
HAL Id: hal-02548214
https://hal.science/hal-02548214

Submitted on 20 Apr 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Minimizing the earliness and tardiness cost of a
sequence of tasks on a single machine

Philippe Chrétienne

To cite this version:
Philippe Chrétienne. Minimizing the earliness and tardiness cost of a sequence of tasks on a single
machine. [Research Report] lip6.1999.007, LIP6. 1999. �hal-02548214�

https://hal.science/hal-02548214
https://hal.archives-ouvertes.fr

Minimizing the Earliness and Tardiness Cost of aSequence of Tasks on a Single Machine.Philippe Chr�etienneMarch 23, 1999AbstractAssume that n tasks must be processed by one machine in a �xedsequence. The processing time, the preferred starting time and theearliness and tardiness costs per time unit are known for each task.The problem is to allocate each task a starting time such that the to-tal cost incurred by the early and tardy tasks is minimum. Garey etal. have proposed a nice O(n logn) algorithm for the special case ofsymmetric and task-independent costs. In this paper we �rst extendthat algorithm to the case of asymmetric and task-independent costwithout increasing its worst-case complexity. For the general case ofasymmetric and task-dependent costs, we propose an O(n3 logn) algo-rithm based on a strong dominance property that yields to e�cientlymodel the scheduling problem as a minimum cost path in a valueddirected acyclic gaph.1 IntroductionDue to their numerous applications, scheduling problems where the tasksincurred a cost both if they are early or tardy have received much attention.As an example, in a just-in-time production, a piece that is �nished beforeits delivery time incurs an inventory cost while it incurs a backlog cost ifit is �nished after its delivery time. Moreover, there are many productionsystems where there is a priori no evidence for the inventory and backlogper time unit costs to be equal or not to depend on the individual tasks.Many variants of that problem have been studied [5],[1],[6],[7], [8],[9] andquite good surveys such as [2],[3],[4] show the amount and the diversity ofthe research in this �eld.In this paper, we revisit the basic problem where a �nite set of tasks must1

be processed on a single machine in a given order. Each task has a givenpreferred starting time and its earliness or tardiness in a schedule is thedeviation about that preferred starting time. We assume that an early ortardy task incurs a cost which is proportional to the corresponding earlinessor tardiness value. However, the corresponding per-time-unit earliness andtardiness costs need neither be equal nor be independent of the individualtasks.The main reference for this problem concerns the secial case of symmet-ric and task-independent costs: Garey et al. [1] have developped a nice(O(n logn) algorithm that iterates a transformation that allows to computean optimal schedule for the problem restricted to its q + 1 �rst tasks fromthe problem restricted its �rst q tasks.We propose here an algorithm with the same complexity that extends thealgorithm in [1] to asymmetric costs. For the general problem with asym-metric and task-dependent costs , we use a convexity property of the costfunction of an allocated block and a strong necessary condition on the start-ing times of the allocated blocks in an strongly left-adjusted optimal scheduleto �rst model the problem as the search of a minimum-cost path in a di-rected acyclic graph called the indivisible blocks graph and then derive anO(n3 log n) algorithm.Section 1 de�nes the scheduling problem and its main notations. Section2 brie
y recalls the algorithm in [1] for symmetric and task-independentcosts. Section 3 presents the extension of that algorithm to asymmetric andtask-independent costs. Section 5 gives an algorithm for asymmetric andtask-dependent costs.2 De�nitions and notationsn non-preemptive tasks T1; � � � ; Tn must be processed by a single machine ina given order, for example the order (1; � � � ; n). For each task Ti, we denoteby pi its processing time, by !i its preferred starting time, and respectivelyby ai and ri its per time-unit earliness and tardiness costs. The task Tistarted at time ti incurs a cost ci(ti) de�ned by:ci(ti) = (ai(!i � ti) if ti � !iri(ti � !i) if ti � !iThe problem is to allocate a starting time to each task so as to minimizethe total cost Pni=1 ci(ti). 2

A block of S is a left and right maximal list B = (Ti; Ti+1; � � � ; Tj) of tasksperformed without any intermediate delay in S. Thus a schedule S is also alist ((B1; s1); � � � ; (Bb; sb)) of (block,date) pairs called allocated blocks suchthat:1. B1 � � �Bb=(T1; � � � ; Tn)2. for any k 2 f2; � � � ; bg, sk > sk�1 + p(Bk�1).where p(Bk) =PTi2Bk pi and where sk is the starting time of the �rst taskof Bk .Let S = ((B1; s1); � � � ; (Bb; sb)) be a schedule. We denote respectively byb(S), sk(S), fk(S) and nk(S) the number of blocks, the starting time of thekth block, the completion time of the kth block and the index of the lasttask of the kth block. When there is no ambiguity to which schedule theyrefer, the reference to S will be omitted in these notations.If (B; s) is an allocated block, the subsets of the early tasks, on-time tasksand tardy tasks in (B; s) are respectively denoted by A(B; s), H(B; s) andR(B; s).The cost of (B; s) is denoted by cB(s) whereas the cost of S is denoted byc(S). The following property concerns the shape of the time function cB(t).Property 1 cB(t) is a convex and piecewise linear time function.Proof. | Let B = (T1; � � � ; TK) and for any k 2 f1; � � � ; Kg let �k be eequalto Pk�1i=1 pi with by convention �1 = 0. For any k 2 f1; � � � ; Kg, the startingtime of task Tk within the allocated block (B; t) is thus �k + t. Let X bea subset of the tasks in B, we denote by r(X) the value PTi2X ri and wede�ne h(X) and a(X) in the same way. Let A(t); H(t); R(t) be respectivelythe subsets of early, on-time and tardy tasks in (B; t).Since the individual cost of the task Ti within (B; t) is a continuous timefunction on [0;+1[(see Figure 1), cB(t) is also a continuous time functionon [0;+1[.Let �0 = 0, we de�ne �k as the smallest time t > �k�1 such that at least onetask in A(�k�1) is on-time at t. Let Ak; Hk; Rk be the subsets of the early,on-time and tardy tasks in (B; �k) and let ck = cB(�k). We have for anyt 2 [�k�1; �k[:cB(t) = ck�1 + (t � �k�1)(r(R0 [([k�1j=0Hj)� a(A0 n [k�1j=1Hj)):Let uk = (r(R0 [([k�1j=0Hj)� a(A0 n [k�1j=1Hj); we get for any t 2 [�k�1; �k[:cB(t) = ck�1 + uk(t� �k�1): (1)3

t t

cost of T in (B,t)i

islope: -a

islope: r islope: r

iiω −π

iiω −πCase ≥0 iiω −πCase <0

c (t)
B

α
B

γ
B

cost of T in (B,t)i

tFigure 1: Cost functionsLet r be the number of terms of the sequence �k . Every task is tardy fromtime �r on. So for any t 2 [�r;+1[, we have:cB(t) = cr + (t� �r)r(B): (2)From (1), (2) and since cB(t) is a continuous time function on [0;+1[, weget that cB(t) is piecewise linear. Moreover the slopes uk; k 2 f1; � � � ; rg ofthe successive pieces are strictly increasing since we have:uk � uk�1 = r(Hk�1) + a(Hk�1) > 0:So cB(t) is a piecewise linear and convex time function.We derive from Property (1) that there is a unique time instant �B suchthat: 8� > 0; cB(�B � �) > cB(�B) and cB(�B + �) � cB(�B):4

In what follows, we denote by
B the value cB(�B). Figure 1 shows a pairof values (�B;
B).The following three operations on a schedule S = ((B1; s1); � � � ; (Bb; sb)) willappear to be quite useful (see Figure 2):� LEFTSHIFT (S;B0k; sk; t), where B0k is a pre�x of Bk and fk�1 <t < sk, is the schedule we get by left shifting (B0k; sk) until it becomes(B0k; t);� RIGHTSHIFT (S;B"k; sk+p(Bk)�p(B"k); t), where B"k is a su�xof Bk and sk + p(Bk)� p(B"k) < t < sk+1, is the schedule we get byright-shifting (B"k; sk + p(Bk)� p(B"k)) until it becomes (B"k; t);� LEFTSHIFT&MERGE(S;B0k; sk), where B0k is a pre�x of Bk andk > 1, is the schedule we get by left shifting (B0k ; sk) until it becomes(B0k; fk�1);
B' B"

t

LEFTSHIFT(S,B',s,t)

B' B"

s
S

S'

B' B"

s
S

B' B"

s
S'

u

v

RIGHTSHIFT(S,B",u,v)

u

B' B"

s
S

B' B"
S'

LEFTSHIFT&MERGE(S,B',s)Figure 2: 3 basic operations on a scheduleLet S = ((B1; s1); � � � ; (Bb; sb)) be a schedule. The allocated block (Bk; sk) issaid to be left-adjusted if for any time t 2 [fk�1; sk[, the inequality cBk(t) >cBk(sk) (where by convention f0 = 0) is satis�ed. By extension, the schedule5

S itself is said to be left-adjusted if all its allocated blocks are left-adjusted.The following property shows that there is an optimal schedule which isleft-adjusted.Property 2 Left-adjusted schedules make a dominant subset.Proof. | Let S = ((B1; s1); � � � ; (Bb; sb)) be an non left-adjusted opti-mal schedule. Since S is optimal, for any k 2 f1; � � � ; bg, we have 8t 2[fk�1; sk[; cBk(t) � cBk(sk). Since S is not left-adjusted, let k0 be the �rstnon left-adjusted alllocated block and let v be the smallest time in [fk0�1; sk0 [such that cBk0 (t) = cBk0 (sk0). We then de�ne the schedule S0 as follows.If v > fk0�1 then S 0 = LEFTSHIFT (S;Bk0; sk0 ; v). From the de�nition ofv, we know that the allocated block (Bk0 ; v) of S 0 is left-adjusted.If v = fk0�1 and k0 > 1 then S 0 = LEFTSHIFT&MERGE(S;Bk0; sk0).Since (Bk0�1; sk0�1) is left-adjusted in S and cBk0 (sk0) = cBk0 (v) we getfrom Property 1 that the allocated block (Bk0�1Bk0 ; sk0�1) is left-adjustedin S0.If v = fk0�1 and k0 = 1 then S0 = LEFTSHIFT (S;B1; s1; 0).Let us denote respectively by b0 and k00 the number of allocated blocks andthe index of the �rst non left-adjusted allocated block in S0. Whatever thecase, we have b0� k00 < b� k0. So, after iterating the process at most b� k0times we get an optimal and left-adjusted schedule.3 Symmetric and task-independent costsGarey et al. have proposed in [1] an O(n logn) algorithm for the specialcase when for any task Ti, ai = ri = 1. This algorithm, that will be calledGTW in the rest of the paper computes an optimal left-adjusted scheduleS2 of the restriction of the problem to its �rst q + 1 tasks from an optimalleft-adjusted schedule S1 of the restriction of the problem to its �rst q tasksas follows:1. if !q+1 > fb(S1)(S1) then S2 is got by creating the allocated block((Tq+1); !q+1) and adding it to S1;2. if !q+1 < fb(S1)(S1) then let S the schedule we get by adding the taskTq+1 as the last task of the last allocated block of S1.If the last allocated block of S has less tardy tasks than on-time orearly tasks then S2 = S. 6

Otherwise the last allocated block of S is left-shifted until its startingtime t matches one of the three following events:E1: t = 0;E2: the number of tardy tasks of the shifted block strictly decreasesat time t;E3: t is the completion time of the one-but-last block of S1.In case of event E1 or E2, S2 = LEFTSHIFT (S;Bb(S); sb(S); t); incase of event E3, S2 = LEFTSHIFT&MERGE(S;Bb(S); sb(S)).The above GTW algorithm is illustrated on Figure 3 that shows the 6 �rstiterations associated with the following input data.i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15pi 2 3 1 2 1 2 2 1 1 2 1 5 1 2 2!i 4 1 7 8 5 3 13 14 16 18 19 15 16 17 18
T1

T1 T2

T3T2T1

T4T3T2T1

T2T1 T5T4T3

T2T1 T5T4T3 T6

0 2 5 6 8 9 11
time

iteration 1

iteration 2

iteration 3

iteration 4

iteration 5

iteration 6Figure 3: the GTW algorithm7

The correctness of GTW mainly results from the following property whoseproof is in [1]Property 3 The schedule provided by iteration k of GTW is a left-adjustedoptimal schedule for the restriction of the problem to its k �rst tasks.In [1], the authors also note that their algorithm may be simply extendedto the case when the execution cost of task Ti is wici(ti).4 Asymmetric and task-independent costs4.1 The EXT-GTW algorithmThis section proposes an extension of GTW called EXT-GTW for the casewhen for any task Ti, we have ai = a and ri = r where it is only assumed thata and r are non negative. Let (B; s) be an allocated block. The inequalitiesLEFT (B; s) et RIGHT (B; s) are de�ned by:LEFT (B; s): a(A(B; s) +H(B; s))� rR(B; s) � 0;RIGHT (B; s): r(R(B; s) +H(B; s))� aA(B; s) � 0.where A(B; s), H(B; s) et R(B; s) are respectively the number of early, on-time and tardy tasks in (B; s).The algorithm EXT-GTW di�ers from GTW by the block invariant satis�edby all the allocated blocks at each iteration and by the fact that withineach iteration EXT-GTW may repeat the merging process as long as thelast allocated block of the running schedule does not satisfy the invariant.As for GTW, we describe the generic step of EXT-GTW that provides anoptimal schedule S2 of the restriction of the problem to its �rst q + 1 tasksfrom an optimal schedule S1 of the restriction of the problem to its �rst qtasks.1. if !q+1 > fb(S1)(S1) then S2 is got by creating the allocated block((Tq+1); !q+1) and adding it to S1;2. if !q+1 < fb(S1)(S1) then let S be the schedule we get by making taskTq+1 be the last task of the last allocated block of S1.(a) If LEFT (Sb(S)) is true, then S2 = S.(b) Otherwise, the last allocated block of S is shifted to the left aslong as its starting time t matches one of the three following events:8

F1: t = 0;F2: LEFT (Sb(S)) is true;F3: t is the completion time of the one-but-last allocated block of S.If F1 or F2 occurs, then S2 = LEFTSHIFT (S;Bb(S); t). If F3occurs then S := LEFTSHIFT&MERGE(S;Bb(S); sb(S)) and returnto 2.(a).An allocated block (B; s) is said to be left-optimal if for any (B0; s) where B0is a pre�x ofB, the inequality LEFT (B0; s) is true. An allocated block (B; s)is said to be right-optimal if for any (B"; s+p(B)�p(B")) whereB" is a su�xof B, the inequality RIGHT (B"; s+ p(B) � p(B")) is true. An allocatedblock (B; s) is said to be quasi left-optimal if LEFT (B; s) is false and if forany (B0; s) where B0 is a proper pre�x of B, the inequality LEFT (B0; s) istrue. The following property gives a strong structural condition met by theoptimal and left-adjusted schedules.Property 4 Let S = ((B1; s1); � � � ; (Bb; sb)) be an optimal and left-adjustedschedule. Any allocated block (Bk ; sk) such that sk > 0 is left and rightoptimal. Moreover if s1 = 0 then the allocated block (B1; s1) is right-optimal.Proof. | Assume that sk > 0 and that (Bk ; sk) is not left-optimal. Thereis a pre�x B0k of Bk such that LEFT (B0k; sk) is false. There also exists asu�ciently small � > 0 such that:1. R(B0k; sk � �) = R(B0k; sk),2. the schedule S0 = LEFTSHIFT (B0k; sk; sk � �) is feasible.From the de�nition of � we have:c(S 0) = c(S) + �(a(A(B0k; sk) +H(B0k; sk))� rR(B0k; sk))since the tardy tasks of (B0k; sk� �) are the tardy tasks of (B0k ; sk), the earlytasks of (B0k; sk� �) are the early or on-time tasks in (B0k ; sk) and there is noon-time task in (B0k ; sk��). As LEFT (B0k; sk) is false, we have c(S 0) < c(S),what contradicts the optimality of S.Assume that sk > 0 and that (Bk; sk) is not right-optimal. Let uk = sk +p(Bk)� p(B"k). There is a su�x B"k de Bk such that RIGHT (B"k; uk) isfalse. There also exists a su�ciently small � > 0 such that:1. A(B"k ; uk + �) = A(B"k ; uk), 9

2. the schedule S" = RIGHTSHIFT (B"k; uk; uk + �) is feasible.From the de�nition of � we have:c(S") = c(S) + �(r(R(B"k; uk) +H(B"k; uk))� aA(B"k; uk))since the early tasks of (B"k; uk + �) are the early tasks of (B"k; uk), thetardy tasks of (B"k; uk + �) are the tardy or on-time tasks of (B"k; uk) andthere is no on-time task in (B"k ; uk � �). As RIGHT (B"k; uk) is false, wehave c(S") < c(S), what contradicts the optimality of S.If s1 = 0, the same argument as before applied to a su�x of B1 yields acontradiction to the optimality of S if the allocated block (B1; s1) is notright-optimal.We now prove a dominance property of the left-optimal allocated blocks,a symmetric property of the right-optimal allocated blocks and a theoremthat more generally applies to the right and left optimal allocated blocks.Theorem 1 Let (B; s) be a left-optimal allocated block. The cost of anyschedule of B whose last task completes at most at time f = s+ p(B) is notless than the cost of (B; s).Proof. | Let us assume that B = (T1; � � � ; Tn). Let � be an arbitraryschedule of B whose last task completes at most at time f . Let ui be thestarting time of Ti in (B; s), vi be the starting time of Ti in � and �i = ui�vi.From the assumptions on � we derive that for any i 2 f1; � � � ; ng, �i � 0and �n� � � ���1:If Ti is early or on-time in (B; s), its cost in � is exactly a�i larger than in(B; s), otherwise Ti is tardy in (B; s) and its cost in � is at most r�i lessthan in (B; s). So if c1 is the cost of (B; s) and c2 the cost of �, we have:c2 � c1 + a(XTi2A(B;s)[H(B;s)�i)� r(XTi2R(B;s)�i)We thus have to prove that:a(XTi2A(B;s)[H(B;s)�i)� r(XTi2R(B;s)�i) � 0 (3)For any k 2 f1; � � � ; ng, let us denote by Bk the pre�x (T1; � � � ; Tk), byAk = fTi1; � � � ; Tiakg the subset of early or on-time tasks in (Bk ; s) and by10

Rk = fTj1 ; � � � ; Tjrk g the subset of the tardy tasks in (Bk; s). Without lossof generality, we assume thati1< � � �<iak and j1< � � �<jrk :Let �k = maxj2f1;���;kgf rjaj g and let k� the smallest index in f1; � � � ; kg suchthat rjaj = �k. Notice that �k is well-de�ned for any k 2 f1; � � � ; ng: indeedwe have aa1 � rr1 � 0 since (B; s) is left-optimal and a1 + r1 = 1. We thusget that a1 = 1 and r1 = 0 (T1 is early in (B; s)), from which we concludethat ak > 0 for any k 2 f1; � � � ; ng.Let us de�ne by Tk the following transportation problem:� Ak is the set of suppliers and the availability of each supplier is rk� ,� Rk is the set of demands and the amount of each demand is ak� ,� the demands must be exactly full�lled,� a transportation arc (Ti; Tj) 2 Ak �Rk is feasible if i < j.Such a transportation program is shown in Figure 4.The following property shows that the transportation problems Tk arefeasible.Propri�et�e 1 For any k 2 f1; � � � ; ng, the problem Tk is feasible.Proof. | T1 is feasible since R1 = ;.Assume now that �k is a feasible solution of Tk and let us consider the twofollowing cases about the feasiblity of Tk+1 depending on whether Tk+1 isan early or on-time task or a tardy task in (B; s).First case: Tk+1 2 Ak+1.We then have (k + 1)� = k� and problem Tk+1 has one more supplier (lineak + 1) than Tk. Since the availability of the suppliers are the same in Tkand in Tk+1, �k is also feasible solution for Tk+1.Second case: Tk+1 2 Rk+1.Let us consider two subcases depending on whether (k+1)� = k� or (k+1)� =k + 1.First subcase: (k+ 1)� = k�.We then have rk+1ak+1 = rk + 1ak � rk�ak�11

T1

T2

T3

T5

T6

T8

T12

T17

T4 T7 T9 T10 T11 T13 T14 T15 T16 T18 T19T20 T21

Bk=(T1,T2,T3,T4,T5,T6,T7,T8,T9,T10,T11,T12,T13,T14,T15,T16,T17,T18,T19,T20,T21)
Ak=(T1,T2,T3,T5,T6,T8,T12,T17)
Rk=(T4,T7,T9,T10,T11,T13,T14,T15,T16,T18,T19,T20,T21)
availability of each task in Ak: 13;
demand of each task in Bk: 8;
fordidden cells in grey;
α(k)=13/8; k*=21.

8 5

3 8 2

6 7

1 8 4

4 8 1

7 6

2 8 3

5 8Figure 4: A transportation program TkTk+1 has one more demand (column rk +1) than Tk. The availability of thesuppliers and the amounts of the demands are the same in Tk and in Tk+1.Since on one hand all the cells of the last column of Tk+1 are feasible and onthe other hand the di�erence rk�ak � ak�rk between the total avalailabilityand the total demand of Tk is at least ak� from the above inequality, �k maybe extended into a feasible solution �k+1 of Tk+1.Second subcase: (k + 1)� = k + 1.In Tk+1, the availability of each of the ak suppliers is rk+1 and the amountof each of the rk + 1 demands is ak. So, from the de�nition of k� we get:8j 2 f1; � � � ; kg; rjaj < rk + 1ak (4)Assume that 1 + rk = qkak + �k where 0 � �k < ak . We then build line byline a solution �k+1 of Tk+1 as follows:� the qk + 1 �rst cells of the �rst line are respectively ak; � � � ; ak; �kwhereas the other cells of that line are null; we then de�ne c(1) = qk+1and �(1) = �k. 12

� assume that the l� 1 �rst lines of Tk+1 are built;If �(l� 1) + �k � ak then the values of the qk + 1 cells whose columnnumbers are c(l� 1); � � � ; c(l� 1) + qk are respectivelyak � �(l� 1); ak; � � � ; ak; �(l� 1) + �kwheras the other cells of line l are null; we then de�ne c(l) = c(l�1)+qkand �(l) = �(l� 1) + �k.If �(l� 1) + �k > ak then the values of the qk + 2 cells whose columnnumbers are c(l� 1); � � � ; c(l� 1) + qk + 1 are respectivelyak � �(l� 1); ak; � � � ; ak; �(l� 1) + �k � akwhereas the other cells of line l are null; we then de�ne c(l) = c(l �1) + qk + 1 and �(l) = �(l� 1) + �k � ak.The lines containing qk � 1 (respectively qk) intermediate cells with valueak are said to be of type 1 (respectively type 2). The following invariant iseasily veri�ed:Property 5 When line l is built, the demands of columns 1 to c(l)� 1 aresatis�ed and 0 � �(l) � ak.On the example of Figure 4, we have rk+1 = 13, ak = 8, (k+1)� = k+1 = 21,�k+1 = 138 , qk = 1 and �k = 5. The solution built for T21 in written in thetransportation array. Lines 1; 3; 6; 8 are of type 1, lines 2; 4; 5; 7 are of type2.�k+1 is a feasible solution of Tk+1 if and only if its non-zero valued cells arefeasible cells. We �rst show that there are exactly rk + 1 columns with atleast one non-zero cell and we prove next that every non-zero valued cell of�k+1 is a feasible cell.Let C be the number of columns with a non-zero valued cell in �k+1. Fromthe de�nition of �k+1, the demands of the C � 1 �rst columns are exactlyfull�lled whereas the last column receives �(ak). Since in �k+1 each of theak suppliers sends its whole availability 1 + rk, we have:(1 + rk)ak = (C � 1)ak + �(ak)Since 0 � �(ak) � ak, the previous inequality implies �(ak) = ak and C =1 + rk.Let us call the line separating the feasible cells from the unfeasible cells13

of the transportation array the borderline F of Tk+1 (see Figure 4). Forany line l, let yl be the greatest column number such that the point withcoordinates (l; yl) in the transportation array belongs to F .The following property shows that the non-zero cells in �k+1 are feasiblecells of Tk+1 .Property 6 For any line l 2 f1; � � � ; ak � 1g, we have yl � c(l)� 1.Proof. | Let us consider the �rst line. We have c(1) = qk + 1. The point(1; y1) on F is associated with a pre�x Bj1 such that rj1 = y1 and aj1 = 1.We then get from (4) that:y1 < qk + �kak � qk + 1The �rst line thus satis�es the property.Assume now that among the l �rst lines, there are l1 lines of type 1 and l2lines of type 2. We then have �(l) = l1�k + l2(�k � ak).If �(l) + ak = (l1 + 1)�k + l2(�k � ak) � ak (5)then the line l+1 is of type 1 and we have c(l+1) = (l+ 1)qk + l2+1. Thepoint (l+ 1; yl+1) on F corresponds to a pre�x Bjl+1 such that rjl+1 = yl+1and aj1 = l+ 1. Since from (4) we have:yl+1l + 1 < qk + �kakWe get from (5) that yl+1 < (l+1)qk+l2+1 and thus that yl+1 � c(l+1)�1.If �(l) + ak = (l1 + 1)�k + l2(�k � ak) > ak (6)then line l is of type 2 and we have c(l+ 1) = (l+ 1)qk + l2 + 2. The point(l + 1; yl+1) on F corresponds to a pre�x Bjl+1 such that rjl+1 = yl+1 andaj1 = l + 1. From (4) we get: yl+1l + 1 < qk + �kakSince �(l) + ak � 2ak, we have (l+ 1)�k � l2ak � 2ak, which rewrites(l+ 1)�kak � l + 214

We thus have yl+1 < (l+1)qk+l2+2 and yl+1 � c(l+1)�1. That completesthe proof of Property 6.To conclude the proof of Property 1, notice that if �k+1 is not feasible, therenecessarily exists a line l 2 f1; � � � ; ak � 1g such that yl � c(l). We thus getfrom 6 that �k+1 is a feasible solution.Recall that in order to prove Theorem 1, we have to prove the inequality(3): a(XTi2A(B;s)[H(B;s)�i)� r(XTi2R(B;s)�i) � 0where B = (T1; � � � ; Tn) and (B; s) is a left-optimal allocated block. Since(B; s) is left-optimal, we have aan� � rrn� � 0. A su�cient condition for (3)is: rn�(XTi2An �i)� an�(XTi2Bn�i) � 0: (7)But from Property 1, we know that Tn has a feasible solution nl;c; l 2f1; � � � ; ang; c 2 f1; � � � ; rng. Let J(l) (respectively I(c)) the column (re-spectively line) numbers associated with a feasible cell of line l (respectivelycolumn c). We have:8l 2 f1; � � � ; ang Pc2J(l) nl;c � rn�8c 2 f1; � � � ; rng Pl2I(c)nl;c = an�8(l; c); l 2 f1; � � � ; ang; c 2 J(l) �il � �jc8(l; c); l 2 f1; � � � ; ang; c 62 J(l) nl;c = 0For any line l 2 f1; � � � ; ang, we thus have:rn��il � Xc2J(l)nl;c�jc :By summing all these inequalities we get:rn� anXl=1�il � rnXc=1(�jc Xl2I(c)nl;c)which rewrites: rn� anXl=1�il � an� rnXc=1�jc :Since the inequality (7) is satis�ed, the same is true for inequality (3), whatcompletes the proof of Theorem 1. 15

The right-optimal allocated blocks satisfy the following symmetrical prop-erty.Theorem 2 Let (B; s) be a right-optimal allocated block. The cost of anyschedule of B whose �rst task starts at least at time s is not less than thecost of (B; s).Proof. | Since that proof is quite similar to the proof of Theorem 1, weonly give its global scheme. Let B = (Tn; � � � ; T1) and let � be an arbitraryschedule of B whose �rst task starts at least at time s. Let ui and vibe respectively the starting times of task Ti in (B; s) and in � . From theassumptions on � we get that �i = vi � ui � 0 and that�n� � � ���1:Let c1 and c2 be respectively the costs of (B; s) and � . If Ti is on-time ortardy in (B; s), its cost in � is exactly r�i larger, otherwise if it is early in(B; s), its cost in � is at most a�i less. We thus have:c2 � c1 + r(XTi2R(B;s)[H(B;s)�i)� a(XTi2A(B;s)�i)and we must prove that:r(XTi2R(B;s)[H(B;s)�i)� a(XTi2A(B;s)�i) � 0 (8)For each k 2 f1; � � � ; ng, let Bk be the su�x (Tk; � � � ; T1), Rk=fTi1 ; � � � ; Tirk gbe the set of the early tasks on-time and tardy tasks of (Bk; s+Pni=k+1 pi)and Ak=fTj1 ; � � � ; Tjakg be the set of the early tasks of (Bk ; s+Pni=k+1 pi).Without any loss of generality we assume thati1< � � �<irk et j1< � � �<jak :Let �k = maxj2f1;���;kgfajrj g and k̂ be the smallest index of f1; � � � ; kg suchthat ajrj = �k. We notice that �k is de�ned for each k 2 f1; � � � ; ng: indeedwe have a1+ r1 = 1 and rr1� aa1 � 0 since (B; s) is right-optimal, we thushave r1 = 1 et a1 = 0 (T1 is tardy), from which we get that rk > 0 for anyk 2 f1; � � � ; ng.Let us de�ne the transportation problem Uk where:� Rk is the set of suppliers and the availability of each supplier is ak̂ ,16

� Ak is the set of demands and the amount of each demand is rk̂,� the demands must be exactly full�lled,� a transportation arc (Ti; Tj) 2 Ak �Rk is feasible if i < j.We then have the symmetrical property of Property 1 whose proof, whichis analog to that of Property 1 is omitted:Property 7 For any k 2 f1; � � � ; ng, Uk has a feasible solution.Since (B; s) is right-optimal, we haverrn̂ � aan̂ � 0:A su�cient condition for (8) to be satis�ed is that:an̂(XTi2Rn�i)� rn̂(XTi2An �i) � 0: (9)But the feasibility of Un implies that (9) is satis�ed, what completes theproof of 2.Theorems 1 and 2 may be generalized to left and right optimal allocatedblocks as follows:Theorem 3 Let (B; s) be a left and right optimal allocated block. The costof (B; s) is at most the cost of an arbitrary schedule of B.Proof. | Let � be an arbitrary schedule of B. If � completes at most at times+ p(B) (respectively starts at least at time s), Theorem 1 (respectively 2)shows cB(s) � c(�). Otherwise, there is a pre�x B0 of B such that the lasttask of B0 is completed in � at most at time s + p(B0) and such that the�rst task of the compementary su�x B" of B0 in B is started at least attime s+ p(B0). Let �0 (respectively �") be the restriction of � to the tasksof B0 (respectively B"). Since (B0; s) is left-optimal, we have cB0(s) � c(�0)from Theorem 1. Since (B"; s+ p(B)� p(B")) is right-optimal, we get fromTheorem 2 that cB"(s+p(B)�p(B")) � c(�"). We thus may conclude thatcB(s) � c(�). 17

4.2 Correctness of EXT.GTWWe show in this section that if S1 is a left-adjusted optimal schedule for therestriction of the problem to its �rst q tasks, then the schedule S2 providedby the generic step of EXT.GTW is also a left-adjusted optimal schedule forthe restriction of the problem to its �rst q + 1 �rst tasks.In order to prove the correctness of EXT.GTW, we assume that for anyk 2 f1; � � � ; b(S1)g, the restriction S1[1; ::; nk(S1)] of S1 to its k �rst allocatedblocks is optimal and left-adjusted for the task sequence (T1; � � � ; Tnk(S1)) andwe show the same is true for S2.If !q+1 < fb(S1)(S1), let Ŝ0 be the �rst schedule built by the generic step ofEXT.GTW by adding task Tq+1 to the last allocated block of S1. Then ifEXT.GTW performs K mergings, let Ŝ1; � � � ; ŜK the intermediate scheduleswe got just after these mergings. Notice that if K � 1, then S2 is eitherŜK or results from the occurrence of event F1 or event F2 during the leftshift of the last allocated block of ŜK . Let � be an arbitrary schedule forthe tasks sequence (T1; � � � ; Tq+1). Before we examine the di�erent issuesof the generic step of EXT.GTW, we give two properties that will simplifythe proof: the �rst shows that an allocated block remains right-optimal andquasi left-optimal when it is left-shifted as long as the initially tardy tasksremain tardy.Property 8 Let (D; u) be a right optimal and quasi left-optimal allocatedblock and let v < u. If R(D; v) = R(D; u) then (D; v) is right optimal andquasi left-optimal.Proof. | Let A1; H1; R1 (respectively A2; H2; R2) the number of early, on-time and tardy tasks in (D; u) (respectively (D; v)). Since each tardy task of(D; u) is still tardy in (D; v), we have A2 = A1 +H1, H2 = 0 and R2 = R1.Since LEFT (D; u) is false, we have a(A1 +H1) < rR1 and so we geta(A2 +H2) < rR2 (10)which implies that LEFT (D; v) is false.Consider a proper pre�x D0 ofD and let A01; H 01; R01 (respectively A02; H 02; R02)be the number of early, on-time and tardy tasks in (D0; u) (respectively(D0; v)). Since any tardy task in (D0; u) is still tardy in (D0; v), we get:A02 = A01 + H 01, H 02 = 0 and R02 = R01. As LEFT (D0; u) is true, we havea(A01+H 01) � rR01 and so a(A02+H 02) � rR02, which implies that LEFT (D0; v)is true. Thus (D; v) is quasi left-optimal.18

Let D" be a proper su�x of D. We denote by A"1, H"1 and R"1 (respec-tively A"2, H"2 and R"2) the number of early, on-time and tardy tasksin (D"; u + p(D) � p(D")) (respectively (D"; v + p(D) � p(D"))). Let D̂be the complementary proper pre�x of D" in D. Since each tardy taskin (D̂; u) is still tardy in (D̂; v), we have: Â2 = Â1 + Ĥ1, Ĥ2 = 0 andR̂2 = R̂1. As LEFT (D̂; v) is true, we have a(Â2 + Ĥ2) � rR̂2, whichrewrites a(�A2 + A"2 � H2 + H"2) � r(�R2 + R"2). By summing thatinequality to inequality (10), we get a(A"2 + H"2) > rR"2, which impliesr(R"2 +H"2) > aA"2 and so RIGHT (D"; v+ p(D)� p(D")) is true.For the su�xD itself, inequality (10) directly implies that r(R2+H2) > aA2and so RIGHT (D; v) is true. (D; v) is thus a right-optimal allocated block.The second property whose simple proof is omitted concerns the mergingof a right-optimal and quasi left-optimal allocated block with a left andright-optimal allocated block.Property 9 Let (E; u) be a left and right-optimal allocated block and let(D; u+ p(E)) a right-optimal and quasi left-optimal allocated block. The al-located block (ED; u) is right-optimal. Moreover, (ED; u) is also left-optimal(respectively quasi left-optimal) if LEFT (ED; u) is true (respectively false).We now analyze the di�erent issues of the generic step of EXT.GTW.Case 1: !q+1 > fb(S1)(S1)We have c(S2) = c(S1) since the cost of the last allocated block of S2 is zeroand since c(S1) � c(�[1; ::; q]) from the induction. Since c(�) � c(�[1; ::; q]),we have c(�) � c(S2). So S2 is optimal and left-adjusted.Case 2: !q+1 < fb(S1)(S1) et LEFT (Ŝ0b(Ŝ0)) is trueIf the last allocated block of S1 does not start at time 0, then from theinduction and Property 4, that allocated block is left and right-optimal. Itis then easy to verify that the last allocated block of Ŝ0 which is obtainedfrom the last allocated block of S1 by adding the tardy task Tq+1 is leftand right-optimal too. Let l be the index of the last task of the last-but-one allocated block of S1. From the induction, we have c(Ŝ0[1; ::; l]) =c(S1[1; ::; l] � c(�[1; ::; l]. Moreover we get from Theorems 1,2 and 3 thatthe cost c[Ŝ0[l+ 1; ::; q+1] of the last allocated block of Ŝ0 is at most equal19

to c(�[l+ 1; ::; q+ 1]. We thus have c(Ŝ0) � c(�).If the last allocated block of S1 starts at time 0 (indeed S1 has exactly oneallocated block), then from the induction and Property 4, this bloc is right-optimal. Since the single allocated block making Ŝ0 is also right-optimal,we get from Theorem 3 that c(Ŝ0) � c(�).Cas 3: !q+1 < fb(S1)(S1) et LEFT (Ŝ0b(Ŝ0)) is falseFor each k 2 f0; � � � ; Kg, let (Dk; tk) be the last allocated block of the inter-mediate schedule Ŝk and let respectively ak , hk, rk be the number of early,on-time and tardy tasks of (Dk; tk).From Property 9, the allocated block (D0; t0) is right-optimal and quasi left-optimal since on the one hand LEFT (D0; t0) is false and on the other handthis block results from adding to the last allocated block of S1 (which fromthe induction is left and right-optimal) task Tq+1, which is a right-optimaland quasi left-optimal allocated block.For any k 2 f1; � � � ; K � 1g, the allocated block (Dk; tk) is right-optimaland quasi left-optimal since on the one hand LEFT (Dk; tk) is false andon the other hand this block results from left-shifting (Dk�1; tk�1) (underthe assumptions of Property 8) and the merging of an allocated block S1(which from the induction is left and right optimal with the allocated block(Dk�1; v) (where v < tk�1), which is from Property 8, a right-optimal andquasi left-optimal allocated block.Let us now consider the allocated block (DK ; tK). Properties 8 and 9 yieldthat this block is right and left-optimal (respectively right and quasi leftoptimal) if LEFT (DK; tK) is true (respectively false).If LEFT (DK; tK) is true, then S2 = ŜK . If p is the number of tasks inDK , we have S2[1; ::; q + 1 � p] = S1[1; ::; q + 1 � p]. From the induction,we have c(S1[1; ::; q + 1 � p]) � c(�[1; ::; q + 1 � p]). Moreover since thelast allocated block of S2 is right and left-optimal, Theorem 3 implies thatc(S2[q � p+ 2; ::; q+ 1]) � c(�[q � p+ 2; ::; q+ 1]).If LEFT (DK; tK) is false, then there is one more block left-shifting thatcompletes by the occurrence of event F1 or F3.If F1 occurs, the associated left-shifting matches the assumptions of Prop-erty 8 and S2 has a single allocated block that starts at time 0 and isright-optimal. We then get from Theorem 2 that c(S2) � c(�).If F2 occurs, the last allocated block of S2 results from the left-shiftingof (DK ; tK) but this shift stops because the number of tardy tasks of theshifted allocated block strictly decreases.20

Notice �rst that for any k 2 f0; � � � ; Kg, the inequality a(ak+hk)�r(rk�1) �0 is true. Indeed it is true by the de�nition of a0, h0 and r0 for k = 0. Letus assume it is true at the end of the (k� 1)th merging and let a0, h0 and r0be respectively the number of early, on-time and tardy tasks of the allocatedblock of S1 that is merged during the kth merging. We then have hk = h0,ak = ak�1 + hk�1 + a0 and rk = rk�1 + r0. Since the merged allocated blockof S1 is left-optimal we have a(a0+h0)�rr0 � 0 and since from the inductionwe have a(ak�1 + hk�1) � r(rk�1 � 1) � 0, we get by summing these twoinequalities a(ak + hk)� r(rk � 1) � 0.We thus have: a(aK + hK)� r(rK � 1) � 0: (11)Let (DK ; v) (where v < tK) be the last allocated block of S2 and let A;H etR be respectively the number of early, on-time and tardy tasks of (DK; v).Assume that x � 1 tasks that are tardy in (DK ; tK) are on-time in (DK; v).The allocated block (DK; v) itself satis�es A = aK + hK , H = x and R =rK � x. From Property (11) we geta(A+H)� rR = a(aK + hK)� r(rK � 1) + ax+ r(x� 1):Since x � 1, LEFT (DK; v) is true. Moreover since LEFT (DK; tK) is false,we have that r(R+H)� aA = rrK � a(aK + hK) is strictly positive, whatimplies that RIGHT (DK; v) is true too.Let D0 be a proper pre�x of DK . Let A01; H 01; R01 be respectively the numberof early, on-time and tardy tasks of (D0; tK) and let A02; H 02; R02 be respec-tively the number of early, on-time and tardy tasks of (D0; v). Let y � 0 bethe number of tardy tasks of (D0; tK) that are on-time in (D0; v). We haveA02 = A01, H 02 = H 01 + y and R02 = R01 � y. We thus get thata(A02 +H 02)� rR02 = a(A01 +H 01)� rR01 + y(r+ a)what shows that LEFT (D0; v) is true.Let D" be a proper su�x of DK . Let A"1; H"1; R"1 be respectively thenumber of early, on-time and tardy tasks of (D"; tK + p(DK)� p(D")) andlet A"2; H"2; R"2 be respectively the number of early, on-time and tardytasks of (D"; v + p(DK)� p(D")). Let z � 0 be the number of tardy tasksin (D"; tK + p(DK)� p(D")) that are on-time in (D"; v+ p(DK)� p(D")).We have A"2 = A"1, H"2 = H"1 + y and R"2 = R"1 � y. So we get thatr(R"2+H"2)� aA"2 = a(R"1 +H"1)� rR"121

what shows that RIGHT (D"; v+ p(DK)� p(D")) is true.As a conclusion the allocated block (DK; v), which is the last allocated blockof S2 is left and right-optimal. If that block has p tasks, we have S2[1; ::; q+1�p] = S1[1; ::; q+1�p]. From the induction, we have c(S1[1; ::; q+1�p])�c(�[1; ::; q + 1 � p]) and from Theorem 3 we get c(S2[q � p + 2; ::q + 1]) �c(�[q � p+ 2; ::q+ 1]). We thus may conclude that c(S2) � c(�).We have shown that, for each issue of the generic step of EXT.GTW, S2 isan optimal schedule for the tasks sequence (T1; � � � ; Tq+1). That schedule isleft-adjusted since on the one hand each allocated block, which is not thelast one and that does not starts at time 0 is left-optimal from the inductionand on the other hand we have shown that the last allocated block is alsoleft-optimal for all issues of the generic step except event F1. Finally therestriction S2[1; ::; nk(S2)] of S2 to its k �rst allocated blocks is optimal andleft-adjusted for the tasks sequence (T1; � � � ; Tnk(S2)) since on the one handthat is true from the induction for k 2 f1; � � � ; b(S2) � 1g and on the otherhand we have shown that is also true for S2 itself.Since the generic step of EXT.GTW correct, EXT.GTW is also correctbecause the schedule S1 provided for the single task T1 is optimal, left-ajusted and has a single block.4.3 Worst-case complexity of EXT.GTWLet us associate with each allocated block (Bk; sk) of the running schedulethe heap Tk that contains the tardy tasks of (Bk; sk), each with a priorityequal to its tardiness. Each iteration of the mergings loop within the genericstep of EXT.GTW performs a left-shifting whose complexity is O(1) sinceit corresponds to add a constant to the prioriry of all the tasks in the heapand the merging that may be executed in O(logn)). The key point here is tonotice that the total number of mergings during an execution of EXT.GTWis O(n) since each merging decreases by one the number of allocated blocksin the current schedule of EXT.GTW. The complexity of all the mergings isthus O(n logn). Apart from the merging loop, the complexity of the genericstep of EXT.GTW is O(1) except when the task Tq+1 has to be inserted inthe heap associated with the last allocated block of S1 as its last (tardy) task,in which case the complexity is O(logn). The overall worst-case complexityof EXT.GTW is thus O(n logn). 22

5 Asymmetric and task-dependent costsThe approach of Section 4 does not easily extend to the general problemwhere asymmetric and task-dependent costs are assumed. We present forthat problem a polynomial algorithm based on the convexity of the timefunction cB(t), on an enhancement of the left-adjusted schedule notion andon the modelling of the problem as the search of a minimum-cost path in adirected acyclic graph.Let S = ((B1; s1); � � � ; (Bb; sb)) be a schedule. The allocated block (Bk; sk)of S is said to be strongly left-adjusted in S if for any t 2 [fk�1; sk[and forany pre�x B0k of Bk, we have cB0k(t) > cB0k(sk) (with by convention f0 = 0).By extension, S is said to be strongly left-adjusted if each of its allocatedblocks is strongly left-adjusted. A pre�x B0k of Bk is said to be left-movablein S if �B0k < sk .The following property shows that there is one optimal schedule that isstrongly left-adjusted.Property 10 The strongly left-adjusted schedules are dominantProof. | Let S = ((B1; s1); � � � ; (Bb; sb)) be an optimal and not stronglyleft-adjusted schedule. Let (Bk ; sk) be the �rst non strongly left-adjustedallocated block (Bk; sk). Let B�k be the smallest left-movable pre�x of Bk .Notice that B�k is not the empty pre�x since (Bk; sk) is not strongly left-adjusted. We then de�ne the schedule S0 as follows:First case: �B�k � fk�1:S0 = LEFTSHIFT&MERGE(S;B�k; sk). From the de�nition of B�k andsince (Bk�1; sk�1) is strongly left-adjusted, we derive that the allocated block(Bk�1B�k ; sk�1) is strongly left-adjusted.Second case: �B�k > fk�1.S0 = LEFTSHIFT (S;B�k; sk; �B�k). From the de�nition of B�k , note that inthis case the allocated block (B�k ; �B�k) of S0 is strongly left-adjusted.Whatever the case, S0 is still an optimal schedule and the index of the lasttask of the last strongly left-adjusted allocated block is stictly larger in S0than in S. So, iterating the process (at most n times) as long as the currentschedule is not strongly left-adjusted yields an optimal strongly left-adjustedschedule.The block B = (Ti; � � � ; Tj) is said to be left-indivisible if for any properpre�x B0 of B we have �B0 � �B. Similarly, B is said to be right-indivisibleif for any proper su�x B" of B we have �B" � �B + p(B) � p(B"). The23

following property gives a strong necessary condition on the starting timesof the allocated blocks of an optimal and strongly left-adjusted schedule.Theorem 4 Let S = ((B1; s1); � � � ; (Bp; sp)) be an optimal and strongly left-ajusted schedule. For any k 2 f1; � � � ; pg, if sk > 0 then the block Bk is rightand left indivisible and sk = �Bk. If s1 = 0 then B1 is right indivisible.Proof. | Let S be an optimal and strongly left-adjusted schedule and let(Bk ; sk) be an allocated block of S such that sk > 0. If sk < �Bk , byright-shifting (Bk; sk) a su�ciently small amount of time � > 0 we get fromProperty 1 a feasible schedule whose cost is strictly smaller than the cost ofS, what contradicts the optimality of S. If sk > �Bk , by left-shifting (Bk; sk)a su�ciently small amount of time � > 0 we get from Property 1 either aschedule with a strictly smaller cost, what contradicts the optimality of S,or a schedule with the same cost as S, what contradicts the (strongly) left-adjusted assumption on S. We thus have sk = �Bk for any k 2 f1; � � � ; pgsuch that sk > 0.Assume that �Bk > 0 and that there is a proper pre�x B0k of Bk such that�B0k < �Bk . There exists a su�ciently small � > 0 such that the scheduleS0 = LEFTSHIFT (S;B0k; �Bk ; �Bk � �) is feasible. From Property 1 wethen get that c(S0) � c(S), what means that S is not strongly left-adjusted.Assume that �Bk > 0 and that there exists a su�x B"k of Bk such that�B"k > �Bk + p(B0k). There exists a su�ciently small � > 0 such thatthe schedule S" = RIGHTSHIFT (S;B"k; uk; uk + �), where uk = �Bk +p(Bk)�p(B"k), is feasible. From Property 1 we get that c(S") < c(S), whatcontradicts the optimality of S.Assume that s1 = 0 and that there exists a su�x B"1 ofB1 such that �B"1 >�B1 + p(B01). There exists a su�ciently small � > 0 such that the scheduleS" = RIGHTSHIFT (S;B"1; u1; u1 + �), where u1 = p(B1) � p(B"1), isfeasible. From Property 1 we get that c(S") < c(S), what contradicts theoptimality of S.The necessary condition provided by Theorem 4 leads us to de�ne the fol-lowing valued directed graph called IBG (for indivisible-block graph):The vertices of IBG are:1. the block Bi;j = (Ti; � � � ; Tj) if 1 � i � j � n right and if Bi;j is a rightand left-indivisible block,2. the block B̂1;i if i 2 f1; � � � ; ng and if B̂1;i is a right-indivisible block(B̂1;i corresponds to the allocated block (B1;i; 0)),24

3. a source node � and a sink node �.The valued arcs of IBG are:1. for any i 2 f1; � � � ; ng, the arc (�;B1;i) valued by
B1;i ;2. for any i 2 f1; � � � ; ng, the arc (�; B̂1;i) valued by cB1;i(0);3. for any i 2 f1; � � � ; ng, the arc (Bi;n; �) valued by 0;4. for each pair of nodes (Bi;j and Bj+1;k) such that �Bj+1;k � �Bi;j �p(Bi;j) the arc (Bi;j ; Bj+1;k) valued by
Bj+1;k ;5. for each pair of nodes B̂1;j and Bj+1;k such that �Bj+1;k � p(B1;j), thearc (B̂1;j ; Bj+1;k) valued by
Bj+1;k .A path from � to � in IBG corresponds to a schedule matching the assump-tions of Theorem 4 and conversely every schedule matching these conditionscorresponds to a path from � to � in IBG. Moreover the cost of the path andthe cost of the associated schedule are the same. We thus get the followingproperty:Property 11 An optimal and strongly left-adjusted schedule corresponds toa minimum-cost path from � to � in IBG.We propose the following two-step algorithm to compute a minimum-costschedule: the �rst step builds IBG from the problem instance while thesecond step computes a minimum-cost path from � to � in IBG. Note thatsince IBG is acyclic, the Bellman's algorithm may be used in the secondstep.Worst-case complexityThe number of vertices of IBG is clearly O(n2). Since each block Bi;j hasn� j immediate successors and since for �xed j, there are j� 1 blocks Bi;j ,the number of arcs of IBG is O(n3). If Bi;j is a block with k tasks, thenby using an heap to maintain the set of the early tasks of the allocatedblock (Bi;j ; t) (initialy (Bi;j ; 0)), the pair (�Bi;j ;
Bi;j) may be computed inO(k log k). Thus computing all these pairs takes O(n3 logn). Moreover de-ciding whether the k-tasks block Bi;j is right and left-indivisible takes O(k).So computing the nodes of IBG takes O(n3 logn). Since searching for aminimum-cost path in IBG takes O(n3), the worst-case complexity of the25

algorithm is O(n3 log n).Notice that restricting to the indivisible blocks increases the worst-case com-plexity compare to a more naive algorithm with worst-case complexity O(n3)that would consider all the blocks Bi;j such that 1 � i � j � n and B̂1;isuch that 1 � i � n. However it appears that in practice many blocks aredivisible so that it is really worth taking the time to search for the indivisibleblocks to get a graph with a quite smaller number of nodes.6 ConclusionIn this paper, we �rst have proposed an O(n logn) algorithm for the specialcase of assymmetric and task-independent costs. This algorithm extends aprevious algorithm by Garey et al. that applies to the case of symmetric andtask-independent costs without increasing its worst-case complexity. For thegeneral case with assymetric and task-dependent costs, we have proposedan O(n3 log n) algorithm, which is based on a strong necessary conditionon the starting times of the allocated blocks of an optimal and stronglyleft-adjusted schedule. We now plan to study algorithms for minimizing themean cost per iteration for in�nite periodic tasks systems.References[1] M.R. Garey, R.E. Tarjan and G.T. Wilfong (1988). One-processorscheduling with symmetric earliness and tardiness penalties, Maths ofO.R.,13, 2, 330-348.[2] K.R. Baker and G.D. Scudder (1989). Sequencing with Earliness-Tardiness Penalties: a Review Operations Res., 38, 1, 22-36.[3] V. Gordon, J.M. Proth and C. Chu (1998). A State-of-the-Art Surveyof Due Date Assignment and Scheduling Research: Common Due DateRapport de recherche INRIA, 3454, theme 4.[4] V. Gordon, J.M. Proth and C. Chu (1998). A State-of-the-Art Sur-vey of Due Date Assignment and Scheduling Research: SLK, TWKand Other Due Date Assignment Models Rapport de recherche INRIA,3537, theme 4. 26

[5] J.A. Hoogeveen and S.L. Van de Velde (1996). A branch-and-BoundAlgorithm for Single-Machine Earliness-Tardiness Scheduling with IdleTime, INFORMS Journal on Computing, 8, 4, 402-412.[6] A. Federgruen and G. Mosheiov (1997). Single-Machine SchedulingProblems with General Breakdowns, Earliness and Tardiness Costs,Operations Research, 45, 1, 66-71.[7] A. Federgruen and G. Mosheiov (1994). Greedy Heuristics for Single-Machine Scheduling Problems with General Earliness and TardinessCosts, Operations Research Letters, 16, 199-208.[8] N.G. Hall, W. Kubiak and S.P. Sethi(1991). Earliness-TardinessScheduling Problems II. Deviation of Completion Times about a Re-strictive Common Due Date, Operations Research, 39, 102-110.[9] N.G. Hall, W. Kubiak and S.P. Sethi(1991). Earliness-TardinessScheduling Problems II. Deviation of Completion Times about a Re-strictive Common Due Date, Operations Research, 39, 102-110.

27

