFT (D', v) is true.

Let D” be a proper suffix of Dg. Let A7y, H”{, R”1 be respectively the
number of early, on-time and tardy tasks of (D”,tx + p(Dg) — p(D”)) and
let A”9, H”3, R be respectively the number of early, on-time and tardy
tasks of (D", v+ p(Dg) — p(D”)). Let z > 0 be the number of tardy tasks
in (D7, tx +p(Dg) — p(D7)) that are on-time in (D”, v+ p(Dg) — p(D”)).
We have Ay = A7, H’y = H’1+yand Ry = R”; — y. So we get that

r(R772_|_ H772) _ aA772 — a(R”l _I_ H??l) _ rR”l

21

what shows that RIGHT (D", v+ p(Dx) — p(D”)) is true.

As a conclusion the allocated block (Dg, v), which is the last allocated block
of S? is left and right-optimal. If that block has p tasks, we have S?[1, .., ¢+
1—p] = SY1,..,q+1—p]. From the induction, we have ¢(S1[1, .., g+1-p]) <
c(X[1,..,¢g+ 1 — p]) and from Theorem 3 we get ¢(S%[qg — p+2,..¢+ 1]) <
c(X[qg — p+2,..g+ 1]). We thus may conclude that ¢(S5?%) < ¢(¥).

We have shown that, for each issue of the generic step of EXT.GTW, S? is
an optimal schedule for the tasks sequence (Ty,---,T,11). That schedule is
left-adjusted since on the one hand each allocated block, which is not the
last one and that does not starts at time 0 is left-optimal from the induction
and on the other hand we have shown that the last allocated block is also
left-optimal for all issues of the generic step except event F1. Finally the
restriction S%[1, .., ngx(5%)] of S? to its k first allocated blocks is optimal and
left-adjusted for the tasks sequence (77, - - 'ank(SZ’)) since on the one hand
that is true from the induction for k € {1,---,6(S?) — 1} and on the other
hand we have shown that is also true for S? itself.

Since the generic step of EXT.GTW correct, EXT.GTW is also correct
because the schedule S' provided for the single task 7 is optimal, left-
ajusted and has a single block.

4.3 Worst-case complexity of EXT.GTW

Let us associate with each allocated block (By, si) of the running schedule
the heap T} that contains the tardy tasks of (B, sk), each with a priority
equal to its tardiness. Each iteration of the mergings loop within the generic
step of EXT.GTW performs a left-shifting whose complexity is O(1) since
it corresponds to add a constant to the prioriry of all the tasks in the heap
and the merging that may be executed in O(logn)). The key point here is to
notice that the total number of mergings during an execution of EXT.GTW
is O(n) since each merging decreases by one the number of allocated blocks
in the current schedule of EXT.GTW. The complexity of all the mergings is
thus O(nlogn). Apart from the merging loop, the complexity of the generic
step of EXT.GTW is O(1) except when the task T,y has to be inserted in
the heap associated with the last allocated block of S! as its last (tardy) task,
in which case the complexity is O(logn). The overall worst-case complexity

of EXT.GTW is thus O(nlogn).

22

5 Asymmetric and task-dependent costs

The approach of Section 4 does not easily extend to the general problem
where asymmetric and task-dependent costs are assumed. We present for
that problem a polynomial algorithm based on the convezity of the time
function cp(t), on an enhancement of the left-adjusted schedule notion and
on the modelling of the problem as the search of a minimum-cost path in a
directed acyclic graph.

Let S = ((B1,51),- -+, (Bp, sp)) be a schedule. The allocated block (By, sk)
of S is said to be strongly left-adjusted in S if for any t € [fr_1, sk[and for
any prefix By of By, we have cp, (t) > cp; (si) (with by convention fo = 0).
By extension, S is said to be strongly left-adjusted if each of its allocated
blocks is strongly left-adjusted. A prefix Bj of By is said to be left-movable
in S if apr < Sk

The following property shows that there is one optimal schedule that is
strongly left-adjusted.

Property 10 The strongly left-adjusted schedules are dominant

Proof. — Let S = ((B1,51), -, (Bp, sp)) be an optimal and not strongly
left-adjusted schedule. Let (By,si) be the first non strongly left-adjusted
allocated block (Bg,sg). Let By be the smallest left-movable prefix of By.
Notice that B} is not the empty prefix since (By,sy) is not strongly left-
adjusted. We then define the schedule S’ as follows:

First case: apr < fr_1:

S'= LEFTSHIFT&MERGE(S, By, s;). From the definition of B} and
since (Bg—1, sk—1) is strongly left-adjusted, we derive that the allocated block
(Br_1Bj, si_1) is strongly left-adjusted.

Second case: apr > fr_1.

S"=LEFTSHIFT(S, B, s, aBZ)' From the definition of Bj, note that in
this case the allocated block (Bj, aBZ) of S’ is strongly left-adjusted.
Whatever the case, S’ is still an optimal schedule and the index of the last
task of the last strongly left-adjusted allocated block is stictly larger in S’
than in S. So, iterating the process (at most n times) as long as the current
schedule is not strongly left-adjusted yields an optimal strongly left-adjusted
schedule. "

The block B = (T3;,---,T;) is said to be left-indivisible if for any proper
prefix B’ of B we have ags > ag. Similarly, B is said to be right-indivisible
if for any proper suffix B” of B we have ap» < ap + p(B) — p(B”). The

23

following property gives a strong necessary condition on the starting times
of the allocated blocks of an optimal and strongly left-adjusted schedule.

Theorem 4 Let S = ((B1,51),- -+, (Bp, 5p)) be an optimal and strongly left-
ajusted schedule. For any k € {1,---,p}, if sy > 0 then the block By, is right
and left indivisible and s, = ap, . If s; = 0 then By is right indivisible.

Proof. — Let S be an optimal and strongly left-adjusted schedule and let
(B, s;) be an allocated block of S such that s > 0. If s < ap,, by
right-shifting (B, sx) a sufficiently small amount of time € > 0 we get from
Property 1 a feasible schedule whose cost is strictly smaller than the cost of
S, what contradicts the optimality of S. If s;, > ap,, by left-shifting (By, sx)
a sufficiently small amount of time ¢ > 0 we get from Property 1 either a
schedule with a strictly smaller cost, what contradicts the optimality of S,
or a schedule with the same cost as S, what contradicts the (strongly) left-
adjusted assumption on S. We thus have s; = ap, for any k € {1,---,p}
such that s, > 0.

Assume that ap, > 0 and that there is a proper prefix Bj of By such that
apr < ag,. There exists a sufficiently small ¢ > 0 such that the schedule
S" = LEFTSHIFT(S, B, ap,,ap, — €) is feasible. From Property 1 we
then get that ¢(S”) < ¢(5), what means that S is not strongly left-adjusted.
Assume that ap, > 0 and that there exists a suffix B”; of By such that
ap», > ap, + p(B),). There exists a sufficiently small ¢ > 0 such that
the schedule 7 = RIGHTSHIFT(S, Bk, ug, uy + ¢), where up = ap, +
p(Bg) —p(B”1), is feasible. From Property 1 we get that ¢(S”) < ¢(5), what
contradicts the optimality of S.

Assume that s; = 0 and that there exists a suffix B”; of By such that ap», >
ap, + p(B]). There exists a sufficiently small € > 0 such that the schedule
S” = RIGHTSHIFT(S,B"1,u1,u1 + €), where uy = p(B;1) — p(B”1), is
feasible. From Property 1 we get that ¢(S”) < ¢(S5), what contradicts the
optimality of S. "

The necessary condition provided by Theorem 4 leads us to define the fol-
lowing valued directed graph called IBG (for indivisible-block graph):
The vertices of IBG are:

1. the block B; ; = (1};,---,1;) if 1 <@ < j < nright and if B; ; is a right
and left-indivisible block,

2. thA(e block Bl,i if i € {1,---,n} and if Bl,i is a right-indivisible block
(Bj,; corresponds to the allocated block (By;,0)),

24

3. a source node ¢ and a sink node 7.
The valued arcs of IBG are:
L. for any i € {1,---,n}, the arc (o, By ;) valued by vp, ;
2. for any ¢ € {1,---,n}, the arc (o, Bl,i) valued by cp, ,(0);
3. for any ¢ € {1,---, n}, the arc (B; ., 7) valued by 0;

4. for each pair of nodes (B;; and Bjy1) such that ap,,, , —ap,, >
p(B; ;) the arc (B; ;, Bj11,%) valued by vg

J+1,k?

5. for each pair of nodes BL] and Bjy1 such that ag, > p(Bi1,;), the
arc (By,;, Bjt1,x) valued by VBjp1 k-

A path from o to 7 in IBG corresponds to a schedule matching the assump-
tions of Theorem 4 and conversely every schedule matching these conditions
corresponds to a path from o to 7 in IBG. Moreover the cost of the path and
the cost of the associated schedule are the same. We thus get the following

property:

Property 11 An optimal and strongly left-adjusted schedule corresponds to
a mintmum-cost path from o to © in IBG.

We propose the following two-step algorithm to compute a minimum-cost
schedule: the first step builds IBG from the problem instance while the
second step computes a minimum-cost path from ¢ to = in IBG. Note that
since IBG is acyclic, the Bellman’s algorithm may be used in the second
step.

Worst-case complexity

The number of vertices of IBG is clearly O(n?). Since each block B;; has
n — j immediate successors and since for fixed j, there are j — 1 blocks B; ;,
the number of arcs of IBG is O(n®). If B, is a block with k tasks, then
by using an heap to maintain the set of the early tasks of the allocated
block (B;;,t) (initialy (B;;,0)), the pair (ap, ,,vp,,;) may be computed in
O(klog k). Thus computing all these pairs takes O(n®logn). Moreover de-
ciding whether the k-tasks block B; ; is right and left-indivisible takes O (k).
So computing the nodes of IBG takes O(n>logn). Since searching for a
minimum-cost path in IBG takes O(n?®), the worst-case complexity of the

25

algorithm is O(n®log n).

Notice that restricting to the indivisible blocks increases the worst-case com-
plexity compare to a more naive algorithm with worst-case complexity O(n?)
that would consider all the blocks B;; such that 1 <4 < j < n and Bl,i
such that 1 < ¢ < n. However it appears that in practice many blocks are
divisible so that it is really worth taking the time to search for the indivisible
blocks to get a graph with a quite smaller number of nodes.

6 Conclusion

In this paper, we first have proposed an O(nlogn) algorithm for the special
case of assymmetric and task-independent costs. This algorithm extends a
previous algorithm by Garey et al. that applies to the case of symmetric and
task-independent costs without increasing its worst-case complexity. For the
general case with assymetric and task-dependent costs, we have proposed
an O(n>logn) algorithm, which is based on a strong necessary condition
on the starting times of the allocated blocks of an optimal and strongly
left-adjusted schedule. We now plan to study algorithms for minimizing the
mean cost per iteration for infinite periodic tasks systems.

References

[1] M.R. Garey, R.E. Tarjan and G.T. Wilfong (1988). One-processor
scheduling with symmetric earliness and tardiness penalties, Maths of

0.R.,13, 2, 330-343.

2] K.R. Baker and G.D. Scudder (1989). Sequencing with Earliness-
Tardiness Penalties: a Review Operations Res., 38, 1, 22-36.

[3] V. Gordon, J.M. Proth and C. Chu (1998). A State-of-the-Art Survey
of Due Date Assignment and Scheduling Research: Common Due Date
Rapport de recherche INRIA, 3454, theme 4.

[4] V. Gordon, J.M. Proth and C. Chu (1998). A State-of-the-Art Sur-
vey of Due Date Assignment and Scheduling Research: SLK, TWK
and Other Due Date Assignment Models Rapport de recherche INRIA,
3537, theme 4.

26

[5]

J.A. Hoogeveen and S.L. Van de Velde (1996). A branch-and-Bound
Algorithm for Single-Machine Farliness-Tardiness Scheduling with Idle
Time, INFORMS Journal on Computing, 8, 4, 402-412.

A. Federgruen and G. Mosheiov (1997). Single-Machine Scheduling
Problems with General Breakdowns, Earliness and Tardiness Costs,
Operations Research, 45, 1, 66-71.

A. Federgruen and G. Mosheiov (1994). Greedy Heuristics for Single-
Machine Scheduling Problems with General Earliness and Tardiness
Costs, Operations Research Letters, 16, 199-208.

N.G. Hall, W. Kubiak and S.P. Sethi(1991). Earliness-Tardiness
Scheduling Problems II. Deviation of Completion Times about a Re-
strictive Common Due Date, Operations Research, 39, 102-110.

N.G. Hall, W. Kubiak and S.P. Sethi(1991). Earliness-Tardiness
Scheduling Problems II. Deviation of Completion Times about a Re-
strictive Common Due Date, Operations Research, 39, 102-110.

27

