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AN ALGORITHMIC FRAMEWORK FOR COLOURING LOCALLY SPARSE
GRAPHS

EWAN DAVIES, ROSS J. KANG, FRANÇOIS PIROT, AND JEAN-SÉBASTIEN SERENI

Abstract. We develop an algorithmic framework for graph colouring that reduces the problem
to verifying a local probabilistic property of the independent sets.

With this we give, for any fixed k ≥ 3 and ε > 0, a randomised polynomial-time algorithm
for colouring graphs of maximum degree ∆ in which each vertex is contained in at most t copies
of a cycle of length k, where 1/2 ≤ t ≤ ∆

2ε
1+2ε /(log ∆)2, with b(1 + ε)∆/ log(∆/

√
t)c colours.

This generalises and improves upon several notable results including those of Kim (1995) and
Alon, Krivelevich and Sudakov (1999), and more recent ones of Molloy (2019) and Achlioptas,
Iliopoulos and Sinclair (2019). This bound on the chromatic number is tight up to an asymptotic
factor 2 and it coincides with a famous algorithmic barrier to colouring random graphs.

1. Introduction

Let G = (V,E) be a graph. An independent set of G is a vertex subset that induces an edgeless
subgraph of G. The independence number α(G) of G is the cardinality of a largest independent
set of G. The chromatic number χ(G) of G is the least number of parts in a partition of V
into independent sets of G. Determining or bounding these structural parameters have been of
fundamental importance to algorithms, optimisation, and operations research [30]. Moreover,
they have been central in the development of combinatorial mathematics, especially with respect
to random graphs and extremal combinatorics [39, 21, 19, 20].

The algorithmic and combinatorial perspectives are inextricably linked. As an example,
with an interpretation of the random graph Gn,1/2 as a model of average-case behaviour, Karp
asked in 1976 [31] if for some positive ε there is a polynomial-time algorithm that outputs an
independent set in Gn,1/2 of size (1 + ε) log2 n with probability tending to 1 as the number
of vertices n tends to infinity, that is, with high probability (w.h.p.). (It is a basic fact that
existentially we have α(Gn,1/2) ∼ 2 log2 n w.h.p.) Karp’s question remains open and has helped
to provoke an influential, sustained series of investigations in random graph theory, cf. e.g. [29]
for a survey from the perspective of graph colouring. As another example, there are notorious
gaps between the best-known upper and lower estimates on classical Ramsey numbers, but
bounds have nevertheless proven useful towards approximation algorithms, cf. e.g. [26, 6].

Our main contribution is a novel framework for the asymptotic global structure—in terms
of independent sets or colourings—of graphs that satisfy some local sparsity condition, having
e.g. few edges in any induced neighbourhood subgraph. This framework is built around the
establishment of elementary local properties of the so-called hard-core model on a graph, a
probabilistic approach having its roots in statistical physics. Our work lies near the interface
between the above-mentioned parallel perspectives, and in fact is closely related to the two
examples above. In this extended abstract we focus on algorithmic aspects of our framework,
through one specific (and important) application, and show a comfortable incorporation of
modern stochastic local search machinery to improve on the state of the art. In a companion
paper [17] we explore a broader but also more combinatorial array of applications, prioritising
not-necessarily-algorithmic existential results.

(E. Davies) The research leading to these results has received funding from the European Research Council
under the European Union’s Seventh Framework Programme (FP7/2007-2013) / ERC grant agreement № 339109.
Part of this work was done while the author was visiting the Simons Institute for the Theory of Computing.

(R. J. Kang) Supported by a Vidi grant (639.032.614) of the Netherlands Organisation for Scientific Research
(NWO).
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One old and basic starting point for this research is the pursuit of global asymptotic structure in
triangle-free graphs, that is, in graphs having no edges whatsoever in any induced neighbourhood
subgraph. The search for large independent sets in this context corresponds to the classic
off-diagonal case of Ramsey numbers [39, 21, 3, 4, 40, 33, 9, 10, 25, 16], a foundational and
profoundly difficult problem in combinatorics. The search for good colourings in this context, a
related but more delicate task, is also an important challenge of classic origins, cf. [45, 41].

There is particular interest in graphs of bounded maximum degree, with natural links to
approximation algorithms, cf. e.g. [26, 6]. For colouring this interest originated in a question of
Vizing from 1968 [42]: what is the largest chromatic number taken over all triangle-free graphs of
maximum degree ∆? (Even without the triangle-free condition a trivial greedy argument yields
an upper bound of ∆+1, which is sharp for odd cycles and cliques.) Simultaneously strengthening
a seminal result of Ajtai, Komlós and Szemerédi [4] for the independence number and answering
Vizing’s question up to the choice of leading asymptotic constant, Johansson [28] devised a
sophisticated semirandom colouring procedure to establish an upper bound of O(∆/ log ∆) as
∆ → ∞. Recently, in a dramatic advance, Molloy [34] employed entropy compression for a
simplified proof and an intriguing improvement over Johansson’s result, quantitatively matching
an analogous independence number bound of Shearer [40].
Theorem 1 (Molloy [34]). For all ε > 0, there exists ∆0 such that if ∆ ≥ ∆0, then χ(G) ≤
(1 + ε)∆/ log ∆ for any given triangle-free graph G of maximum degree ∆. There is a randomised
algorithm that in polynomial time w.h.p. constructs a certificate colouring of G.
For a hint of how difficult it might be to improve on this result, particularly with respect to the
asymptotic leading constant of 1, one can take two issues into consideration. First, lowering the
constant appreciably would by the same token improve upon the best to date lower bounds on
the classical off-diagonal Ramsey numbers (which are due to Shearer [40] as alluded to above),
and it would constitute a breakthrough in quantitative Ramsey theory. Second, a lowering of
the constant and with a polynomial-time algorithm would essentially imply a positive answer to
the direct analogue of Karp’s question above, for the random ∆-regular rather than binomial
random graph. Indeed, the following result is well known in random graph theory.
Proposition 2. For all ε > 0, there exists some ∆0 such that for all fixed ∆ ≥ ∆0, we have
the following for all n sufficiently large. With probability at least 1− ε, the random ∆-regular
graph Gn,∆ on n vertices is triangle-free and satisfies α(Gn,∆) ∈ (2± ε)(n log ∆)/∆.
Since α(G) ≥ |V |/χ(G) for all G = (V,E), this shows the asymptotic leading term in Molloy’s
result (and the corresponding result of Shearer) to be correct up to a factor 2.

We offer a more general principle behind Theorem 1, through locally-defined probabilistic
properties of the independent sets. Through this, one may witness that certain methods behind
Theorem 1 are sharp and cannot be improved asymptotically; we discuss this in Subsection 1.2.
Important too is that the principle is flexible enough for a host of applications, which we partially
present through this extended abstract (with more treated in the companion paper [17]). To
give a first flavour of the extra breadth in our approach, here is a prototypical version of our
main result in this extended abstract. For k ≥ 3, let us define the fan Fk of order k as the graph
formed from a path on k − 1 vertices by adding a vertex joined to all vertices of the path. We
call a graph Fk-free if it does not contain the fan Fk as a subgraph.
Theorem 3. Fix an integer k ≥ 3. For all ε > 0, there exists some ∆0 such that if ∆ ≥ ∆0,
then χ(G) ≤ (1 + ε)∆/ log ∆ for any given Fk-free graph G of maximum degree ∆. There is a
randomised algorithm that in polynomial time w.h.p. constructs a certificate colouring of G.
Note Fk contains a cycle of each length between 3 and k, and so this strengthens Theorem 1
in a natural way. For k > 3, earlier work in this direction [5, 43, 2] was not enough to obtain
a leading asymptotic constant of 1 (even without demanding a polynomial-time algorithm).
Keeping in mind Proposition 2, this constant is at most twice the optimal value, just as for
Theorem 1.

Another basic but more modern starting point for this research is the investigation of stochastic
local search algorithms. In broad terms, given a state space equipped with a probability
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measure that has designated flawed subsets (or flaws), under what circumstances is there an
efficient randomised algorithm, performing local moves, to arrive at a flawless state? (One
can think of a flawless state as, say, a satisfying assignment or a colouring.) In a remarkable
breakthrough, Moser [36] (cf. [37]), showed that the Lovász local lemma [23]—a fundamental
result for proving the existence of combinatorial structures with the probabilistic method—follows
from an elementary stochastic search algorithm based on resampling parts of the current state.
In his analysis, Moser devised the entropy compression method mentioned earlier, and this has
since found wide applicability to various search algorithms that backtrack to avoid problematic
regions of the state space, cf. e.g. [24]. Achlioptas, Iliopoulos, and Sinclair [2] recently gave a
powerful algorithmic form of the local lemma that permits the analysis of hybrid algorithms,
that can both resample and backtrack. As their main application, they gave the following
generalisation of Theorem 1, under a smooth relaxation of the triangle-free condition.

Theorem 4 (Achlioptas, Iliopoulos, and Sinclair [2]). For all ε > 0, there exists ∆0 such that if
∆ ≥ ∆0 and 1/2 ≤ t ≤ ∆

2ε
1+2ε /(log ∆)2, then χ(G) ≤ (1 + ε)∆/ log(∆/

√
t) for any given graph G

of maximum degree ∆ where each vertex of G is contained in at most t triangles. There is a
randomised algorithm that in polynomial time w.h.p. constructs a certificate colouring of G.

1.1. Our contributions. As mentioned above, our main achievement is the development of a
general framework for global graph structure that significantly strengthens the results stated
above (Theorems 1, 3, and 4). It encompasses or improves upon a long line of earlier work in
this area [2, 5, 7, 13, 14, 28, 32, 34, 43]. The framework in general reduces the main task to the
verification of a probabilistic property of the independent sets that we call local occupancy. In
several applications this verification is straightforward, resulting in simplified proofs for existing
results with matching or improved bounds, cf. [17]. Moreover, subject to mild extra conditions,
we can give polynomial-time constructions, which is our focus here. Our main application is a
common generalisation of Theorems 3 and 4 (and it implies the announced result since Ck ⊂ Fk).

Theorem 5. Fix an integer k ≥ 3. For all ε > 0, there exists ∆0 such that if ∆ ≥ ∆0 and
1/2 ≤ t ≤ ∆

2ε
1+2ε /(log ∆)2, then χ(G) ≤ (1+ε)∆/ log(∆/

√
t) for any given graph G of maximum

degree ∆ where each vertex of G is contained in at most t copies of the fan Fk. There is a
randomised algorithm that in polynomial time w.h.p. constructs a certificate colouring of G.

Our method builds upon Molloy’s proof of Theorem 1, starting with a ‘blank’ partial colouring
and resampling the colours of neighbourhoods until a flawless partial colouring is found. We
have distilled the graph structure necessary for this resampling to eventually succeed, namely
local occupancy, and this strategy alone suffices for the existence of colourings as guaranteed by
Theorem 5. Resampling is performed according to the hard-core model and in general this is
not known to be possible in polynomial time. A crucial innovation we develop to raise k from 3
(Theorem 4) to an arbitrary integer is an efficient resampling if the neighbourhood contains no
long path (Theorem 18). These ideas already suffice for Theorem 3 (which corresponds to the
case t < 1), but for Theorem 5 we incorporate an adaptation of the backtracking steps used in [2]
for Theorem 4 with the stated upper bound on t. Thus we handle few copies of Fk by ‘removing’
an edge in each copy and show that the removed edges are unlikely to stall the algorithm. That is,
we can successfully backtrack away from colourings that make the removed edges monochromatic
and still show the algorithm will terminate. We remark that the upper bound condition on t in
Theorems 4 and 5 stems from the demand for a polynomial-time construction. For existence
alone, one can not only substantially relax the condition on t but also allow k to increase as a
modest function of ∆, as we show in the companion paper [17].

1.2. Optimality. As intimated earlier, two important and related facts support the idea that
our method is optimal. The first concerns Karp’s longstanding question mentioned earlier. The
difficulty in this is now recognised as deriving from shattering (or dynamic replica symmetry
breaking, as it is referred to in statistical physics) in the collection of independent sets of a
given size [44, 1, 11]. The rough intuition (stated in terms of Karp’s question) is that as the
desired set size increases from (1− ε) log2 n to (1 + ε) log2 n, the collection of independent sets



4 E. DAVIES, R. J. KANG, F. PIROT, AND J.-S. SERENI

of Gn,1/2, as considered under a suitable and natural metric, abruptly transitions from a well-
connected space into one with exponentially many well-separated pieces. After this transition,
any algorithm for finding independent sets of the desired size (let alone colourings whose average
part size is at least the desired set size) must ably navigate this shattered space. Thus log2 n
is considered an intuitive algorithmic barrier for the independent set problem in Gn,1/2, and
analogously n/ log2 n is an algorithmic barrier for colouring Gn,1/2. A similar intuition should
hold for binomial random graphs throughout the range of choices for the edge probability
p = p(n) satisfying np = Ω(1) and p = o(1) and analogously also for random ∆-regular graphs
with ∆ fixed, with thresholds at around 1

p log(np) (or np/ log(np)) and n
∆ log ∆ (or ∆/ log ∆),

respectively. An affirmative answer to Karp’s question, or its analogue for random regular
graphs, would be considered an unexpected and sensational achievement. Theorem 5 (just as
does Theorem 1 or 4) precisely matches this algorithmic barrier. In particular, by Proposition 2
the random ∆-regular graph provides examples of triangle-free, and so Fk-free, graphs G such
that χ(G) ≥ (1/2 − o(1))∆/ log ∆ as ∆ → ∞. By comparison, Theorem 5 with a choice of
ε = ε(∆) = o(1) (and so t = ∆o(1)) as ∆→∞ (covering a much more general class of graphs)
efficiently certifies χ(G) ≤ (1 + o(1))∆/ log ∆.

The second and more concrete fact is that our framework (see Section 2) incorporates the
quantitative probabilistic property of local occupancy. We find asymptotically tight parameters
for local occupancy in graphs of maximum degree ∆ where each vertex is contained in ∆o(1)

copies of Fk (for any fixed k ≥ 3) as ∆→∞, see Appendix A. Then to improve the leading order
of the upper bound in Theorem 5 for t = ∆o(1) must require novel techniques that use more
sophisticated knowledge of the underlying structure of the graph. The methods used to prove
Theorems 1, 4 and 5 all hit the same obstruction, and our reduction of the problem to local
occupancy suggests that surpassing these bounds will require a more global approach. Showing
even only the existence of a colouring (so without requiring a polynomial-time construction) that
betters these bounds by some constant factor, e.g. via some global data that bypasses the local
occupancy bottleneck, would be a breakthrough in classical Ramsey theory and graph colouring.

An alluring feature of our work is the suggestion that local occupancy and the algorithmic
barrier might be two sides of the same coin. Could it be the case that for locally sparse n-vertex
graphs G, given q such that there are enough independent sets of size at least n/q in G so that
q-colouring can be performed efficiently, the collection of independent sets in the graph will be
sufficiently rich and ‘well connected’ to permit local occupancy with parameters that enable our
method to show χ(G) ≤ q?

1.3. Organisation. In Section 2 we introduce the main concepts in our framework and state
the key results that establish its efficacy. In Section 2.1 we give a general algorithm for graph
colouring and analyse it with our framework. In Section 3 we verify the probabilistic information
necessary to apply our framework in the case of graphs with few fans, completing the proof of
Theorem 5, and in Appendix A we discuss barriers to improving our results. We defer several
technical proofs to Appendices B and C.

2. The framework

We introduce some extra notation for two concepts central to our framework. First we
do so for an important strengthened form of colouring, through which we prove all of our
results. A q-list assignment of G is a function L such that L(u), for each vertex u ∈ V (G), is
a list of colours (natural numbers) of size q, and an L-colouring of G is a colouring with no
monochromatic edges such that the colour of u is a member of L(u) for each vertex u. Then
the list chromatic number χ`(G) of G is the least integer q such that every q-list assignment L
admits an L-colouring. By taking L(u) = {1, . . . , q} for each u we see that χ(G) ≤ χ`(G) always.
Note that Johansson’s and Molloy’s bounds mentioned above were also shown in terms of χ`.
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Second we write I(G) for the set of independent sets in a graph G, and µG,λ for the hard-core
model on G at fugacity λ, the probability measure on I(G) with

µG,λ(I) := λ|I|

ZG(λ) ,

where λ > 0 is the fugacity parameter, and ZG(λ) :=
∑
I∈I(G) λ

|I| is the partition function. Its
occupancy fraction is E|I|/|V (G)|, where I ∼ µG,λ, i.e. the expected fraction of the vertices in a
random sample from µG,λ. We frequently drop subscripts when they are clear from context.

Our framework outputs a range of structural information for a graph with the verification
of a condition in terms of the hard-core model, which we call local occupancy. This systematic
approach began with a number of previous works [15, 16, 35, 13, 14] on occupancy fraction and
fractional colouring. Here we focus on our framework’s consequences for efficient (list) colouring,
and refer the reader to the companion paper [17] for more general structural implications.

Definition 6. We say that the hard-core model on a graph G at fugacity λ has strong local
(β, γ)-occupancy if, for every vertex u ∈ V (G) and subgraph F ⊂ G[N(u)] we have

β
λ

1 + λ

1
ZF (λ) + γ

λZ ′F (λ)
ZF (λ) ≥ 1.

One easily checks that this condition implies β Pr(u ∈ I)+γE|I∩N(u)| ≥ 1 for any u, motivating
the label. The reason for including the adjective ‘strong’ relates to some technical subtleties we
discuss later as well as in [17]. In an abbreviated form, our framework is as follows.

Theorem 7. Let G be a graph of maximum degree ∆ ≥ 26 such that the hard-core model on G at
fugacity λ has strong local (β, γ)-occupancy for some λ, β, γ > 0. Suppose there exists ` > 7 log ∆
such that for all vertices u ∈ V (G) and subgraphs F ⊂ G[N(u)] on at least `/8 vertices we have
ZF (λ) ≥ 8∆4. Then the list-chromatic number of G is at most q, where

q := r

(
β + γ

∆
r

)
and r := λ

1 + λ

`

1−
√

7(log ∆)/`
.

In this form, the framework essentially reduces the task of bounding the chromatic number from
above to minimising β + γ∆/r subject to local (β, γ)-occupancy, an optimisation which can be
routinely performed to yield several other applications, cf. [17]. We have given a conceptually
elegant proof of Theorem 7 (in the style of Bernshteyn [7]) in [17]. For polynomial-time
constructions, here we need a more involved proof that requires some additional assumptions.

For an organic assimilation of the hard-core model in our arguments, it will be helpful to
represent list colourings through an auxiliary cover graph as in the work of Dvořák and Postle [18],
on a stronger variant of list colouring called correspondence colouring. (This is a key insight.)

Definition 8. Given a graph G, a cover of G is a pair H = (L,H), consisting of a graph H
and a mapping L : V (G)→ 2V (H), satisfying the following requirements:

(i) the sets {L(u) : u ∈ V (G)} form a partition of V (H);
(ii) for every u ∈ V (G), the graph H[L(u)] is complete;
(iii) if EH(L(u), L(v)) 6= ∅, then either u = v or uv ∈ E(G);
(iv) if uv ∈ E(G), then EH(L(u), L(v)) is a matching (possibly empty).

A cover H = (L,H) of G is q-fold if |L(u)| = q for all u ∈ V (G). An H -colouring of G is an
independent set in H of size |V (G)|.

Although covers as defined here capture a more general notion, most of our results here will
remain restricted to list colouring. (We discuss the subtleties at the end.) Given a q-list
assignment L̃ of G we create a q-fold cover H = (L,H) of G such that H -colourings of G
correspond to L-colourings of G by making the sets L(u) formally disjoint copies of the lists
L̃(u), and for every edge uv ∈ E(G) adding an edge between x ∈ L(u) and y ∈ L(v) whenever
x and y are two copies of the same colour. In an attempt to avoid confusion we will refer to
elements of the lists L̃(u) as natural numbers, and we will refer to vertices of H as colours. We
shorten the phrase ‘cover that arises from a list assignment’ to ‘list-cover’.
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We now state the extra assumptions needed for our framework to yield an efficient algorithm.

Theorem 9. Suppose that the conditions of Theorem 7 hold, and let n := |V (G)|. Suppose also
that there is a class of graphs C and an integer t such that the following hold.

(i) For each u ∈ V (G), each induced subgraph F ⊂ G[N(u)], and any list-cover H ′ = (L′, H ′)
of F with at most ∆ colours in each list, we have a procedure Remove(F,H ′), running
in time Tr ≥ ∆, for finding a set R of edges in F such that |R| ≤ t and the graph Ĥ
obtained from H ′ by removing any edge between L′(v) and L′(w) for vw ∈ R satisfies
Ĥ ∈ C.

(ii) For each Ĥ ∈ C we have a procedure Sample(Ĥ, λ) for sampling from the hard-core
model on Ĥ at fugacity λ in time Ts.

(iii) The integer t satisfies 0 ≤ t ≤ `/40.
Then, for any q-list-assignment L̃ of G, there is a randomised algorithm that constructs, for
any c ∈ (0, 1), an L̃-colouring of G as guaranteed by Theorem 7 in time

O
(
(Tr + Ts)∆ log(max(`/λ, `))n+ n1+c)

with probability at least 1− 2/nc.

In general the graphs F can have ∆ vertices so the maximum of Ts and Tr could be exponential
in ∆. When G has few copies of Fk we show that these conditions hold with C the class of
covers of Fk-free graphs with at most ∆ colours in each list, and with Tr and Ts polynomial in
∆, leading to the polynomial running time bound announced in Theorem 5.

2.1. An algorithm for graph colouring. First here is an overview of the two-phase method.
We define (precisely later) a flaw for u to capture the problem of having too few available colours
or too much competition for available colours. The first and foremost phase of the proof is that
subject to the conditions of Theorem 9, a flawless partial colouring of G can be found efficiently.

Lemma 10. Suppose that the conditions of Theorem 9 hold, and let H = (L,H) be a q-fold
list-cover of G. Then there is an algorithm that constructs a flawless partial H -colouring of G
in time O

(
(Tr + Ts)∆ log(max(`/λ, `)) · n

)
with probability at least 1− 2−n.

The second phase is that a flawless partial colouring can be efficiently completed to a list colouring
of G. This ‘efficient finishing blow’ is standard and was established in earlier work [34, 2].

Lemma 11. Suppose that the conditions of Theorem 9 hold, H = (L,H) is a q-fold list-cover
of G, and let σ be a flawless partial H -colouring of G. Then there is an algorithm that finds,
for each c ∈ (0, 1), an H -colouring of G in time O

(
n1+c) with probability at least 1− 1/nc.

Note that Lemma 10 followed by Lemma 11 directly implies Theorem 9.
The algorithm for Lemma 11 selects a colour for the remaining vertices uniformly at random,

resampling if there are any conflicts. For completeness we give a sketch proof in Appendix B.4.
The algorithm for Lemma 10 explores the space of partial colourings of G, starting with a

trivial colouring in which every vertex is coloured blank. We define an order on flaws, and while
the current partial colouring σ is flawed we execute a resampling action to address the least flaw
present in σ and move to a new partial colouring. We give the proof of Lemma 10 in the rest of
this section with some details deferred to Appendix B.

2.1.1. Notation. Given the setup of Theorem 7, we work with a q-fold list-cover H = (L,H)
of G. For a set S ⊂ V (G) we write L(S) :=

⋃
u∈S L(u). We refer to the vertices of H as colours,

and write H∗ for the graph obtained from H by removing all edges inside the sets L(u) for
all u ∈ V (G). Then for u ∈ V (G) and x ∈ L(u) we write deg∗H (x) for the degree in H∗ of a
colour x, which is the number of colours on lists of neighbours of u that conflict with x.

Writing B for a special blank colour, and borrowing from [2], a partial H -colouring σ of G is
a function from V (G) to {B} ∪ V (H) ∪ E(G) such that the following hold.

(i) For all u ∈ V (G), either σ(u) = B, σ(u) ∈ L(u), or σ(u) = e ∈ E(G) with u ∈ e.
(ii) Restricting the image of σ to V (H) gives an independent set; σ(V (G)) ∩ V (H) ∈ I(H).
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We write Ω for the set of such partial H -colourings σ, and omit the prefix H when it is clear.
Given σ ∈ Ω we have blank vertices bla(σ) := {u ∈ V (G) : σ(u) = B} for which σ(u) = B,

coloured vertices col(σ) := {u ∈ V (G) : σ(u) ∈ L(u)} for which σ(u) ∈ L(u), and uncoloured
vertices unc(σ) := {u ∈ V (G) : σ(u) ∈ E(G)} for which σ(u) is an edge of G containing u. We
also write ind(σ) := σ(V (G)) ∩ V (H) = σ(col(σ)) for the independent set in H signified by σ.

We also require some notation for the cover that remains on the blank vertices. We write
Gσ := G[bla(σ)] for the subgraph of G induced by bla(σ), and then write Hσ = (Lσ, Hσ) for
the cover of Gσ obtained by setting Lσ(u) := L(u) \ NH [ind(σ)] for u ∈ bla(σ) and Hσ :=
H[Lσ(bla(σ))]. Note that Hσ is a list-cover of Gσ. When there are no uncoloured vertices, these
definitions agree with those of [7, 17] if σ is identified with ind(σ).

To interpret this notation, note that the list Lσ(u) contains the colours in L(u) that do not
conflict with colours of the vertices in col(σ). This means that if I ∈ I(Hσ), then ind(σ) ∪ I ∈
I(H). In particular, if σ has no uncoloured vertices, and if we can find I ∈ I(Hσ) of size |V (Gσ)|
then ind(σ) ∪ I is an H -colouring of G. This is exactly how the two-phase method proceeds.

2.1.2. The flaws. We define a flaw for each vertex u, writing
Bu := {σ ∈ Ω : u /∈ col(σ) and either |Lσ(u)| < `, or ∃x ∈ Lσ(u) with deg∗Hσ

(x) > `/8}.

We also define a flaw for each pair (u, e) where u ∈ e ∈ E(G), which represents the fact
that u is an uncoloured vertex with σ(u) = e, writing U eu := {σ ∈ Ω : σ(u) = e}. We write
FB := {Bu : u ∈ V (G)} and FU := {U eu : u ∈ e ∈ E(G)} so that F := FB ∪ FU is the set of all
flaws. Note that |FB| = |V (G)| = n, and |FU | = 2|E(G)| ≤ ∆n.

It is important that we address the flaws in a sensible order, and any fixed order that puts
every flaw of the form Bu before any flaw of the form U ev suffices. To be explicit, consider an
arbitrary ordering of the vertices, and the induced lexicographic ordering on edges where uv
is ordered according to the pair (u, v) with u < v. We address the flaws consistent with the
order that puts flaws of the form Bu first, ordered according to u, and then puts the U eu ordered
according to u and then e.

2.1.3. The actions. To address the flaw Bu at state σ we execute the action AddressB(u, σ)
defined in Algorithm 1 in terms of the procedures Remove and Sample guaranteed by the
assumptions of Theorem 9.

Algorithm 1
1: procedure AddressB(u, σ)
2: let σ′ be obtained from σ by setting σ′(v) := B for all v ∈ NG(u) \ unc(σ), and σ′(v) := σ(v) otherwise
3: let F := Gσ′ [NG(u)], H ′ := Hσ′ [L(NG(u))], and let Ĥ := Remove(F,H ′)

4: let J0 := Sample(Ĥ, λ), and let τ0(v) := σ′(v) unless v ∈ NG(u) and J0 ∩ L(v) = {y}, in which case
τ0(v) := y

5: let i := 0
6: while Ji /∈ I(H ′) do
7: let vw be the lowest-indexed edge in G[N(u)] for which Ji spans an edge of H ′ going from L(v) to L(w),

and suppose that v < w

8: let τi+1 be obtained from τi by setting τi+1(v) := vw (uncolouring v) and setting τi+1 to agree with τi
elsewhere

9: let Ji+1 := Ji \ L(v)
10: increment i

11: let τ := τi and let J := Ji
12: return τ

Algorithm 1 has three distinct parts. The first is some setup in which we define a partial
colouring σ′ by reassigning coloured vertices inNG(u) toB, which gives us an induced subgraph F
of G[NG(u)] and a list-cover H ′ := Hσ′ [L(NG(u))] of F . We then use the procedure Remove to
remove some edges from F and any corresponding edges in H ′, which results in a cover Ĥ of F in
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the class C. The second is sampling an independent set J0 in Ĥ and a partial colouring-like object
τ0 corresponding to J0. Here we say partial colouring-like because although J0 is independent in
Ĥ, it is not necessarily independent in Hσ′ so τ0 is not necessarily a valid partial H -colouring
of G. In the third part we iterate over a loop variable i starting at 0 and uncolour vertices in Ji
that participate in edges of H, making a sequence of corresponding τi as we go. When the loop
exits Ji is independent in Hσ′ , and so the final τi is a valid partial colouring.

To address the flaw U eu at state σ we simply resample σ(u) from the hard-core model as
follows. Let σ′ be obtained from σ by letting σ′(v) := σ(v) for v 6= u, and letting σ′(u) := B with
probability 1/(1 + |Lσ(u)|λ), and otherwise setting σ′(u) to be a uniform colour from Lσ(u).

2.1.4. Proving termination. In the analysis of the algorithm we discuss the transition probabilities
induced by these actions, writing ρf (σ, τ) for the probability that the final state is τ when
addressing the flaw f at state σ. Let µ̃ be the probability measure on Ω given by

µ̃(σ) := λ| col(σ)|+| unc(σ)|∑
τ∈Ω λ

| col(τ)|+| unc(τ)| ,

and write Z̃H(λ) for the denominator. We note that µ̃ is inspired by the hard-core model on H;
its definition is motivated by the fact that creating an uncoloured vertex costs weight λ when
sampling J0 in the procedure AddressB(u, σ).

Given subsets of flaws S, S′ ⊂ F , we say that S′ covers S if1

S′ ∩ FU = S ∩ FU and S′ ∩ FB ⊃ S ∩ FB.

For any flaw f and subset S ⊂ F of flaws, we define2

InSf (τ) := {σ ∈ f : ρf (σ, τ) > 0 and the set of flaws
introduced by the transition σ → τ covers S},

and we define the charge cS(f) to be

(1) cS(f) := max
τ∈Ω

{ ∑
σ∈InSf (τ)

µ̃(σ)
µ̃(τ)ρf (σ, τ)

}
,

which represents a kind of compatibility between the measure µ̃ and the transitions ρf induced
by the actions for flaws f ∈ F .

We can now state the main theorem of Achlioptas et al. [2, Theorem 2.4], specialised to our
setting, to show that Algorithm 1 terminates quickly with high probability. To compare with
the original, more general statement, we point out that we use their Remark 2.4 and that we
start our algorithm in the all-B partial colouring which has measure 1/Z̃H(λ) and such that the
only flaws present in the initial state are of the form Bu (since there are no uncoloured vertices).

Theorem 12 (Achlioptas, Iliopoulos, and Sinclair [2]). If there exist positive numbers (ψf )f∈F
such that for every f ∈ F we have

ζf := 1
ψf

∑
S⊂F

cS(f)
∏
g∈S

ψg < 1,

then for s ≥ 0 Algorithm 1 reaches a flawless state in (T0 + s)/δ steps with probability at least
1− 2−s, where δ := 1−maxf∈F {ζf} and

T0 := log2 Z̃H(λ) +
∑

u∈V (G)
log2(1 + ψBu) + log2

(
max
S⊂F

1∏
f∈S ψf

)
.

1For readers familiar with the definitions of [2], this is because flaws in FU are primary while those in FB are
not. We avoid making precise what primary means here, see [2] for details.

2Note that this definition differs from that given in [2] as we have additionally restricted to mappings σ such
that ρf (σ, τ) > 0. The other states contribute zero to the charges we need to analyse so this change simply means
that we avoid explicitly having to exclude such states in our analysis of charges.
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2.1.5. Bounding charges. By design the compatibility between µ̃ and our algorithm is good
enough for the following result to control the charges cS(Bu).

Lemma 13. Suppose that the conditions of Theorem 9 hold, and let H = (L,H) be a q-fold
list-cover of G. Then for any partial H -colouring σ of G and any u ∈ V (G) such that u /∈ col(σ),
the following holds. If τ is the random partial colouring of G that results from the procedure
AddressB(Bu, σ), then Pr(τ ∈ Bu) ≤ 1/(4∆3).

A similar version of this is key to the lopsided local lemma formulation of our methods [17].
To obtain an algorithm we essentially take advantage of some subtle extra strength from the fact
that the lemma holds for any σ rather than only when σ has no uncoloured vertices and ind(σ)
is sampled from the hard-core model on H. The proof of Lemma 13 is given in Appendix B.1.

The following results comprise the bounds on charges we need to apply Theorem 12, and the
proofs are in Appendices B.2 and B.3. Let S(U eu) := {Bv : v ∈ N2[u]} and S(Bu) := {Bv : v ∈
N3[u]} ∪ {U ev : v ∈ e ∈ E(G[N(u)])}. We will see that these are the only flaws that addressing
U eu and Bu can introduce, respectively.

Lemma 14. For every vertex u ∈ V (G), the following hold.
(i) If S 6⊂ S(Bu) then cS(Bu) = 0.
(ii) If S contains more than t flaws of the form Uvwv with v, w ∈ N(u) then cS(Bu) = 0.
(iii) maxS⊂F {cS(Bu)} ≤ 1/(4∆3).

Lemma 15. For every u and e such that u ∈ e ∈ E(G), the following hold.
(i) If S 6⊂ S(U eu) then cS(U eu) = 0.
(ii) maxS⊂F {cS(U eu)} ≤ λ/(1 + `λ).

2.1.6. Finishing the proof. We can now choose parameters ψf for f ∈ F such that the desired
result follows from Theorem 12. For this we take a positive real ψ to be determined later and
set ψf := ψ/(4∆3) for all f ∈ FB and ψf := ψλ/(1 + `λ) for all f ∈ FU .

By Lemma 14 we know that cS(Bu) = 0 unless all Bv flaws in S correspond to vertices v
in N3[u], and there is a set R ⊂ E(G[N(u)]) of most t edges such that if S contains a flaw of the
form Uvwv , then vw ∈ R. Since |N3[u]| ≤ ∆3, we deduce from Lemma 14 that for each u ∈ V (G),
setting

ψ := 4(1 + `λ)
1 + `λ+ 4tλ,

we have
1
ψBu

∑
S⊂F

cS(Bu)
∏
g∈S

ψg ≤
1
ψ

∏
v∈N3[u]

(
1 + ψ

4∆3

) ∏
vw∈R

(
1 + ψλ

1 + `λ

)

≤ 1
ψ

exp
(
ψ

4

)
exp

(
tψλ

1 + `λ

)
= e

4

(
1 + 4tλ

1 + `λ

)
≤ 3

4 ,

because by assumption t ≤ `/40, and hence 4tλ ≤ (1 + `λ)(3/e− 1).
Similarly, by Lemma 15 and the facts that ∆ ≥ 2 and |N2[u]| ≤ 1 + ∆2, we have for each

pair (u, e) with u ∈ e ∈ E(G),

1
ψUeu

∑
S⊂F

cS(U eu)
∏
g∈S

ψg ≤
1
ψ

∏
v∈N2[u]

(
1 + ψ

4∆3

)
≤ 1
ψ

exp
(
ψ

1 + ∆2

4∆3

)

= 1
4

(
1 + 4tλ

1 + `λ

)
exp

(
1 + ∆2

∆3

(
1− 4tλ

1 + `λ+ 4tλ

))

≤ e(1+∆2)/∆3

4

(
1 + 4tλ

1 + `λ

)
≤ 3

4 .
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Hence we can apply Theorem 12 with parameters ψBu and ψUeu such that
e

3∆3 ≤ ψBu = 1
∆3 ·

1 + `λ

1 + `λ+ 4tλ ≤
1

∆3 ,

4eλ
3(1 + `λ) ≤ ψU

e
u

= 4λ
1 + `λ+ 4tλ ≤

4λ
1 + `λ

,

giving δ = 1/4 and

T0 ≤ log2 Z̃H(λ) + n log2

(
1 + 1

∆3

)
+ n log2

(
3∆3

e

)
+ n∆ log2

(3(1 + `λ)
4eλ

)
.

We have
Z̃H(λ) =

∑
τ∈Ω

λ| col(τ)|+| unc(τ)| ≤ (1 + 2∆λ)n,

because for each u ∈ V (G) we can have either τ(u) = B, which does not contribute to the
exponent of λ, or τ(u) ∈ L(u) ∪ {e ∈ E(G) : u ∈ e}, which contributes 1. There are at most 2∆
choices in the latter case. Then

T0 = O(n log ∆ + n log λ+ n∆ log(1/λ) + n∆ log `).
Therefore, T0 = O(n∆ log(`)) if λ ≥ 1 while T0 = O(n∆ log(`/λ)) if λ < 1. Since δ = 1/4 and
T0 ≥ n, setting s := n yields that the probability that the algorithm finds a flawless partial
colouring in at most 2T0 steps is at least 1− 2−n. Each step takes time O(Tr + Ts) because if we
are addressing a flaw f ∈ FB then we execute action AddressB(u, σ) which executes Remove
and Sample once each in series, while the action to address a flaw in FU is simply sampling from
a distribution supported on at most ∆ + 1 outcomes with probabilities of the form 1/(1 + yλ)
and λ/(1 + yλ) where ` ≤ y ≤ ∆. This completes the proof of Lemma 10, showing that the first,
main phase of the algorithm works as desired.

3. Application to graphs with few fans

To prove Theorem 5 we must establish suitable strong local occupancy in graphs with few
copies of Fk, and we must give suitable implementations of Remove and Sample. We start
with the strong local occupancy, which relies on a maximum average degree parameter

mad(G) := max
F⊂G
|V (F )|≥1

{2|E(F )|
|V (F )|

}
,

in neighbourhoods. We also write W for the (upper real branch of the) Lambert W -function
that is the inverse of x 7→ xex defined on [−1,∞). We use the basic property that as x→∞ we
have W (x) = (1− o(1)) log x, see e.g. [12]. The following result is proved in Appendix C (see
also [14, 17]).

Lemma 16. Let a ≥ 0 and G be a graph such that mad(G[N(u)]) ≤ a for each u ∈ V (G). Then
the following statements hold for any λ > 0.

(i) For any d > 0, there exist β, γ > 0 such that the hard-core model on G at fugacity λ has
strong local (β, γ)-occupancy and

β + γd = 1 + λ

λ

d(1 + λ)a log(1 + λ)
W (d(1 + λ)a log(1 + λ)) .

(ii) For any vertex u ∈ V (G) and any subgraph F of G[N(u)] on y vertices we have

logZF (λ) ≥ y log(1 + λ)
(

1− a

2 log(1 + λ)
)
.

To apply the above result to G as in Theorem 5 we prove a suitable mad bound.

Lemma 17. Let u ∈ V (G) be contained in at most t copies of the fan Fk. Then the average
degree of any graph F ⊂ G[N(u)] is at most k − 3 +

√
2t.
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Proof. Let F have y vertices. We assert that the average degree of F is at most

min
{
y − 1, k − 3 + 2t

y

}
≤ k − 3 +

√
2t.

The first bound is straightforward as there are at most y − 1 possible neighbours for any vertex
in F , and the second follows from a theorem of Erdős and Gallai [22, Theorem 2.6] that bounds
the average degree of Pk−1-free graphs. By removing at most t edges from F we can remove all
copies of Pk−1, and hence the resulting graph has at most y(k − 3)/2 edges, which means F has
at most y(k − 3)/2 + t edges. The first expression in the assertion follows, and we consider the
subcases y ≤

√
2t and y >

√
2t to crudely bound from above the minimum. �

For the rest of this section let G be as in Theorem 5. Let F be the class of Pk−1-free graphs
on at most ∆ vertices and let C be the class of list-covers of graphs in F with at most ∆ colours
in each list. For any vertex u ∈ V (G), subgraph F of G[N(u)], and list-cover H = (L′, H ′) of F
with at most ∆ colours in each list we can identify all copies of Pk−1 in F in time O(∆k) by
enumerating all ordered sets of k− 1 vertices in F . To implement Remove we simply choose an
arbitrary edge vw of each Pk−1 found in this way and remove all edges from H ′ between L(v)
and L(w). For each of the at most t ≤ ∆2ε copies of Pk−1 found, this removal takes time at
most ∆2 so Remove as in Theorem 9 can be done in time ∆O(k).

The following result which we prove in Appendix C implies that we can implement Sample
on C in time (k∆)O(k3).

Theorem 18. Let k ≥ 3 and F be a Pk−1-free graph on y vertices, and let Ĥ = (L̂, Ĥ) be a
list-cover of F with at most q colours in each list. Then there is an absolute constant c such that
for any λ > 0 we can sample from the hard-core model on Ĥ in time y3k2(1 + q)k

3/2(ck)k
3
.

We can now finish the proof of Theorem 5.

Proof of Theorem 5. Fix an arbitrary vertex u ∈ V (G) and an arbitrary subgraph F ⊂ G[N(u)].
By Lemma 17 we have mad(F ) ≤ a =: k− 3 +

√
2t. It is convenient to exclude the case a = 0 in

the argument, which is one place the assumption t ≥ 1/2 comes in useful, giving a ≥ 1.
We want to apply Theorem 9 to conclude the proof. Above we defined a class C, Remove,

and Sample such that Items (i) and (ii) hold with Tr = ∆O(k) and Ts = (k∆)O(k3). We now
define the parameters so that the remaining requirements of Theorem 9 are satisfied: those
are t ≤ `/40 (Item (iii)) and the hypothesis of Theorem 7. In particular, we need to show
that there is strong local (β, γ)-occupancy for the hard-core model on G at fugacity λ for some
positive reals β, γ and λ. To this end we use Lemma 16, which will also provide the requirement
on ZF (λ). Indeed, with a = k − 3 +

√
2t, given any λ > 0 and ` > 7 log ∆, and with r and q as

in Theorem 7, Item (i) of Lemma 16 gives us β and γ such that the hard-core model on G at
fugacity λ has strong local (β, γ)-occupancy with

q = r

(
β + γ

∆
r

)
= 1 + λ

λ

∆(1 + λ)a log(1 + λ)
W (∆(1 + λ)a log(1 + λ)/r) .

We set

log(1 + λ) := 1
a log(∆/

√
t)
, and ` := 40a

log(∆/
√
t)

( ∆√
t

) ε
1+ε

.

First, recall that t ≤ ∆
2ε

1+2ε /(log ∆)2, and hence 40 · t/` = O
(
(log ∆)−(1+ε)/(1+2ε)

)
tends to 0

as ∆ goes to infinity, so t is indeed at most `/40 if ∆0 is large enough.
Second, we must show that

(2) `

8 ≥
log(8∆4)

log(1 + λ)
(
1− a

2 log(1 + λ)
) = a log(∆/

√
t) log(8∆4)

1− 1
2 log(∆/

√
t)

,

so that Item (ii) of Lemma 16 ensures that ZG(λ) ≥ 8∆4 for any subgraph F of any G[N(u)] on
at least `/8 vertices. The right-hand side of (2) is O

(
a log(∆/

√
t) log ∆

)
as ∆ and hence ∆/

√
t
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tend to infinity. This is less than ` for large enough ∆0 in terms of ε because the bound
t ≤ ∆

2ε
1+2ε /(log ∆)2 gives

log(∆/
√
t) ≥ 1 + ε

1 + 2ε log ∆− log log ∆ = Ω(log ∆),

so that a log(∆/
√
t) log ∆ = O(a(log(∆/

√
t))2) = o(`).

As ∆→∞ we now have λ = o(1), aλ = o(1), 7 log ∆ = o(`), a = O(
√
t), and

q ∼ ∆
log(∆/`) ∼

∆
log

(
(∆/
√
t)1/(1+ε) log(∆/

√
t)
) .

To obtain Theorem 5, note that for large enough ∆0 and ∆ ≥ ∆0,

(1 + ε) ∆
log(∆/

√
t)
≥ q,

so the result follows from the application of Theorem 9. �

4. Concluding remarks

In this section we compare the algorithmic framework given here with the more combinatorial
treatment in the companion paper [17]. While in the introduction we deliberately omitted all
mention of stronger graph colouring concepts, here we describe some subtleties related to several
strengthenings handled within our framework, including local and correspondence colouring.

First our methods immediately generalise to a ‘local’ formulation where each vertex is given a
list of size depending primarily on deg(v) instead of ∆. See [13, 17] for details, and in particular
an interesting minimum list size phenomenon that arises. Secondly, when applying Theorem 9
with a trivial implementation of Remove that does nothing, our proof gives two extra properties.
When Remove is trivial Theorem 9 works for correspondence colouring; one can dispense with
the stated list-cover assumption in this case. Moreover, if Remove is trivial and we do have a
list-cover then Theorem 9 only requires weak local occupancy: a variant of local occupancy that
applies only to induced subgraphs F of G[N(u)] instead of to arbitrary subgraphs.

This means that our methods give an algorithmic version of Bernshteyn’s strengthening of
Theorem 1 to correspondence colouring [7], as well as the generalisation to Fk-free graphs for
any k ≥ 3 (recall that F3 is a triangle and F3, Ck ⊂ Fk). In cases where we have local occupancy
(e.g. one of the many settings covered in [17]), the primary bottleneck for an efficient algorithm
is Sample, and one of our contributions here is a polynomial-time implementation of Sample
that suffices for Theorem 3, or equivalently the case t < 1 in Theorem 5. Without seeking an
efficient algorithm, raising t presents no serious challenge as our quantitative local occupancy
guarantee degrades smoothly and slowly as t increases. This is one of the key breakthroughs of
our framework, see [17, Sec. 5]. By contrast, the efficient implementation of Sample is extremely
fragile and fails completely at t = 1. With the power of Remove we can handle t from 1 up to
the stated bound in Theorem 5, but the cost of this is twofold. First we require a list-assignment
as the analysis of the uncolouring steps depends crucially upon this. Second we require strong
instead of weak local occupancy because removing edges can create arbitrary subgraphs of
neighbourhoods G[N(u)] at the relevant sampling stage, even with a list-assignment.

Here summarises some key differences among these strengthened colourings as treated both
here and in [17]. Consider the problem of colouring a graph G of maximum degree ∆ in which
each vertex is contained in at most t Fk’s with (1 + ε)∆/ log(∆/

√
t) colours, or lists of this

size. Let ∆0 be large enough in terms of ε and ∆ ≥ ∆0, and let c = c(ε) be a large enough
constant. For usual graph colouring our existence methods work up to t ≤ ∆2/c, but for the
largest t this requires a reduction that does not apply to list colouring. For list colouring we
require t ≤ ∆2/(log ∆)2/ε, and our algorithmic methods work for t ≤ ∆

2ε
1+2ε /(log ∆)2. For

correspondence colouring our existence methods behave the same as for list colouring, but for
an efficient algorithm we need t < 1. It would be very interesting to learn if these differences are
essential, or whether refined techniques can unify these results.



AN ALGORITHMIC FRAMEWORK FOR COLOURING LOCALLY SPARSE GRAPHS 13

5. Acknowledgements

We thank Alistair Sinclair, Fotis Iliopoulos, and Charlie Carlson for insightful discussions.

Appendix A. Tightness

In this section we state a proposition indicating that for a large range of λ, the local occupancy
of Lemma 16 is asymptotically best possible for Fk-free graphs. First we note an extra (but
foundational) component of our framework essentially originating in [16], cf. [17].

Theorem 19. Let G be a graph of maximum degree ∆ such that the hard-core model on G at
fugacity λ has (strong) local (β, γ)-occupancy for some λ, β, γ > 0. Then the occupancy fraction
of G at fugacity λ is at least 1/(β + γ∆).

Supposing that k is a fixed integer greater than 2 and λ = o(1) such that λ
√
t = o(1) as ∆→∞

we know from Lemma 16 and Theorem 19 that for any graph G with maximum degree ∆ in
which each vertex is the centre of at most t copies of Fk, the occupancy fraction of G at fugacity
λ is at least

(1− o(1))W (∆λ)
∆ .

But the occupancy fraction is monotone increasing in λ (see [16]) so this lower bounds holds for
all larger values of λ too. This is asymptotically tight at least for λ ≤ ∆1+o(1), but in fact no
improvement to this lower bound is known for larger values of λ even for the case of triangle-free
graphs, that is when k = 3. In addition, when t = ∆o(1) we can take λ = 1/ log ∆ and obtain a
lower bound on the occupancy fraction which is (1− o(1)) log ∆/∆, and hence an improvement
to the leading order for any λ larger than 1/ log ∆ would immediately lead to an improvement
to Shearer’s result that every n-vertex triangle-free graph of maximum degree ∆ contains an
independent set of size at least (1− o(1))n log ∆/∆.

Proposition 20 ([16]). Given ε > 0 there is ∆0 such that for all fixed ∆ > ∆0 and λ ≤ ∆1+o(1),
there is a ∆-regular Fk-free graph G with occupancy fraction at most (1 + ε)W (∆λ)/∆.

Appendix B. Proofs for the main framework

We require the following standard concentration inequality. Given a probability space, the
{0, 1}-valued random variables X1, . . . ,Xn are negatively correlated if for each subset S of the
set {1, . . . , n},

Pr
(
Xi = 1,∀i ∈ S

)
≤
∏
i∈S

Pr(Xi = 1).

Lemma 21 (Panconesi and Srinivasan [38]). Given a probability space, let X1, . . . ,Xn be {0, 1}-
valued random variables. Set X :=

∑n
i=1 Xi and Yi := 1 −Xi for each i ∈ {1, . . . , n}. If the

variables Y1, . . . ,Yn are negatively correlated, then for any η ∈ (0, 1),

Pr
(
X ≤ (1− η)EX

)
≤ e−η2EX/2.

B.1. Proof of Lemma 13. Recall that for Lemma 13 we assume the hypotheses of Theorem 9
(and hence also Theorem 7), and we consider the transition from an arbitrary partial H -colouring
σ of G induced by the action AddressB(Bu, σ) for some u /∈ col(σ). In what follows, we write
τ for the random state arising from this transition, and Pr and E represent probabilities and
expectations over the randomness in the action AddressB(Bu, σ), respectively.

We first argue that |Lτ (u)| is large and concentrated around its expectation, and second that for
each x ∈ L(u) the probability that x is in Lτ (u) and has large degree in H∗τ is small. For this we
require some additional notation. We reuse the notation of the procedure AddressB, writing σ′
for the partial H -colouring of G obtained from σ by setting σ′(v) := B for all vertices v ∈
NG(u), and σ′(v) := σ(v) otherwise. We also have the definitions H ′ := Hσ′ [L(NG(u))] and
Ĥ := Remove(Gσ′ [NG(u)], H ′), and J0 is an independent set in Ĥ sampled from the hard-core
model at fugacity λ. If we write L′(v) := L(v) ∩ V (H ′) then H and H ′ := (L′, H ′) are
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list-covers of G and Gσ′ [NG(u)], respectively. This provides the additional structure that each
colour x ∈ V (H) is considered a copy of some natural number c in the list-assignment, and xy
is an edge of H∗ if and only if x ∈ L(u) and y ∈ L(v) are copies of the same natural number
and uv ∈ E(G).

For each x ∈ L(u), let Λx be the layer of x, given by Λx := NH∗
σ′

(x). This consists of the
colours in Lσ′(NG(u)) that conflict with x, and hence Λx consists of every colour y ∈ V (H ′) that
is a copy of a fixed natural number, written c. So for distinct x, y ∈ L(u) the layers Λx and Λy
are necessarily disjoint. The fact that H ′ is a list-cover of G[NG(u)] means that every edge
leaving Λx in H ′ joins two colours belonging to some set L(v) with v ∈ NG(u), which means
there are no edges between one layer Λx and another Λy and facilitates the analysis of each
layer separately. The set J0 sampled in step 4 of the procedure AddressB is not necessarily
independent in H ′ and the uncolouring steps 5–11 yield the subset J ⊂ J0 which is independent
in H ′. For any x ∈ L(u) we note that J \Λx depends only on J0 \Λx and not on J0∩Λx because
of the above property of edges leaving Λx. To see this, observe that every uncolouring step
is due to some tuple (v1, v2, y1, y2) such that {v1, v2} ⊂ NG(u), v1v2 ∈ E(G), y1 ∈ L(v1) ∩ J0,
y2 ∈ L(v2) ∩ J0, and y1y2 ∈ E(H ′). But then y1 and y2 must be a copy of the same natural
number c′ and hence either both are in Λx or neither one is in Λx. This means the uncolouring
steps due to edges of H ′ inside Λx are independent of the other uncolouring steps, and hence
J \ Λx depends only on J0 \ Λx.

We now show some key properties of how J0 is distributed on the sets Λx, and how this
affects Lτ (u) and the flaw Bu. Let us write U0(x) for the set of vertices obtained by reveal-
ing J0 \ Λx and taking those vertices in Λx that in the graph Ĥ are not adjacent to any vertex
of J0 \ Λx. That is, U0(x) := Λx \NĤ(J0 \ Λx). Then write F0(x) := Ĥ[U0(x)]. By the spatial
Markov property of the hard-core model, J0 ∩Λx is distributed according to the hard-core model
on the graph F0(x) at fugacity λ. It is important to observe that Ĥ[Λx] is isomorphic to a
subgraph of G[N(u)], as is F0(x), so the assumptions of Theorem 7 give that F0(x) has strong
local (β, γ)-occupancy.

The above definitions deal with the cover Ĥ in which we sample, but we must also deal with
the original cover H ′. To this end, we analogously write U(x) for the set of vertices obtained by
revealing J \ Λx and taking those vertices in Λx that in the graph H ′ are not adjacent to any
vertex of J \ Λx. That is, U(x) := Λx \NH′(J \ Λx). We also write F(x) := H ′[U(x)]. We now
note the following facts that hold for all x ∈ L(u).
Fact 1: x ∈ Lτ (u) if and only if J0 ∩ Λx = ∅.
Fact 2: J ⊂ J0 and hence U(x) ⊃ U0(x).
Fact 3: If x ∈ Lτ (u) then deg∗Hτ

(x) = |U0(x)|.
To see Fact 1, observe that x ∈ Lτ (u) if and only if for every v ∈ col(τ) ∩ NG(u) we have

xτ(v) /∈ H. That is, if x is a copy of the natural number c then x ∈ Lτ (u) if and only if no
neighbour of u is coloured with a copy of c under τ . This clearly holds if J0 ∩ Λx = ∅, and
also if J0 ∩ Λx 6= ∅ then at least one neighbour of u is coloured with a copy of c. But in each
uncolouring step we only uncolour one end of a monochromatic edge, so that if J0 ∩ Λx 6= ∅ we
must also have J ∩ Λx 6= ∅.

For Fact 2 note that in each uncolouring step we remove a vertex from Ji to form Ji+1 and so
J (which is the set after all uncolouring steps) is a subset of J0.

Finally, for Fact 3 suppose that x is a copy of the natural number c and note that deg∗Hτ
(x)

counts the number of colours in Lτ (NG(u)) that conflict with x, or equivalently the number
of neighbours v ∈ NG(u) that are coloured blank by τ and that have a copy of c present in
their list Lτ (v). A colour in Lτ (NG(u)) that conflicts with x must be present in U(x), and
in order that x ∈ Lτ (u) we must have J ∩U(x) = ∅ by Fact 1 and Fact 2. This means that
every colour y ∈ U(x) such that y ∈ L(v) for some v ∈ bla(τ) contributes to deg∗Hτ

(x). Then it
suffices to show that for y ∈ L(v) we have the following two properties

y ∈ U0(x)⇒ v ∈ bla(τ),(3)
y ∈ U(x) \U0(x)⇒ v ∈ unc(τ).(4)
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This crucially exploits the fact that H ′ is a list-cover. To prove (3), observe that if y ∈ U0(x)
then no neighbour of y in Ĥ belongs to J0 \ Λx, and since x ∈ Lτ (u) we have J0 ∩ Λx = ∅
by Fact 1. Together these facts mean that v is neither coloured nor uncoloured, and hence
belongs to bla(τ) as required. To prove (4), suppose that y ∈ U(x) \U0(x). Then there must
be some z ∈ (J0 \ Λx) \ (J \ Λx) such that yz is an edge of H ′. As reported earlier, since H ′

is a list-cover we know that every edge leaving Λx is inside some set L(w), and as y ∈ L(v)
we deduce that z ∈ L(v). But then the reason we have z ∈ (J0 \ Λx) \ (J \ Λx) is because z
had been coloured and was then removed from some Ji in the creation of the next Ji+1, and so
necessarily v ∈ unc(τ) as required.

We are now ready to show that |Lτ (u)| is likely to be at least `.
Lemma 22. Writing

m := 1 + λ

βλ
(q − γ∆) and η :=

√
7(log ∆)/`,

we have Pr
(
|Lτ (u)| ≤ (1− η)m

)
≤ e−η2m/2 ≤ 1/(8∆3).

Proof. We first note that e−η2m/2 ≤ 1/(8∆3) holds because the parameter choices in Theorem 7
give

m = `

1− η ≥ ` = 7 log ∆
η2 ≥ 6 log(2∆)

η2 .

Now by Fact 1, we have x ∈ Lτ (u) if and only if J0 ∩ Λx = ∅. As reported earlier, J0 ∩ Λx is
distributed according to the hard-core model on a graph F0(x) that is isomorphic to a subgraph
of G[NG(u)]. Then F0(x) has strong local (β, γ)-occupancy and so

(5) β
λ

1 + λ
Pr(x ∈ Lτ (u)) + γE|J0 ∩ Λx| ≥ 1,

because elementary calculations with the hard-core model (see e.g. [16]) now give

Pr(J0 ∩ Λx = ∅) = 1
ZF0(x)(λ) and E|J0 ∩ Λx| =

λZ ′F0(x)(λ)
ZF0(x)(λ) .

We sum (5) over all q colours x ∈ L(u) to obtain

q ≤ β λ

1 + λ
E|Lτ (u)|+ γ

∑
x∈L(u)

E|J0 ∩ Λx| ≤ β
λ

1 + λ
E|Lτ (u)|+ γ∆,

where the last inequality holds because
∑
x∈L(u) E|J0 ∩ Λx| = E

∑
x∈L(u) |J0 ∩ Λx| and every

neighbour of u contributes at most 1 to the sum as |J0∩L(v)| ≤ 1 for every vertex v. Rearranging
immediately yields E|Lτ (u)| ≥ m, and the result will follow from an application of Lemma 21.

For this application, note that E|Lτ (u)| is a sum over x ∈ L(u) of the indicator variables Xx for
the events {J0 ∩Λx = ∅}. We can apply Lemma 21 if we show that the random variables Yx :=
1−Xx are negatively correlated. This correlation was shown formally by Bernshteyn [7] in the
triangle-free case, and is somewhat intuitive here. Consider the random set J0. Given x ∈ L(u),
if J0 ∩ Λx = ∅ then no colours conflicting with x are chosen for vertices in N(u). This makes
other colours more likely to be chosen, such as those which conflict with x′ ∈ L(u) \ {x}. We
repeat Bernshteyn’s argument for completeness.

It is enough to show that for all x ∈ L(u) and Y ⊂ L(u) \ {x} we have
Pr
(
x /∈ Lτ (u)

∣∣ Y ∩ Lτ (u) = ∅
)
≤ Pr(x 6∈ Lτ (u)),

which is equivalent to
Pr
(
Y ∩ Lτ (u) = ∅

∣∣ x ∈ Lτ (u)
)
≥ Pr(Y ∩ Lτ (u) = ∅),

which we can write (using Fact 1) as
Pr
(
J0 ∩ Λy 6= ∅ for all y ∈ Y

∣∣ J0 ∩ Λx = ∅
)

≥ Pr
(
J0 ∩ Λy 6= ∅ for all y ∈ Y

)
.

This holds because the layers Λz for z ∈ L(u) are pairwise disjoint. �



16 E. DAVIES, R. J. KANG, F. PIROT, AND J.-S. SERENI

We now prove a result designed to handle the degree condition in the flaw Bu.

Lemma 23. For any x ∈ L(u), writing
Dx :=

{
x ∈ Lτ (u) and deg∗Hτ

(x) > `/8
}
,

we have Pr(Dx) ≤ 1/(8q ·∆3).

Proof. By Fact 3 we know that if x ∈ Lτ (u) then deg∗Hτ
(x) = |U0(x)|, so it suffices to show

whenever |U0(x)| > `/8 that
Pr(x ∈ Lτ (u)) ≤ 1

8q∆3 .

As already reported, by Fact 1 (and an elementary property of the hard-core model) we have
Pr(x ∈ Lτ (u)) = 1/ZF0(x)(λ). We recall that F0(λ) is isomorphic to a subgraph of G[N(u)], so
that the upper bound on Pr(x ∈ Lτ (u)) follows directly from the assumptions on ` and ZF (λ)
for F ⊂ G[N(u)] stated in Theorem 7. There we assume that for all such F on at least `/8
vertices we have ZF (λ) ≥ 8∆4. Consequently, noticing that without loss of generality we have
q ≤ ∆ (for otherwise a greedy argument finds any q-list colouring of G), we infer that

Pr(x ∈ Lτ (u)
∣∣ |U0(x)| > `) ≤ 1

8∆4 ≤
1

8q∆3 .

The result follows. �

The combination of Lemmas 22 and 23 completes the proof of Lemma 13.

B.2. Proof of Lemma 14.

Proof of Lemma 14. Addressing Bu by executing AddressB(u, σ) only modifies σ on N(u) and
hence can only introduce flaws Bv for v ∈ N3[u], or Uvwv for v, w ∈ N(u) and vw ∈ E(G[N(u)]).

In the procedure AddressB we can only introduce at most t flaws of the form Uvwv since
the procedure Remove removes at most t edges from F that can be monochromatic, and each
monochromatic edge leads to at most one uncolouring.

If addressing Bu results in τ with positive probability then the previous state σ must agree
with τ outside of N(u), and inside N(u) we must have unc(τ) ⊃ unc(σ) as no uncoloured vertices
are coloured by the procedure AddressB. In fact, by the definition of covering for sets of flaws,
when bounding cS(Bu) we can restrict our attention to triples (S, σ, τ) such that τ and σ agree
outside N(u) and

unc(τ) = unc(σ) ∪ {v ∈ N(u) : U ev ∈ S for some e ∈ E(G)}.
That is, we can restrict attention to triples (S, σ, τ) where S carries the information necessary
to deduce unc(σ) from unc(τ). To this end, write

ν(S) := {v ∈ N(u) : U ev ∈ S for some e ∈ E(G)},
so that ν(S) is the set of uncoloured vertices present in τ but not σ for any σ ∈ InSBu(τ). We
now assert that for such triples (S, σ, τ) we have

ρBu(σ, τ) = λ| col(τ)∩N(u)|+|ν(S)|

ZĤ(λ) ,

where Ĥ is the graph Ĥ appearing in AddressB(u, σ); repeated here for convenience, Ĥ is
constructed as follows. Let σ′ be obtained from σ by setting σ′(v) := B for all v ∈ N(u)\unc(σ),
and σ′(v) := σ(v) otherwise, and then let F := Gσ′ [NG(u)] and H ′ := Hσ′ [L(NG(u))]. Then
Ĥ := Remove(F,H ′). Note that Ĥ does not depend on σ in the sense that when (S, σ, τ) are
as above we can construct Ĥ from S and τ alone. Here we crucially exploit the definition of
covering for sets of flaws. The key point is that σ′ as above can be constructed from S and τ
because the uncoloured vertices of σ are given by unc(σ) = unc(τ) \ ν(S).

The assertion now follows from the definition of AddressB(u, σ) because from (S, τ) we can
recover the size of the independent set J sampled in the procedure when τ = AddressB(u, σ).
More accurately, we can determine col(J), which must be the disjoint union of col(τ) ∩N(u)
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and the set ν(S) of vertices uncoloured during the execution of AddressB(u, σ). Given col(J)
the uncolouring steps are deterministic so we have the required expression for ρBu(σ, τ) by the
definition of the hard-core model. We also see that

µ̃(σ)
µ̃(τ) = λ| col(σ)∩N(u)|+| unc(σ)∩N(u)|

λ| col(τ)∩N(u)|+| unc(τ)∩N(u)| = λ| col(σ)∩N(u)|

λ| col(τ)∩N(u)|+|ν(S)| ,

which holds by the definition of ν and because σ and τ only differ in N(u). Then we have shown
that given S and τ , for any σ ∈ InSBu(τ) we have

(6) µ̃(σ)
µ̃(τ)ρBu(σ, τ) = λ| col(σ)∩N(u)|

ZĤ(λ) ,

where Ĥ can be obtained from S and τ alone.
Turning to the charge cS(Bu), we have

cS(Bu) = max
τ∈Ω


∑

σ∈InSBu (τ)

µ̃(σ)
µ̃(τ)ρBu(σ, τ)

 = max
τ∈Ω:

u/∈col(τ)


∑

σ∈InSBu (τ)

λ| col(σ)∩N(u)|

ZĤ(λ)

 ,(7)

where Ĥ can be computed from S and τ as above. The restriction to τ such that u /∈ col(τ)
is valid because for any τ ∈ Ω with u ∈ col(τ) we have InSBu(τ) = ∅ since σ ∈ Bu means that
u /∈ col(σ), but then ρBu(σ, τ) = 0 because the procedure AddressB(u, σ) does not alter σ(u).

Nearing conclusion, we now argue that Lemma 13 implies cS(Bu) ≤ 1/(4∆3). This holds
because given S and τ we can construct the Ĥ occurring in (7), and note that it is a bona fide
cover of some induced subgraph F ⊂ G[N(u)]. That is, there is a cover Ĥ = (L, Ĥ) of G with
the following two properties.

(i) One obtains Ĥ from H by removing edges in H∗, and hence Ĥ satisfies the hypotheses
of Theorem 7.

(ii) There is a partial colouring independent set Ĵ ∈ I(Ĥ) such that Ĥ = ĤĴ [L(NG(u))].
Then the sum in (7) over states σ ∈ InSBu(τ) ⊂ Bu can be interpreted as the probability that
when col(σ) ∩N(v) is a random independent set from the hard-core model on Ĥ at fugacity
λ, we have σ ∈ InSBu(τ). Since InSBu(τ) ⊂ Bu, we can bound this from above by the probability
that σ belongs to Bu given this random experiment; and Lemma 13 shows this probability to be
at most 1/(4∆3). �

B.3. Proof of Lemma 15.

Proof of Lemma 15. Addressing U eu at state σ can only introduce flaws of the form Bv for v
in N2[u] because it causes no uncolouring, and only affects σ(u).

If addressing U eu results in τ with positive probability then the previous state σ must be
obtained from τ by setting τ(u) = e. That is, for S ⊂ F , the set InSUeu(τ) is either empty, or
contains exactly one state σ. In the former case the charge is zero; and in the latter case,
if u ∈ bla(τ) then µ̃(σ)/µ̃(τ) = λ and ρUeu(σ, τ) = 1/(1 + |Lσ(u)|λ), and if u ∈ col(τ) then
µ̃(σ)/µ̃(τ) = 1 and ρUeu(σ, τ) = λ/(1 + |Lσ(u)|λ), hence both possibilities yield that

µ̃(σ)
µ̃(τ)ρU

e
u
(σ, τ) = λ

1 + |Lσ(u)|λ.

Then cS(U eu) ≤ λ/(1 + `λ) because the ordering on flaws ensures that σ /∈ Bu whenever we are
addressing U eu, and hence u has at least ` available colours. �

B.4. Proof of Lemma 11. We can prove Lemma 11 with the local lemma of Moser and
Tardos [37]. Let σ be a flawless partial colouring of G, and if necessary remove colours from Hσ

such that |Lσ(u)| = ` for all u ∈ Gσ. We let I ′ ⊂ V (Hσ) be obtained by choosing for each
remaining blank vertex u ∈ bla(σ) a uniform random colour from Lσ(u). Since σ is flawless
there are no uncoloured vertices, so the conclusion follows if I ′ is independent. Then for this
algorithmic local lemma application we have a flaw Axy for each edge xy of H∗σ, and I ′ ∈ Axy
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if and only if {x, y} ⊂ I ′. To address Axy we resample I ′ ∩ L(u) and I ′ ∩ L(v) independently,
uniformly at random.

Suppose that x ∈ L(u), y ∈ L(v), and xy ∈ E(H∗σ). Then Axy is independent of any Ax′y′
such that x′ and y′ are not in Lσ(u) ∪ Lσ(v). In this simple setting the full charge machinery of
Theorem 12 is not necessary, and it suffices to use the result of Moser and Tardos [37, Thm. 1.2].
We use the slightly stronger version found in Iliopoulos’ doctoral thesis [27, Thm. 3.9, p. 17]: it
implies the original formulation by setting xA := ψA

1+ψA ∈ (0, 1).

Theorem 24 (Iliopoulos [27]). Let P be a finite set of mutually independent random variables,
and let A be a finite set of events determined by these variables. Let Γ(A) := {B ∈ A :
A and B are dependent}, and let µ be the probability measure that results from sampling the
variables P. If for each A ∈ A there exists a positive real ψA such that

µ(A)
ψA

∑
S⊂Γ(A)

∏
B∈S

ψB ≤ 1,

then there is a randomised algorithm that finds an assignment to P violating none of the events
in A with expected number of resamplings

∑
a∈A ψA.

Note that we have A ∈ Γ(A) since without loss of generality µ(A) ∈ (0, 1) and hence A
depends on itself.

In our setting, the variables in P are I ′ ∩ L(u) for u ∈ V (Gσ) and the set of events is
A := {Axy : xy ∈ H∗σ}. Supposing that x ∈ L(u), y ∈ L(v), and xy ∈ E(H∗σ), the fact that σ is
flawless implies that

µ(Axy) = 1
|L(u)||L(v)| = `−2,

and also that
|Γ(Axy)| ≤

∑
x′∈L(u)

deg∗Hσ(x′) +
∑

y′∈L(v)
deg∗Hσ(y′) ≤ `2/4.

Hence it suffices to take ψ := 4`−2 to have, for each A ∈ A,
µ(A)
ψA

∑
S⊂Γ(A)

∏
B∈S

ψB ≤
1
4 · (1 + 4/`2)`

2/4 ≤ e

4 < 1.

The expected number of resamplings is then at most n/4, because H∗σ, having no more than n · `
vertices and maximum degree no more than `/8, contains at most n`2/16 edges. Consequently,
Markov’s inequality implies that, for any real c ∈ (0, 1), the algorithm succeeds in O

(
n1+c)

resamplings with probability at least 1− 1/nc. Since a resampling is done in constant time, this
constitutes a proof of Lemma 11.

Appendix C. Proofs for the application

C.1. Proof of Lemma 16. The proof of Lemma 16 relies on the following elementary lemma,
which already appeared [14], though we give the short proof here for completeness.

Lemma 25. For any graph F on y vertices with positive average degree at most a,
λZ ′F (λ)
ZF (λ) ≥

λ

1 + λ
y(1 + λ)−a, and logZF (λ) ≥ y

a

(
1− (1 + λ)−a

)
.

Proof. Let S be a random independent set from the hard-core model at fugacity λ on F . First,
for any u ∈ V (F ),

Pr(u ∈ S) = λ

1 + λ
Pr(S ∩N(u) = ∅) ≥ λ

1 + λ
(1 + λ)− deg(u),

because the spatial Markov property gives that S∩N(u) is a random independent set drawn from
the hard-core model on the subgraph F [N(u)] induced by the externally uncovered neighbours
of u. That is, when U := N(u) \ N(S \ N(u)) is the set obtained by revealing S \ N(u) and
removing from N(u) any vertex with a neighbour in S \ N(u), we write FN(u) := F [U], and
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then S ∩N(u) is distributed according to the hard-core model on FN(u) at fugacity λ. The final
inequality comes from the fact that any realisation of FN(u) has ZFN(u)(λ) ≤ (1 + λ)deg(u). The
lemma now follows by convexity:

E|S| =
∑

u∈V (F )
Pr(u ∈ S) ≥ λ

1 + λ

∑
u∈V (F )

(1 + λ)− deg(u) ≥ λ

1 + λ
y(1 + λ)−a,

and since

E|S| = λZ ′F (λ)
ZF (λ) = λ

∂

∂λ
logZF (λ),

integrating this bound gives the required lower bound on logZF (λ). �

Proof of Lemma 16. Let u be an arbitrary vertex of G, and suppose that F ⊂ G[N(u)] has y
vertices. By assumption we know that F has average degree at most a. If a = 0 then F contains
no edges and ZF (λ) = (1 + λ)y, otherwise by Lemma 25 we have

logZF (λ) ≥ y

a
(1− (1 + λ)−a) ≥ y log(1 + λ)

(
1− a

2 log(1 + λ)
)
,

which establishes Item (ii). For Item (i) we note that ZF (λ) ≤ (1 + λ)y and hence by Lemma 25
we have

β
λ

1 + λ

1
ZF (λ) + γ

λZ ′F (λ)
ZF (λ) ≥

λ

1 + λ

(
β(1 + λ)−y + γy(1 + λ)−a

)
,

and we define the right-hand side to be g(y).
The function g is strictly convex with a stationary minimum at

y∗ := a+
log

(
β
γ log(1 + λ)

)
log(1 + λ) ,

and if we set g(y∗) = 1 for strong local (β, γ)-occupancy, and solve for β we obtain

β := γ(1 + λ)
(1+λ)1+a

γλ
−a

e log(1 + λ) .

Then the function β + γd is strictly convex in γ, and the unique minimiser is attained when

γ := 1 + λ

λ

(1 + λ)a log(1 + λ)
1 +W (d(1 + λ)a log(1 + λ)) .

One checks that, indeed, setting β and γ to the announced values, and writing D for the
expression d(1 + λ)a log(1 + λ), we have

β = 1 + λ

λ
· eW (D)

1 +W (D) = 1 + λ

λ
· D

W (D) · (1 +W (D)) ,

noticing that (1 + λ)1+a/(γλ) = (1 +W (D))/ log(1 + λ), and hence

β + γd = 1 + λ

λ

(
D

W (D)(1 +W (D)) + D

1 +W (D)

)
= 1 + λ

λ

D

W (D) ,

as announced. Furthermore, y∗ = W (D)/ log(1 + λ), and hence indeed

g(y∗) = D · (1 + λ)−W (D)/ log(1+λ)

W (D)(1 +W (D)) + W (D)
1 +W (D)

= 1
1 +W (D) + W (D)

1 +W (D) = 1. �
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C.2. Proof of Theorem 18. As is well known (and straightforward to realise), in a connected
graph any two longest paths must have a common vertex, which we state as follows.

Lemma 26. Let k ≥ 3 and F = (V,E) be a connected Pk−1-free graph. If P is the vertex set of
a longest path in F , then F [V \ P ] is Pk−2-free.

We now prove a warm-up to Theorem 18 that shows we can calculate the partition function
and certain useful probabilities efficiently.

Lemma 27. Let k ≥ 3 and F be a Pk−1-free graph on y vertices, and let H = (L,H) be a
cover of F with at most q colours in each list. Then there is an absolute constant c such that for
any positive λ we can evaluate ZH(λ) in time y3k(1 + q)k

2/2(ck)k
2
.

Further, let F1, . . . , Fr be the connected components of F . Write Hi = H[L(V (Fi))] for the
covers of the components of F given by H, and let I be a random independent set from the
hard-core model at fugacity λ on H. Then in time y3k(1 + q)k

2/2(ck)k
2
we can compute for

every i in [r] a longest path Pi in Fi, and the probabilities Pr(I∩L(Pi) = Ji) for every independent
set Ji ⊂ L(Pi).

Proof. In the proof we write c1, c2, . . . for some unspecified absolute constants, and let f(y, q, k)
be the upper bound on running time that we wish to calculate.

If k = 3 then F is edgeless and hence
ZH(λ) =

∏
v∈V (F )

(1 + |L(v)|λ),

which is computable in time c1y. This gives the base case f(y, q, 3) = c1y.
For k > 3, we note that F has at most y connected components and deal with each one

separately. The function ZH(λ) is multiplicative over the induced covers of the components of F ,
so

ZH(λ) =
r∏
i=1

ZHi(λ).

Let F ′ = (V ′, E′) be a component of F , and write H ′ = H[L(V ′)] for the induced cover
of F ′. Let P = {v1, . . . , vk−2} be the vertex set of a longest path F ′, which we can find in time
c2(k − 2)!2k−2y by executing for each j from k − 1 to 2 a fixed-parameter algorithm that finds a
path of length j (if one exists) in time O(j!2jy), see [8].

Since F ′ is connected, Lemma 26 implies that F ′[V ′ \ P ] is Pk−2-free. We use the fact that
the sum over independent sets I in H ′ that gives ZH′(λ) can be split into terms according
to I ∩ L(P ). Let HP = H ′[L(P )] and HV ′\P = H ′[L(V ′ \ P )]. Then

ZH′(λ) =
∑

J∈I(HP )
λ|J | · Z

H
V ′\P
J

(λ).

It is possible to iterate over the required J ∈ I(HP ) in time c3(k − 2)2(1 + q)k−2 by iterating over
all (1 + q)k−2 sets J with |J ∩L(vi)| ≤ 1 and checking each for independence. The independence
check takes time O

(
(k − 2)2) as we must verify that each pair of vertices in J is absent from E(H).

Then constructing HV \P
J can be done in time c4(k − 2)y because |J | ≤ k − 2 and each colour

in J can conflict with at most y colours which are removed from HV \P to form H
V \P
J . Now

Z
H
V \P
J

(λ) can be computed in time f(y, q, k − 1) by induction, so we can compute ZH′(λ) in
time

c2(k − 2)!2k−2y · c3(k − 2)2(1 + q)k−2 · c4(k − 2)y · f(y, q, k − 1).
Since there are at most y components of F , we have the recurrence

f(y, q, k) = y · c2(k − 2)!2k−2y · c3(k − 2)2(1 + q)k−2 · c4ky · f(y, q, k − 1).
With the base case of f(y, q, 3) = c1y we have

f(y, q, k) ≤ c1y(c2c3c4y
3)k−3(2(1 + q))k(k−3)/2((k − 2)!)4 ·

k−3∏
j=1

j!,
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which for a large enough constant c is at most y3k(1 + q)k
2/2(ck)k

2
.

For the final statement, observe that in the above argument we compute for each i ∈ [r] an
evaluation of ZHJi [V (Fi)\Pi] for some longest path Pi in Fi, and each independent set Ji ⊂ L(Pi)
along the way to computing ZHi(λ). But

Pr(I ∩ L(Pi) = Ji) =
λ|Ji|ZHJi [V (Fi)\Pi](λ)

ZHi(λ) ,

so with some straightforward extra bookkeeping we have the required probabilities. �

With this result we can give the required sampling algorithm, which is restated here.

Theorem 18. Let k ≥ 3 and F be a Pk−1-free graph on y vertices, and let Ĥ = (L̂, Ĥ) be a
list-cover of F with at most q colours in each list. Then there is an absolute constant c such that
for any λ > 0 we can sample from the hard-core model on Ĥ in time y3k2(1 + q)k

3/2(ck)k
3
.

Proof. We write I for a random independent set from the hard-core model on Ĥ.
If k = 3 then F is edgeless and it suffices to sample independently for each vertex v ∈ V .

With probability 1/(1 + |L̂(v)|λ) take I ∩ L̂(v) = ∅, otherwise let I ∩ L̂(v) be a uniform random
element of L̂(v). This can be done in time O(qy) provided sampling from a biased coin takes
time O(1) and sampling uniformly from a list of length q takes time O(q).

If k > 3 then let F1, . . . , Fr be the components of F . By Lemma 27 we can compute in
time y3k(1 + q)k

2/2(ck)k
2
a longest path Pi in Fi and the probabilities Pr(I ∩ L̂(Pi) = Ji) for all

independent sets Ji ⊂ L̂(Pi) and for all i. Hence we can sample I ∩ L̂(Pi) for all i in this time.
Then we can construct H ′i = ĤI∩L̂(Pi)[L̂(V (Fi) \ Pi)] for each i in time O(rky), and use the fact
that I ∩ L̂(V (Fi) \ Pi) is distributed according to the hard-core model at fugacity λ on H ′i.

With this scheme it is straightforward to show by induction that the time taken is at most

y3k2(1 + q)k
3/2(ck)k

3
. �
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