Franck Ravat

Jiefu Song

Olivier Teste

Open Archive Toulouse Archive Ouverte Managing Reduction in Multidimensional Databases

Keywords: Data Reduction, Relational Multidimensional Design, Experimental Assessments

Dealing with large amount of data has always been a key focus of the Multidimensional Database (MDB) community, especially in the current era when data volume increases more and more rapidly. In this paper, we outline a conceptual modeling solution allowing reducing data in MDBs. A MDB after reduction is modeled with multiple states. Each state is valid during a period of time and aggregates data from a more recent state. We propose three alternatives of reduced MDB modeling at the logical level: (i) the flat modeling integrates all states into one single table, (ii) the horizontal modeling converts each state into a fact table and some dimension tables associated with a temporal interval and (iii) the vertical modeling breaks down a reduced MDB into separate tables, each table includes data from one or several states. We evaluate query execution efficiency in MDBs with and without data reduction. The result shows data reduction is an interesting solution, since it significantly decreases execution costs by 98.96% during our experimental assessments.

Introduction

Multidimensional Databases (MDBs) are widely used in decision-support systems. A MDB organizes data according to analysis subjects (i.e. facts) and analysis axes (i.e. dimensions). A fact includes a set of numeric indicators (i.e. measures), while a dimension contains one or several granularities (i.e. levels). In today's highly competitive business context, data coming from both inside and outside a company are periodically added and then permanently stored in a MDB [START_REF] Berkani | A Value-Added Approach to Design BI Applications[END_REF][START_REF] Nebot | Multidimensional Integrated Ontologies: A Framework for Designing Semantic Data Warehouses[END_REF]. The huge amount of data in a MDB slows down query execution, not to mention that decision-makers may easily get lost while facing all detailed data during analyses. Meanwhile, all data do not keep the same informative value over time. While detailed information is important for recent data, it may be of less interest for older data [START_REF] Skyt | Specification-based data reduction in dimensional data warehouses[END_REF].

Reducing data can avoid an overly large MDB. It allows decreasing the amount of useless data and thus increasing query execution efficiency [START_REF] Udo | Hybrid Data Reduction Technique for Classification of Transaction Data[END_REF]. As detailed data lose their informative value over time, a data reduction solution should allow selectively deleting useless data in a MDB. Moreover, it is necessary to aggregate data progressively, so that information is not lost after reduction but represented in a summarized form for comparative or trend analyses. This is achieved by eliminating a MDB's content deprecated for business analyses.

Our aim is to support effective and efficient decision-making by storing only data of high informative value over time in a MDB. In our previous work [START_REF] Atigui | Facilitate Effective Decision-Making by Warehousing Reduced Data: Is It Feasible?[END_REF], we proposed a conceptual modeling solution for MDBs with data reduction (i.e. reduced MDBs).

As modeling solutions at the logical level are seldom studied for MDBs whose schema changes over time, this paper focuses on the relational modeling of reduced MDBs. Some algorithms are proposed to automatically transform a conceptual reduced MDB into different relational forms. We carry out some experimental assessments to compare query execution efficiency in reduced and unreduced MDBs.

The paper is organized as follows: section 2 discusses the representative work related to data reduction; section 3 describes three relational modeling solutions and a schema design process for reduced MDBs; section 4 illustrates the benefits of reduced MDBs through some experimental assessments.

Related Work

Data reduction is a technique originally used in the data mining field [START_REF] Okun | Unsupervised data reduction[END_REF]. In this context, data reduction aims at improving the accuracy of mining results by extracting significant and relevant features of sources. In the database field, data reduction is adapted to automatically delete expired data which are no longer of interest. We can cite the work [START_REF] Garcia-Molina | Expiring data in a warehouse[END_REF] which enables data reduction by deleting content in materialized views. In the MDB field, related work focuses on reducing data in a fact. The authors of [START_REF] Skyt | Specification-based data reduction in dimensional data warehouses[END_REF] describe a solution for the progressive aggregation and deletion of data in a fact. A set of criteria is proposed to summarize data according to higher granularities. The authors of [START_REF] Iftikhar | A rule-based tool for gradual granular data aggregation[END_REF] present a complete data reduction process. They study the conception, implementation, and influence of data reduction in a MDB's fact.

The above-mentioned work only allows reducing a fact. Our previous work [START_REF] Atigui | Facilitate Effective Decision-Making by Warehousing Reduced Data: Is It Feasible?[END_REF] generalizes the reduction to a complete MDW. Consequently, both facts and dimensions can be reduced. Moreover, unlike some automatic reduction solutions, our proposed approach involves decision-makers in a reduction process. A designer determines with a decision-maker within which temporal interval a MDB schema is valid. As detailed information is often irrelevant to analyses over an old period, a MDB schema includes different contents over time. The further we look back in time, the fewer detailed data a MDB schema contains.

Specifically, a reduced MDB is composed of a set of states E = {E 1 ; …; E n }. The state E n is the latest state including the most complete schema, while the other states consist of a succession of reduced schemas over time. Each state E i (E i ∈E) corresponds to a star schema including a fact F i and a set of dimensions D i with necessarily a temporal dimension. The state E i is stamped with a validation period T i = [t start i ; t end i] defined on the temporal dimension. The fact F i contains a set of measures M Fi = {m 1 ; ...; m p }, while a dimension D k (D k ∈D i) includes a set of attributes A Dk = {a 1 ; ...; a q } organized in different levels. The set of instances of the measure m s is denoted as val(m s), while the set of instances of the attribute a k is denoted as dom(a k). We distinguish two types of attributes: a parameter p x (p x ∈A Dk) is an attribute allowing identifying an unique level on the dimension D k , while a weak attribute is a non-identifier attribute providing descriptive information to a parameter.

Based on this conceptual reduced MDB modeling, our previous work [START_REF] Atigui | Facilitate Effective Decision-Making by Warehousing Reduced Data: Is It Feasible?[END_REF] presents some multidimensional analyses operators allowing (i) choosing analysis subjects and axes (i.e. Display), (ii) aggregating data (i.e. Drilldown and Rollup), (iii) changing analysis axes (i.e. Rotate), and (iii) filtering analysis results (i.e. Select).

In this paper, we complete the reduced MDB modeling by studying modeling alternatives at the logical level. The efficiency of each alternative will be studied through some experimental assessments.

Relational Modeling of MDBs with Data Reduction

In this section, we describe the logical modeling of reduced MDBs. This modeling is based on three relational modeling alternatives. An algorithm is proposed for each alternative to automate the transformation from a conceptual reduced MDB into a relational reduced MDB.

Case Study

A MDB contains a fact, named Sales, which includes one measure named Amount. The measure can be calculated along three dimensions, namely Products, Customers and Times. The current MDB contains all sale data from 1990 to 2017. However, since most today's products and customers did not exist before, the MDB is reduced by creating three states as follows: (i) the latest state E 3 contains all detailed data within all dimensions from 2010 to 2017; (ii) the second state E 2 includes aggregated data starting from products' Range, customers' Town and sale date ID Time between 2000 to 2010; (iii) the oldest state E 1 supports historical sales analyses by products' Sector and Year from 1900 to 2000. Figure 1 shows the reduced MDB's states according to the graphical notation proposed in [START_REF] Golfarelli | Conceptual design of data warehouses from E/R schemes[END_REF].

A D i D i ∈D n , set M Flat ←M Fn ; 3. For each E i ∈E 4.
For each a k ∈A Flat do, 5.

If

a k ∉⋃ A D j D j ∈D i
then set dom(a k)←∅; 6.

End for 7.

For each m s ∈M Flat do, 8.

If m s ∉M Fi then set val(m s)←∅; 9.

End for 10.

Insert into T Flat with tuples

(i a 1 , …, i a m , i m 1 , …, i m p), such as ∀i a k ∈{i a 1 ; …; i a m }, i a k ∈dom(a k) and ∀i m s ∈{i m 1 ; …; i m p }, i m s ∈val(m s); 11.

End for End

After creating the structure of a flat table (cf. lines 1 and 2), the algorithm extracts data from each state and loads the flat table. Specifically, if the attribute a k (or the measure m s) from the flat table does not exist in the state E i , the algorithm assigns an empty set to its instances (cf. lines 3-9). Then, measure instances and related attribute instances from each state are loaded in the flat table (cf. line 10). The time span of a flat table corresponds to the union of all states' temporal intervals.

Example. We apply the algorithm 1 to the reduced MDB of our case study. The relational schema of the output flat table is as follows.

Fig. 2. A snapshot of instances organized according to the flat modeling

A snapshot1 of instances in the flat table is shown in the figure 2. Instances from the latest state E 3 are directly loaded in the flat table (cf. lines 3 and 10), while the other two states E 2 and E 1 are loaded with NULL value as placeholder for the deleted attributes' instances (cf. lines 3-6 and 10).

Horizontal modeling of a reduced MDB

The second relational modeling alternative is named horizontal. For each dimension D j ∈D i 4.

T F i . ─ a set of dimension tables T Dim ={ T D 1 E 1 ; …; T D w E n }, such as ∀ T D j E i ∈T Dim , T D j E i = (Key T ji , A T ji) implements
Find the parameter p 1 on the lowest granularity of D j ; 5.

FKey i ←FKey i ∪{p 1 }; 6.

Create a dimension table T

D j E i =(Key T ji , A T ji), set Key T ji ←p 1 , A T ji ←A Di \{p 1 };

7.

Insert attribute instances within D j into T D j E i ;

8.

End for 9.

Insert measure instances within F i with related parameter instances into T F i 10. End for End

The horizontal modeling creates a fact table T F i for each state E i . Each fact table includes all measures from the fact F i and a set of foreign keys (cf. lines 1 and 2). Each foreign key consists of the parameter on the lowest granularity of a dimension from the state E i (cf. line 5). Each dimension D j is converted into a dimension table as follows: the parameter p 1 of the lowest granularity on D j is used as a primary key, while other attributes on the dimension (i.e. A Di \{p 1 }) are directly added in the dimension table (cf. lines 3-6). Consequently, the time span of a fact table and a dimension table corresponds to the temporal interval of the involved state.

Example. According to the algorithm 2, the reduced MDB of the case study is implemented through 3 fact tables and 8 dimension tables.

T V ={T V 1 , …, T V n }, such as ∀T V i ∈T V , T V i ={SynKey i , A i , M i } is a vertical
T V i ={SynKey i , A i , M i }, where ─ A i ←⋃ A D k D k ∈D i
such as D i is the set of dimensions from the state E i ; ─ M i ←M F i such as F i is the fact from the state E i ; 3.

For each E x ∈E 4.

Insert into T V i instances of attributes A i ; 5.

Insert into T V i aggregated values of measures M i from E x according to A i ; 6. End For 7.

E←E\{E i }; 8. End for End

According to the definition of the data reduction, attributes and measures from an old state E i must exist in a more recent state E j (i<j). Therefore, to gathers common components in a subset of states {E i , …, E n } (1≤i≤n), the i th vertical table T V i groups together attributes and measures from the i th state (cf. lines 1 and 2). Then, for each state E x in {E i , …, E n }, instances of each attribute in A i are retrieved from the state E x and then loaded in T V i . Based on the attribute instances, values of each measure in M i from E x are aggregated and then inserted into T V i (cf. lines 3-6). Consequently, each vertical table T V i covers a time span from the state E i to the latest state E n .

Example. After applying the algorithm 3 to our case study, we obtain the following three vertical tables. The horizontal modeling is a more complex method which converts measures and attributes from one state into independent relations. It minimizes data redundancy by associating attribute instances with related measure instances through primary keyforeign key relationships. However, the horizontal modeling requires joins in queries involving dimension tables.

The vertical modeling converts measures and attributes shared by several states into separate relations. This modeling has multiple advantages. On one hand, queries involving several dimensions do not have to include joins. On the other hand, data redundancy is reduced to attribute instances within some high levels on dimensions.

To accurately and quantitatively study the influences of different relational modeling alternatives on query execution efficiency, the remainder of this paper focuses on some experimental assessments.

Experimental assessments

In this section, we carry out some experimental assessments by executing queries in reduced and unreduced MDBs populated with data according to different volumes.

Protocol

The objective of our experimental assessments is twofold: (i) studying if all relational modeling alternatives for reduced MDBs help improving query execution efficiency and (ii) identifying the most efficient relational modeling of reduced MDBs. Existing multidimensional data benchmarks (e.g. TPC-DS2 and SSB [START_REF] O'neil | The Star Schema Benchmark and Augmented Fact Table Indexing[END_REF]) are designed to measure a system's performance [START_REF] Darmont | Benchmarking data warehouses[END_REF]. They do not allow testing the effect of different reduced modeling solutions, since the included MDB is composed of only one state. Facing this issue, we have to generate our own test data during the experimental assessments. The MDB of our case study is used and populated with synthetic data. Three reduced MDB implementations, namely flat, horizontal and vertical, are built according to the relational modeling alternatives (cf. section 3). Two unreduced MDBs are used as baseline to assess the impact of data reduction: (i) the unreduced flat MDB integrates all attributes and measures before reduction into one table and (ii) the unreduced horizontal MDB includes one fact table and three dimension tables without reduction. The number of tuples as well as redundancy ratio of attribute instances according to MDB implementation and scale factor is shown in table 1.

Table 1. Scale factors and number of tuples with attribute instance redundancy ratio.

During the experimental assessment, we consider only queries producing full answers in MDBs before and after data reduction. Meanwhile, different queries should involve different dimensions in different states during querying. Table 2 shows our proposed 12 queries. Specifically, queries Q 1 -Q 3 involve one dimension in one state; queries Q 4 -Q 7 involve multiple dimensions in one state; queries Q 8 and Q 9 involve different dimensions in two states; Q 10 -Q 12 involve different dimensions in all states. Table 2. 12 queries involving different dimensions and time spans.

For each query, we record the execution costs provided by the Explain Plan command of the Oracle 12c DBMS without any optimization techniques (e.g. index and table partitioning). The hardware configuration is as follows: 2×CPU@2.33GHz with 2 cores, 128GB RAM and 1TB SSD Disk in RAID6.

Observations and discussions

In this section, we study the query execution costs in reduced and unreduced MDBs of different scale factors. Observation. From figure 5, we can see the same trend is found in MDBs of different scale factors. The lowest execution costs of the twelve queries come from different implementations of reduced MDB. Specifically, for queries covering a time span within the temporal interval of one state, regardless of the scale factor and the number of dimensions included, (i) the lowest execution costs of Q 1 , Q 4 and Q 6 (with-in the temporal interval of E 3) are found within the vertical MDB; (ii) the lowest execution costs of Q 2 , Q 5 and Q 7 (within the temporal interval of E 2) are produced by the horizontal MDB; (iii) both the vertical and the horizontal MDBs are cost-efficient for Q3 (within the temporal interval of E 1). All queries involving multiple states are more efficiently computed within the vertical MDB (from Q8 to Q12), regardless of the MDB volume and the number of states as well as dimensions involved. As we can see from figure 7, the same trend is found in MDBs of larger scale factors. From the unreduced flat MDB to the vertical MDB, the average execution costs decrease significantly: over 100 times (cf. the vertical axis on the left in figure 7). Moreover, the differences between the average execution costs in unreduced and reduced MDBs keep increasing as the data volume grows; i.e. from SF1 to SF4, the gap has widened about 513 times (cf. the vertical axis on the right in figure 7).

Fig. 7. Average execution costs of all queries in MDBs of different scale factors

In reduced MDBs, the decrease in execution costs is directly reflected in the gain in query runtime. Figure 8 shows the average runtime in MDBs of the scale factor 4 according to query type.

Discussion. All reduced MDBs allow significantly saving the query execution costs, regardless of the scale factor and the query type. More importantly, the results of our experimental assessments show the scalability of our proposal: the larger the MDB is, the more significant the decrease in execution costs becomes after data reduction. The most efficient relational modeling is the vertical MDB. It groups measure instances and related attribute instances from one state together and implements them in one table. Consequently, data redundancy is reduced, while queries involving multiple dimensions are freed from joins in a vertical reduced MDB.

Conclusion

Our aim is to support effective and efficient decision-making by storing only data of high informative value over time in a MDB. In this paper, we outline a conceptual modeling solution allowing reducing both facts and dimensions in MDBs. A reduced MDB is modeled with multiple states. Each state is valid for a period of time.

Three relational modeling alternatives are proposed for reduced MDBs. The flat modeling integrates all measures and attributes from all states into one single flat table. The horizontal modeling converts each state into a fact table and a set of dimension tables. The vertical modeling gathers common measures and attributes shared by states into vertical tables. Different relational modeling alternatives (i) require different numbers of joins in analysis queries and (ii) bring in different degrees of information redundancy.

We carry out some experimental assessments to evaluate query execution efficiency in reduced and unreduced MDBs. The result shows the data reduction is a scalable solution: the larger the MDB is, the more significant the improvement in query execution efficiency becomes after the data reduction. During our experimental assessments, the improvement in terms of query execution costs ranges from 54.4.% to 98.96%. The most significant decrease in query execution costs is found in the vertical MDB, which makes it the most efficient relational modeling of reduced MDBs.

In the future, we intend to study the performance of our proposed relational modeling alternatives in other types of DBMS. As more and more NoSQL systems nowadays are adopted to deal with large amount of data, it would be necessary to study new data reduction strategies in the context of NoSQL. One of our ongoing work focuses on reducing data in graph databases and triple store (RDF) databases.

Fig. 1 .

 1 Fig. 1. Reduced MDB schema evolutions over time

FLAT_SALES

 (SYNKEY, IDTIME, MONTH, YEAR, IDCUSTOMERS, LASTNAME, FIRSTNAME, TOWN, DEPARTMENT, REGION, TYPE, IDPRODUCTS, LABEL, RANGE, SECTOR, BRAND, AMOUNT)

E3_TIMESFigure 3

 3 Figure 3 displays a snapshot of instances in the reduced MDB implemented according to the horizontal modeling.

Fig. 3 . 4

 34 Fig. 3. A snapshot of instances organized according to the horizontal modeling

VTABLE1

 (SYNKEY, YEAR, SECTOR, AMOUNT) VTABLE2 (SYNKEY, IDTIME, MONTH, YEAR, TOWN, DEPARTMENT, REGION, RANGE, SECTOR, AMOUNT) VTABLE3 (SYNKEY, IDTIME, MONTH, YEAR, IDCUSTOMERS, LASTNAME, FIRSTNAME, TOWN, DEPARTMENT, REGION, TYPE, IDPRODUCTS, LABEL, RANGE, SECTOR, BRAND, AMOUNT)The snapshot presented in figure4indicates a state of reduced MDB is implemented through one or several vertical tables. For instance, data from the latest state E 3 are found within all vertical tables: (i) VTABLE3 includes the sale amount from 2010 to 2017 by IDProducts; (ii) VTABLE2 aggregates the amount from the state E 3 according to products' range; (iii) VTABLE3 further aggregates the amount from the state E 3 according to product's sector.

Fig. 4 .

 4 Fig. 4. A snapshot of instances organized according to the vertical modeling

Fig. 5 .

 5 Fig. 5. Query execution costs in reduced and unreduced MDBs of different scale factors

Fig. 6 .

 6 Fig. 6. Average execution costs by query type and MDB implementation of SF1

Fig. 8 .

 8 Fig. 8. Average runtime of queries involving different states in the largest MDBs

3.2 Flat modeling of a reduced MDB The

 first alternative is called flat modeling. It integrates all states into one single flat table. All attributes and all measures before data reduction constitute the columns of a flat table. We propose the following algorithm for the flat modeling. Algorithm 1. Flat Modeling Input: a reduced MDB composed of a set of states E = {E 1 ; …; E n }. Output: a flat table T Flat = (SynKey, A Flat , M Flat), where SynKey is a synthetic key; A Flat ={a 1 ; ...; a m } is a set of attributes; M Flat ={m 1 ; …; m p } is a set of measures. Begin 1. Find the latest state E n of the reduced MDB, E n ∈E, E n ={F n ; D n ; T n }; 2. Create a flat table T Flat , set A Flat ←⋃

 Each state is implemented through a fact table and a set of dimension tables. The algorithm of the horizontal modeling is as follows.

Algorithm 2. Horizontal Modeling Input: a reduced MDB composed of a set of states E = {E 1 ; …; E n }. Outputs: ─ a set of fact tables T Fact ={T F 1 ; …; T F n }, such as ∀T F i ∈T Fact , T F i =(SynKey i , FKey i , M i) implements the fact F i of the state E i , where SynKey i is a synthetic primary key; FKey i is a set of foreign keys; M i is a set of measures in

 table for a subset of states, where SynKey i is a synthetic key; A i is a set of attributes; M i is a set of measures.

	Begin	
	1. For each i from 1 to n (n=|E|)
	2.	Create a vertical table

For the sake of simplicity, all snapshots in this section include only the dimension Products.

http://www.tpc.org/tpcds/