
HAL Id: hal-02548013
https://hal.science/hal-02548013v1

Submitted on 20 Apr 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A situation-driven framework for dynamic security
management

Romain Laborde, Arnaud Oglaza, Ahmad Samer Wazan, François Barrère,
Abdelmalek Benzekri

To cite this version:
Romain Laborde, Arnaud Oglaza, Ahmad Samer Wazan, François Barrère, Abdelmalek Benzekri. A
situation-driven framework for dynamic security management. Annals of Telecommunications - an-
nales des télécommunications, 2019, 74 (3-4), pp.185-196. �10.1007/s12243-018-0673-0�. �hal-02548013�

https://hal.science/hal-02548013v1
https://hal.archives-ouvertes.fr

OATAO is an open access repository that collects the work of Toulouse
researchers and makes it freely available over the web where possible

Any correspondence concerning this service should be sent

to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr

This is an author’s version published in: http://oatao.univ-toulouse.fr/24719

To cite this version:

Laborde, Romain and Oglaza, Arnaud and Wazan, Ahmad Samer
and Barrère, François and Benzekri, Abdelmalek A situation-driven
framework for dynamic security management. (2019) Annals of
Telecommunications, 74 (3-4). 185-196. ISSN 0003-4347

Official URL: https://doi.org/10.1007/s12243-018-0673-0

Open Archive Toulouse Archive Ouverte

https://doi.org/10.1007/s12243-018-0673-0
http://oatao.univ-toulouse.fr/24719
mailto:tech-oatao@listes-diff.inp-toulouse.fr

Noname manuscript No.
(will be inserted by the editor)

A situation-driven framework for dynamic security
management

Romain Laborde · Arnaud Oglaza · Ahmad Samer Wazan ·
François Barrère · Abdelmalek Benzekri

the date of receipt and acceptance should be inserted later

Abstract We present a dynamic security management
framework where security policies are specified accord-
ing to situations. Situation-based policies easily express
complex dynamic security measures, are closer to busi-
ness and simplify the policy life cycle management.
Situations are specified using complex event processing
techniques. The framework is supported by a modular
event based infrastructure where a dedicated situation
manager maintains active situations allowing the com-
mand center to take dynamic situation-based autho-
rization and obligation decisions. The whole framework
has been implemented and showed good performance
by simulation. Finally, we detail two real experiments.

1 Introduction

The mission of IT security teams in organizations that
consisted in Protect to minimize risk has shifted to Pro-
tect to enable [1]. Security professionals should stop fo-
cusing on locking down assets advocating that priority
is security. This approach, which constrains employees,
is counterproductive to organizations. Security has to
adapt itself to propose solutions that enable new busi-
ness activities and new ways of working. In other words,
the ideal security must allow organizations to grow in
a secure way. Consequently, security has to evolve on
an ongoing basis and the security management process
should be flexible enough to quickly adapt the organiz-
ation security to new usages/technologies and threats.

To cope with new usages/technologies requirements,
security management systems have to automate the en-

R. Laborde · A. Oglaza · S. Wazan · F. Barrère · A. Benzekri
University Paul Sabatier
118 Route de Narbonne, F-31062 Toulouse CEDEX 9, France
E-mail: Romain.Laborde@irit.fr

forcement of security measures. Mobility of employees
or short term projects enhance the business agility. But,
allowing only the right people to access the right as-
sets under the right conditions (temporal, geographical,
circumstances, etc) entails considering dynamic con-
straints that leads to dynamic security permissions.

This article extends [2] and presents dynSMAUG,
our dynamic security management framework. The spe-
cificity of our approach consists in placing the concept
of situation at the core of security management and
writing policies herewith “when situation and condi-
tions then security actions". On the one hand, situ-
ations capture the dynamic constraints (time, location,
risk, etc.) and organize them into a stable and logical
concept. Situation-based security policies are simpler
and more readable. Also, managing high level policies,
close to business, reduces the gap between security re-
quirements and the effective security policy enforced
by security devices, and then limits the security policy
translation errors. On the other hand, making secur-
ity policy more independent from technical constraints
minimizes the impact of changing security mechanisms
and simplifies the policy life cycle management. We
apply Complex Event Processing (CEP) techniques to
calculate situations and security policies are specified
using the Attribute Based Access Control paradigm
in XACMLv3. Finally, dynSMAUG includes a modu-
lar deployment infrastructure to dynamically enforce
situation-based security policies.

The rest of the article is structured as follows. Sec-
tion 2 highlights the limits of security policy languages
and architectures. In Section 3, we present the dynS-
MAUG framework. Section 4 deals with performance
evaluation and two deployment experiments. Section 5
summarizes the related works. Finally, section 6 con-
cludes and provides some perspectives.

2 Romain Laborde et al.

Figure 1 Policy-Based management modes

2 Description of the problem

We first summarize the different existing approaches for
managing security. Then, we present a scenario showing
the limitations of these approaches.

2.1 Policy-based security management approaches

Policy based management (PBM) is a recognized ap-
proach for managing complex systems that externalizes
the management logic out of the managed systems [3].
The architecture supporting this approach consists of a
policy decision point (PDP) that interprets the policy
and takes decisions based on it, and a policy enforce-
ment point (PEP) that compels the managed system to
execute the decisions of the PDP.

If these generic concepts are common to all PBM
solutions, two modes of deployment exist [4] which dif-
fer on how policies are specified and how the PEP and
the PDP interact (See figure 1). The outsourcing mode
is mainly implemented by authorization management
systems. When a protected resource is being accessed,
the PEP catches this access attempt and sends a re-
quest to the PDP. Based on its policies, the PDP takes
its decision and transmits it to the PEP. The latter
applies the decision by granting this requested access
or blocking it. In this deployment mode, interactions
between the PEP and the PDP are synchronous. The
PDP always sends a decision to a PEP as a transac-
tion reply to a specific request. The policy languages
of outsourcing mode systems are of the form ‘If con-
dition then permit/deny ’. PERMIS [5] is an example
of such systems. The provisioning mode is more suit-
able for deploying security configurations [6]. In this
mode, the PDP can receive an event from any sensor
to trigger the decision-making process. The PDP then
transmits its decision to the relevant PEP(s). Here, the
interaction is asynchronous since the PEP can receive
a decision from the PDP without having previously re-
quested it. The policy languages of provisioning mode
systems are of the form ‘On event if condition then
action’. PONDER [7] is an example of such systems.

2.2 Scenario

Let us consider a company working with sensitive data
that wants to prevent them from being compromised.
The Information System Security Policy (ISSP) is the
following: Only owners can use their assigned computer.
Whenever the owner of a device is not behind his/her
computer, the session shall be locked. The owner of a
device is the employee who has been assigned to this
device. Since employees sometimes forget to lock their
session and put sensitive data at risk of being disclosed,
the company decided to automate this task.

The enterprise proposes to improve the initial lo-
gin/password policy by locating both users and com-
puters in order to automatically lock the sessions when
the owner is moving far from his/her associated device
(e.g., the user exits the room). In the next sections,
we call this rule REACTIVE-RULE. In addition, if
someone tries to connect to the computer when the
owner is far from his/her device, the access must be
refused and a notification message must be sent to the
owner via an alternative channel. In the rest of the
article, this rule is called DENY-AUTHZ-RULE. Fi-
nally, connection is allowed only if the login/password
is valid and the owner is in front of his/her device (rule
PERMIT-AUTHZ-RULE).

As a first implementation, the company decided to
collect the locations of computers based on their GPS
chipset. After agreeing with the employees upon privacy
issues, the company also chooses to use the GPS system
embedded in the employees’ smartphones. Using this
tracking solution, REACTIVE-RULE, DENY-AUTHZ-
RULE and PERMIT-AUTHZ-RULE can be rephrased:

REACTIVE-RULEv1
On the distance between the positions of the owner
and the computer becomes greater than X meters
then lock the session of the computer

DENY-AUTHZ-RULEv1
if (the connection to a computer is authenticated)
and (the distance between the positions of the com-
puter and its owner is greater than X meters) then
refuse the connection and send an alert to the owner

PERMIT-AUTHZ-RULEv1
if (the connection to a computer is authenticated)
and (the distance between the positions of the com-
puter and its owner is less or equal than X meters)
then permit the connection

After a testing period, the company realized that
the GPS signal is not correctly received in all its
premises. In addition, the computer can be within X
meters of its owner and not within sight (e.g., they are
in two different rooms). Thus, this mechanism poorly

A situation-driven framework for dynamic security management 3

implements the ISSP. To improve it, the company de-
cided to use an indoor positioning system that com-
bines GPS, Wi-Fi, Bluetooth Low Energy, and motion
sensors. This system is more precise than GPS because
it is able to determine the room where computers and
users stand. However, introducing this new technology
requires to modify the three policy rules to become:

REACTIVE-RULEv2
On (the owner and the computer are no more in the
same room) then lock the session of the computer

DENY-AUTHZ-RULEv2
if (the connection to a computer is authenticated)
and (the owner and the computer are not in the
same room) then refuse the connection and send an
alert to the owner

PERMIT-AUTHZ-RULEv2
if (the connection to a computer is authenticated)
and (the owner and the computer are in the same
room) then permit the connection

This scenario highlights two requirements:

REQ1 : The security policy shall be independent from
technology. In our example, each ISSP rule has been
refined into different rules, one for each position
technology. If new security rules are added each time
a new security related-technology is introduced, the
security policy will become unmanageable.

REQ2 : The security management system shall sup-
port both outsourcing and provisioning modes in a
unified way.

3 The dynSMAUG framework

We propose to make security policies independent from
security mechanisms by specifying them according to
situations. Our general idea consists in describing situ-
ations on one side and specifying security policies on
the other side. Both tasks can be performed in parallel.

3.1 Definition of situation

Although the word situation is commonly employed, it
has many definitions and is often interchanged with the
word context. We present in this section our interpret-
ation of these two concepts.

Dey [8] has proposed one of the most popular defini-
tions of context : “context is any information that can be
used to characterize the situation of an entity.” Hence,
situation is something more abstract than context.

Furthermore, Barwise and Perry [9] provided a first
definition of situation: The world consists not just of
objects, or of objects, properties and relations, but of

objects having properties and standing in relations to
one another. And there are parts of the world, clearly
recognized [...]. These parts of the world are called situ-
ations. This definition highlights that situation is about
making relations between context information.

Endsley [10] supplemented this work in her defin-
ition of situational awareness: [It is] the perception of
the elements in the environment within a volume of
time and space, the comprehension of their meaning,
and the projection of their status in the near future.
This definition stresses another characteristic of situ-
ation. Situation is about understanding the context and
being able to project in the future. As a consequence,
unlike context, a situation can be qualified as "good"
or "bad" based on properties of the current situation
as well as the possible future situations. Understanding
what is happening and what could happen in the future
improves decision making.

Therefore, from a security management perspective,
we consider that the context is every instantaneous, de-
tectable, and relevant security related information of
the managed environment collected by sensors such as
monitoring systems, intrusion detection systems, con-
figuration management databases, etc. A situation is
specific time frame during which the result of some
computed relationships between part of the collected
security events is stable. A situation focuses on specific
entities of interest to protect, which we call situation
target, and a particular security concern.

Our scenario in section 2.2 incorporates two situ-
ations that characterize a geographical relation between
a computer and its owner (Figure 2). Situation close
(referring to “the computer is close to its owner”) can be

situation 'close'

The owner is
close to the
computer

situation 'far'

The owner is far
from the
computer

the owner and the
computer are not in

the same room
OR

The distance between
the owner and the

computer is greater
than X meters

the owner and the
computer are in the

same room
OR

The distance between
the owner and the

computer is less than
X meters

Context events:
 new GPS coordinates of the computer
 new GPS coordinates of the owner
 owner leaves room X, owner enters room X
 computer leaves room X, computer enters room X

Situation class - physical distance between a computer and its owner

startFar/endClose

startClose/endFar

Figure 2 Situations in our scenario

4 Romain Laborde et al.

qualified as rather safe unlike situation far (referring to
“it is far from its owner”) that is more risky. In addition,
these situations are closely related since they both focus
on the same security concern (here the risk associated
to the computer). We say that the situations related to
the same situation target and the same security concern
are in the same situation class. A situation class forms
a weakly connected graph where vertices are the situ-
ations of the class and edges are context events impact-
ing the stability of the situations (Figure 2). Situations
of the same class are mutually exclusive, i.e., an entity
can only be in a single situation of a given class at the
same time. However, any entity can find itself in several
situations in parallel provided all the situations belong
to different classes.

Describing the dynamics of the context as a graph
of situations facilitates the specification of security
policies because it is closer to business needs. For in-
stance, the ISSP is directly translated to:

– When the situation is moving from close to far, the
session of the computer should be locked automat-
ically (REACTIVE-RULE);

– When the situation is far, nobody can connect to the
computer and if someone tries to log in, the owner
should be notified (DENY-AUTHZ-RULE);

– When the situation is close, the user can connect to
the computer (PERMIT-AUTHZ-RULE).

However, computing situations close and far de-
pends on the available sensors and context data.

3.2 Specification and calculus of situations

A situation, being a particular time frame of interest,
has a beginning, a life span and an end [11]. The be-
ginning and the end of a situation are determined by
combining multiple events coming from multiple sensors
and occurring at different moments. Indeed, a situ-
ation involving multiple entities and multiple condi-
tions, the beginning and the end of a situation cannot
be simple events captured by a single sensor. In ad-
dition, events being instantaneous, combining multiple
events requires complex temporal operators (event or-
dering, event existence/absence, time windows, etc.) to
specify the beginning and end of situations.

In our scenario, the beginning and the end of situ-
ations close and far should be computed based on
events related to the position of the user and the com-
puter. Different combinations of events can determine
the beginning and the end of the same situation. For
instance, situation far starts when two events GPS po-
sition of the user and GPS position of the computer in-
dicate that the distance between both entities is greater

than X meters. Alternatively, when events report that
entities are entering or leaving rooms, the same situ-
ation starts by determining that the owner and the
computer are no more located in the same room.

We follow the Complex Event Processing (CEP) ap-
proach for computing the beginning and the end of
situations. CEP is “a defined set of tools and tech-
niques for analyzing and controlling the complex series
of interrelated events that drive modern distributed in-
formation systems" [12]. CEP solutions allow specify-
ing complex events through complex event patterns
that match incoming event notifications on the basis
of their content as well as some ordering relationships
on them. We choose Esper1, the open source event
processing implementation maintained by Espertech.
Esper offers a stream-oriented language for specifying
complex event patterns, called Event Processing Lan-
guage (EPL), that is an extension of SQL for processing
events (e.g., windows definition and interaction, timed-
data arithmetic definition, etc.)

In our scenario, situation far begins when situation
close ends and vice versa (Figure 2). Thus, identify-
ing situations far and close consists in expressing in
EPL the two complex events ‘startFar/endClose’ and
‘startClose/endFar’. Figure 3 is the EPL description of
startFar when the location of users and computers is de-
termined by their GPS positions. In our example, GPS
sensors send the GPS position every 10 seconds. This
EPL rule states that complex event startFar means in
the last time window of 6 seconds, there is an event
representing the GPS position of a smartphone (lines
2-3) and another for the position of a computer (lines
4-5) such that they belong to the same owner (line 9)
and the distance is greater than 10 meters (lines 10-12)
while the current situation is close (lines 13-17).

1 http://www.espertech.com/esper/

1 startFar = select * from
2 Phone-GPS_Event.win:time(6 sec)
3 as phone,
4 Laptop_GPS_Event.win:time(6 sec)
5 as laptop,
6 Active_Situation.std:lastevent()
7 as current-situation
8 where
9 phone.owner = laptop.owner and

10 fr.irit.GPS.gpsDistance(
11 phone.long, phone.lat,
12 laptop.long, laptop.lat) > 10 and
13 current-situation.situation-class =
14 "distance-between-laptop-and-owner" and
15 current-situation.situation-target =
16 laptop.owner and
17 current-situation.value = "close"

Figure 3 Situation "far" using GPS

A situation-driven framework for dynamic security management 5

1 rule reactive_rule {
2 permit
3 target clause
4 Situation_laptop_owner.value == "far"
5 and Situation_laptop_owner.state=="begin"
6 on permit{
7 obligation lockSession {
8 Attribute.recipientTarget=
9 Situation_laptop_owner.owner

10 Attribute.recipientType="laptop"}
11 }
12 }
13 rule deny_authz_rule {
14 deny
15 target clause
16 Situation_laptop_owner.value == "far"
17 and Action.name=="authenticated-connection"
18 on deny{
19 obligation notifyUser {
20 Attribute.recipientTarget=
21 Situation_laptop_owner.owner
22 Attribute.recipientType="smartphone" }
23 }
24 }
25 rule permit_authz_rule {
26 permit
27 target clause
28 Situation_laptop_owner.value == "close"
29 and Action.name == "authenticated-connection"
30 }

Figure 4 Our example ISSP Policy in ALFA

The strategy for specifying the beginning and the
end of situations depends on the input events and the
characteristics of the sensors. The specification of com-
plex event startFar using the indoor positioning system
is explained later in section 4.2.

3.3 Specification of situation-based security policies

In our approach, situations are specified outside the
security policy. Therefore, the security policy can just
refer to them. Hence, we represent security policies in
a generic way as : when situation and some condi-
tion then authorization decision and/or obligation(s).
As highlighted in section 2.2, the security policy lan-
guage shall allow the security administrator to specify
both reactive and authorization rules. These two kinds
of rules can be easily written following these patterns:

reactive rules : when situation and situation begins
[and some condition] then obligation(s)

authorization rules : when situation and some con-
dition then authorization decision and/or obliga-
tion(s)

We propose to express security policies in
XACMLv3 [13], which is standardized by the OASIS.
First, it follows the Attribute Based Access Control

(ABAC) approach [14] where policies describe general
access control requirements in terms of constraints on
security attributes; attributes being any characteristics
of entities. Attributes can be grouped into predefined
categories (subject, action, resource) or user-defined
categories. In addition, the XACMLv3 policy language
includes obligations. Thus, XACMLv3 is not limited to
PERMIT/DENY decisions only and can also describe
complex decisions involving the modification of man-
aged entities. Finally, the XACMLv3 language is ex-
tensible [15]. However, XACML is a verbose XML lan-
guage which makes difficult to write or read security
policies [16]. Abbreviated Language for Authorization
(ALFA) [17] has overcome this issue by providing the
means to express XACMLv3 policies in more compact
and human-readable forms.

Figure 4 shows the three security rules of our
example in ALFA. It is worth to notice that this
policy in ALFA is close to the original ISSP stated
in section 2.2, which limits the errors when trans-
lating high level security policies into a target se-
curity policy language. The rule called reactive_rule
stands for: when the value of situation class Situ-
ation_laptop_owner is far (line 4) and the situation
begins (line 5) then obligation: lock the session of the
related user (lines 7-10). Attributes recipientTarget and
recipientType in the obligation (lines 8-10) indicate
where to enforce the obligation. If they are not filled,
the obligation is returned to the management entity in-
dicated in the request (outsourcing mode). The second
rule deny_authz_rule states: when the value of situ-
ation class Situation_laptop_owner is far (line 17) and
an authenticated connection on the resource has been
performed (line 18) then the authorization decision is
deny (line 15) and as an obligation send a notification
on the smartphone of the owner (line 19-23). Finally,
the last rule allows access (line 28) when the value of
Situation_laptop_owner is close (line 30) and the con-
nection is authenticated (line 31).

3.4 The deployment infrastructure

The architecture of dynSMAUG aims at allowing the
deployment of security policies in both outsourcing and
provisioning modes (Figure 5). In that way, we first
split the PEP entity into its two basic functionalities:
the sensor role that captures events in the managed
system and the actuator role that enforces policy de-
cisions. The PEP in the outsourcing mode (Figure 1)
plays both roles: it is a sensor when it sends a decision
request to the PDP and an actuator when it enforces
the returned decision. In the provisioning mode, it only
plays the role of actuator while the management entity

6 Romain Laborde et al.

that detected the event plays the role sensor. Secondly,
we consider every message as event to unify the inter-
actions between the sensors/actuators and the PDP.
Hence, the protocol in the outsourcing mode consists
of two events (one for the request and the other for the
decision) while the protocol in the provisioning mode is
a unique event (i.e., the decision).

ACTUATOR	

SITUATION	
MANAGER	

SENSOR	

BROKER

d

d
c

c
s

c,s

c: context events / s: situation events / d: decision events

Security
Policy

Situation
Specification

COMMAND	
CENTER	

PDP

decision
Proxy

ACTUATOR	SENSOR	

d
c

Outsourcing PEP

Figure 5 Architecture of dynSMAUG

The actors of our deployment architecture are
shown in Figure 5:

– The broker is the distribution middleware that
transmits all the events between the actors follow-
ing the publish-subscribe pattern. The broker di-
vides events into three kinds of topics: the context
events, the situation events and the decision events.
It is also responsible for controlling the access to the
dynSMAUG infrastructure (each dynSMAUG actor
is authenticated by an X.509 certificate).

– The sensors produce context events (noted c in Fig-
ure 5). A context event can be the GPS coordin-
ates, the user exiting a room, or an attempt to
access a protected resource. Each event is defined
in XACMLv3 by a set of attributes of the form
<identifier, type, value>. This solution has an ad-
vantage: it is possible to develop sensors in any pro-
gramming language.

– The situation manager contains a CEP engine that
calculates situations according to a situation spe-
cification as explained in section 3.2. It consumes
context events and produces situation events (noted
s in Figure 5). Situation events have the same
format as context events and are also carried in

XACMLv3 format. Each time a new situation is cal-
culated, the situation manager creates two situation
events: the beginning of the new situation and the
end of the last active situation.

– The command center is the brain of our secur-
ity management framework. It consumes both con-
text and situation events and produces decision
events (noted d in Figure 5). As explained in sec-
tion 3.3, we specify security policies in XACMLv3.
However, XACML PDPs only implement the out-
sourcing mode. Therefore, the command center in-
cludes also a decision proxy for allowing the com-
mand center to operate both outsourcing and pro-
visioning modes. Hence, the PDP acts in compliance
with XACMLv3. When the decision proxy receives
the decision from the PDP, it publishes the decision
to the correct topic(s) based on attributes recipient-
Target and recipientType (see Figure 4) to distribute
it the relevant actuators.

– The actuators only consume decision events. An ac-
tuator checks if it is the recipient of decisions and
enforces them if so. Like sensors, it is possible to
develop actuators in any programming language.

4 Implementation and deployment examples

We have implemented the whole dynSMAUG architec-
ture and evaluated its performance. We also deployed it
during two real experiments. The message broker is an
Apache ActiveMQ server. All the components (Com-
mand center, Situation manager, Sensors and Actuat-
ors) are authenticated on the broker using SSL certific-
ates. We use Esper to develop the situation manager.
We built the command center based on Balana2, an
XACMLv3 engine provided by WSO2. The policy ed-
itor is the ALFA eclipse plug-in developed by Axiomat-
ics. We also use the Balana API in all the components
for generating and parsing XACMLv3 messages.

4.1 Performance evaluation

According to EsperTech, Esper exceeds over 500 000
event/s on a dual CPU 2GHz Intel, with engine latency
below 3µs average with 1000 EPL statements. This al-
lows the situation manager to integrate operational se-
curity environments and calculate complex situations.

We also evaluated the performance of our system on
the first implementation of our scenario (i.e., position
based on GPS coordinates) by simulating GPS sensors
and actuators by java threads. We installed all the com-
ponents on the same machine (a MacBook Pro with a

2 https://github.com/wso2/balana

A situation-driven framework for dynamic security management 7

Figure 6 Distribution of execution processes with 500 users
(25000 processes)

2.8GHz Intel Core i7 processor, 8Go 1600MHz DDR3
memory). Each simulation compels dynSMAUG to ex-
ecute the complete process from context events sent by
sensors to the reception of the decision by an actuator,
i.e., reception of the GPS coordinates from laptop and
smartphone, calculus of the situation, reception of the
situation event by the command center, decision mak-
ing process and reception of the decision by the actu-
ator. We simulated 500 users and each sensor send GPS
coordinates every 10 seconds. Each simulation lasts 50
executions of the complete process for each user result-
ing in 25000 executions of the process. The distribution
of time (Figure 6) shows that 90% of all process execu-
tions were achieved in less than 18ms and 98% in less
than 55 ms. The worst execution time was 195 ms due
to the broker (96% of the total time).

4.2 Dynamic security based on indoor location

We implemented the scenario of section 2.2 using the
indoor positioning system in a real environment (Figure
7). We deployed an indoor position solution lent by the
PoleStar company3 in our laboratory covering the lobby
and three rooms where we installed a set of Bluetooth
Low Energy beacons that broadcast a signal conveying
their ID. After a learning phase that scans the signal
power received in different places of every room, An-
droid and iOS devices are able to deduce their position
inside a building through a proprietary API. A video of
the experimentation in our lab is available for watching
(https://www.youtube.com/watch?v=wNnL_oqAUK0).

In this experiment, we embedded the command cen-
ter and the situation manager in a Raspberry Pi 3, the
smartphone device is a Google Nexus 5X and the laptop
is an Ubuntu Linux. We developed on the Android
smartphone an actuator that can display notifications
and a positioning sensor in Java that publishes context
events when the smartphone moves to another room

3 http://www.polestar.eu/

LINUX	
LAPTOP	

PAM	

PAM module
PEP

(C language)

Close session
Actuator
(Java)

ANDROID	
DEVICE	

Notify User
Actuator
(Java)

COMMAND	
CENTER	

Balana

BROKER	
ActiveMQ

SITUATION	
MANAGER	

Esper

RASPBERRY	
PI	3	

PoleStar
Indoor

positioning
 Sensor

(Android VM
&Java)

PoleStar	
positioning	
Beacons	

PoleStar
Indoor

positioning
 Sensor
(Java)

Figure 7 Indoor positioning system implementation

(the PoleStar indoor positioning API triggers events
of the form “entering in room X"). On the laptop,
we developed an outsourcing PEP as a Linux Plug-
gable Authentication Module (PAM) that extends the
native Linux authentication process. Each time a user
enters a username/password, the PAM module asks the
command center for a decision. If the command center
denies the access, the PAM module blocks the session
login process. We also provided an actuator that can
lock the current session. Finally, the indoor positioning
API being only available for Android and iOS, the po-
sition sensor on the laptops runs under Android-X864.

The command center is configured with the same
policy as with the GPS solution (Figure 4) proving that
our approach makes the policy independent from the
users tracking technology. However, the situation man-
ager uses a different situation specification due to the
specificities of the indoor positioning events. Indeed,
indoor position sensors only trigger events when smart-
phones or computers are entering in a new room un-
like GPS events that are sent every 10 seconds. As a
consequence, the complex event startFar appears either
when the user or the computer has moved to another
room while both were initially in the same room. In ad-
dition, other technical features have to be considered.
The indoor positioning system deployed in our lab takes
between 0 to 10 seconds to calculate the position of
a device. This constraint of 10 seconds is specific to
our lab experimentation. Better performance can be
achieved with more beacons. Therefore, there may be a
delay of 10 seconds between the time a device actually
enters a room and the time the context event report-

4 http://www.android-x86.org/

8 Romain Laborde et al.

ing this change is actually generated. Thus, situation
far starts when there is event computer enters room
X (resp. smartphone enters room X) while the current
situation is close, and no event smartphone enters room
X (resp. computer enters room X) is triggered within 10
seconds. To translate this statement in EPL, we specify
event startFar in two steps (Figure 8). First, we com-
pute two complex events: i) MayBeFarEvent meaning
either the smartphone (lines 4-5) or the computer (lines
6-7) of the same owner (line 11) moves to another room
(line 12) while the current situation is close (lines 13-
17), and ii) MayBeCloseEvent when the smartphone
(lines 22-23) or the computer (lines 24-25) moves to a
room such that both devices are then in the same room
(line 30) and while the current situation is far (lines 31-
35). These complex events will be re-injected within the
CEP system to compute the beginning of situation far
by when an event MayBeFarEvent has been triggered

1 maybeFarEvent = insert into MayBeFarEvent
2 select phone.owner as owner, phone, laptop
3 from
4 Phone_Geofencing_Event.std:unique(owner)
5 as phone,
6 Laptop_Geofencing_Event.std:unique(owner)
7 as laptop,
8 Active_Situation.std:lastevent()
9 as current-situation

10 where
11 laptop.owner = phone.owner and
12 not phone.location = laptop.location and
13 current-situation.situation-class =
14 "distance-between-laptop-and-owner" and
15 current-situation.situation-target =
16 laptop.owner and
17 current-situation.value = "close"
18

19 maybeCloseEvent = insert into MayBeCloseEvent
20 select phone.owner as owner, phone, laptop
21 from
22 Phone_Geofencing_Event.std:unique(owner)
23 as phone,
24 Laptop_Geofencing_Event.std:unique(owner)
25 as laptop,
26 Active_Situation.std:lastevent()
27 as current-situation
28 where
29 laptop.owner = phone.owner and
30 phone.location = laptop.location and
31 current-situation.situation-class =
32 "distance-between-laptop-and-owner" and
33 current-situation.situation-target =
34 laptop.owner and
35 current-situation.value = "far"
36

37 startFar = select * from pattern [
38 every(mayBeFarEvent=MayBeFarEvent ->
39 timer:interval(10sec) and
40 not MayBeCloseEvent(owner=mayBeFarEvent.owner))]

Figure 8 Situation "far" using indoor positioning

LOCAL	
COMMAND	
CENTER	

LOCAL	
SITUATION	
MANAGER	

COMMAND	
CENTER	

Balana	

BROKER	
ActiveMQ	

SITUATION	
MANAGER	

Esper	

Global	dynSMAUG	

WIFI	&	GPS	
Local	Sensor	

Log	Manager	
Local	Actuator	

Receiver	and	Intent	
Android	Classes	

POLICIES	
FILES	

SITUATIONS	
FILES	

PSAP	
Global	
Actuator	

Init	event	
Global	Sensor	

manage	 manage	

Figure 9 Smart node architecture

(line 38) and after waiting 10 seconds (line 39) no event
MayBeCloseEvent appears for the same owner (line 40).

4.3 Locally-decided dynamic security measures

The second experiment is related to collecting logs
by a Security Operations Center (SOC) where mobile
devices should upload log files to a dedicated SOC
server. However, logs containing sensitive information
should be sent only when the mobile device is in a se-
cure environment. In our case, being in a secure en-
vironment is equivalent to being connected to specific
WIFI networks inside predefined geographical areas.

We developed a decentralized management architec-
ture because, the local context being captured by the
mobile device itself, making situation-based decisions
at the device is far more efficient. Hence, we integrated
the whole dynSMAUG architecture within the mobile
device (the grey elements in Figure 9) that we call
smart node. We developed the local command center
using Balana and the local situation manager thanks
to ASPER5. Finally, a local broker is implemented us-
ing the native Android messaging mechanism (Broad-
castReceiver and Intent classes). Thus, the smart node
has its own local policy (Figure 11) and computes its
own local situations (Figure 10). Hence, smart nodes
can apply dynamic security measures autonomously.

5 https://github.com/mobile-event-processing/Asper

A situation-driven framework for dynamic security management 9

1 startSecureEnvt = select * from
2 LocationEvent.std:lastevent() as location,
3 WifiEvent.std:lastevent() as wifi,
4 Active_Situation.std:lastevent() as current-situation
5 where
6 current-situation.value = "unsecure" and
7 fr.irit.SOC.isInBuilding(location, MYBUILDING) and
8 wifi.name = "secure_wifi"

Figure 10 Local situation "secure-envt" in EPL

1 rule permit_send_logs {
2 permit
3 target clause
4 Situation_environment.value == "secure-envt"
5 and Situation_environment.state=="begin"
6 on permit{
7 obligation uploadLogs{
8 Attribute.recipientTarget="self"
9 Attribute.recipientType="logManager"

10 Attribute.SOCServerAddress="192.168.1.10"
11 Attribute.SOCServerPort="12345"}
12 }
13

14 rule deny_send_logs {
15 permit
16 target clause
17 Situation_environment.value == "unsecure-envt"
18 and Situation_environment.state=="begin"
19 on permit{
20 obligation storeLogs{
21 Attribute.recipientTarget="self"
22 Attribute.recipientType="logManager"}
23 }

Figure 11 The local secure log upload policy in ALFA

1 rule log_smart_node_init_policy {
2 permit
3 target clause
4 Init.id="init-device"
5 Init.role="log-smart-node"
6 on permit{
7 obligation loadPolicyAndSituation{
8 Attribute.policyID="log-managementv1"
9 Attribute.policy=

10 "PD94bWwgdm....BvbGljeT4K"
11 Attribute.situationID="log-managementv1"
12 Attribute.situationSpec=
13 "dW5zZWN1cm....NC4wKSkK"}
14 }

Figure 12 Sample of the global policy in ALFA

Smart nodes can be dynamically managed by the
global command center like any device. To allow such
feature, a smart node must include an actuator called
Policy and Situation Administration Point (PSAP) that
is responsible for managing the local policies and local
situation specifications. The first time the smart node
connects to the global broker, a specific sensor on the
smart node sends an init message signalling it has no
policy nor situation specification. The global command

center has specific rules for managing smart nodes like
the rule in Figure 12 stating that when a smart node
collecting logs for the SOC sends an init event then
the PSAP of the smart node must load a given policy
and situation specification (the policy and the situation
specification are encoded in base64 for technical reas-
ons). When the PSAP of the smart node receives this
obligation, the local policy (resp. local situation spe-
cification) is loaded in the local command center (resp.
the situation manager). It is worth noting that our sys-
tem allows the global command center to dynamically
change the local policy/situation specification of any
smart nodes according to any global situation changing.

5 Related works

Different research works have proposed to introduce the
concept of context to allow dynamic permissions. For
instance, Bonati et al. [18] have included time and phys-
ical location inside policies to support dynamic priv-
ileges. However, this work is limited only to few context
features and doesn’t provide context abstraction such
as our concept of situation. Son et al. [19] proposed to
express access control policies according to six axes of
context: who, when, where, why, what and how. Non-
etheless, they don’t separate context from the policy
and the dynamics is not structured.

Kim and Lim [20] have proposed Situation-Aware-
RBAC which dynamically grants roles to users accord-
ing to a situation-aware matrix. However, the situation-
aware matrix only supports the specification of ba-
sic situations. Yau et al. [21] integrated situation-
awareness capability and RBAC. Likewise, the situation
specification language is limited and the situation spe-
cification is included inside the policy. Kayes et al. [22]
have described an ontological framework for situation-
aware access control. However, their approach focuses
mainly on the purpose of access only. Finally, we presen-
ted a preliminary work in [23] that advocates the ne-
cessity of a situation manager and we implemented the
Break-the-Glass mechanism [24]. However, our work
was limited to the outsourcing deployment mode only.

6 Conclusion

We presented dynSMAUG, a framework that makes se-
curity management more flexible and adaptive by pla-
cing the concept of situation at the cornerstone of the
security management. Situations allow capturing the
dynamic constraints (time, location, workflows, etc.)
using CEP techniques and organize them into a stable

10 Romain Laborde et al.

and logical concept. Delegating the calculation of situ-
ations to a dedicated situation manager simplifies the
security policies by making them closer to business
needs. Our deployment architecture supports both out-
sourcing and provisioning deployment modes in a uni-
fied approach and can also be easily extended by writing
actuators/sensors in most of existing programming lan-
guages. Finally, we demonstrated that the same frame-
work can be applied at different levels from the whole
organizations’ IT system to devices.

Our future work will focus at improving the calculus
of situations. First, we’ll include the assessment of the
situation assurance by integrating the concept of Qual-
ity of Context [25]. We also want to explore the interac-
tions between global situations calculated at the organ-
ization level and local situations computed at the smart
nodes level. For more long-term, we plan to create a
complete situation-based security engineering method-
ology covering the whole security process from adaptive
security requirements to adaptive security enforcement.
Especially, we envision to build a formal situation-based
access control model.

Acknowledgment

This work, part of the Box@PME project, was funded
by BpiFrance and Région Occitanie. We would like to
thank PoleStar for their indoor position technology.

References

1. M. Harkins, Managing Risk and Information Security: Pro-
tect to Enable. Apress, 2012.

2. R. Laborde, A. Oglaza, F. Barrère, and A. Benzekri, “dyns-
maug: A dynamic security management framework driven
by situations,” in Cyber Security in Networking Conference
(CSNet), 2017 1st. IEEE, 2017, pp. 1–8.

3. D. Agrawal, K.-W. Lee, and J. Lobo, “Policy-based manage-
ment of networked computing systems,” IEEE Communica-
tions Magazine, vol. 43, no. 10, pp. 69–75, 2005.

4. A. Westerinen, J. Strassner, M. Scherling, B. Quinn,
S. Herzog, A. Huynh, M. Carlson, J. Perry, and S. Wald-
busser, “Terminology for policy-based management, ietf rfc
3198,” 2001.

5. D. Chadwick, G. Zhao, S. Otenko, R. Laborde, L. Su, and
T. A. Nguyen, “PERMIS: a modular authorization infra-
structure,” Concurrency and Computation: Practice and Ex-
perience, vol. 20, no. 11, pp. 1341–1357, 2008.

6. F. Barrère, A. Benzekri, F. Grasset, and R. Laborde, “A
multi-domain security policy distribution architecture for dy-
namic IP based VPN management,” in 3rd International
Workshop on Policies for Distributed Systems and Networks
(POLICY 2002), 2002, pp. 224–227.

7. L. Lymberopoulos, E. Lupu, and M. Sloman, “An adaptive
policy-based framework for network services management,”
Journal of Network and systems Management, vol. 11, no. 3,
pp. 277–303, 2003.

8. A. K. Dey, “Understanding and using context,” Personal and
ubiquitous computing, vol. 5, no. 1, pp. 4–7, 2001.

9. J. Barwise and J. Perry, The situation underground. Stan-
ford University Press, 1980.

10. M. R. Endsley, “Design and evaluation for situation aware-
ness enhancement,” in Proceedings of the human factors and
ergonomics society annual meeting, vol. 32, no. 2. SAGE
Publications, 1988, pp. 97–101.

11. A. Adi and O. Etzion, “Amit - the situation manager,” The
VLDB Journal—The International Journal on Very Large
Data Bases, vol. 13, no. 2, pp. 177–203, 2004.

12. D. Luckham, “The power of events: An introduction to com-
plex event processing in distributed enterprise systems,” in
Workshop on Rules and Rule Markup Languages for the Se-
mantic Web. Springer, 2008, p. 3.

13. OASIS, “eXtensible Access Control Markup Lan-
guage (XACML) Version 3.0,” Tech. Rep., 2013.
[Online]. Available: http://docs.oasis-open.org/xacml/3.0/
xacml-3.0-core-spec-en.pdf

14. V. C. Hu, D. Ferraiolo, R. Kuhn, A. Schnitzer, K. Sandlin,
R. Miller, and K. Scarfone, “Guide to Attribute Based Ac-
cess COntrol (ABAC) Definition and Considerations,” NIST,
Tech. Rep. SP 800-162, 2016.

15. R. Laborde, F. Barrère, and A. Benzekri, “Toward autho-
rization as a service: a study of the xacml standard,” in Pro-
ceedings of the 16th Communications & Networking Sym-
posium. SCS, 2013, p. 9.

16. A. Oglaza, R. Laborde, and P. Zaraté, “Authorization
policies: Using decision support system for context-aware
protection of user’s private data,” in Trust, Security and Pri-
vacy in Computing and Communications (TrustCom), In-
ternational Conference on. IEEE, 2013, pp. 1639–1644.

17. P. Giambiagi, S. K. Nair, and D. Brossard, “Abbreviated
Language for Authorization Version 1.0,” Mar. 2015. [On-
line]. Available: https://www.oasis-open.org/committees/
download.php/55228/alfa-for-xacml-v1.0-wd01.doc

18. P. Bonatti, C. Galdi, and D. Torres, “Event-driven rbac,”
Journal of Computer Security, vol. 23, no. 6, pp. 709–757,
2015.

19. J. Son, J.-D. Kim, H.-S. Na, and D.-K. Baik, “Cbdac:
context-based dynamic access control model using intuitive
5w1h for ubiquitous sensor network,” International Journal
of Distributed Sensor Networks, 2015.

20. Y.-G. Kim and J. Lim, “Dynamic activation of role on
rbac for ubiquitous applications,” in Convergence Informa-
tion Technology, 2007. International Conference on. IEEE,
2007, pp. 1148–1153.

21. S. S. Yau, Y. Yao, and V. Banga, “Situation-aware access con-
trol for service-oriented autonomous decentralized systems,”
in Autonomous Decentralized Systems, 2005. ISADS 2005.
Proceedings. IEEE, 2005, pp. 17–24.

22. A. S. M. Kayes, J. Han, and A. Colman, “An ontological
framework for situation-aware access control of software ser-
vices,” Information Systems, vol. 53, pp. 253–277, 2015.

23. B. Kabbani, R. Laborde, F. Barrere, and A. Benzekri, “Spe-
cification and enforcement of dynamic authorization policies
oriented by situations,” in New Technologies, Mobility and
Security (NTMS), 2014 6th International Conference on.
IEEE, 2014, pp. 1–6.

24. B. Kabbani, R. Laborde, F. Barrère, and A. Benzekri, “Man-
aging Break-The-Glass using Situation-oriented authoriza-
tions,” in 9ème Conférence sur la Sécurité des Architectures
Réseaux et Systèmes d’Information-SAR-SSI 2014, 2014.

25. P. Marie, T. Desprats, S. Chabridon, M. Sibilla, and C. Ta-
conet, “From ambient sensing to iot-based context comput-
ing: An open framework for end to end qoc management,”
Sensors, vol. 15, no. 6, pp. 14 180–14 206, 2015.

