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BENCHMARKS FOR GRID FLEXIBILITY PREDICTION:
ENABLING PROGRESS AND MACHINE LEARNING AP-
PLICATIONS

Diego Kiedanski Lauren Kuntz Daniel Kofman

ABSTRACT

Decarbonizing the grid is recognized worldwide as one of the objectives for the
next decades. Its success depends on our ability to massively deploy renewable
resources, but to fully benefit from those, grid flexibility is needed. In this pa-
per we put forward the design of a benchmark that will allow for the systematic
measurement of demand response programs’ effectiveness, information that we
do not currently have. Furthermore, we explain how the proposed benchmark will
facilitate the use of Machine Learning techniques in grid flexibility applications.

1 INTRODUCTION

Demand response (DR) or grid flexibility (GF) encompasses the ability of end-customers to change
their energy consumption in response to incentives, with the goal of improving the operation of the
power grid. Typically, examples of DR include Time-of-Use tariffs, where consumers are offered
different electricity prices at different times of the day (such having a cheaper electricity price during
the night) or direct control of appliances such as water heaters by a central utility (without impacting
the comfort of users).

1.1 MOTIVATION

Climate change is one of the biggest challenges ever faced by humanity. A recent book by Hawken
(2017), compiles a list of techniques to help reverse climate change. Regarding grid flexibility, it
mentions that the impact was not measured because the system is too complex to properly assess
its benefits. Even though demand response is a vital tool for enabling the energy transition and the
deployment of renewable resources, there seems to be no reliable and reproducible measure for the
performance of such techniques.

Consider a small low voltage (LV) grid 1 with several households and no demand response program
in place. One could wonder what is the most effective (in terms of consumption change and cost of
implementation) DR program that could be deployed. Should we encourage users to install smart
appliances and a Home Energy Management System (HEMS)? If there are appliances, is it better
to use dynamic pricing, create local energy markets or directly pay users to gain the control of their
HEMS? Would the results change if there were electric vehicles in every household?

1.2 THE ROLE OF BENCHMARKS

Standardized datasets and benchmarks exist and are important in many STEM areas. For example,
in the artificial intelligence community, image recognition is arguably one of the most developed
areas of research. There are many reasons for this, but the fact that anyone can develop a machine
learning algorithm, evaluate it on a dataset such as MNIST (Deng, 2012) and know whether the
implementation is working as expected is a major benefit. In particular, for the MNIST dataset there
are leaderboards that contain the performance of several algorithms2. Even though the superior
performance of one algorithm over another one for a specific dataset should not be sufficient to

1A LV grid is defined as the power grid behind the last Medium Voltage to Low Voltage transformer. The
vast majority of households are connected in a LV grid.

2http://yann.lecun.com/exdb/mnist/
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claim that one is better than the other, such comparison across different datasets might be a good
indicator. Benchmarks are not exclusive of the Image Recognition community. Indeed, examples in
other areas include: community detection in graphs (Lancichinetti et al., 2008) and natural language
processing (Wang et al., 2019). Even in the power system community, the IEEE X-BUS systems
(Kersting, 1991), (IEEE, 1979) provide benchmarking capabilities for some applications, but not for
DR. In addition, Pecan Street (Smith, 2009) offers some benchmarking capabilities as a service.

1.3 BENCHMARK SPECIFICATION

Drawing a parallelism with the image processing community: the definition of an image is clear. It
is a 3 dimensional matrix where each entry represents one of the RGB values of a pixel (for coloured
images). Once everyone agreed in what an image is, many benchmarks (datasets) could be designed
to solve different tasks: images with text, with objects, with faces, etc. There is not a clear analogous
definition of what an “image“ is in Smart Grids, in particular for DR applications. In this section we
take the first steps towards a definition that will enable the systematic treatment of DR programs.

The requirements can be divided into four categories:

1. Energy Generation.
2. Power Grid Specification.

3. Consumer Specification.
4. Performance Metrics.

A brief description of each one of them can be found below, and we provide a longer description in
the Appendix.

Energy Generation The amount of produced energy available for consumption, its sources and
their respective location in the grid should be key components of a demand response benchmark.
In particular, the information of how much renewable energy is available at each point in time
will be needed for measuring DR performance as the ability to match consumption and renewable
generation. Another piece of information that might be relevant consists on weather information
such as temperature and cloud cover. That kind of information will be needed in more precise studies
dealing with seasonal effects of demand response and its correlation to meteorological effects. This
could also be relevant for the Consumer Specification.

Power Grid Specification The power grid can be seen as a graph, where edges are transmission
lines and loads as well as generators are connected at the nodes. A detailed specification of the
physical characteristics of each component will be required to produce realistic simulations. Formats
already exist to provide detailed information about the grid topology and a well designed benchmark
should reuse already established specifications. One such example is OpenDSS (Model & Element)
3.

Consumer Specification Consumers should be modeled in a manner that allows the users of the
benchmark to derive the consumer change in behaviour in response to a change in the system. A
simple way of doing so is by providing a set of appliances each consumer owns, together with
their required usage. For example: non-flexible appliances such as TVs or lightbulbs should be
paired with specific usage times, while washing machines or dishwashers (flexible appliances) could
require only a start time and a completion deadline. The default price of electricity for consumers
should be given. Those prices together with the list of appliances and their usage (and assuming that
consumers act rationally to minimize their electricity bill), should provide enough information to
derive each agent’s electricity consumption (actually, some extra details are required, see Appendix).
Examples of possible problem formulations can be found in Paterakis et al. (2015), Chen et al. (2013)
and Adika & Wang (2013).

Performance Metrics Having a standardized measure to evaluate demand response programs is
critical to the idea of the benchmark and we believe it should be part of its specification. In this
regard, measuring the mismatch between renewable generation and energy consumption 4 seems to

3OpenDSS is an electric power Distribution System Simulation
4How much renewable energy needs to be curtailed and how much energy needs to be produced by tradi-

tional generation sources when renewables are not sufficient
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be a good choice, in contrast to the traditional peak reduction. Further discussion on this point can
be found in Appendix B.5.

We conclude this section with a brief discussions on the limitations of our approach. Demand re-
sponse is a complex problem that encompasses a wide range: from technical capabilities of the
power grid to be controlled in real-time to patterns in human behaviour that modify how households
react to incentives. It is then reasonable to question the validity of results obtained by an approach
that draws mainly from the engineering nature of the problem, as we propose. We motivate our
approach as follows. First, the capability of comparing the performance of different DR programs
applied to the same reality will enhance our understanding of what it is required to properly imple-
ment them, even if such knowledge deals only with the technological aspects of DR. Secondly, to
avoid adding biases about human behaviour to the benchmark, we restrict ourselves to the case in
which all flexibility and change in consumption is enabled by smart appliances and does not require
the active participation of household owners.

2 MACHINE LEARNING APPLICATIONS

Once benchmarks are established, there are many possible machine learning (ML) applications.
Here, we provide two ideas on how ML can be useful in applications related to predicting the
value of the unmet renewable energy generation. Observe that from the specification presented
in Subsection 1.3, it is possible to build a massive number of datasets by creating variations of the
topology, the appliances available, the number of consumers, etc.

2.1 DEEP LEARNING ON THE RAW DATASET

With computational effort, it should be possible to approximate, for each of the aforementioned
datasets, the default aggregated consumption without any DR. It should also be possible to com-
pute the optimal flexibility profile that a centralized entity could achieve it it had control of all the
appliances available. This would yield a labeled training set where each data point is one of the
benchmarks, and the label is the optimal profile that can be obtained. We envision that a deep learn-
ing algorithm could be trained to predict such performance by identifying the relevant features in the
benchmark. For example, it might be that the total count of batteries plus water heaters with their
corresponding electricity price is a good predictor of the net grid flexibility. In that case, the algo-
rithm could learn the best predictors of performance and then be used to predict the grid flexibility
capabilities of other regions of the grid. This could also be seen as a problem of Transfer Learning.

2.2 REINFORCEMENT LEARNING

It is very likely that implementing and simulating a real-time HEMS will require solving large
mixed integer optimization problems. Doing so for large grids and lengthy time horizons can prove
intractable. In this regards, reinforcement learning (but other techniques too) could be used to re-
place the computationally expensive decision process faced by each agent. This could provide an
opportunity to evaluate ML for real time-control. Even closer to demand response, reinforcement
learning could be applied to learn a model of how agents change their behaviour from their default
consumption profile to a different one in the presence of a DR program. This can be used to dis-
cover and quickly test DR techniques in a variety of scenarios. Under ideal conditions, such tests
could be used as a first step, followed by a through evaluation of the most promising techniques in
comprehensive simulations of the benchmark.

3 CONCLUSIONS

In this paper we propose the design of a benchmark for demand response applications that will
enable a systematic measurement of the grid flexibility available in different region of the grid.
These measurements are crucial in the deployment of demand response programs, without which,
the massive deployment of renewable resources and the decarbonization of the power system will
be hindered. Together with a specification of such benchmark, we provide reader with two potential
application of AI: predicting the maximum grid flexibility that could be achieved and learning how
consumers will react to new demand response techniques.
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N. G. Paterakis, O. Erdinç, A. G. Bakirtzis, and J. P. S. Catalão. Optimal household appli-
ances scheduling under day-ahead pricing and load-shaping demand response strategies. IEEE
Transactions on Industrial Informatics, 11(6):1509–1519, Dec 2015. ISSN 1941-0050. doi:
10.1109/TII.2015.2438534.

Christopher Alan Smith. The Pecan Street Project: developing the electric utility system of the
future. PhD thesis, Citeseer, 2009. URL https://www.pecanstreet.org/.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman.
GLUE: A multi-task benchmark and analysis platform for natural language understanding. In 7th
International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May
6-9, 2019, 2019. URL https://openreview.net/forum?id=rJ4km2R5t7.

4

https://doi.org/10.1145/3307772.3328300
https://doi.org/10.1145/3307772.3328300
https://hal.archives-ouvertes.fr/hal-02547962
https://hal.archives-ouvertes.fr/hal-02547962
https://link.aps.org/doi/10.1103/PhysRevE.78.046110
https://www.pecanstreet.org/
https://openreview.net/forum?id=rJ4km2R5t7


Published as a conference paper at ICLR 2020

Appliance Power Consumption (kW) Day 0 Day 1 Day 2 Day 3

Lightbulb (NF) 0.5 17-23 17-23 18-22 20:30 - 22
Washing Machine (F) 1 (10, 18) (2h) - (10, 20) (2h) -

Table 1: Appliance usage and power consumption as specified in a possible benchmark

A A SIMPLE EXAMPLE

In this section we provide a minimal example of how a consumer can be modeled from the bench-
mark data. The appliance usage of one consumer, Ana, is provided in Table 1. Consumption times
are specified in hours, the minimal unit of time. Lightbulbs are non-flexible appliances and the pro-
vided range is exactly the period of time in which they will be on. On the other hand, the washing
machine is flexible, and the first pair of brackets defines the interval in which the consumer finds
acceptable that the machine operates. The second pair of brackets indicates for how long it should
(continuously) run once it starts. The electricity rate follows a Time-of-Use tariff with a cost of 15
¢/ kWh between 14h - 22h and 10 ¢/ kWh at other times. The default consumption of Ana during
Day 0 can be found by solving Optimization Problem as defined in equation 1a. In it, ct denotes the
energy consumption at time-slot t, lt is a binary variable that indicates whether the light bulb is on
or off at time-slot t and zt plays the same role for the washing machine. wt is an auxiliary variable
that decides when the washing machine will turn on. An optimal solution can be found by turning
the washing machine before the change in price (for example, w10 = 1) at a total cost of 23.5 ¢.

This example contains many implicit assumptions such as the time resolution and the time horizon
used to solve the optimization problem. In the next Appendix there is a more thorough discussion
on some of these assumptions.

minimize
lt, wt

22∑
t=14

15ct +
∑

t∈[1,13]∪{23}

10ct (1a)

subject to ct = 0.5lt + zt t = 1, . . . , 24, (1b)
z = wW, (1c)

17∑
t=14

wt = 1, (1d)

wt = 0 t ∈ [0, 13] ∪ [18, 23], (1e)
lt = 0 t ∈ [1, 16] ∪ [24], (1f)
lt = 1 t ∈ [17, 23], (1g)

w, z ∈ {0, 1}T (1h)

W =


1 1 0 0 . . . 0
0 1 1 0 . . . 0
... . . . . . .

...
0 0 . . . 0 1 1

 (2)

B BENCHMARK SPECIFICATION CONT.

In this section we provide some additional discussion on the decision space of the benchmark.

B.1 DETAIL LEVEL OF THE APPLIANCES

One key question in the design of the dataset is how realistic should the model of the appliances
be. A very detailed description might make the benchmark too complicated for normal use whereas
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a too simplistic model might force users to add their own modifications, defeating the purpose of
the benchmark altogether. For example, consider the case of battery storage. A description of
such storage should include the maximum battery capacity, the minimum battery capacity and the
maximum and minimum charging and discharging power. It should most likely also include the
charging and discharging efficiencies. But should it consider a non-constant efficiency that depends
on the state of charge? Should it include the likelihood of a random discharge? The most useful
level of detail probably lies in the middle, where most researchers can feel comfortable about the
realism of the model. Finally, to enable power flow calculations using the benchmark, appliances
should include their power factor.

B.2 MODULARITY

Not every project calls for the same level of detail. For example, in Mathias et al. (2016) the authors
propose a distributed algorithm for controlling swimming pools. For such application, the need to
deal with extra appliances (appart from swimming pools) might be seen as a reason not to use the
benchmark (“it is too much for our problem“). A second example could be modeling the shared
investment in storage by a collective of users without one, such as the one proposed in Kiedanski
et al. (2019), Kiedanski et al. (2020). In that particular application, only the net load might be
required and having to deal with specific appliances might be seen as a drawback. This will be a key
factor in the adoption of the benchmark: it should not be overly simplistic nor overly detailed for
most users.

In that regard, the benchmark should be designed in a way that allows for some of its parts to be en-
capsulated and treated as black boxes if desired. In particular, for a deterministic dataset, the default
operation (obtained in a pre-specified manner) can be distributed together with the original data. For
the use-case of the distributed control of the pools, the interested user can fix all the appliances to
behave as in the default scenario and deal only with the flexibility of the pools. By doing so, he/she
can assess in a realistic scenario the added benefit of the distributed control mechanisms with respect
to the normal performance.

B.3 GRANULARITY

Some applications closer to the physical power grid might require load samples every minute, while
testing complicated game theoretical models might only allow for sampling at periods of 30 min-
utes or greater. An important quality regarding time granularity is to find a standardized way of
aggregating time-slots. That way, if the benchmark is distributed at the 5 minute level, but an ap-
plication requires data sampled hourly, it will be possible for them to aggregate it for their use and
dis-aggregate it later, producing results in the standard format.

This seems to indicate that the smaller the granularity, the better, as we can always go to coarser
load profiles. Nevertheless, the computational complexity produced by a dataset sampled every
milliseconds will not provide added benefits to the DR community. The sweet spot seems to be
around 1 or 5 minutes, but is up for discussion.

B.4 DEFAULT OPERATION

So far, we have discussed how to design the dataset and what information should be included in it.
Unfortunately, this is still not sufficient to provide a reliable and reproducible benchmark. Central
to the idea of a benchmark is the idea of comparing the performance of one technique to another
one. This calls for a “default operational mode“ (DOM), i.e., the behaviour of the system when no
DR program is applied to it. Clearly, this default mode should be uniquely specified in the data.
We want to point out that this is not trivial to achieve and that extra specification will be required
to guarantee the existence of a unique DOM. The simplest approach to obtain a DOM would be
to solve an optimization problem for each household that outputs a schedule of all the appliances,
such that the total cost payed for electricity is minimized. We shall refer to this solution as the
Default with Perfect Information (DwPI). There are two main problems with the DwPI. First, it can
be computationally impossible to find. Consider a dataset containing samples with a resolution of 1
minute and a horizon of 1 year: there are more than half a million time-slots, each one of them with
several discrete variables. Secondly, the result obtained will not be representative of a real settings in
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which agents have to forecast their load and even maybe their prices. One way to solve this problem
is to use a forecast of the load and a rolling horizon Model Predictive Control technique to obtain
the DOM of a consumer. If the length of the horizon and the forecasting technique are pre-specified,
then a unique solution can be obtained5: the Default with Forecast (DwF). 6

B.5 MEASURING GRID FLEXIBILITY

In a power grid where all the generation is dispatchable7, peak reduction has been traditionally the
objective of demand response programs. This was motivated by the fact that the most complex task
was to satisfy the higher peaks of demand. With the introduction of non-dispatchable generation
such as solar and wind, matching the produced energy with the consumption becomes ones of the
most important problems to solve, as there is no benefit in installing non-dispatchable loads if there
will be no consumption when there is generation. We believe that the matching between generation
and consumption should be a central measure of grid flexibility. To obtain a concrete measure of
it, we can define grid flexibility as the integral of the difference between renewable production and
consumption. We can further distinguish between curtailment (generation is larger than consump-
tion) and unmet demand (which required extra generation capabilities to be dispatched). The later is
arguably worse than the former, so we can envision a metric defined as the weighted average of the
two quantities, with a higher emphasis on the unmet demand.

B.6 VALUATION OF LOAD SHEDDING

One of the traditional mechanisms for DR is load shedding. Properly modeling such a mechanism
requires the valuation of agents for not consuming their required energy. For flexible loads, this
value can be obtained by shifting around the load and trying to obtain a new, feasible allocation,
possibly at a higher cost. For inflexible loads, or when the flexibility is not sufficient, the procedure
described above will not provide the required answer. Instead, the dataset should specify an external
valuation of that quantity, i.e, at what price will each household turn off their inflexible appliances.
This value is intrinsically personal and depends in the socioeconomically situation of each agent. For
example, a household in a rich neighbourhood might be willing to pay more to keep their swimming
pool warm than a poor family will be willing to pay to keep their heating on during winter. There
is no clear way to obtain a representative valuation for this. Some sort of valuation belonging to
a specific family of functions could be assumed (lets say quadratic with sampled coefficients), but
it will likely result in biased results towards DR techniques with similar assumptions (positively or
negatively). The other alternative would be to limit the scope of the benchmark and decide that such
demand response programs are not included, which in principle is undesirable given the important
role of such mechanisms.

5If the solution is not unique, additional information will have to be provided to select among them.
6The forecasting technique should be deterministic and clearly specified for border cases.
7Generation that can be turned on and/or off at demand
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