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Marshaling/Unmarshaling as a Compilation/Interpretation ProcessChristian Queinnec�LIP6 & INRIA-RocquencourtMarshaling is the process through which structured values are serialized into a stream of bytes; unmar-shaling converts this stream of bytes back to structured values. Most often, for a given data structure, themarshaler and the unmarshaler are tightly related pieces of code that are synthesized conjunctly. This paperproposes a new point of view: the unmarshaler is considered as a byte-code interpreter evaluating a stream ofbytes considered as a program i.e., as a sequence of commands interspersed with quoted raw data. Programsare expressions of the marshaling language. From that point of view, the marshaler logically appears as acompiler translating values into expressions of the marshaling language.The unmarshaler depends on the sole marshaling language. If this language is powerful enough todeal with any kind of data structures then the unmarshaler can be kept constant. This has far-reachingconsequences: (i) it is possible to manage new dynamically created data structures, (ii) it is possibleto have various marshalers compiling values along di�erent, even evolving, strategies in order to cope withdi�erent situations such as network congestion or processor memory exhaustion.These ideas have been satisfactorily embodied in the DMeroon distributed shared memory since 1996,[Que95, Que98]. DMeroon supports meta-classes, re
ective description, dynamic creation of classes, lazypropagation of classes, among other properties. The present paper extends [Que97] (in French) in severalways: it is less allusive, more formal and abstract, and its results are more amenable to be re-used incomparable systems.The paper is in two layers. Section 1 is the �rst layer and presents the details of the DMeroon memorymodel, how remote references and object identities are managed as well as the representational invariantsthat are maintained at various levels (user-, protocol-, implementation-). Although supported by knowntechniques, this Section is an accurate account of a quite subtle and rarely described machinery. Thismemory model �ts the goals of distribution but may as well be used to ensure �le-based persistency.The second layer presents the marshaling technique and how it �ts with the supporting machinery. Moreprecisely, the marshaling language appears in Section 2; a naive marshaler is commented in Section 3;extensions are detailed in Section 4 while variant marshaling strategies are described in Section 5. Relatedwork conclude the paper.1 The Memory ModelAccording to the taxonomy of Distributed Shared Memory, see[PTM95], DMeroon is a library of functionsallowing to share objects over Internet in a coherent way among multiple readers and, at most, one writer.Management is distributed and coherency is causal. This Section will focus on the implementation of objectsand remote pointers. Coherency is out of the scope of this paper [Que95, Que94] and so are the details ofDMeroon [Que98]. The DMeroon project started as the memory layer for a distributed language [QD93]but soon tried to multi-lingual i.e., be a common layer for di�erent languages (currently C and Scheme) toexchange, copy or share typed structured values.1.1 ObjectsSites are autonomous address spaces connected by messages transmitted through communication channels.An object is a contiguous sequence of bytes belonging to a single site. An object is made of �elds. A regular�Universit�e Paris 6 | Pierre et Marie Curie, LIP6, 4 place Jussieu, 75252 Paris Cedex, France { Email:Christian.Queinnec@lip6.fr This work has been partially funded by GDR-PRC de Programmation du CNRS.1



�eld holds a single value of any legal C type. An indexed �eld holds a contiguous sequence of homogeneousvalues of the same C type (size and alignment constraints are those of C) pre�xed by a number recordingthe length of the sequence (all unsigned C types are possible for these lengths). Lengths of indexed �elds aredetermined at allocation time. Indexed �elds allow to represent mundane objects such as strings (indexed�eld of characters) or (Java) vectors for instance. For any object, it is possible to obtain the values thatare held in its �elds and to mutate these values provided the �eld was declared mutable. Moreover, for anyobject, it is possible to access structural information such as the length of its indexed �elds or, its class i.e.,its type descriptor from which may be retrieved its �eld descriptors.C types other than pointers do not pose much problem if sites agree on a common representation as didXDR [Sun89], CDR [Sie95], or the Java serialization protocol. Semantically, pointers raise questions aboutthe identity of objects, whether they are shared or copied between sites, what kind of coherence is achievedif they are mutable, etc. Independently of these questions which depend on the semantics of the languageoperating DMeroon, the memory model we propose simply supports, at the most fundamental level, theconcept of remote pointer allowing an object from a site to refer to another object of another site. A remotepointer may be swizzled into a local pointer if the target of the pointer is locally present.Albeit apparently simple, the machinery of remote pointers is rather subtle. One reason is the di�erentsets of invariants the implementation has to maintain with respect (i) to the user or, (ii) to itself or,(iii) to the other sites. Another di�culty is the number of simultaneous goals this machinery also wants toachieve: fast dispatch for object-oriented programming, support for garbage collection, re
ection, coherence,security or fault-tolerance. This paper mainly focuses on the handling of remote pointers.1.2 ClassesTable 1 summarizes the fundamental classes we will rely upon. This Section comments them and sets upsome terminology. Site Class Field Entry ExitIP, port name name key siteofexported supers nature object keyexits �elds C type replicasites properties properties classofintroducingTable 1: Fundamental classesSite holds the information that characterizes an address space: Site rei�es sites. Apart the IP host andport numbers, there are the exported and exits1 tables as well as the table of known sites. This latest tablegathers the replicas of sites that own the remote objects a given site is aware of. These tables are describedbelow.Class is the class of descriptors of data structures. A class has a name2, some super-classes and refers tothe �elds that its instances contain. Field describes a �eld with a name, a nature (regular or indexed), a Ctype and some properties such as mutable or immutable. A �eld also refers to the class that introduces it.As in ObjVlisp [BC87], classes are instances of Class and our model supports to subclass Class or Field.The prede�ned classes of Table 1 are immutable and ubiquitous: they are present everywhere.Classes, �elds and sites are objects the user may freely obtain and use. On the other hand, tables areinternal values that may solely be used by the implementation and so are proxies (i.e., Entry or Exit itemsaccording to the terminology of [LQP92]).After creating an object within a site, an user may access its �elds or get its class with the .classoperation. The current site is said to own the freshly created objects (migration of objects i.e., change inthe owning site is beyond the scope of this paper). Reciprocally the object is said to be local to its owning1This asymmetry of names is explained later.2This name is used for human readability. There is no primitive way to retrieve a class from its name.2



site. The owning site may be obtained with the .site operation. The .class and .site operations aremere notations, they do not require objects to implement such �elds.Besides a class and a site, an object is possibly associated to a proxy3. A proxy is accessed with the.proxy operation. Proxies hold the information required to (i) let the object be known from other sitesor, (ii) access its remote content. No proxy means that the object is not known from other sites. Anubiquitous object is local to every site.1.3 ActionsAs far as distribution is concerned, the user may perform three actions only. Given an object o owned by asite s, the user may:1. create, on a site s0, a remote reference towards o. This occurs when an user \sends" an object towardsa remote site i.e., lets this object be known from another site.2. create a replica of o on site s0. This corresponds to a copy of o on s0. The access to the replica mayof course be constrained by some coherency policy if, rather than just copied, the original object mustbe shared or synchronized.3. re-export a remote reference onto another site s00. This is a kind of indirection from s00 to s passingthrough s0 as a relay site. Some systems [SDP92, MDF97] shortcut remote references to be alwaysdirect; others [Piq91] maintain the di�usion tree of objects. Both behaviors are supported by DMe-roon.
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Figure 1: Externalized object on s. The Figure is centered around object o and all details are not shown.The entry items are shown as wedges entering the site bordered with a dashed line. The arrow starting froman entry item designates the object held in the .object �eld of this entry item; the key is shown in thedotted box nearby the entry item. The site s is externalized, its class (Site) is ubiquitous. The class of theobject o is not ubiquitous, it is externalized (its class may be Class or another indirect instance of Class).The user may send to another site a reference to one of its local object. In order to let an object beknown from other sites, �rst, the object is externalized (see Figure 1): an associated Entry item is createdand inserted in the exported table of the current site. This entry item holds a unique key that identi�es the3Currently, the DMeroon system provides two hidden pointers per object to hold its class and proxy, the site being leftimplicit. 3



object network-wide and a pointer to the object. Reciprocally, the externalized object holds this entry itemas proxy so at most one entry item is associated to an object. By construction, the user never sees entryitems although the implementation needs to access them via the .proxy operation. Observe that the classof the object is also externalized. The instance of Site that describes the current site is always externalizedas a result of the establishment of communication channels with other sites.After the object is externalized on site s, a remote reference may be created on a site s0 as follows (seeFigure 2): an Exit item is created and inserted into the exits table of s0. This exit item holds a key (thekey of the matching entry item) as well as a pointer to the local instance of Site which describes s on s0.This replica of site s is only used for its IP host and port numbers4. An object which is not local is said tobe remote.
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s0Figure 2: Remote pointer from s0. All details are not shown. Exit items are represented by wedges exitingout of the site bordered with a dashed line. Object o is remote on s0 and currently has no replica. Objecto is represented by the leftmost exit item e0. Its class is also remote and has no replica either. Site s has areplica; its class, Site, is ubiquitous therefore present and local. The site of s is, of course, s itself. Sites areimmotile, they cannot be migrated.An exit item also holds two additional �elds that characterize the remote object. The .classof �eldholds a (possibly remote) pointer to the class of the remote object, see Figure 2. The second additional�eld of an exit item either is NULL or holds a replica of the remote object. When the user dereferences apointer to a remote object, a replica is fetched and returned to the user. A replica allows to speed up theaccesses to the remote object it stands for, see Figure 3. Of course, if such a replica exists, its structuralinformation is similar to the structural information of the remote object: the replica and the remote objecthave same owning site, same class and same lengths for indexed �elds. However the content of the replicamay be whatever the coherence protocol decided it to be. A replica is always associated to an exit item andhas it as proxy.When a replica is present on a site, any pointer to any exit item may be shortcut (or swizzled [Mos90])to point directly to the associate replica if it exists. Conversely, the GC may longcut a reference to a replicaand redirect it towards its associated exit item so the GC is able to recycle the replica if useless. These tworules may be applied at any time, see left part of Figure 3. These mutations may only be performed on thepointers that occur in the �elds of objects. Structural pointers required by the implementation to refer tothe class, the site, the proxy or the replica are not submitted to this rule; this is to avoid in�nite regressionwithin the implementation.4This is easily achieved in DMeroon since all the other �elds of Site are declared local and secret so they are never marshaledout of the owning site nor they may be accessed by the user. 4
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longcuts0Figure 3: Replicated object. All details are not shown. Object o is remote on s0 but has a local replica(therefore its class c is also present i.e., has a local replica). A pointer to o may refer indi�erently to the exititem e0 or the replica o.Finally and since it is often useful to re-export a reference to an exit item even if the remote object isnot present, we allow to re-export an exit item i.e., to insert it in the exported table, see Figure 4. This tableis named exported rather than, say, entries since it may contain entries or exits items. Since an exit itemalready has a key, it is externalized under that same key.Hs0.exportedk ! Hs0.exitsk ! s0Figure 4: Re-exported remote object. The re-exported exit item is drawn twice (as an in-going and out-goingwedge) but forms a single entity. A re-exported exit item needs not be associated to a replica.At the implementation level, if we consider the .replica �eld of the exit item to be an alternate namefor the .object �eld of the entry item, then an exit item may be viewed as a subclass of an entry item inobject-oriented parlance.1.4 Representational PropertiesThis Section presents a more formal and synthetic view of the representational properties, they are sketchedin Table 2 and commented below. 5



8o 2 Object;8s; s0 2 Site;locals(o) def= o.site = s ^ presents(o.class)externalizeds(o) def= locals(o) ^ 9k; is-externalizeds(o; k) ^ exporteds(o.class) ^ exporteds(o.site)is-externalizeds(o; k) def= 9e 2 Entry; o.proxy = e ^ s.exported(k) = e ^ e.key = k ^ e.object= oremotes0(o) def= 9k; is-remotes0(o; k)is-remotes0(o; k) def= 9e0 2 Exit; e0 = s0.exits(k) ^ e0.key = k ^is-cacheds0(o.site; e0.siteof) ^ ultimate(e0.classof) = o.class^ultimate(e0) = o ^ is-externalizedo.site(o; k)ultimate(x) = 8<: ultimate(x.siteof.exported(x.key)) if x 2 Exitultimate(x.object) if x 2 Entryx if x 2 Objectcacheds0(o) def= 9o0 2 Object; is-cacheds0(o; o0)is-cacheds0(o; o0) def= 9e0 2 Exit; e0.replica = o0 ^ o0.proxy = e0 ^similar(o; o0) ^ presents0(o.class) ^ is-remotes0(o; e0.key)similar(o; o0) def= similar(o.class; o0.class) ^ similar(o.site; o0.site)^(8f 2 o.class.field; indexed(f)) o.f.length = o0.f.length)presents(o) def= locals(o) _ cacheds(o)8e0 2 Exit; re-exporteds0(e0) def= 9o 2 Object; is-remotes0(o; e0.key) ^ s0.exported(e0.key) = e0exporteds(o) def= externalizeds(o) _ (9k; is-remotes(o; k) ^ re-exporteds(s.exported(s.exits(k))))Table 2: Main representational properties. The ultimate function dereferences remote pointers until �ndingan object the user may see.An object may be present or not. If present, the object can only be (i) local or, (ii) remote but cachedi.e., locally represented by a replica. An object is local if the current site owns it i.e., created it (in absenceof migration). A remote object has an exit item as proxy. A remote object may be re-exported even if notpresent.The DMeroon representation ensures that the user can only see objects that are present (real objectsor replicas). The replica and the object do have same class and same owning site. The proxy mechanism isentirely hidden. For any present object, its structural information is always present: the class, the site, thelengths of indexed �elds may be accessed without any delay.To achieve these properties, exporting an object imposes its class and its site to be exported as well. Toexport a local object is to externalize it; to export a remote object is to re-export its proxy.The representational invariants of Table 2 are complex and mutually recursive. They must be enforcedby the marshaling language and the upper protocols as will be seen in the next sections.1.5 SummaryThis Section described the basic representation of objects, proxies and tables that manage them. Associatedto these representations is a set of invariants they must respect. Close to the user are the three actions thatmay be performed on objects. Between actions and representations are the communication channels i.e., theobject pipe through which objects are marshaled.2 The Marshaling LanguageSites are connected via an object pipe that conveys messages i.e., programs, conforming to the marshalinglanguage. This Section presents the basic primitives of this very speci�c language that deals with distributedobjects in order to allocate them, manage their replica, update them etc.6



is called as does returnsallocate class sizes... Allocate an object the allocated objectfill object content... Fill an object with some content the �lled objectremote key site class Refer to a remote object the exit item or its replica if presentbind object exit Associate an object and an exit item the replica of the exit itemsite IP port Refer to a site the sitepredefined index Refer to an ubiquitous object the index'th ubiquitous objectTable 3: Basic primitives of the marshaling language. Underlined arguments require them to be present onthe unmarshaling site.The marshaling language is expression-oriented. Its most primitive commands appear in Table 3. Theallocate primitive expects at least one argument: a class. Since a class contains all the structural infor-mation that characterizes its instances and since this class is present (this is why it appears underlined inTable 3), it is simple to determine the number of its indexed �elds and to expect as many sizes, of the properunsigned C type, as arguments of the allocate invocation. The value of this primitive is the allocated objectwith complete structural information: this object is local to the site where is run the allocate primitive.The fill primitive expects an object; this object must be present. The class of the object is used toconsume the subsequent bytes until the object is entirely �lled. Non-pointer �elds are encoded similarly toXDR or CDR [Sun89, Sie95]. Pointers are encoded as objects i.e., as expressions of the marshaling language.The �lled object is returned as the value of the fill expression.This primitive relies upon the following network invariant which is a consequence of the invariants ofTable 2: no object can be unmarshaled if its class is not present. There is a simple way to respect the previousnetwork invariant (another better way will be presented in Section 4 with the try marshaling command): asite never marshals an object whose class may be unknown by the receiving site, instead the receiving sitehas to pull the class before pulling the object (of course, the user does not know that, the user simply askedfor the object at the end of a pointer).A site object is created via the site primitive. This primitive expects host and port numbers. If nosuch object exists in the sites table, one is created and inserted. The appropriate site is the value of thisprimitive. No communication is required with the mentioned site.Remote references (exit items) are created with the remote primitive. This primitive expects a key, a siteand a class. The site must be present (so enough information is present to create a communication channel ifneeded) but the class may be absent and only remotely referenced. If not yet present, an exit item is createdand inserted into the exits table. As for the value of this primitive, the exit item is implicitly dereferencedif it is associated with a replica otherwise the exit item is returned as it is.The bind primitive normally expects an object and an exit item; it makes the object become the replicaof the exit item. Since exit items are implicitly dereferenced by the remote primitive, the second argument ofbind may be a replica to mean the associated exit item. The value of that primitive is the replica associatedto the second argument. If the exit item is already bound to a replica, the �rst argument is then ignored.Most of these primitives are unsafe or dangerous. They all err when an argument that should be presentis not. The fill primitive allows to overwrite objects, the remote primitive may confer an inappropriateclass to a remote object, the bind primitive may associate unrelated objects and exit items. It is up to themarshaler and the upper layers (see Table 11) to ensure safety.3 A Simplistic MarshalerThe marshaler translates values into expressions of the marshaling language. However, the compilation isnot so obvious since:1. to reduce the number of messages, objects should be pre-sent (i.e., pushed) but not too much: thecompilation ought to stop.2. the compiler must not loop while marshaling cyclic data,7



3. last, the representation properties and the network invariant must be enforced.A simplistic compiler, C, appears in Table 4. The compiler is divided into �ve di�erent sub-compilerswith various properties. Prede�ned (and among them ubiquitous) objects are marshaled with a speci�ccompiler hidden under the name Cpredef. This compiler encodes a prede�ned object with a predefinedmarshaling command followed by the appropriate index in the ubiquitous table of prede�ned objects. Sitesare specially marshaled with the site command.C(o : Object) 7! Cpresend(o)Cpresend(o : Object) ^ prede�ned(o) 7! Cpredef(o)Cpresend(o : Object) 7! Cshare(o)Cshare(e0 : Exit) 7! remote e0.key Ctransmit(e0.class) Cpredef(e0.site)Cshare(o : Object) ^ o.proxy 2 Exit 7! Cshare(o.proxy)Cshare(o : Object) 7! remote externalize(o).key Cpresend(o.class) Cpredef(currentSite)Ctransmit(e : Exit) 7! Cshare(e)Ctransmit(o : Object) 7! Cpresend(o)Ccopy(o : Object) 7! fill allocate Cshare(o.class) <sizes><content of o with Ctransmit on pointer>Cpredef(s : Site) 7! site s.IP s.portCpredef(o : UbiquitousObject) 7! predefined <appropriate index for o>externalize(o : Object) ^ o.proxy 2 Exit 7! externalize(e.proxy)externalize(o : Object) ^ o.proxy 2 Entry 7! o.proxyexternalize(o : Object) 7! let k = new key; e = new Entry(k; o); currentSite.exported++[k ! e] in eexternalize(e0 : Exit) ^ e0 = currentSite.exported(e0.key) 7! e0externalize(e0 : Exit) 7! let currentSite.exported++[e0.key! e0] in e0Table 4: Simple compiler. The externalize function represents the similarly named function described inSection 1.3. It returns the appropriate proxy and it extends the exported table (with a ++ notation) asrequired.The Ccopy compiler is the bulk of the whole C compiler, it simply encodes the content of an object. Nonpointer �elds are encoded similarly to XDR while pointers are compiled using Ctransmit. This latest compilertries to share or pre-send objects that is, it simply chooses a compiler among Cshare or Cpresend. Thechoice is currently simplistic: prede�ned objects are transmitted, others are shared. The Cshare externalizesobjects, re-exports exit items and generates a remote command.This compiler is simplistic but satis�es the afore-mentioned constraints.4 ExtensionsThe marshaling language is very raw for the moment and restricted to a few primitives. But to view it asa language helps to make it better to (i) obtain more compact marshaling programs, (ii) diminish thenumber of messages.The marshaling language is expression-oriented, it is therefore straightforward to extend it with a stackand operations on that stack. We therefore add the primitives of Table 5. This Table may be completedwith other Forth-like operations such as swap, roll, etc. Observe that a stack is speci�c to a one-waycommunication channel. It has one occurrence on the emitting site; the receiving site maintains a copy ofthat stack which is similar to the one of the emitting site up to the commands that are not yet unmarshaled.These operations are useful to marshal values with short cycles. This is the case for instance for Classand Field instances since a class refers to its �elds that, in return, refer to the class that introduces them.To encode a class and its accompanying �elds may thus be done by, �rst, pushing the class, so the pre-sent�elds may refer to it by a top command and, �nally, pop-ping the class. To mention an object with the top8



is called as does returnspush object pushes an object the pushed objecttop the top of the stackpop pops the stack the popped objectTable 5: Stack marshaling commandsor pop commands is done with a single byte. This is to compare to a remote command that costs dozens ofbytes.A stack helps for a single message, a cache may help for a series of messages. The sent objects may beinserted in a cache and later referred to with only a few bytes. It is straightforward to enrich the marshalinglanguage with a new set of commands to manage this cache, see Table 6. Observe that a cache is speci�c toa one-way communication channel. It has one occurrence on the emitting site, the receiving site maintainsa copy of that cache which is similar to the one of the emitting site up to the commands that are not yetunmarshaled.is called as does returnsrecord index object records an object with a given index the objectrefer index the index'th object of the cachedouble doubles the size of the cache nothingreset empties the cache nothingTable 6: Cache marshaling commandsA good caching policy probably depends heavily on the user's applications requirements. The availabilityof the caching commands allow to design new appropriate marshalers with innovative, adaptative cachingpolicies.In order to reduce the size of messages, DMeroon also uses the following commands, see Table 7. Theydon't introduce new concepts, they are pure but very common abbreviations that drastically reduce the sizeof messages. However they have an impact since their use makes messages non portable since the result ofthe marshaler depends on the sites that are at the ends of a communication channel.is called as returnsreceiving-site the receiving siteemitting-site the emitting siteemitter-reference key class � remote key emitting-site classreceiver-reference key � remote key receiving-site <the appropriate class>Table 7: Abbreviation marshaling commandsBesides the previous commands, DMeroon adds three more technical commands, see Table 8.The two �rst commands, prog1 and prog25, allow to gather expressions for their side-e�ects (stack orcache commands are clearly candidates). The most interesting command is the third of Table 8. The trycommand tries to unmarshal its �rst object (appearing as second argument). If unmarshaling this �rstobject is free of errors then try acts similarly to prog1 and returns this �rst object. If an error occurswhile unmarshaling the �rst object, then try skips it, acts similarly to prog2 and returns the second object(appearing as its third argument). It is always possible to skip the �rst object, wherever is the unmarshalingerror, since its length is available in the �rst argument of try.The try command is powerful since it con�nes unmarshaling anomalies, it also allows new strategies thatrespect the network invariant: no object can be unmarshaled if its class is not present. It is possible to tryto send an object assuming that its class is known from the receiving site but to let the receiving site back5Good old Lisp names. 9



is called as returnsprog1 object object the �rst objectprog2 object object the second objecttry size object object the �rst or second objectTable 8: Ancillary marshaling commandsup with a remote pointer if this was not the case. In other words, one may send an object with the Ctrycompiler de�ned as: Ctry(o : Object) 7! try n Ccopy(o)| {z }n Cshare(o)If the content of the object o cannot be unmarshaled then this expression simply returns a remote pointeronto o.The try command is obviously reminiscent of the try or unwind-protect keywords of well-known pro-gramming languages and actually comes from the point of view we adopted for the marshaling language.The semantics of the marshaling language could have been presented to describe more precisely the meaningof these commands and their interaction. For instance, a try command resets the stack at the height it hadwhen try started but the cache is left unchanged. With this semantics, one may prove whether a marshalerrespects the representational invariants.5 Other MarshalersThe marshaling language is the target of marshalers. Often, there is more than a single way to encode valuesand the simplistic compiler of Table 4 may easily be extended to use more elaborated strategies with helpof the previous commands. This Section investigates some of these improvements.A marshaler may check whether the class of the object it wants to marshal is (i) surely known by thereceiving site, (ii) surely unknown or, (iii) else. It may then choose dynamically an appropriate compileramong Ccopy, Cshare or Ctry. For that inquiry, the marshaler may consult the owning site of the classor, the exits table or, the cache or stack associated with the one-way communication channels leading to orcoming from the receiving site.Trying to improve a marshaler requires some caution. For instance, to pre-send an object whose class isprede�ned does not seem problematic and may be expressed by the following additional rule:Cpresend(o : Object) ^ prede�ned(o.class) 7!bind Ccopy(o) Cshare(o)This rule presents two problems: a termination problem and a coherence problem. The terminationproblem comes from the use of Ccopy which uses Ctransmit on every internal pointer which in turn mayinvoke Cpresend closing the circle fatal for cyclic values. This problem may be solved with a counter,turning Ccopy into Cshare when deeper than a given level. This must be accompanied by a change of thearchitecture of the compilers since they would have to be written with a counter-passing-style.To eagerly pre-send the content of the object may lead to multiple contents being transmitted whereasonly one of them would become the replica of the remote exit item. Given that the stack and the cachemay be used to retain some of these contents, the marshaler has to take care of the unmarshaler rebuildinga congruent value. We solve this problem by introducing a new layer of communication: sites will exchangerequests and answers. Processing these requests/answers will provide a disciplined and safe use of themarshaling language.5.1 RequestsA communication channel from a site to another is an object pipe through which are exchanged objects.The object pipe is an interesting layer since objects may be handled on the basis of their class i.e., with10



an appropriate method in object-oriented parlance. The object pipe also isolates higher level needs such ascoherency from low level details concerning the marshaling process.Sites communicate through requests (and answers when needed). Requests isolates higher-level languagesfrom the direct use of the marshaling language and provide a disciplined use of it. Coherency and otherhigher-level goals may be cleanly grafted into these requests or ensured with new additional requests.OSR OFR OFAobject exit requestobjectTable 9: Request/Answer classesThere are two types of requests that interest us: OSR (standing for Object Send Request) allows tosend an object (or at least a reference onto it) to another site. Conversely, OFR (standing for Object FetchRequest) asks the owning site of the target of a remote reference to reply with a replica by means of an OFA(for Object Fetch Answer; an OFA refers back to the request it answers). These are the \push" and \pull"operations for objects.Coherency, synchronization may be achieved with OFA answers that update replicas according to someprotocol.Requests are structured values containing pointers, they may be considered as objects, therefore, to savecode, they may be sent to other sites as objects with exactly the same machinery. However, they must bespecially marshaled. The content of a request must obviously be transmitted otherwise the receiving sitewould only get a remote pointer instead of the request object itself. The receiving site would even not beable to ask for its content since it may only send requests that would not be transmitted for the same reason.To solve this problem we may extend the simplistic compiler of Table 4 with the new rules of Table 10.C(o : OSR) 7! fill allocate Cpredef(OSR) Ctransmit(o.object)C(o : OFA) 7! fill allocate Cpredef(OFA) Cshare(o.request) Ccopy(o.object)C(o : OFR) ^ present(o.exit.class) 7! fill allocate Cpredef(OFR) Cshare(o.exit)Table 10: Compilation of Requests/answers.These rules distinguish the cases for OSR, OFR and OFA instances. When marshaled, an OFA mustcopy the replica of its .object �eld otherwise there is no means to ensure that objects are really transmitted.This is safe since an OFA is the answer to an OFR and since an OFR is emitted only if the class of theexpected object is already present on the emitting site.In fact, we may eliminate the special cases of OFR, OFA and OSR and de�ne a property on classesthat will be taken into account by marshalers. If an object has a class with the transmittable property,then it is marshaled with Ccopy. Within Ccopy, a pointer �eld with the transmittable property forcesthe pointed object to be marshaled with Ccopy instead of Ctransmit. The OFR, OFA and OSR classesare transmittable; the .object �eld of OFA is also transmittable. Class de�nitions may customize themarshaler but ought to ensure the good behavior of the enriched marshaler.New requests may be invented to reduce the size of messages. For instance, the ORR (standing forObject Refresh Request) asks for the content of an already present replica. Only the mutable �elds haveto be transmitted back. ORR requests may be implemented with a new appropriate compiler, Crefresh,emitting a new (unsafe) refresh marshaling command whose use is wrapped within an ORA (for ObjectRefresh Answer).
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5.2 BehaviorsIt is now clear that the marshaler may evolve at run-time provided it still generates appropriate expressionsof the marshaling language. The marshaler may then, at run-time, copes with memory exhaustion (and thuscaches less objects or even resets caches), reacts to a reduction of network bandwidth (and thus refrainsto pre-send objects or increase caching), deals with speci�c (cyclic for instance) values (and lets the userprovide an appropriate marshaling technique for these classes).If the marshaler is itself rei�ed into an object, it may be transmitted on a site and substituted to the formerone. Marshaling may thus be dynamically improved using marshaling. The rei�cation of the marshaler maylook like a byte-code vector or as a graph of nodes corresponding to compilers linked with edges checkingfor some conditions of use.6 Related WorkWe will only discuss the aspects that are related to the marshaling language and ignore the distributedaspects of DMeroon implementation with respect to other systems such as [Ach93]. The �rst Section ofthis paper are only a support for the exposition of the marshaling language.The XDR (for eXternal Data Representation [Sun89]) library, introduced by the NFS system, allowsto marshal structured values. This is a lower level library since it does not deal with (remote) referencesnor it does introduce the illusion of a distributed memory model (no object identity). The marshaler andthe unmarshaler form a single piece of code whose behavior is speci�ed at invocation time. This code isgenerated from the description of the data structure, typically from a .h-like �le.Corba introduced CDR (for Common Data Representation [Sie95]) for marshaling as well as seven typesof request/answer in the IIOP protocol (for Internet Inter-ORB Protocol). Since Corba brings the notion ofobject identity, references to remote objects may easily be marshaled. However these libraries are opaque,cannot be tailored, and, as for XDR, statically generated from the description of the exchanged data structureexpressed in IDL (for Interface De�nition Language).Static generation of marshalers/unmarshalers produces a code whose size may be extremely large. Somealternate solutions were explored. [?] proposed to interpret type descriptors and showed that the speed isnot too much deteriorated since the unmarshaler is very compact and �ts well in processor cache. [Bar97]also proposed a kind of interpreter that he called the marshaling engine. Finally, [Hof97] lessens the needfor space with just-in-time stub generation.Within Java realm, RMI (for Remote Method Invocation) introduces a serialization/deserialization in-terface. This interface takes care of all sorts of objects (provided they are serializable) and may becustomized or extended by the user. The caching policy cannot be parameterized: by default, all sentobjects are memorized.Compared to these proposals, ours is clearly more compact: On a PC box with Linux, the DMeroonunmarshaler weights 18 Kbytes. The marshaler, which is slightly better than the naive one above, adds 6Kbytes. These sizes are independent of the number of classes although the 103 prede�ned DMeroon classesadd some 17 Kbytes. Were we to use rpcgen, these classes will generate a static marshaler/unmarshaler of23 Kbytes to which we must add the necessary XDR library making up to a total of 79 Kbytes (not takinginto account DMeroon indexed �elds which are not naturally accomodated by rpcgen).With respect to speed, our solution is clearly slower than XDR-style compiled code but it o�ers otheradvantages. The marshaler may be enriched at run-time to incorporate new dynamically created classes oruser's dynamically speci�ed customization. The marshaler may also react to overall changes such as networkbandwidth, memory exhaustion etc. Our solution is portable, does not depend on the operating system andtolerates a GC recycling unused classes for instance.7 Conclusions and Future WorkThis paper proposed a layered architecture shown on Table 11.The �rst part of the paper covers the terminology and the detailed representation of objects, referencesand replicas as well as the representational invariants they have to respect. This Section is quite subtle since12



Application Programming Interface userRequest/Answer protocol protocol between sitesMarshaling language commandsRepresentational properties invariantsMemory model objects, classes, proxiesTable 11: Layersthis representation allows for the existence of meta-classes, for classes to be dynamically created once andinstantiated everywhere.The second part of the paper exposes a marshaling language describing the streams of bytes that allow onesite to transmit structured values to other sites. The marshaler is a compiler that turns values into expressionsof the marshaling language while the unmarshaler is a byte-code interpreter evaluating expressions of themarshaling language to build structured values. The language is inspired by programming languages andallows for versatility both at compile-time and run-time.We think that the small glimpses at formalism here and there in this paper may be a hint to some proofsystems:� to prove the semantics of the marshaling language not to violate representational invariants,� to prove a marshaler with respect to (i) the fundamental network invariant or (ii) other user-orientedinvariants,� to prove a protocol over the marshaler to respect some network invariants.We plan to developp these points as well as to experiment with the rei�cation of marshalers in order tolet class conceptors express their marshaling needs.These ideas have been implemented in the DMeroon distributed shared memory since 1996. Additionaldetails may be found in the DMeroon documentation available from the net [Que98].Many thanks to Luc Moreau for his fruitful proof-reading.References[Ach93] Bruno Achauer. Implementation of distributed trellis. In Oscar M Nierstrasz, editor, ECOOP '93 | 7thEuropean Conference on Object-Oriented Programming, volume Lecture Notes in Computer Science 707,pages 103{117, Kaiserslautern (Germany), July 1993. Springer-Verlag.[Bar97] A Bartoli. A novel approach to marshalling. Software Practice and Experience, 27(1):63{86, January 1997.[BC87] Jean-Pierre Briot and Pierre Cointe. A uniform model for object-oriented languages using the class abstrac-tion. In IJCAI '87, pages 40{43, 1987.[Hof97] Markus Hof. Just-in-time stub generation. In JMLC'97 | Joint Modular Languages Conference, pages197{206, Linz (Austria), March 1997.[LQP92] Bernard Lang, Christian Queinnec, and Jos�e Piquer. Garbage collecting the world. In POPL '92 { Nine-teenth Annual ACM symposium on Principles of Programming Languages, pages 39{50, Albuquerque (NewMexico, USA), January 1992.[MDF97] Luc Moreau, David DeRoure, and Ian Foster. NeXeme: a Distributed Scheme Based on Nexus. In ThirdInternational Europar Conference (EURO-PAR'97), volume 1300 of Lecture Notes in Computer Science,pages 581{590, Passau, Germany, August 1997. Springer-Verlag.[Mos90] J. Eliot B. Moss. Working with objects: To swizzle or not to swizzle? Technical Report 90{38, Universityof Massachusetts, Amherst, Massachusetts, May 1990.[Piq91] Jos�e Miguel Piquer. Indirect reference counting: A distributed garbage collection algorithm. In PARLE'91 { Parallel Architectures and Languages Europe, pages 150{165. Lecture Notes in Computer Science 505,Springer-Verlag, June 1991. 13
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