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AN EXISTENCE RESULT OF (ω,C)-PERIODIC MILD SOLUTIONS TO SOME FRACTIONAL DIFFERENTIAL EQUATION

We first investigate in this paper further properties of the new concept of (ω, c)-periodic functions; then we apply the results to study the existence of (ω, c)-periodic mild solutions of the fractional differential equations

is a linear densely defined operator of sectorial type on a complex Banach space X, F 1 , F 2 : R×X → X are two (ω, c)-periodic functions satisfying suitable conditions in the second variable. The fractional derivative is understood in the sense of Riemann-Liouville.

Introduction

Recently, Alvarez et al. [START_REF] Alvarez | ω,c)-periodic functions and mild solutions to abstract fractional integr-differential equations[END_REF] introduced the concept of (ω,c)-periodic functions which contains the classes periodic, antiperiodic and Bloch periodic functions among others. This concept is motivated by the Mathieu's equation y (t) + [a -2qcos(2t)]y(t) = 0 which is used in the modelling of several phenomena including the stability of railroads as trains drive over them, or seasonally forced population dynamics.

In their paper [START_REF] Alvarez | ω,c)-pseudo periodic functions, first order Cauchy problem and Lasota-Wazewska model with ergodic and unbounded ascillating production of cells[END_REF], the authors generalize this concept to the one of (ω,c)-pseudo periodic functions which are functions with ergodic parts. Both papers [START_REF] Alvarez | ω,c)-periodic functions and mild solutions to abstract fractional integr-differential equations[END_REF][START_REF] Alvarez | ω,c)-pseudo periodic functions, first order Cauchy problem and Lasota-Wazewska model with ergodic and unbounded ascillating production of cells[END_REF] generalize several results in [START_REF] Hasler | Bloch-periodic functions and some applications[END_REF][START_REF] N'guérékata | Antiperiodic solutions of semilinear integrodifferential equations in Banach spaces[END_REF][START_REF] Mophou | Asymptotic behavior of mild solutions of some fractional functional integro-differential equations[END_REF][START_REF] Hasler | Bloch-periodic functions and some applications[END_REF].

The aim of this work is to investigate further properties of (ω,c)-periodic functions in Section 2 and their applications to some ordinary differential equations (Section 3) and fractional differential equations of the form D α t (u(t)-F 1 (t, u(t))) = A(u(t) -F 1 (t, u(t))) + D α-1 t F 2 (t, u(t)), t ∈ R, where 1 < α < 2 (Section 4) in a complex Banach space (X, • ). D α t denotes the time fractional derivative of order α in the Riemann-Liouville sense.

(ω, c)-periodic functions and their properties

In this paper we will consider (X, • ) a complex Banach space, ω > 0, and

c ∈ C \ {0}. Definition 2.1. [1, 2] A function f ∈ C(R, X) is said to be (ω,c)-periodic if f (t + ω) = cf (t), ∀ t ∈ R.
In this case, ω is called the c-period of f . The set of all (ω,c)-periodic functions R → X is denoted P ωc (R, X). Examples of (ω, c)-periodic include ω-periodic (P ω (R, X)), antiperiodic (P aω (R, X)) and Bloch periodic (B p,k (R, X)) functions (cf. for instance [START_REF] Hasler | Bloch-periodic functions and some applications[END_REF][START_REF] N'guérékata | Antiperiodic solutions of semilinear integrodifferential equations in Banach spaces[END_REF][START_REF] Mophou | Asymptotic behavior of mild solutions of some fractional functional integro-differential equations[END_REF][START_REF] Hasler | Bloch-periodic functions and some applications[END_REF] for more information on these functions).

Proposition 2.2. [1] A function f ∈ C(R, X) is (ω,c)-periodic if and only if f (t) = c ∧ (t)u(t), c ∧ (t) := c t ω , u ∈ P ω (R, X). Theorem 2.3. [1] Equipped with the norm f ωc := sup t∈[0,ω] |c ∧ (-t)|f (t) , P ωc (R, X)
turns out to be a Banach space Let's state and prove Theorem 2.4. Let f ∈ P ω,c (R, X). Then the following are true:

(i) If f (t) = 0 ∀t ∈ R, then the function g(t) := 1 f (t) , t ∈ R belongs to P ω, 1 c (R, X) (ii) The function f a (t) := f (t + a), a ∈ R belongs to P ω,c (R, X). (iii) If λ ∈ P ω,c (R, C), then λf ∈ P ω,c 2 (R, X) (iv) If A : X → X is a bounded linear operator, then Af ∈ P ω,c (R, X).
Proof. It comes straightforward from the definition of (ω,c)-periodic functions.

Lemma 2.5. For all (s, u) ∈ R×X, there exists ϕ ∈ P ω,c (R, X) such that ϕ(s) = u Proof. Let Ψ : R → X be define by Ψ(t) = c ∧ (t). Then obviously Ψ ∈ P ω,c (R, X) with Ψ(0) = 1. This implies that the function ϕ(t) := Ψ(t -s)u satisfies the property.

For a given function F ∈ BC(R, X), define the Nemytskii's superposition operator

(2.1) N F (ϕ)(•) := F (•, ϕ(•)), ϕ ∈ P ω,c (R, X).
In [START_REF] Hasler | Bloch-periodic functions and some applications[END_REF], the authors proved the following result in the framework of Bloch-periodic functions.This result was generalized in the case of (ω, c)-periodic functions [START_REF] Alvarez | ω,c)-periodic functions and mild solutions to abstract fractional integr-differential equations[END_REF].

Here we give a more rigourous proof using the lemma above.

Theorem 2.6. Let F ∈ BC(R, X). The following are equivalent (i) For every ϕ ∈ P ω,c (R, X), N F (ϕ) ∈ P ω,c (R, X).

(ii) For all (t, x) ∈ R × X, F (t + ω, cx) = cF (t, x).

Proof. Assume (i) and let (t, x) ∈ R × X. Then by Lemma (2.5) there exists ϕ ∈ P ω,c (R, X) such that ϕ(t) = x. Let Φ(.) := N (•, ϕ(•)). Then Φ ∈ P ω,c (R, X) and using (2.1) we have

F (t + ω, cx) = F (t + ω, cϕ(t)) = F (t + ω, ϕ(t + ω)) = Φ(t + ω) = cΦ(t) = cN F (ϕ)(t) = cF (t, ϕ(t)) which means F (t + ω, cx) = cF (t, x) because ϕ(t) = x.
Conversely assume that F (t + ω, cx) = cF (t, x) and let ϕ ∈ P ω,c (R, X). Then using (2.1), we have

N F (ϕ)(t + w) = F (t + ω, ϕ(t + ω)) = F (t + ω, cϕ(t)) = cF (t, ϕ(t)) = cN F (ϕ)(t).
The proof is complete.

Theorem 2.7. Suppose f ∈ C 1 (R, X) ∩ P ω,c (R, X). Then f ∈ P ω,c (R, X)
Proof. We have

f (t + h) -f (t) = f (t)h + o(h) where o(h) = |h|ε(h) with lim h→0 ε(h) = 0. But f (t + ω + h) -f (t + ω) = c[f (t + h) -f (t)] = cf (t)h + o(h). Therefore f (t + ω) = cf (t) which means f ∈ P ω,c (R, X).
Theorem 2.7 leads to the following corollary:

Corollary 2.8. Let F ∈ C 1 (R × X, X
) satisfies one of the equivalent properties (i) and (ii) of Theorem 2.6. Then for every function

ϕ ∈ C 1 (R, X) ∩ P ω,c (R, X), the function Φ : R -→ X defined by Φ(•) = F (•, ϕ(•)) is (ω, c)-periodic), differentiable and Φ is (ω, c)-periodic.
Proposition 2.9. Let f ∈ P ω,c (R, X) and suppose (T (t)) t≥0 be a C 0 -semigroup of linear operators. Then the function Υ(t) defined by

Υ(t) := t -∞ T (t -s)f (s) ds is also in P ω,c (R, X).
Proof. It is straightforward. Indeed we have.

Υ(t + ω) = t+ω -∞ T (t + ω -s)f (s) ds = t -∞ T (t -σ)f (σ + ω) dσ = c t -∞ T (t -σ)f (σ) dσ = cΥ(t). This completes the proof. Theorem 2.10. [1] Let f ∈ P ω,c (R, X) with f (t) = c ∧ (t)u(t), u ∈ P ω (R, X). If k ∼ (t) := c ∧ (-t)k(t) ∈ L 1 (R), then (k f ) ∈ P ωc (R, X), where (k f )(t) = R k(t -σ)f (σ) dσ Let ϕ ∈ L 1 (R) and λ ∈ C. Consider the operator A λ,ϕ defined by A λ,ϕ x = λx + ϕ x.
Then it obvious that A λ,ϕ (P ω (R, X)) ⊂ P ω (R, X). Moreover A λ,ϕ acts continuously on P ωc (R, X), that means there exists a constant γ > 0 such that

A λ,ϕ x ≤ γ x , ∀x ∈ P ωc (R, X). Consider now a(ξ) := λ + φ(ξ)
where φ(ξ) is the Fourier transform of the function ϕ, a(ξ) is the symbol of the operator A λ,ϕ , where ϕ ∈ L 1 (R). Now since lim ξ→∞ φ(ξ) = 0, the symbol a(ξ) is a well-defined continuous function on R = R ∪ (∞), and a(∞) = λ. Now we state and prove Theorem 2.11. Suppose ϕ ∈ L 1 (R). Then the operator A λ,ϕ is invertible in

P ωc (R, X) if a(ξ) = 0, ∀ξ ∈ R.
Proof. Suppose a(ξ) = 0, ∀ξ ∈ R. The function 1 a(ξ) is then well-defined on R and in view of the classical Wiener's theorem, we get 1

a(ξ) = 1 λ + Ψ(ξ),
where Ψ ∈ L 1 (R). It is easy to verify that A 1 λ ,Ψ is the inverse to the operator A λ,ϕ which acts on P ωc (R, X) in view of the remark above. 

u (t) = λu(t) + h(t), t ∈ R
If Reλ = 0, the we have either

u(t) = t -∞ e λ(t-s) h(s) ds (Reλ < 0) or u(t) = ∞ t e λ(t-s) h(s) ds (Reλ > 0)
is the unique solution of Eq. (3.1). We deduce in view of Proposition 2.9 that u ∈ P ω,c (C). We have the following Massera type result.

Theorem 3.1. Let f be (ω, c)-periodic. Then every bounded solution of the differential equation

x (t) = A(t)x(t) + f (t), t ∈ R, (3.2) where A(t) : R → M k (C) is ω-periodic, is in P ω,c (C k )
Proof. The proof is similar to Theorem 3.1 [START_REF] Liu | A Massera type theorem for almost automorphic solutions of differential equations[END_REF]. First let us note that by Floquet's theory and without loss of generality we may assume that A(t) = A is independent of t. Next we will show that the problem can be reduced to the one-dimensional case. In fact, if A is independent of t, by a change of variable if necessary, we may assume that A is of Jordan normal form. In this direction we can go further with assumption that A has only one Jordan box. That is, we have to prove the theorem for equations of the form

     x 1 (t) x 2 (t)
. . .

x k (t)      =     λ 1 0 . . . 0 0 λ 1 . . . 0 . . . . . . . . . . . . 1 0 0 0 . . . λ          x 1 (t)
x 2 (t) . . .

x k (t)      +      f 1 (t) f 2 (t) . . . f k (t)      , t ∈ R.
Let's assume that Reλ = 0, then consider the last equation

x k (t) = λx k (t) + f k (t),
Using the above result, we can show that the solution x k is in P ω,c (C). The same way we can prove that x k-1 is also in P ω,c (C) We continue the process to prove that all x i , i = 1, 2, ...k are in P ω,c (C), which shows that x ∈ P ω,c (C k ) 3.2. Semilinear case. Consider the following equation in C

(3.3) u (t) = λu(t) + h(t, u(t)), t ∈ R
where Reλ = 0 and f : R × X → X satisfies either condition (i) or condition (ii) of Theorem (2.6) and there exists L > 0 such that

h(t, x) -h(t, y) ≤ L x -y , ∀x, y ∈ X.
Then there exists a unique solution of Eq. (2.7) which is in P ω,c (X) provided L < |Reλ|. Indeed by assumption the operator Λ : P ω,c (X) → P ω,c (X) defined by

(Λu)(t) := t -∞ e λ(t-s) h(s, u(s)) ds (Reλ < 0)
is well-defined based on the assumption on h.

Now if we take u, b ∈ t -∞ e λ(t-s) h(s) ds (Reλ < 0) then ( Λu)(t) -Λv)(t) ≤ t -∞ e λ(t-s) (h(s, u(s)) -h(s, v(s) ds ≤ L u -v ∞ t -∞ e Reλ(t-s) ds ≤ L |Reλ| u -v ∞
and we conclude using the Banach contraction principle.

Fractional Differential equations

We consider the fractional differential equation

(4.1) D α t (u(t) -F 1 (t, u(t))) = A(u(t) -F 1 (t, u(t))) + D α-1 t F 2 (t, u(t)), t ∈ R,
where 1 < α < 2, A : D(A) ⊆ X → X is a linear densely defined operator of sectorial type on a complex Banach space X, F 1 , F 2 : R × X → X are two (ω, c)-periodic functions satisfying suitable conditions in the second variable. The fractional derivative is understood in the Riemann-Liouville sense.

4.1. Sectorial operators. We need to recall some definitions about sectorial operators.

Definition 4.1. A closed linear operator (A, D(A)) with dense domain D(A) in

Banach space X is said to be sectorial of type ω and angle θ if there are constants ω ∈ R, θ ∈ ]0, π 2 [, and M > 0 such that its resolvent exists outside the sector (4.2)

ω + Σ θ := {ω + λ : λ ∈ C, |arg(-λ)| < θ}, (4.3 
) ||(λ -A) -1 || ≤ M |λ -ω| , λ / ∈ ω + Σ θ ,
for more details on sectorial operators we refer to [START_REF] Lunardi | Analytic Semigroup and Optimal Regularity in Parabolic Problems[END_REF]. We denote by B(X) the space of all bounded linear operators from X into X endowed with the norm of operators. Let A be a closed linear operator with domain D(A) defined on a Banach space X, the notation ρ(A) stands for the resolvent set of A.

To study the fractional differential equation

(4.4) D α t u(t) = Au(t) + D α-1 t f (t), t ∈ R,
where f is an X-valued function. We consider the following concept.

Definition 4.2. We call A the generator of a solution operator (or α-resolvent family) if there are ω ∈ R and a strongly continuous function

S α : R + → B(X) such that {λ α : Reλ > ω} ⊆ ρ(A) and λ α-1 (λ α -A) -1 x = ∞ 0 e -λt S α (t)x dt, Reλ > ω, x ∈ X.
In this case, S α (t) is called the solution operator generated by A. We observe that the power function λ α is uniquely defined as λ α = |λ| α e iargλ , with -π < arg(λ) < π.

We note that if A is sectorial of type ω with 0 ≤ θ < π(1 -α 2 ), then A is the generator of a solution operator given by S α (t) = 1 2πi γ e λt λ α-1 (λ α -A) -1 dλ, where γ is a suitable path lying outside the sector ω + Σ θ . Lemma 4.3. ([4, Theorem 1]) Let A : D(A) ⊆ X → X be a sectorial operator in a complex Banach space X, satisfying (4.2) and (4.3) for M > 0, ω < 0 and 0 ≤ θ < π(1 -α 2 ). Then there is C(θ, α) > 0 depending solely on θ and α, such that (4.5)

||S α (t)|| ≤ C(θ, α)M 1 + |ω|t α , t ≥ 0. We recall here the following definition that will be essential in the sequel. Definition 4.4. Assume that A is sectorial of type ω < 0 and angle θ satisfying 0 ≤ θ < π(1 -α 2 ). A function u : R → X is called a mild solution of (4.1) if the function s → S α (t -s)F 2 (s, u(s)) is integrable on (-∞, t) for each t ∈ R and

(4.6) u(t) = F 1 (t, u(t)) + t -∞ S α (t -s)F 2 (s, u(s)) ds,
for any t ∈ R.

Definition 4.5. We call A the generator of a solution operator (or α-resolvent family) if there are ω ∈ R and a strongly continuous function S α : R + → B(X) such that {λ α : Reλ > ω} ⊆ ρ(A) and λ α-1 (λ α -A) -1 x = ∞ 0 e -λt S α (t)x dt, Reλ > ω, x ∈ X. In this case, S α (t) is called the solution operator generated by A. We observe that the power function λ α is uniquely defined as λ α = |λ| α e iargλ , with -π < arg(λ) < π.

We note that if A is of sectorial of type ω with 0 ≤ θ < π(1 -α 2 ), then A is the generator of a solution operator given by S α (t) = 1 2πi γ e λt λ α-1 (λ α -A) -1 dλ, where γ is a suitable path lying outside the sector ω + Σ θ . Lemma 4.6. Let A : D(A) ⊆ X → X be a sectorial operator in a complex Banach space X, satisfying (4.2) and (4.3) for M > 0, ω < 0 and 0 ≤ θ < π(1 -α 2 ). Then there is C(θ, α) > 0 depending solely on θ and α, such that

(4.7) ||S α (t)|| ≤ C(θ, α)M 1 + |ω|t α , t ≥ 0.
Lemma 4.7. Assume that A is sectorial of type ω < 0 and angle θ satisfying

0 ≤ θ < π(1 -α 2 ). If f : R → X is a (ω, c)-periodic function and Γf is given by (Γf )(t) = t -∞ S α (t -s)f (s) ds, t ∈ R, then Γf ∈ P ω,c (R, X). Proof. We have (Γf )(t + ω) = t+ω -∞ S α (t + ω -s)f (s) ds = t -∞ S α (t -σ)f (σ + ω) dσ = c t -∞ S α (t -σ)f (σ) dσ = c(Γf )(t)
which proves the result. Theorem 4.8. Assume that A is sectorial of type ω < 0 and angle θ satisfying 

0 ≤ θ < π(1 -α 2 ). Let F 1 , F
≤ µ 1 ||ϕ 1 -ϕ 2 || ∞ + C(θ, α)M β 2 (t)||ϕ 1 -ϕ 2 || ∞ ≤ γ||ϕ 1 -ϕ 2 || ∞ ,
hence F is a γ-contraction. Now, the assertion is a consequence of the contraction mapping principle. The proof is now completed.

3 . 1 .

 31 Ordinary differential equations 3.Linear case. Consider the following equation in C (3.1)

  2 satisfy Theorem 2.6 (i) and there are a positive constant µ 1 and positive bounded continuous function µ 2 (t) so that(4.8) ||F 1 (t, u 1 ) -F 1 (t, u 2 )|| ≤ µ 1 ||u 1 -u 2 ||, ∀ u 1 , u 2 ∈ X, ∀ t ∈ R, (4.9) ||F 2 (t, u 1 ) -F 2 (t, u 2 )|| ≤ µ 2 (t)||u 1 -u 2 ||, ∀ u 1 , u 2 ∈ X, ∀ t ∈ R. Indeed, let ϕ ∈ P ω,c (R, X), then in view of Theorem 2.6, the functions t → F 1 (t, ϕ(t)) and t → F 2 (t, ϕ(t)) belong to P ω,c (R, X). By Lemma 4.7 we obtain that F ϕ ∈ P ω,c (R, X).On the other hand, if ϕ 1 , ϕ 2 ∈ P ω,c (R, X), we have||F ϕ 1 (t) -F ϕ 2 (t)|| ≤ ||F 1 (t, ϕ 1 (t)) -F 1 (t,ϕ 2 (t))|| ||S α (t -s)|| ||F 2 (s, ϕ 1 (s)) -F 2 (s, ϕ 2 (s))|| ds

	Let β 2 (t) =	t -∞	µ2(s) 1+|ω|(t-s) +	t
				-∞

α ds. If there is a constant γ > 0 such that (4.10)

µ 1 + C(θ, α)M β 2 (t) ≤ γ < 1,

for all t ∈ R, where C(θ, α) and M are the constants in (4.7). Then Eq. (4.1) has a unique (ω,c)-periodic mild solution.

Proof. Note that the operator F : P ω,c (R, X) → P ω,c (R, X) given by

(4.11) (F ϕ)(t) = F 1 (t, ϕ(t)) + t -∞

S α (t -s)F 2 (s, ϕ(s)) ds, is well defined.