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AN EXISTENCE RESULT OF (ω,C)-PERIODIC MILD

SOLUTIONS TO SOME FRACTIONAL DIFFERENTIAL

EQUATION

GISÈLE MOPHOU AND GASTON M. N’GUÉRÉKATA

Abstract. We first investigate in this paper further properties of the new

concept of (ω, c)-periodic functions; then we apply the results to study the
existence of (ω, c)-periodic mild solutions of the fractional differential equations

Dαt (u(t)−F1(t, u(t))) = A(u(t)−F1(t, u(t))) +Dα−1
t F2(t, u(t)), t ∈ R, where

1 < α < 2, A : D(A) ⊆ X → X is a linear densely defined operator of sectorial

type on a complex Banach space X, F1, F2 : R×X → X are two (ω, c)-periodic

functions satisfying suitable conditions in the second variable. The fractional
derivative is understood in the sense of Riemann-Liouville.

1. Introduction

Recently, Alvarez et al. [1] introduced the concept of (ω,c)-periodic functions
which contains the classes periodic, antiperiodic and Bloch periodic functions among
others. This concept is motivated by the Mathieu’s equation

y′′(t) + [a− 2qcos(2t)]y(t) = 0

which is used in the modelling of several phenomena including the stability of
railroads as trains drive over them, or seasonally forced population dynamics.

In their paper [2], the authors generalize this concept to the one of (ω,c)-pseudo
periodic functions which are functions with ergodic parts. Both papers [1, 2] gen-
eralize several results in [7, 10, 11, 12].

The aim of this work is to investigate further properties of (ω,c)-periodic func-
tions in Section 2 and their applications to some ordinary differential equations
(Section 3) and fractional differential equations of the form Dα

t (u(t)−F1(t, u(t))) =
A(u(t) − F1(t, u(t))) + Dα−1

t F2(t, u(t)), t ∈ R, where 1 < α < 2 (Section 4) in a
complex Banach space (X, ‖ · ‖). Dα

t denotes the time fractional derivative of order
α in the Riemann-Liouville sense.

2. (ω, c)-periodic functions and their properties

In this paper we will consider (X, ‖ · ‖) a complex Banach space, ω > 0, and
c ∈ C \ {0}.

Definition 2.1. [1, 2] A function f ∈ C(R, X) is said to be (ω,c)-periodic if

f(t+ ω) = cf(t), ∀ t ∈ R.

In this case, ω is called the c-period of f . The set of all (ω,c)-periodic functions
R → X is denoted Pωc(R, X). Examples of (ω, c)-periodic include ω- periodic
(Pω(R, X)), antiperiodic (Paω(R, X)) and Bloch periodic (Bp,k(R, X)) functions
(cf. for instance [7, 10, 11, 12] for more information on these functions).
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Proposition 2.2. [1] A function f ∈ C(R, X) is (ω,c)-periodic if and only if

f(t) = c∧(t)u(t), c∧(t) := c
t
ω , u ∈ Pω(R, X).

Theorem 2.3. [1] Equipped with the norm ‖f‖ωc := sup
t∈[0,ω]

‖|c∧(−t)|f(t)‖, Pωc(R, X)

turns out to be a Banach space

Let’s state and prove

Theorem 2.4. Let f ∈ Pω,c(R, X). Then the following are true:

(i) If f(t) 6= 0 ∀t ∈ R, then the function g(t) := 1
f(t) , t ∈ R belongs to

Pω, 1c (R, X)

(ii) The function fa(t) := f(t+ a), a ∈ R belongs to Pω,c(R, X).
(iii) If λ ∈ Pω,c(R,C), then λf ∈ Pω,c2(R, X)
(iv) If A : X → X is a bounded linear operator, then Af ∈ Pω,c(R, X).

Proof. It comes straightforward from the definition of (ω,c)-periodic functions. �

Lemma 2.5. For all (s, u) ∈ R×X, there exists ϕ ∈ Pω,c(R, X) such that ϕ(s) = u

Proof. Let Ψ : R → X be define by Ψ(t) = c∧(t). Then obviously Ψ ∈ Pω,c(R, X)
with Ψ(0) = 1. This implies that the function ϕ(t) := Ψ(t − s)u satisfies the
property. �

For a given function F ∈ BC(R, X), define the Nemytskii’s superposition oper-
ator

(2.1) NF (ϕ)(·) := F (·, ϕ(·)), ϕ ∈ Pω,c(R, X).

In [7], the authors proved the following result in the framework of Bloch-periodic
functions.This result was generalized in the case of (ω, c)-periodic functions [1].
Here we give a more rigourous proof using the lemma above.

Theorem 2.6. Let F ∈ BC(R, X). The following are equivalent

(i) For every ϕ ∈ Pω,c(R, X), NF (ϕ) ∈ Pω,c(R, X).
(ii) For all (t, x) ∈ R×X, F (t+ ω, cx) = cF (t, x).

Proof. Assume (i) and let (t, x) ∈ R × X. Then by Lemma (2.5) there exists
ϕ ∈ Pω,c(R, X) such that ϕ(t) = x. Let Φ(.) := N (·, ϕ(·)). Then Φ ∈ Pω,c(R, X)
and using (2.1) we have

F (t+ ω, cx) = F (t+ ω, cϕ(t))
= F (t+ ω, ϕ(t+ ω))
= Φ(t+ ω)
= cΦ(t)
= cNF (ϕ)(t)
= cF (t, ϕ(t))

which means F (t+ ω, cx) = cF (t, x) because ϕ(t) = x.

Conversely assume that F (t + ω, cx) = cF (t, x) and let ϕ ∈ Pω,c(R, X). Then
using (2.1), we have

NF (ϕ)(t+ w) = F (t+ ω, ϕ(t+ ω))
= F (t+ ω, cϕ(t))
= cF (t, ϕ(t))
= cNF (ϕ)(t).
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The proof is complete. �

Theorem 2.7. Suppose f ∈ C1(R, X) ∩ Pω,c(R, X). Then f ′ ∈ Pω,c(R, X)

Proof. We have
f(t+ h)− f(t) = f ′(t)h+ o(h)

where o(h) = |h|ε(h) with lim
h→0

ε(h) = 0. But

f(t+ ω + h)− f(t+ ω) = c[f(t+ h)− f(t)] = cf ′(t)h+ o(h).

Therefore
f ′(t+ ω) = cf ′(t)

which means
f ′ ∈ Pω,c(R, X).

�

Theorem 2.7 leads to the following corollary:

Corollary 2.8. Let F ∈ C1(R×X,X) satisfies one of the equivalent properties (i)
and (ii) of Theorem 2.6. Then for every function ϕ ∈ C1(R, X) ∩ Pω,c(R, X), the
function Φ : R −→ X defined by Φ(·) = F (·, ϕ(·)) is (ω, c)-periodic), differentiable
and Φ′ is (ω, c)-periodic.

Proposition 2.9. Let f ∈ Pω,c(R, X) and suppose (T (t))t≥0 be a C0-semigroup of
linear operators. Then the function Υ(t) defined by

Υ(t) :=

∫ t

−∞
T (t− s)f(s) ds

is also in Pω,c(R, X).

Proof. It is straightforward. Indeed we have.

Υ(t+ ω) =
∫ t+ω
−∞ T (t+ ω − s)f(s) ds

=
∫ t
−∞ T (t− σ)f(σ + ω) dσ

= c
∫ t
−∞ T (t− σ)f(σ) dσ

= cΥ(t).

This completes the proof.
�

Theorem 2.10. [1] Let f ∈ Pω,c(R, X) with f(t) = c∧(t)u(t), u ∈ Pω(R, X). If
k∼(t) := c∧(−t)k(t) ∈ L1(R), then (k ? f) ∈ Pωc(R, X), where

(k ? f)(t) =

∫
R
k(t− σ)f(σ) dσ

Let ϕ ∈ L1(R) and λ ∈ C. Consider the operator Aλ,ϕ defined by

Aλ,ϕx = λx+ ϕ ? x.

Then it obvious that Aλ,ϕ(Pω(R, X)) ⊂ Pω(R, X). Moreover Aλ,ϕ acts continuously
on Pωc(R, X), that means there exists a constant γ > 0 such that

‖Aλ,ϕx‖ ≤ γ‖x‖, ∀x ∈ Pωc(R, X).

Consider now
a(ξ) := λ+ ϕ̂(ξ)
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where ϕ̂(ξ) is the Fourier transform of the function ϕ, a(ξ) is the symbol of the
operator Aλ,ϕ, where ϕ ∈ L1(R). Now since lim

ξ→∞
ϕ̂(ξ) = 0, the symbol a(ξ) is a

well-defined continuous function on R = R ∪ (∞), and a(∞) = λ.
Now we state and prove

Theorem 2.11. Suppose ϕ ∈ L1(R). Then the operator Aλ,ϕ is invertible in

Pωc(R, X) if a(ξ) 6= 0, ∀ξ ∈ R.

Proof. Suppose a(ξ) 6= 0, ∀ξ ∈ R̄. The function 1
a(ξ) is then well-defined on R and

in view of the classical Wiener’s theorem, we get

1

a(ξ)
=

1

λ
+ Ψ̂(ξ),

where Ψ ∈ L1(R). It is easy to verify that A 1
λ ,Ψ

is the inverse to the operator Aλ,ϕ
which acts on Pωc(R, X) in view of the remark above.

�

3. Ordinary differential equations

3.1. Linear case. Consider the following equation in C

(3.1) u′(t) = λu(t) + h(t), t ∈ R

If Reλ 6= 0, the we have either

u(t) =

∫ t

−∞
eλ(t−s)h(s) ds (Reλ < 0)

or

u(t) =

∫ ∞
t

eλ(t−s)h(s) ds (Reλ > 0)

is the unique solution of Eq. (3.1). We deduce in view of Proposition 2.9 that
u ∈ Pω,c(C). We have the following Massera type result.

Theorem 3.1. Let f be (ω, c)-periodic. Then every bounded solution of the differ-
ential equation

x′(t) = A(t)x(t) + f(t), t ∈ R,(3.2)

where A(t) : R→Mk(C) is ω-periodic, is in Pω,c(Ck)

Proof. The proof is similar to Theorem 3.1 [8]. First let us note that by Floquet’s
theory and without loss of generality we may assume that A(t) = A is independent
of t. Next we will show that the problem can be reduced to the one-dimensional
case. In fact, if A is independent of t, by a change of variable if necessary, we may
assume that A is of Jordan normal form. In this direction we can go further with
assumption that A has only one Jordan box. That is, we have to prove the theorem
for equations of the form

x′1(t)
x′2(t)

...
x′k(t)

 =


λ 1 0 . . . 0
0 λ 1 . . . 0
. . . . . . . . . . . . 1
0 0 0 . . . λ



x1(t)
x2(t)

...
xk(t)

 +


f1(t)
f2(t)

...
fk(t)

 , t ∈ R.
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Let’s assume that Reλ 6= 0, then consider the last equation

x′k(t) = λxk(t) + fk(t),

Using the above result, we can show that the solution xk is in Pω,c(C). The same
way we can prove that xk−1 is also in Pω,c(C) We continue the process to prove
that all xi, i = 1, 2, ...k are in Pω,c(C), which shows that x ∈ Pω,c(Ck)

�

3.2. Semilinear case. Consider the following equation in C
(3.3) u′(t) = λu(t) + h(t, u(t)), t ∈ R
where Reλ 6= 0 and f : R×X → X satisfies either condition (i) or condition (ii) of
Theorem (2.6) and there exists L > 0 such that

‖h(t, x)− h(t, y)‖ ≤ L‖x− y‖, ∀x, y ∈ X.
Then there exists a unique solution of Eq. (2.7) which is in Pω,c(X) provided
L < |Reλ|.

Indeed by assumption the operator Λ : Pω,c(X)→ Pω,c(X) defined by

(Λu)(t) :=

∫ t

−∞
eλ(t−s)h(s, u(s)) ds (Reλ < 0)

is well-defined based on the assumption on h. Now if we take u, b ∈
∫ t
−∞ eλ(t−s)h(s) ds (Reλ <

0) then

(‖Λu)(t)− Λv)(t)‖ ≤
∫ t

−∞
‖eλ(t−s)(h(s, u(s))− h(s, v(s)‖ ds

≤ L‖u− v‖∞
∫ t

−∞
eReλ(t−s) ds

≤ L

|Reλ|
‖u− v‖∞

and we conclude using the Banach contraction principle.

4. Fractional Differential equations

We consider the fractional differential equation

(4.1) Dα
t (u(t)− F1(t, u(t))) = A(u(t)− F1(t, u(t))) +Dα−1

t F2(t, u(t)), t ∈ R,
where 1 < α < 2, A : D(A) ⊆ X → X is a linear densely defined operator
of sectorial type on a complex Banach space X, F1, F2 : R × X → X are two
(ω, c)-periodic functions satisfying suitable conditions in the second variable. The
fractional derivative is understood in the Riemann-Liouville sense.

4.1. Sectorial operators. We need to recall some definitions about sectorial op-
erators.

Definition 4.1. A closed linear operator (A,D(A)) with dense domain D(A) in
Banach space X is said to be sectorial of type ω and angle θ if there are constants
ω ∈ R, θ ∈ ]0, π2 [, and M > 0 such that its resolvent exists outside the sector

(4.2) ω + Σθ := {ω + λ : λ ∈ C, |arg(−λ)| < θ},

(4.3) ||(λ−A)−1|| ≤ M

|λ− ω|
, λ /∈ ω + Σθ,
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for more details on sectorial operators we refer to [6].
We denote by B(X) the space of all bounded linear operators from X into X

endowed with the norm of operators. Let A be a closed linear operator with domain
D(A) defined on a Banach space X, the notation ρ(A) stands for the resolvent set
of A.

To study the fractional differential equation

(4.4) Dα
t u(t) = Au(t) +Dα−1

t f(t), t ∈ R,
where f is an X−valued function. We consider the following concept.

Definition 4.2. We call A the generator of a solution operator (or α-resolvent
family) if there are ω ∈ R and a strongly continuous function Sα : R+ → B(X) such
that {λα : Reλ > ω} ⊆ ρ(A) and λα−1(λα − A)−1x =

∫∞
0
e−λtSα(t)x dt, Reλ >

ω, x ∈ X. In this case, Sα(t) is called the solution operator generated by A. We
observe that the power function λα is uniquely defined as λα = |λ|αeiargλ, with
−π < arg(λ) < π.

We note that if A is sectorial of type ω with 0 ≤ θ < π(1 − α
2 ), then A is the

generator of a solution operator given by Sα(t) = 1
2πi

∫
γ
eλtλα−1(λα − A)−1 dλ,

where γ is a suitable path lying outside the sector ω + Σθ.

Lemma 4.3. ([4, Theorem 1]) Let A : D(A) ⊆ X → X be a sectorial operator
in a complex Banach space X, satisfying (4.2) and (4.3) for M > 0, ω < 0 and
0 ≤ θ < π(1 − α

2 ). Then there is C(θ, α) > 0 depending solely on θ and α, such
that

(4.5) ||Sα(t)|| ≤ C(θ, α)M

1 + |ω|tα
, t ≥ 0.

We recall here the following definition that will be essential in the sequel.

Definition 4.4. Assume that A is sectorial of type ω < 0 and angle θ satisfying
0 ≤ θ < π(1 − α

2 ). A function u : R → X is called a mild solution of (4.1) if the
function s→ Sα(t− s)F2(s, u(s)) is integrable on (−∞, t) for each t ∈ R and

(4.6) u(t) = F1(t, u(t)) +

∫ t

−∞
Sα(t− s)F2(s, u(s)) ds,

for any t ∈ R.

Definition 4.5. We call A the generator of a solution operator (or α-resolvent
family) if there are ω ∈ R and a strongly continuous function Sα : R+ → B(X) such
that {λα : Reλ > ω} ⊆ ρ(A) and λα−1(λα − A)−1x =

∫∞
0
e−λtSα(t)x dt, Reλ >

ω, x ∈ X. In this case, Sα(t) is called the solution operator generated by A. We
observe that the power function λα is uniquely defined as λα = |λ|αeiargλ, with
−π < arg(λ) < π.

We note that if A is of sectorial of type ω with 0 ≤ θ < π(1 − α
2 ), then A is

the generator of a solution operator given by Sα(t) = 1
2πi

∫
γ
eλtλα−1(λα−A)−1 dλ,

where γ is a suitable path lying outside the sector ω + Σθ.

Lemma 4.6. Let A : D(A) ⊆ X → X be a sectorial operator in a complex Banach
space X, satisfying (4.2) and (4.3) for M > 0, ω < 0 and 0 ≤ θ < π(1− α

2 ). Then
there is C(θ, α) > 0 depending solely on θ and α, such that

(4.7) ||Sα(t)|| ≤ C(θ, α)M

1 + |ω|tα
, t ≥ 0.
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Lemma 4.7. Assume that A is sectorial of type ω < 0 and angle θ satisfying
0 ≤ θ < π(1 − α

2 ). If f : R → X is a (ω, c)-periodic function and Γf is given by

(Γf)(t) =
∫ t
−∞ Sα(t− s)f(s) ds, t ∈ R, then Γf ∈ Pω,c(R, X).

Proof. We have

(Γf)(t+ ω) =

∫ t+ω

−∞
Sα(t+ ω − s)f(s) ds

=

∫ t

−∞
Sα(t− σ)f(σ + ω) dσ

= c

∫ t

−∞
Sα(t− σ)f(σ) dσ

= c(Γf)(t)

which proves the result. �

Theorem 4.8. Assume that A is sectorial of type ω < 0 and angle θ satisfying
0 ≤ θ < π(1 − α

2 ). Let F1, F2 satisfy Theorem 2.6 (i) and there are a positive
constant µ1 and positive bounded continuous function µ2(t) so that

(4.8) ||F1(t, u1)− F1(t, u2)|| ≤ µ1||u1 − u2||, ∀ u1, u2 ∈ X, ∀ t ∈ R,

(4.9) ||F2(t, u1)− F2(t, u2)|| ≤ µ2(t)||u1 − u2||, ∀ u1, u2 ∈ X, ∀ t ∈ R.

Let β2(t) =
∫ t
−∞

µ2(s)
1+|ω|(t−s)α ds. If there is a constant γ > 0 such that

(4.10) µ1 + C(θ, α)Mβ2(t) ≤ γ < 1,

for all t ∈ R, where C(θ, α) and M are the constants in (4.7). Then Eq. (4.1) has
a unique (ω,c)-periodic mild solution.

Proof. Note that the operator F : Pω,c(R, X)→ Pω,c(R, X) given by

(4.11) (Fϕ)(t) = F1(t, ϕ(t)) +

∫ t

−∞
Sα(t− s)F2(s, ϕ(s)) ds,

is well defined. Indeed, let ϕ ∈ Pω,c(R, X), then in view of Theorem 2.6, the
functions t→ F1(t, ϕ(t)) and t→ F2(t, ϕ(t)) belong to Pω,c(R, X). By Lemma 4.7
we obtain that Fϕ ∈ Pω,c(R, X).

On the other hand, if ϕ1, ϕ2 ∈ Pω,c(R, X), we have

||Fϕ1(t)− Fϕ2(t)|| ≤ ||F1(t, ϕ1(t))− F1(t, ϕ2(t))||

+

∫ t

−∞
||Sα(t− s)|| ||F2(s, ϕ1(s))− F2(s, ϕ2(s))||ds

≤ µ1||ϕ1 − ϕ2||∞ + C(θ, α)Mβ2(t)||ϕ1 − ϕ2||∞
≤ γ||ϕ1 − ϕ2||∞,

hence F is a γ-contraction. Now, the assertion is a consequence of the contraction
mapping principle. The proof is now completed. �
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