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Abstract. Non-Centered Discrete Gaussian sampling is a fundamental
building block in many lattice-based constructions in cryptography, such
as signature and identity-based encryption schemes. On the one hand, the
center-dependent approaches, e.g. cumulative distribution tables (CDT),
Knuth-Yao, the alias method, discrete Zigurat and their variants, are the
fastest known algorithms to sample from a discrete Gaussian distribu-
tion. However, they use a relatively large precomputed table for each
possible real center in [0, 1) making them impracticable for non-centered
discrete Gaussian sampling. On the other hand, rejection sampling allows
to sample from a discrete Gaussian distribution for all real centers with-
out prohibitive precomputation cost but needs costly floating-point arith-
metic and several trials per sample. In this work, we study how to reduce
the number of centers for which we have to precompute tables and pro-
pose a non-centered CDT algorithm with practicable size of precomputed
tables as fast as its centered variant. Finally, we provide some experimen-
tal results for our open-source C++ implementation indicating that our
sampler increases the rate of Peikert’s algorithm for sampling from arbi-
trary lattices (and cosets) by a factor 3 with precomputation storage
up to 6.2 MB.

1 Introduction

Lattice-based cryptography has generated considerable interest in the last decade
due to many attractive features, including conjectured security against quantum
attacks, strong security guarantees from worst-case hardness and constructions
of fully homomorphic encryption (FHE) schemes (see the survey [33]). More-
over, lattice-based cryptographic schemes are often algorithmically simple and
efficient, manipulating essentially vectors and matrices or polynomials modulo
relatively small integers, and in some cases outperform traditional systems.

M.R. Albrecht—The research of this author was supported by EPSRC grant “Bit 
Security of Learning with Errors for Post-Quantum Cryptography and Fully Homo-
morphic Encryption” (EP/P009417/1) and the EPSRC grant “Multilinear Maps in 
Cryptography” (EP/L018543/1).
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Modern lattice-based cryptosystems are built upon two main average-case
problems over general lattices: Short Integer Solution (SIS) [1] and Learning
With Errors (LWE) [35], and their analogues over ideal lattices, ring-SIS [29]
and ring-LWE [27]. The hardness of these problems can be related to the one
of their worst-case counterpart, if the instances follow specific distributions and
parameters are choosen appropriately [1,27,29,35].

In particular, discrete Gaussian distributions play a central role in lattice-
based cryptography. A natural set of examples to illustrate the importance of
Gaussian sampling are lattice-based signature and identity-based encryption
(IBE) schemes [16]. The most iconic example is the signature algorithm proposed
in [16] (hereafter GPV), as a secure alternative to the well-known (and broken)
GGH signature scheme [18]. In this paper, the authors use the Klein/GPV algo-
rithm [21], a randomized variant of Babai’s nearest plane algorithm [4]. In this
algorithm, the rounding step is replaced by randomized rounding according to a
discrete Gaussian distribution to return a lattice point (almost) independent of
a hidden basis. The GPV signature scheme has also been combined with LWE
to obtain the first identity-based encryption (IBE) scheme [16] conjectured to
be secure against quantum attacks. Later, a new Gaussian sampling algorithm
for arbitrary lattices was presented in [32]. It is a randomized variant of Babai’s
rounding-off algorithm, is more efficient and parallelizable, but it outputs longer
vectors than Klein/GPV’s algorithm.

Alternatively to the above trapdoor technique, lattice-based signatures
[11,23–26] were also constructed by applying the Fiat-Shamir heuristic [14]. Note
that in contrast to the algorithms outlined above which sample from a discrete
Gaussian distribution for any real center not known in advance, the schemes devel-
oped in [11,25] only need to sample from a discrete Gaussian centered at zero.

1.1 Our Contributions

We develop techniques to speed-up discrete Gaussian sampling when the center
is not known in advance, obtaining a flexible time-memory trade-off comparing
favorably to rejection sampling. We start with the cumulative distribution table
(CDT) suggested in [32] and lower the computational cost of the precomputa-
tion phase and the global memory required when sampling from a non-centered
discrete Gaussian by precomputing the CDT for a relatively small number of
centers, in O(λ3), and by computing the cdf when needed, i.e. when for a given
uniform random input, the values returned by the CDTs for the two closest pre-
computed centers differ. Second, we present an adaptation of the lazy technique
described in [12] to compute most of the cdf in double IEEE standard double
precision, thus decreasing the number of precomputed CDTs. Finally, we pro-
pose a more flexible approach which takes advantage of the information already
present in the precomputed CDTs. For this we use a Taylor expansion around
the precomputed centers and values instead of this lazy technique, thus enabling
to reduce the number of precomputed CDTs to a ω(λ).

We stress, though, that our construction is not constant time, which limits
its utility. We consider addressing this issue important future work.
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1.2 Related Work

Many discrete Gaussian samplers over the Integers have been proposed for lattice-
based cryptography.Rejection Sampling [12,17], Inversion Samplingwith aCumu-
lative Distribution Table (CDT) [32], Knuth-Yao [13], Discrete Ziggurat [7],
Bernoulli Sampling [11], Kahn-Karney [20] and Binary Arithmetic Coding [36].

The optimal method will of course depend on the setting in which it is used.
In this work, we focus on what can be done on a modern computer, with a
comfortable amount of memery and hardwired integer and floating-point opera-
tions. This is in contrast to the works [11,13] which focus on circuits or embedded
devices. We consider exploring the limits of the usual memory and hardwired
operations in commodity hardware as much an interesting question as it is to
consider what is feasible in more constrained settings.

Rejection Sampling and Variants. Straightforward rejection sampling [37] is a
classical method to sample from any distribution by sampling from a uniform
distribution and accept the value with a probability equal to its probability in
the target distribution. This method does not use pre-computed data but needs
floating-point arithmetic and several trials by sample. Bernoulli sampling [11]
introduces an exponential bias from Bernoulli variables, which can be efficiently
sampled specially in circuits. The bias is then corrected in a rejection phase based
on another Bernouilli variable. This approach is particularly suited for embed-
ded devices for the simplicity of the computation and the near-optimal entropy
consumption. Kahn-Karney sampling is another variant of rejection sampling
to sample from a discrete Gaussian distribution which does not use floating-
point arithmetic. It is based on the von Neumann algorithm to sample from
the exponential distribution [31], requires no precomputed tables and consumes
a smaller amount of random bits than Bernoulli sampling, though it is slower.
Currently the fastest approach in the computer setting uses a straightforward
rejection sampling approach with “lazy” floating-point computations [12] using
IEEE standard double precision floating-point numbers in most cases.

Note that none of these methods requires precomputation depending on the
distribution’s center c. In all the alternative approaches we present hereafter,
there is some center-dependent precomputation. When the center is not know
this can result in prohibitive costs and handling these becomes a major issue
around which most of our work is focused.

Center-Dependent Approaches. The cumulative distribution table algorithm is
based on the inversion method [9]. All non-negligible cumulative probabilities are
stored in a table and at sampling time one generates a cumulative probability
in [0, 1) uniformly at random, performs a binary search through the table and
returns the corresponding value. Several alternatives to straightforward CDT
are possible. Of special interest are: the alias method [38] which encodes CDTs
in a more involved but more efficient approach; BAC Sampling [36] which uses
arithmetic coding tables to sample with an optimal consumption of random bits;
and Discrete Ziggurat [7] which adapts the Ziggurat method [28] for a flexible
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time-memory trade-off. Knuth-Yao sampling [22] uses a random bit generator to
traverse a binary tree formed from the bit representation of the probability of
each possible sample, the terminal node is labeled by the corresponding sample.
The main advantage of this method is that it consumes a near-optimal amount
of random bits. A block variant and other practical improvements are suggested
in [13]. This method is center-dependent but clearly designed for circuits and on
a computer setting it is surpassed by other approaches.

Our main contribution is to show how to get rid of the known-center con-
straint with reasonable memory usage for center-dependent approaches. As
a consequence, we obtain a performance gain with respect to rejection sam-
pling approaches. Alternatively, any of the methods discussed above could have
replaced our straightforward CDT approach. This, however, would have made
our algorithms, proofs, and implementations more involved. On the other hand,
further performance improvements could perhaps be achieved this way. This is
an interesting problem for future work.

2 Preliminaries

Throughout this work, we denote the set of real numbers by R and the Integers
by Z. We extend any real function f(·) to a countable set A by defining f(A) =∑

x∈A f(x). We denote also by UI the uniform distribution on I.

2.1 Discrete Gaussian Distributions on Z

The discrete Gaussian distribution on Z is defined as the probability distribution
whose unnormalized density function is

ρ : Z → [0, 1)

x → e
−x2
2

If s ∈ R
+ and c ∈ R, then we extend this definition to

ρs,c(x) := ρ

(
x − c

s

)

and denote ρs,0(x) by ρs(x). For any mean c ∈ R and parameter s ∈ R
+ we can

now define the discrete Gaussian distribution Ds,c as

∀x ∈ Z, Ds,c(x) :=
ρs,c(x)
ρs,c(Z)

Note that the standard deviation of this distribution is σ = s/
√

2π. We also
define cdfs,c as the cumulative distribution function (cdf) of Ds,c

∀x ∈ Z, cdfs,c(x) :=
x∑

i=−∞
Ds,c(i)
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Smoothing Parameter. The smoothing parameter ηε(Λ) quantifies the minimal
discrete Gaussian parameter s required to obtain a given level of smoothness on
the lattice Λ. Intuitively, if one picks a noise vector over a lattice from a discrete
Gaussian distribution with radius at least as large as the smoothing parameter,
and reduces this modulo the fundamental parallelepiped of the lattice, then the
resulting distribution is very close to uniform (for details and formal definition
see [30]).

Gaussian Measure. An interesting property of discrete Gaussian distributions
with a parameter s greater than the smoothing parameter is that the Gaussian
measure, i.e. ρs,c(Z) for Ds,c, is essentially the same for all centers.

Lemma 1 (From the proof of [30, Lemma 4.4]). For any ε ∈ (0, 1), s > ηε(Z)
and c ∈ R we have

Δmeasure :=
ρs,c(Z)
ρs,0(Z)

∈
[
1 − ε

1 + ε
, 1

]

Tailcut Parameter. To deal with the infinite domain of Gaussian distributions,
algorithms usually take advantage of their rapid decay to sample from a finite
domain. The next lemma is useful in determining the tailcut parameter τ .

Lemma 2 ([17, Lemma 4.2]). For any ε > 0, s > ηε(Z) and τ > 0, we have

Etailcut := Pr
X∼DZ,s,c

[|X − c| > τs] < 2e−πτ2 · 1 + ε

1 − ε

2.2 Floating-Point Arithmetic

We recall some facts from [12] about floating-point arithmetic (FPA) with m
bits of mantissa, which we denote by FPm. A floating-point number is a triplet
x̄ = (s, e, v) where s ∈ {0, 1}, e ∈ Z and v ∈ N2m−1 which represents the real
number x̄ = (−1)s · 2e−m · v. Denote by ε = 21−m the floating-point precision.
Every FPA-operation ◦̄ ∈ {+̄, −̄, ×̄, /̄} and its respective arithmetic operation
on R, ◦ ∈ {+,−,×, /} verify

∀x̄, ȳ ∈ FPm, |(x̄ ◦̄ ȳ) − (x̄ ◦ ȳ)| ≤ (x ◦ y)ε

Moreover, we assume that the floating-point implementation of the exponential
function ¯exp(·) verifies

∀x̄ ∈ FPm, | ¯exp(x̄) − exp(x̄)| ≤ ε.

2.3 Taylor Expansion

Taylor’s theorem provides a polynomial approximation around a given point for
any function sufficiently differentiable.
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Theorem 1 (Taylor’s theorem). Let d ∈ Z
+ and let the function f : R → R

be d times differentiable in some neighborhood U of a ∈ R. Then for any x ∈ U

f(x) = Td,f,a(x) + Rd,f,a(x)

where

Td,f,a(x) =
d∑

i=0

f (i)(a)
i!

(x − a)i

and

Rd,f,a(x) =
∫ x

a

f (d+1)(t)
d!

(x − t)d
dt

3 Variable-Center with Polynomial Number of CDTs

We consider the case in which the mean is variable, i.e. the center is not know
before the online phase, as it is the case for lattice-based hash-and-sign signa-
tures. The center can be any real number, but without loss of generality we will
only consider centers in [0, 1). Because CDTs are center-dependent, a first naive
option would be to precompute a CDT for each possible real center in [0, 1) in
accordance with the desired accuracy. Obviously, this first option has the same
time complexity than the classical CDT algorithm, i.e. O(λ log sλ) for λ the
security parameter. However, it is completely impractical with 2λ precomputed
CDTs of size O(sλ1.5). An opposite trade-off is to compute the CDT on-the-
fly, avoiding any precomputation storage, which increase the computational cost
to O(sλ3.5) assuming that the computation of the exponential function run in
O(λ3) (see Sect. 3.2 for a justification of this assumption).

An interesting question is can we keep the time complexity of the classical
CDT algorithm with a polynomial number of precomputed CDTs. To answer this
question, we start by fixing the number n of equally spaced centers in [0, 1) and
precompute the CDTs for each of these. Then, we apply the CDT algorithm to
the two precomputed centers closest to the desired center for the same cumulative
probability uniformly draw. Assuming that the number of precomputed CDTs
is sufficient, the values returned from both CDTs will be equal most of the time,
in this case we can conclude, thanks to a simple monotonic argument, that the
returned value would have been the same for the CDT at the desired center and
return it as a valid sample. Otherwise, the largest value will immediately follow
the smallest and we will then have to compute the cdf at the smallest value
for the desired center in order to know if the cumulative probability is lower
or higher than this cdf. If it is lower then the smaller value will be returned as
sample, else it will be the largest.

3.1 Twin-CDT Algorithm

As discussed above, to decrease the memory required by the CDT algorithm
when the distribution center is determined during the online phase, we can pre-
compute CDTs for a number n of centers equally spaced in [0, 1) and compute
the cdf when necessary. Algorithm 1 resp. 2 describes the offline resp. online
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phase of the Twin-CDT algorithm. Algorithm 1 precomputes CDTs, up to
a precision m that guarantees the λ most significant bits of each cdf, and
store them with λ-bits of precision as a matrix T, where the i-th line is the
CDT corresponding to the i-th precomputed center i/n. To sample from Ds,c,
Algorithm 2 searches the preimages by the cdf of a cumulative probability p,
draw from the uniform distribution on [0, 1)∩FPλ, in both CDTs corresponding
to the center 	n(c − 	c
)
/n (respectively �n(c − 	c
)�/n) which return a value
v1 (resp. v2). If the same value is returned from the both CDTs (i.e. v1 = v2),
then this value added the desired center integer part is a valid sample, else it
computes cdfs,c−�c�(v1) and returns v1 + 	c
 if p < cdfs,c(v1) and v2 + 	c
 else.

Algorithm 1. Twin-CDT Algorithm: Offline Phase
Input: a Gaussian parameter s and a number of centers n
Output: a precomputed matrix T
1: initialize an empty matrix T ∈ FP

n×2�τs�+3
λ

2: for i ← 0, . . . , n − 1 do
3: for j ← 0, . . . , 2�τs� + 2 do
4: Ti,j ← FPm : cdfs,i/n(j − �τs� − 1)

Algorithm 2. Twin-CDT Algorithm: Online Phase
Input: a center c and a precomputed matrix T
Output: a sample x that follows Ds,c

1: p ← U[0,1)∩FPλ

2: v1 ← i − �τs� − 1 s.t. T�n(c−�c�)�,i−1 ≤ p < T�n(c−�c�)�,i

3: v2 ← j − �τs� − 1 s.t. T�n(c−�c�)�,j−1 ≤ p < T�n(c−�c�)�,j

4: if v1 = v2 then
5: return v1 + �c�
6: else
7: if p < FPm : cdfs,c−�c�(v1) then
8: return v1 + �c�
9: else

10: return v2 + �c�

Correctness. We establish correctness in the lemma below.

Lemma 3. Assuming that m is large enough to ensure λ correct bits during
the cdf computation, the statistical distance between the output distribution of
Algorithm2 instantiated to sample from DZm,σ,c and DZm,σ,c is bounded by 2−λ.

Proof. First note that from the discrete nature of the considered distribution we
have Ds,c = Ds,c−�c� + 	c
. Now recall that the probability integral transform
states that if X is a continuous random variable with cumulative distribution



10

function cdf, then cdf(X) has a uniform distribution on [0, 1]. Hence the inversion
method: cdf−1(U[0,1]) has the same distribution as X. Finally by noting that for
all s, p ∈ R, cdfs,c(p) is monotonic in c, if cdf−1

s,c1(p) = cdf−1
s,c2(p) := v, then

cdf−1
s,c(p) = v for all c ∈ [c1, c2], and as a consequence, for all v ∈ [−�τs� −

1, �τs� + 1], the probability of outputting v is equal to FPm : cdfs,c(v) − FPm :
cdfs,c(v − 1) which is 2−λ-close to Ds,c(v). �
The remaining issue in the correctness analysis of Algorithm2 is to determine
the error occurring during the m-precision cdf computation. Indeed, this error
allows us to learn what precision m is needed to correctly compute the λ most
significant bits of the cdf. This error is characterized in Lemma 4.

Lemma 4. Let m ∈ Z be a positive integer and ε = 21−m. Let c̄, s̄, h̄ ∈ FPm be
at distance respectively at most δc, δc and δh from c, s, h ∈ R and h = 1/ρs,c(Z).
Let Δf(x) := |FPm : f(x) − f(x)|. We also assume that the following inequalities
hold: s ≥ 4, τ ≥ 10, sδs ≤ 0.01, δc ≤ 0.01, s2ε ≤ 0.01, (τs+1)ε ≤ 1/2. We have
the following error bound on Δcdfs,c(x) for any integer x such that |x| ≤ τs + 2

Δcdfs,c(x) ≤ 3.5τ3s2ε

Proof. We derive the following bounds using [10, Facts 6.12, 6.14, 6.22]:

Δcdfs,c(x) ≤ Δ

⎡

⎣
�τs	+1∑

i=−�τs	−1

ρs,c(i)

⎤

⎦
(

1
s

+ 3.6sε

)

+ 3.6sε

Δ

⎡

⎣
�τs	+1∑

i=−�τs	−1

ρs,c(i)

⎤

⎦ ≤ 3.2τ3s3ε

�
For the sake of readability the FPA error bound of Lemma4 is fully simplified
and is therefore not tight. For practical implementation, one can derive a better
bound using an ad-hoc approach such as done in [34].

Efficiency. On average, the evaluation of the cdf requires �τs� + 1.5 evalua-
tions of the exponential function. For the sake of clarity, we assume that the
exponential function is computed using a direct power series evaluation with
schoolbook multiplication, so its time complexity is O(λ3). We refer the reader
to [6] for a discussion of different ways to compute the exponential function in
high-precision.

Lemma 5 establishes that the time complexity of Algorithm 2 is O(λ log sλ+
λ4/n), so with n = O(λ3) it has asymptotically the same computational cost
than the classical CDT algorithm.

Lemma 5. Let Pcdf be the probability of computing the cdf during the execution
of Algorithm2, assuming that τs ≥ 10, we have

Pcdf ≤ 2.2τs
(
1 − e− 1.25τ

sn Δmeasure

)
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Proof.

Pcdf ≤ max
c∈[0,1)

⎛

⎝
�τs	+1∑

i=−�τs	−1

∣
∣
∣cdfs,c(i) − cdfs,c+ 1

n
(i)

∣
∣
∣

⎞

⎠

Assuming that τs ≥ 10, we have

e− 1.25τ
sn Δmeasure cdfs,c(i) ≤ cdfs,c+ 1

n
(i) ≤ cdfs,c(i)

Hence the upper bound. �

On the other hand, the precomputation matrix generated by Algorithm1 take n
times the size of one CDT, hence the space complexity is O(nsλ1.5). Note that
for n sufficiently big to make the cdf computational cost negligible, the memory
space required by this algorithm is about 1 GB for the parameters considered in
cryptography and thus prohibitively expensive for practical use.

3.2 Lazy-CDT Algorithm

A first idea to decrease the number of precomputed CDTs is to avoid costly cdf
evaluations by using the same lazy trick as in [12] for rejection sampling. Indeed,
a careful analysis of Algorithm 2 shows most of the time many of the computed
cdf bits are not used. This gives us to a new strategy which consists of computing
the bits of cdfs,c(v1) lazily. When the values corresponding to the generated
probability for the two closest centers are different, the Lazy-CDT algorithm
first only computes the cdf at a precision m′ to ensure k < λ correct bits. If
the comparison is decided with those k bits, it returns the sample. Otherwise, it
recomputes the cdf at a precision m to ensure λ correct bits.

Correctness. In addition to the choice of m, discussed in Sect. 3.1, to achieve λ
bits of precision, the correctness of Algorithm 3 also requires to know k which is
the number of correct bits after the floating-point computation of the cdf with
m′ bits of mantissa. For this purpose, given m′ Lemma 4 provides a theoretical
lower bound on k.

Efficiency. As explained in [12] the precision used for floating-point arithmetic
has non-negligible impact, because fp-operation become much expensive when
the precision goes over the hardware precision. For instance, modern processors
typically provide floating-point arithmetic following the double IEEE standard
double precision (m = 53), but quad-float FPA (m = 113) is usually about
10–20 times slower for basic operations, and the overhead is much more for mul-
tiprecision FPA. Therefore the maximal hardware precision is a natural choice
for m′. However this choice for m′ in Algorithm 3 is a strong constraint for cryp-
tographic applications, where the error occurring during the floating-point cdf
computation is usually greater than 10 bits, making the time-memory tradeoff
of Algorithm 3 inflexible. Note that the probability of triggering high precision
in Algorithm 3 given that v1 �= v2 is about 2q−kPcdf, where q is the number of
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Algorithm 3. Lazy-CDT Algorithm: Online Phase
Input: a center c and a precomputed matrix T
Output: a sample x that follows Ds,c

1: p ← U[0,1)∩FPλ

2: v1 ← i − �τs� − 1 s.t. T�n(c−�c�)�,i−1 ≤ p < T�n(c−�c�)�,i

3: v2 ← j − �τs� − 1 s.t. T�n(c−�c�)�,j−1 ≤ p < T�n(c−�c�)�,j

4: if v1 = v2 then
5: return v1 + �c�
6: else
7: if FPk : p < FPm′ : cdfs,c−�c�(v1) then
8: return v1 + �c�
9: else

10: if FPk : p > FPm′ : cdfs,c−�c�(v1) then
11: return v2 + �c�
12: else
13: if p > FPm : cdfs,c−�c�(v1) then
14: return v1 + �c�
15: else
16: return v2 + �c�

common leading bits of cdfs,�n(c−�c�)�/n(v1) and cdfs,�n(c−�c�)	/n(v2). By using
this lazy trick in addition to lookup tables as described in Sect. 5 with parame-
ters considered in cryptography, we achieve a computational cost lower than the
classical centered CDT algorithm with a memory requirement in the order of 1
megabyte.

4 A More Flexible Time-Memory Tradeoff

In view of limitations of the lazy approach described above, a natural question
is if we can find a better solution to approximate the cdf. The major advantage
of this lazy trick is that it does not require additional memory. However, in
our context the CDTs are precomputed and rather than approximate the cdf
from scratch it would be interesting to reuse the information contained in these
precomputations. Consider the cdf as a function of the center and note that
each precomputed cdf is zero degree term of the Taylor expansion of the cdf
around a precomputed center. Hence, we may approximate the cdf by its Taylor
expansions by precomputing some higher degree terms.

At a first glance, this seems to increase the memory requirements of the
sampling algorithm, but we will show that this approach allows to drastically
reduce the number of precomputed to a ω(λ) centers thanks to a probability
which decreases rapidly with the degree of the Taylor expansion. Moreover, this
approximation is faster than the cdf lazy computation and it has no strong con-
straints related to the maximal hardware precision. As a result, we obtain a
flexible time-memory tradeoff which reaches, in particular, the same time com-
plexity as the CDT algorithm for centered discrete Gaussians with a practical
memory requirements for cryptographic parameters.
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4.1 Taylor-CDT Algorithm

Our Taylor-CDT algorithm is similar to the Lazy-CDT algorithm (Algorithm3)
described above, except that the lazy computation of the cdf is replaced by the
Taylor expansion of the cdf, viewed as a function of the Gaussian center, around
each precomputed centers for all possible values. The zero-degree term of each
of these Taylor expansions is present in the corresponding CDT element Ti,j

and the d higher-degree terms are stored as an element Ei,j of another matrix
E. As for the other approaches, these precomputations shall be performed at a
sufficient precision m to ensure λ correct bits. During the online phase, Algo-
rithm 5 proceed as follow. Draw p from the uniform distribution over [0, 1)∩FPλ

and search p in the CDTs of the two closest precomputed centers to the desired
center decimal part. If the two values found are equal, add the desired center
integer part to this value and return it as a valid sample. Otherwise, select the
closest precomputed center to the desired center decimal part and evaluate, at
the desired center decimal part, the Taylor expansion corresponding to this cen-
ter and the value found in its CDT. If p is smaller or bigger than this evaluation
with respect for the error approximation upper bound Eexpansion, characterized
in Lemma 6, add the desired center integer part to the corresponding value and
return it as a valid sample. Otherwise, it is necessary to compute the full cdf to
decide which value to return.

Algorithm 4. Taylor-CDT Algorithm: Offline Phase
Input: a Gaussian parameter s, a number of centers n, a Taylor expansion degree d
Output: two precomputed matrices T and E
1: initialize two empty matrices T ∈ FP

n×2�τs�+3
λ and E ∈ (FPd

λ)n×2�τs�+3

2: for i ← 0, . . . , n − 1 do
3: for j ← 0, . . . , 2�τs� + 2 do
4: Ti,j ← FPm : cdfs,i/n(j − �τs� − 1)
5: Ei,j ← FPm : Td,cdfs,x(j−�τs�−1),i/n(x) − Ti,j

Efficiency. Algorithm 5 performs two binary searches on CDTs in O(λ log sλ),
d additions and multiplications on FPm in O(m2) with probability Pcdf ≈ 3λ/n
(see Lemma 5) and a cdf computation on FPm in O(sλ3.5) with probability
close to 2q+1PcdfEexpansion, where q is the number of common leading bits of
cdfs,�n(c−�c�)�/n(v1) and cdfs,�n(c−�c�)	/n(v2) and Eexpansion is the Taylor expan-
sion approximation error bound described in Lemma6.

Lemma 6. Let Eexpansion be the maximal Euclidean distance between cdfs,x(v)
and Td,cdfs,x(v),c(x), its Taylor expansion around c, for all v ∈ [−�τs�−1, �τs�+
1], c ∈ [0, 1) and x ∈ [c, c + 1/2n], assuming that τ ≥ 2.5, s ≥ 4, we have

Eexpansion <
4τd+2

nd+1s
d+1
2
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Algorithm 5. Taylor-CDT Algorithm: Online Phase
Input: a center c and two precomputed matrices T and E
Output: a sample x that follows Ds,c

1: p ← U[0,1)∩FPλ

2: v1 ← i − �τs� − 1 s.t. T�n(c−�c�)�,i−1 ≤ p < T�n(c−�c�)�,i

3: v2 ← j − �τs� − 1 s.t. T�n(c−�c�)�,j−1 ≤ p < T�n(c−�c�)�,j

4: if v1 = v2 then
5: return v1 + �c�
6: else
7: if |c − �n(c − �c�)�| < |c − �n(c − �c�)�| then
8: c′ ← �n(c − �c�)�
9: else

10: c′ ← �n(c − �c�)�
11: i ← j
12: if p < Tc′,i + Ec′,i(c − �c�) − Eexpansion then
13: return v1 + �c�
14: else
15: if p > Tc′,i + Ec′,i(c − �c�) + Eexpansion then
16: return v2 + �c�
17: else
18: if p > FPm : cdfs,c−�c�(v1) then
19: return v1 + �c�
20: else
21: return v2 + �c�

Proof. From Theorem 1 we have

Eexpansion = max
c∈[0,1)

x∈[c,c+1/2n]
v∈[−�τs	−1,�τs	+1]

⎛

⎝
v∑

i=−�τs	−1

∫ x

c

ρ
(d+1)
s,t (i)

d! ρs,t(Z)
(c +

1
2n

− t)
d

dt

⎞

⎠

By using well-known series-integral comparison we obtain ρs,t(Z) ≥ s
√

2π − 1

and since
∣
∣
∣ρ

(d)
s,t (i)

∣
∣
∣ < d(1.3τ)d2d

sd/2 for s ≥ 4 and τ ≥ 2.5, it follows that

Eexpansion ≤ (d + 1)(1.3)d+1τd+2

d!nd+1s
d+1
2

�

A careful analysis of this technique show that with d = 4 we achieve the same
asymptotic computational cost as the classical CDT algorithm with n = ω(λ),
where the hidden factor is less than 1/4, therefore for this degree the space com-
plexity of Algorithms 4 and 5 is only λ times bigger than for centered sampling,
showing that these algorithms can achieve a memory requirement as low as 1 MB.
Finally, note that taking care to add the floating-point computation error to the
error of approximation, one can compute the Taylor expansion evaluation at the
maximal hardware precision to reduce its computational cost.
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5 Lookup Tables

We shall now show how to use partial lookup tables to avoid the binary search in
most cases when using CDT algorithms, this technique is the CDT analogue of
the Knuth-Yao algorithm improvement described in [8]. Note that this strategy
is particularly fitting for discrete Gaussian distributions with relatively small
expected values. The basic idea is to subdivide the uniform distribution U[0,1)

into � uniform distributions on subsets of the same size U[i/�,(i+1)/�), with � a
power of two. We then precompute a partial lookup table on these subsets which
allows to return the sample at once when the subset considered does not include
a cdf image. We note that instead of subdividing the uniform range into stripes
of the same size, we can also recursively subdivide only some stripes of the
previous subdivision. However, for the sake of clarity and ease of exposure, this
improvement is not included in this paper and we will describe this technique
for the classical centered CDT algorithm.

First, we initialize a lookup table of size � = 2l where the i-th entry corre-
sponds to a subinterval [i/�, (i + 1)/�) of [0, 1). Second, after precomputing the
CDT, we mark all the entries for which there is at least one CDT element in
their corresponding subinterval [i/�, (i + 1)/�) with ⊥, and all remaining entries
with �. Each entry marked with � allows to return a sample without the need
to perform a binary search in the CDT, because only one value corresponds to
this subinterval which is the first CDT element greater or equal to (i + 1)/�.

Efficiency. The efficiency of this technique is directly related to the number
of entries, marked with �, whose subintervals do not contain a CDT element.
We denote the probability of performing binary search by Pbinsrch, obviously the
probability to return the sample immediately after choosing i, which is a part
of p, is 1 − Pbinsrch. Lemma 7 gives a lower bound of Pbinsrch.

Lemma 7. For any � ≥ 28 and s ≥ η 1
2
(Z). Let Pbinsrch be the probability of per-

forming binary search during the execution of the CDT algorithm implemented
with the lookup table trick described above, we have

Pbinsrch < 1.2s
√

log2 �/�

Proof.

Pbinsrch =
� −

∑�c+τs	
i=�c−τs� 	� cdfs,c(i)
 − 	� cdfs,c(i − 1)


�

From Lemma 2 we have
⌊
� cdfs,c

(⌊
c − 0.6s

√
log2 �

⌋)⌋
= 0

⌊
�
(
1 − cdfs,c

(⌈
c + 0.6s

√
log2 �

⌉))⌋
= 0

�
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6 Experimental Results

In this section, we present experimental results of our C++ implementation1

distributed under the terms of the GNU General Public License version 3 or
later (GPLv3+) which uses the MPFR [15] and GMP [19] libraries as well as
Salsa20 [5] as the pseudorandom number generator. Our non-centered discrete
Gaussian sampler was implemented with a binary search executed byte by byte
if � = 28 and 2-bytes by 2-bytes if � = 216 without recursive subdivision of U[0,1),
therefore [0, 1) is subdivided in � intervals of the same size and cdf(x) is stored for
all x ∈ [−�τσ� − 1, �τσ� + 1]. The implementation of our non-centered discrete
Gaussian sampler uses a fixed number of precomputed centers n = 28 with a
lookup table of size � = 28 and includes the lazy cdf evaluation optimization.

We tested the performance of our non-centered discrete Gaussian sampler
by using it as a subroutine for Peikert’s sampler [32] for sampling from D(g),σ′,0
with g ∈ Z[x]/(xN + 1) for N a power of two. To this end, we adapted the
implementation of this sampler from [3] where we swap out the sampler from

Table 1. Performance of sampling from D(g),σ′ as implemented in [3] and with our non-
centered discrete Gaussian sampler with � = n = 28. The column D(g),σ′/s gives the
number of samples returned per second, the column “memory” the maximum amount
of memory consumed by the process. All timings are on a Intel(R) Xeon(R) CPU
E5-2667 (strombenzin). Precomputation uses 2 cores, the online phase uses one core.

[3]

N log σ′ precomp time D(g),σ′/s memory

256 38.2 0.08 s 8.46 ms 118.17 11,556 kB

512 42.0 0.17 s 16.96 ms 58.95 11,340 kB

1024 45.8 0.32 s 38.05 ms 26.28 21,424 kB

2048 49.6 0.93 s 78.17 ms 12.79 41,960 kB

4096 53.3 2.26 s 157.53 ms 6.35 86,640 kB

8192 57.0 6.08 s 337.32 ms 2.96 192,520 kB

16384 60.7 13.36 s 700.75 ms 1.43 301,200 kB

This work

N log σ′ precomp time D(g),σ′/s memory

256 38.2 0.31 s 2.91 ms 343.16 17,080 kB

512 42.0 0.39 s 5.99 ms 166.88 21,276 kB

1024 45.8 0.65 s 11.89 ms 84.12 38,280 kB

2048 49.6 1.04 s 25.07 ms 39.89 74,668 kB

4096 53.3 2.35 s 48.63 ms 20.56 148,936 kB

8192 57.0 7.27 s 96.67 ms 10.34 302,616 kB

16384 60.7 14.41 s 205.35 ms 4.87 618,448 kB

1 The implementation is available at https://github.com/tricosset/FGN.
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the dgs library [2] (implementing rejection sampling and [11]) used in [3] with
our sampler for sampling for DZ,σ,c. Note that sampling from D(g),σ′,0 is more
involved and thus slower than sampling from DZN ,σ′,0. That is, to sample from
D(g),σ′,0, [3] first computes an approximate square root of Σ2 = σ′2 ·g−T ·g−1−r2

with r = 2 · �
√

log N �. Then, given an approximation
√

Σ2
′ of

√
Σ2 it samples

a vector x ←$ R
N from a standard normal distribution and interpret it as a

polynomial in Q[X]/(xN + 1); computes y =
√

Σ2
′ · x in Q[X]/(xN + 1) and

returns g · (	y�r), where 	y�r denotes sampling a vector in Z
N where the i-

th component follows DZ,r,yi
. Thus, implementing Peikert’s sampler requires

sampling from DZ,r,yi
for changing centers yi and sampling from a standard

normal distribution. We give experimental results in Table 1, indicating that our
sampler increases the rate by a factor ≈ 3.
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