
HAL Id: hal-02547962
https://hal.science/hal-02547962v1

Submitted on 23 Apr 2020 (v1), last revised 9 Jun 2020 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Discrete and stochastic coalitional storage games
Diego Kiedanski, Ariel Orda, Daniel Kofman

To cite this version:
Diego Kiedanski, Ariel Orda, Daniel Kofman. Discrete and stochastic coalitional storage games.
Eleventh ACM International Conference on Future Energy Systems (ACM e-Energy), 2020, Mel-
bourne, Australia. �10.1145/1122445.1122456�. �hal-02547962v1�

https://hal.science/hal-02547962v1
https://hal.archives-ouvertes.fr


Discrete and stochastic coalitional storage games
Diego Kiedanski

diego.kiedanski@telecom-

paristech.fr

Télécom ParisTech

Palisseau, France

Ariel Orda

ariel@ee.technion.ac.il

Technion

Haifa, Israel

Daniel Kofman

daniel.kofman@telecom-paristech.fr

Télécom ParisTech

Palisseau, France

ABSTRACT
To achieve a fully decarbonized power grid, a massive deployment

of renewable energy resources will be needed, but because of the

intermittent nature of their generation, their full potential will not

be unleashed unless demand side flexibility plays a bigger role than

today.

Introducing energy storage at the residential level enables in-

creasing load flexibility, as it allows end-customers to easily change

their consumption profile and adapt to the grid requirements.

As of today, energy storage for residential consumers represents

a considerable investment that is not guaranteed to be profitable.

Shared investment models in which a group of consumers jointly

acquires energy storage have been proposed in the literature to

increase the attractiveness of these devices. Such models naturally

employ concepts of cooperative game theory.

In this paper, we extend the state-of-the-art cooperative game for

modeling the shared investment in storage by adding two crucial

extensions: stochasticity of the load and discreetness of the storage
device capacity. As our goal is to increase storage capacity in the

grid, the number of devices that would be acquired by a group of

players that cooperate according to our proposed scheme is com-

pared to the number of devices that would be bought by consumers

acting individually. Under the same criteria of customer profitabil-

ity, simulations using real data reveal that our proposed scheme

can increase the deployed storage capacity between 100% and 250%.
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1 INTRODUCTION
The imminent threat of climate change requires the replacement of

CO2 producing energy resources by renewables such as solar and

wind. Unfortunately, the intermittent nature of such sources limits

their massive adoption. As energy production and consumption

need to be balanced at all times, one of the solutions to mitigate

this issue is to deploy energy storage in the power grid. At the

residential level, the rate of storage adoption is slower than desired.

Although many battery products exist, the corresponding invest-

ment is today rarely profitable. An end-customer can benefit from

having storage by coupling it with local renewable energy pro-

duction or even without that, if the electricity tariff is designed in

such a way that the storage enables a smart shift in the overall con-

sumption pattern. Even if a consumer can reduce her/his electricity

cost by charging the battery during the cheap electricity hours

and discharging it during the most expensive ones, it might not be

enough to offset the initial cost of the battery. If the battery would

be underused, the end-consumer might be able to team with neigh-

bours and jointly invest in the storage, thus reducing the burden of

the initial investment. This idea, of shared investment in storage,

has already been proposed, and preliminary studies indicate that it

may be highly beneficial. One major problem associated with such

investment is how to share the costs among customers. Indeed, if

there is a big difference among the energy usage patterns of the

involved consumers, some of the participants will be unwilling to

contribute equally to the cost. Therefore, a central question to the

idea of a shared investment in storage is whether there exists a

stable way to divide the total costs, such that no participant has an

incentive to opt out of the investment agreement.

A natural tool to study such problems is cooperative game theory.

In a cooperative game, a set of players considers the benefits of

forming a coalition with every other group of players. A solution

to the game is a distribution of the total benefits among all players

such that no subset of players wishes to deviate, i.e., abandon the

other members of the group and invest on their own. In this study,

we extend previous formulations of such shared investment models

so as to bridge the theory with its applicability. Specifically, while

previous studies focused on deterministic energy consumption

profiles, we consider the broader (and more realistic) framework of

stochastic profiles; furthermore, while previous studies assumed

that any fraction of a battery can be bought, we introduce realistic

constraints regarding the discrete sizes of batteries. We then prove

that, for the stochastic yet continuous case, a solution of the game

always exists and we provide an efficient algorithm to find it. On

the other hand, we show that the discrete case may fail to admit

a solution. Accordingly, for that case, we provide an approximate

solution that appears to be satisfactory for real-world deployments.

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456
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Our algorithm is based on the solution of a linear optimization

problem so it is able to scale to large numbers of players.

The rest of the paper is organized as follows. Section 2 positions

our work within the literature. Section 3 describes coalitional games

at the detail required to present the remaining sections. Section 4

establishes the existence of a solution for the continuous, determin-

istic case. The result is then extended in Section 5 for the stochastic,

yet still continuous, case. We consider the inherent discreteness

of the battery size and its implications on our model in Section 6.

Numerical simulations are presented in Section 7. Finally, Section 8

presents concluding remarks.

2 RELATEDWORK
It appears that the first proposal to use cooperative game theory to

model the shared investment in storage is [7], which introduced the

idea of coalitional storage games. That study did not consider ramp

constraints; that is, it was assumed that the battery could be fully

charged or discharged instantly. That study did model the load as

stochastic but because of the absence of ramp constraints, it was

sufficient to only consider the total consumption in a day and not

the intra-day consumption of each player. It was then proved that

the considered game admits a non-empty core, and a closed-form

solution that belongs to the core was provided.

In [14], the formulation of [7] was extended to include ramp

constraints. That study identified families of games with non-empty

cores as well as families of convex games. Nevertheless, [14] did

not ensure the existence of non-empty cores for all games, nor it

considered stochastic load profiles or discrete battery sizes.

The present work extends upon the above line of studies, by

considering stochastic load profiles and discrete battery sizes, for

which we prove that a stable (or almost-stable) solution exists, i.e.,

the core is not empty.

The study [2] looked at the joint investment in photo-voltaic

panels by a group of neighbours. It was shown that, under certain

assumptions on the consumption profiles, the resulting game is

convex. An extension of [2] was presented in [3], which included

investment in batteries too. The results of [2] do not hold when

also taking into account storage, hence, [3] mostly focused on

the relationship between the formation of communities and the

electricity tariff and how changes in one can trigger changes in the

other.

The study [8] also considered cooperative games for energy

sharing. But instead of looking at the investment problem, it was

assumed that players already own the equipment and are interested

in sharing it. Specifically, [8] considered Hedonic games, a class

of cooperative games without transferable utilities, i.e., there is no

money exchanged between players. One interesting aspect of [8] is

that it considered two scenarios: sharing energy by creating specific

grid and by using the existing grid. In our work, we deal with the

latter type of settlements.

The ideas presented in the present work are also related to the

literature of optimal battery sizing. In [13], a mixed integer linear

optimization problem is formulated to decide on the optimal size of

a storage/photo-voltaic system. A similar but stochastic formulation

was presented in [6]. Our optimization problem is formulated in a

similar way, with the inherent difference that it is embedded in a

cooperative game. Approaches to optimal battery sizing require a

considerable amount of consumption data. If such information is

not available, synthetic data can be generated and used instead as

proposed in [20].

3 PRELIMINARIES
3.1 Cooperative Game theory
A cooperative game G can be defined as a tuple G = (N,v), where
N = {1, . . . ,N } is the set of players and v : 2N → R, specifies
for each coalition S (subset of the N players) what the total cost

incurred by them is. In general, we assume that v(∅) = 0 and

furthermore we refer to the set of all players as the Grand Coalition

S = N .

The solution of a cooperative game G is a payoff vector y ∈ RN

that specifies how much each player should pay. Coordinate j of y,
yj ∈ R, specifies how much player j should pay while taking part

of the Grand Coalition. We seek to find payoffs that satisfy good

properties and guarantee some kind of stability.

Definition 3.1. A payoff vector y is individually rational if yi ≤
v({i}), i.e, the player is better of by participating in the grand

coalition.

Definition 3.2. A payoff vector y is group rational if
∑
j ∈S yj ≤

v(S). That is, all players pay less than if they formed the coalition S .
Observe that if this was not the case, they would have an incentive

to leave the grand coalition and receive v({S}).

Definition 3.3. A payoff vector y is efficient if
∑
i ∈S yi = v(N ).

Definition 3.4. A payoff vector that is both efficient and individ-

ually rational is called an imputation.

Definition 3.5. The core of a game is the set of imputations that

are group rational.

The core is a central solution concept in cooperative game theory.

Indeed, knowing that a payoff is in the core guarantees a certain

sense of stability. The core can be empty, in which case, no stable
solution exists. Deciding whether the core is empty is in general

an NP-complete problem [10].

A general tool to check if the core is empty or not is due to

Bondareva and it presented in Theorem 3.6.

Theorem 3.6. (Bondareva) A cooperative gameG = (N,v) has a
nonempty core if and only if every function α : 2N \ {∅} → [0, 1] that
satisfies Equation (1) also satisfies the condition stated in Equation
(2) [19].

∀i ∈ N :

∑
S |i ∈S

α(S) = 1 (1)

∑
S ∈2N\{∅}

α(S)v(S) ≥ v(N ) (2)

A more detailed introduction of cooperative game theory can be

found in [17].
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3.2 Coalitional Storage Games
In this subsection we shall introduce the coalitional storage game

defined in [14], which we shall use as the base model for the exten-

sions developed in this study.

Consider a coalition of players S ⊂ N , where N is the set of

all players. The aggregated energy consumption of S is denoted

by xS . Because we only observe the consumption at discrete time

intervals, we will denote by xSt the net consumption of S at time-

slot t = 1, . . . ,T , where T is the maximum number of time-slots

in a single day (for 15 minutes time intervals, T = 96). All players

are subject to an electricity tariff p, where pt denotes the price of
1kWh at time-slot t .

Under the above scenario, the cost of a coalition S without a

battery is given by Equation (3). That is, the cost is given exactly

by their electricity price, i.e.:

cS (0)
∆
=

T∑
t=1

ptx
S
t (3)

Next, we introduce batteries and their potential application. Let

B = (B, P, L, δ ) be a battery with capacity B that costs P per kWh,
lasts L days and has a maximum discharge rate of δ (again, to

simplify notation, we assume that the discharging capacity is −δ ).
A coalition S can benefit from owning a battery if there exists

pi < pj with i < j, such that the coalition can charge at time-slot i

the energy consumption of time-slot j: xSj .

Following the conventions in [14], we will assume that the

cost of buying a battery is linear in the capacity. Furthermore,

the electricity tariff takes two values: pt = pl , t = 1, . . . , T
2
and

pt = p
h, t = T

2
+ 1, . . . ,T with pl < ph . Accordingly, the cost of a

coalition within a single day and with the battery B is now given

as follows:

vS (B)
∆
=

BP

L
+ pl

T
2∑

t=1
xSt + p

h
T∑

t= T
2
+1

xSt

− (ph − pl )min

B,
T∑

t= T
2
+1

min{xSt , δB}


(4)

Finally, the cost of a coalition S corresponds to an optimal in-

vestment in a battery, namely:

v(S) = vS
∆
= min

B′
vS (B(B′)) (5)

where the minimization is done using the battery size as the

only parameter that changes. In the continuous version of the

problem, any non-negative value of B is valid. However, in the

discrete version, only multiples of the original battery size are

allowed: B′ = kB,k ∈ N. We will often refer to the coaltional game

that allows any real positive value for the battery capacity as the

continous version of the game and to the games where we only allow

for multiples of the original battery size as discrete games.

Given the above (base) model of [14], we shall present a new and

more convenient formulation of the same game that will enable us

to prove the main theoretical results of this study.

4 FORMULATING COALITIONAL STORAGE
GAMES AS LINEAR PROGRAMS

In the previous section, we defined the cost of a coalition in a

coalitional storage game using the minimization problem present

in Equation (5). Even though it is compact, the nested minimum

structure in it does not make it amenable to the theoretical analysis

that we wish to pursue in this paper. Therefore, we seek to find

an equivalent but more useful way to represent the cost of each

coalition.

In cooperative game theory, one of the most well known studied

games are linear production games (LPG) [5], [15]. In this class

of games, each player has some resources and the value of each

coalition is determined by how much the coalition can produce

with the collection of the resources of all its players. In LPG, the cost

of each coalition is given by a linear program and by exploiting the

duality of such linear programs it can be proven that all LPGs have

non-empty cores. Inspired by these findings, we shall formulate the

minimization problem in (5) as a linear program and frame it as an

LPG.

The linear programming problem equivalent to Equation (5) that

computes the cost of a coalition is given by Equation (6a). The

formulation does not include the cost that is normally incurred

during the cheap period. This value is always constant and additive,

hence to simplify the notation, from now onward we will assume

that it is always 0, i.e., xSt = 0, t = 1, . . . , T
2
.

Problem PS ) minimize

B, E+, E−, e+, e−

[
P

L
B + pl (B − E−) + ph (E+ +

∑
t
e+t )

]
(6a)

subject to

δB + e+t − e−t =
∑
n∈S

xnt ∀t ∈ T (λt ),

(6b)

B + E+ − E− =
∑
t
(δB − e−t ) (µ), (6c)

B, E+, E−, e+, e− ≥ 0 (6d)

The newly introduced variables are interpreted as follows:

(1) e+: For each time slot, is the amount of energy required

beyond the maximum ramp constraint.

(2) e−: For each time slot is the amount of energy below the

maximum ramp constraint.

(3) E+: Is the total amount of energy consumed beyond the

battery capacity, taking into account only the energy that

could be stored, i.e, ignoring the energy that requires more

power than the ramp constraint.

(4) E−: Gap between the energy required and the total amount

of energy in the battery.

(5) λt and µ are the dual variables associated with each of the

equations.

Proposition 4.1. The optimization problems (5) and (6a) are
equivalent.

Proof. The proof can be found in Appendix B.
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□

Proposition 4.2. The optimization problem (6a) can be written
as: min{ccdx : Acdx = bcd , x ≥ 0}, where the superscript cd denotes
that it is the matrix notation of the continuous and deterministic
version of the problem.

Even though the game of interest did not turn out to be exactly a

Linear Production Game, we can still harness the main techniques

used in LPG and apply them to our problem. We present the first

result in that respect in Theorem 4.3.

Theorem 4.3. The cooperative game in which the cost of each
coalition is given as the solution of the optimization problem (6a)

satisfies the hypothesis of 3.6 and therefore it has a non-empty core.

Proof. We will show that the game is balanced. Then, through

a direct application of the Bondareva-Shapley theorem, it follows

that the core is not empty.

Let α satisfy condition (1).

We begin by showing that

∑
S α(S)x

S
t = xNt . This fact follows

simply by the application of the definition of α and it is proven as

follows: ∑
S

α(S)xSt =
∑
S

α(S)
∑
n∈S

xnt

=
∑
n∈N

xnt

∑
S : i ∈S

α(S)

=
∑
n∈N

xnt = xNt

(7)

Let yS denote an optimal solution of (6a) when solving for coali-

tion S . Then:

∑
S

α(S)v(S) =
∑
S

α(S) (ccdyS ) = ccd

(∑
S

α(S)yS

)
(8)

Now,

Acd

(∑
S

α(S)yS

)
=

∑
S

α(S) (AcdyS ) =

=
∑
S

α(S)



xS
1

xS
2

...

xST
0


=



∑
S α(S)x

S
1∑

S α(S)x
S
2

...∑
S α(S)x

S
T∑

S α(S)0


=



xN
1

xN
2

...

xNT
0


(9)

Consequently,

∑
S α(S)ys is a feasible solution of PN ) (the opti-

mization problem (6a) associated with the Grand Coalition). More-

over, because v(N ) is the minimum of that problem, it holds that

ccd

(∑
S

α(S)yS

)
≥ v(N )

.

This completes the proof.

□

Although the core of a game is probably the most well-studied

equilibrium concept in cooperative game theory, its main limitation

is that, for the general case, it isNP−complete to find an imputation

in the core. This is a consequence of the fact that the number

of constraints that define the core grows exponentially with the

number of players.

Fortunately, borrowing ideas from the literature on linear pro-

duction games, we can obtain an element of the core by solving a

simple optimization problem. The idea is captured in the following

theorem.

Theorem 4.4. The payoff vector defined as y = (u1,u2, . . . ,uN )

where ui is defined as in Equation (12) is in the core when the cost of
each coalition is given by optimization problem (6a).

Proof. For the proof, we shall look at the dual of the Linear

Program defined in (6a). Observe that the only dependence on the

coalition S is given by the vector bcd , while Acd as well as ccd do

not depend on S . This has an important consequence: the solution

of the optimization problem (10a), defined for coalition S , is feasible
for any other subsetU ⊂ N .

Problem DS ) maximize

w
bcd (S)

Tw (10a)

subject to ATcdw ≤ ccd (10b)

Letw∗(N ) = (w∗
1
(N ), . . . ,w∗

T+1(N ) be the optimal solution of the

dual of the grand coalition. Due to duality, the following equalities

hold:

T∑
j=1

w∗
j (N )xNj +w

∗
T+1(N )0 = v(N )

T∑
j=1

w∗
j (N )

∑
i ∈N

x ij = v(N )

(11)

We proceed to define a vector y = (u1, . . . ,uN ) where each

coordinate ui is given by Equation (12) and show that it is in the

core of the game. Using Equation (11), it is not difficult to show that

y is efficient. To show that y is in the core, it remains to prove that

it is individually rational and group rational.

ui =
T∑
t=1

x itw
∗
t (N ) (12)

For every coalition S it holds that

∑
i ∈S

ui =
∑
i ∈S

T+1∑
t=1

x itw
∗
t (N ) =

T∑
t=1

xSt w
∗
t (N ) (13)

Looking at optimization problem (10a), the dual of (6a), we need

to prove that

∑
i ∈S ui ≤ v(S), ∀ S ⊂ 2

N \ ∅. The above holds due

to the following: y is feasible for the dual (10a) of every coalition,

by Equation (13) the summation in the left is an lower bound of the

maximization problem and by duality, the optimal value of such

problem is v(S). This proves that the constructed payoff is group

and individually rational, hence completing the proof. □
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5 EXTENDING THE MODEL:
STOCHASTICITY

The model that we have explored so far allows players to share

the cost of an investment in a battery using as a reference the

consumption in a single day. The framework can also be used

to analyze how much each player should pay a posteriori given
their consumption profiles. Nevertheless, because of the stochastic

nature of electricity consumption, it is reasonable to expect that the

optimal capacity in the shared investment changes if stochastics are

taken into account. This observation is illustrated by the following

example.

Example 5.1. Consider a single player that consumes energy

during a single time-slot. There are two scenarios: Ω = {w0,w1},

which occur with probability p0 = p1 =
1

2
, respectively. In scenario

w0, the consumption of the player is x = 0, while in the second

scenario it is x = 3. Furthermore, let the electricity prices satisfy

pl = 1,ph = 5 and the battery be B = (1, 3, 1,∞).

In the deterministic version, we would solve the optimization

problem using the average consumption, namely
3

2
, in which case

the optimal cost is given by the following expression:

v(B) = min

B

{
3B +min{B,

3

2

} + 5max{
3

2

− B, 0}

}
(14)

The optimal solution of the problem in Equation 14 is B∗ = 3

2

and v(B∗) = 6.

Analogously, we can find that, for scenariow0, the optimal bat-

tery size is 0 at a total cost of 0, while for scenariow1, the optimal

battery size is 3 with a total cost of 12.

We are interested in the cost incurred by buying the battery

obtained solving the average case, but experiencing the real con-

sumption in each of the two scenarios.

For scenario ω0, the cost is:

Cω0

∆
= 3 ×

3

2

+min{
3

2

, 0} + 5min{0 −
3

2

, 0} =
9

2

and for scenario ω1 it is:

Cω1

∆
= 3 × +

3

2

min{
3

2

, 3} + 5min{3 −
3

2

, 0} =
27

2

Hence, the average cost experienced is: Cω0
p + Cω0

(1 − p) =
1

2

9

2
+ 1

2

27

2
= 9. However, the cost could have been decreased by

buying instead a battery of size 0 for a total cost of 7.5 with a

reduction of 1.5 (16%). This value, 1.5, is known by the Stochastic

Programming community (see [12]) as the Value of the Stochastic

Solution: it is a measure of how much can be gained by considering

the stochastic problem instead of the deterministic one.

We proceed to formalize the concepts that were introduced in

Example 5.1.

5.1 Two stage stochastic optimization
To better model the investment problem, we extend our previous

formulation to include the typical stochasticity present in the con-

sumers loads. To do so, we consider a two-stage stochastic program-

ming formulation of the investment problem. In the first stage of

the problem, the actual energy consumption is unknown and the

coalition has to decide on which battery they should acquire. In the

second stage of the problem, the actual consumption is revealed

and the coalition decides how to operate the acquired battery so as

to minimize their costs, i.e., buy as much energy as possible during

the cheap period and discharge during the expensive period.

Preserving the notation from the previous section, we can write

the first stage of the problem as follows.

First stage) minimize

B

P

L
B + E[д(B,w)] (15a)

subject to B ≥ 0 (15b)

Similarly, the second stage can be written as follows.

д(B,w) = minimize

E+(w), E−(w), e+(w), e−(w)
pl (B − E−(w))+ (16a)

ph (E+(w) +
∑
t
e+t (w)) (16b)

subject to

δB + e+t (w) − e−t (w) =
∑
n∈S

xnt (w) ∀t ∈ T , , (16c)

B + E+(w) − E−(w) =
∑
t
(δB − e−t (w)), (16d)

E+, E−, e+, e− ≥ 0 (16e)

Observe that the second stage of the problem depends on the

battery size, which is known at that point. Each elementw ∈ Ω cor-

responds to one scenario and encodes the electricity consumption

of every player, so thatw ∈ RT×N .

When the sample space Ω is finite, the expectation can be written

as a sum, and the two-stage problem can bewritten as a very large LP
described by the optimization problem (33), as detailed in Appendix

C. For the investment problem, it is more likely that the distribution

of consumption profiles has a continuous support. In that case, we

construct a set of scenarios (outcomes) Ω′ = {w0, . . . ,wm } with as-

sociated probabilities pw0 , . . . ,pwm
such that the two distributions,

namely the original one and the new one are close with respect

to some metric such as the Wasserstein-distance d1 [16]. In what

follows, we shall assume that we are working with a discretized dis-

tribution function of the consumption profiles with finite support

denoted by Ω.

Theorem 5.2. The cooperative game defined by using optimization
problem (33) as the cost of each coalition is balanced and, therefore, it
has a non-empty core.

Proof. See Appendix D. □

Using the new model, we can solve Example 5.1. The optimal

solution is not to buy a battery (B∗ = 0) for a total cost of
15

2
.

As in the deterministic-continuous case, we do not need to find

the cost of every coalition in order to find a vector in the core, and

we can resort to the dual as in the previous case.

Theorem 5.3. The payoff vector y = (v1,v2, . . . ,vN ) is in the
core, where vi is given by:
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vi =
∑
ω ∈Ω

T+1∑
t=1

x it (ω)m
∗
t (ω)(N ) (17)

wherem∗
t is the optimal solution of the dual of (33) which is given

by (18a)

DS ) maximize

m
bTcsm (18a)

subject to ATcsm ≤ ccs (18b)

Proof. Analogous to the deterministic case. □

5.2 On the construction of scenarios
As we mentioned at the end of Subsection 5.1, we need to work

with a discretization of the consumption profile distribution instead

of the actual continuous one. This amounts to find a finite set Ω of

scenarios with their respective probabilities that behaves similarly

to the original distribution. There are a many approaches on how to

produce optimal scenarios such as [9] or [16]. However, the optimal

scenario generation is out of the scope of this paper. Instead, we

observe that we can use the consumption of each player during a

single day as a suitable scenario. By doing so, the one thing left to be

decided is how many scenarios should be employed. This question

is addressed in Subsection 7.1, where we numerically asses the

sensitivity of the solution on the number of scenarios.

6 EXTENDING THE MODEL: DISCRETENESS
After extending the model in order to cope with stochasticity, we

next address the need to cope with the fact that batteries come in

discrete sizes. That is, we would like to change the optimization

problem of each coalition so that it considers only discrete battery

sizes (i.e., multiples of the original battery size). Unfortunately,

the technique we used to prove the existence of the core for the

(deterministic and stochastic) continuous cases no longer works.

This is due to the fact that it relied upon the duality gap, which

cannot be guaranteed to be 0 in the discrete case.

Observation. Because we will need to refer and compare the

characteristic value function of the continuous and discrete versions

of the game simultaneously, we shall use the following notation:

vc (S) shall denote the value of coalition S in the continuous version

of the game while vd (S) will stand for the value in the discrete

version.

Our analysis of the discrete model begins then with the observa-

tion that, if we know the solution of the continuous problem, then

the solution of the discrete problem is not too different. Formally:

Theorem 6.1. The optimal battery size for a coalition S in the
discrete setting is given by B↑ or B↓, where B↑ is the smallest multiple
of B greater than β and B↓ is the largest positive multiple of B smaller
or equal than β . In this context, β is the optimal battery size for the
coalition in the continuous setting.

Proof. Consider a parametric linear program min{cx |Ax =

b + ˆbλ, x ≥ 0}. It is known that if ϕ(λ) is the value of the optimal

solution, then λ → ϕ(λ) is a convex piecewise linear continuous

function [4]. Observe that the optimization problem considered so

far can be written in this parametric form, where the parameter

λ is precisely the battery size B (the reformulation requires to re-

place all the instances of B in the cost function by the appropriate

combination of the rest of the variables).

Since ϕ is continuous and convex in R+ and, furthermore

lim

x→∞
ϕ(x) = ∞

ϕ has a global minimum that coincides with the battery size in the

continuous case. Now, because ϕ is convex, it holds that, among

the integer values, ϕ has to be minimized by either B↑
or B↓

. This

implies that, instead of solving the mixed integer optimization

problem, it suffices to solve the continuous one and check which of

the two solutions is better.

□

From the above result we can derive the following lemma:

Lemma 6.2. 0 ≤ vd (N) − vc (N) ≤ f (B,pl ,ph ). That is, the
integrality gap does not depend on the net consumption of players.

Proof. Observe that, by changing the battery size by B kWh

where B is the size of the battery, the cost will be affected by two

factors: the change in the cost of the battery and the maximum

energy than can be shifted from the expensive period to the cheap

period. In either case, the bounds on those quantities depend only on
the battery and the prices, but not on the consumption profiles. □

Lemma 6.2 hints that, as the number of players grows, the relative

cost of the rounding error becomes smaller.

Having introduced some general properties of discrete storage

games, we proceed to show that the core of such a game may be

empty, in contrast with the results obtained for continuous battery

sizes.

6.1 An example with an empty core
Consider a coalitional storage gamewith a single time slot, and with

a battery that can be bought in multiples of 1 kWh. Furthermore,

assume that the ramp constraints are large enough so that they do

not play a role, i.e., e+ = 0,B + E+ − E− =
∑
n∈S x

n
. Let X be the

consumption of an arbitrary coalition; then, the cost of the coalition

is defined as the solution of the optimization problem (19a).

P1 minimize

B, E+, E−, e+, e−

P

L
B + pl (B − E−) + ph (E+ + e+) (19a)

subject to δB + e+ − e− = X , (19b)

B + E+ − E− = δB − e− = X , (19c)

B ∈ Z+E+, E−, e+, e− ≥ 0 (19d)

From (19c) and Theorem 6.1, we know that the only possible

solution of the above optimization problem is either: B = X , B↑
, or

B↓
, with ∆ = B↑ − X .

The total costs incurred in each of these three cases are summa-

rized in Table 1. The first case,C1, only occurs if X ∈ Z. The second
case will take place over the third one only if its associated cost is

smaller, which occurs when the following condition is satisfied:
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∆ <
ph − P

L − pl

ph − pl

Table 1: The cost in each of the three cases

Case Battery size Total cost

C1 B = X X (π + pl )

C2 B = B↑ X (π + pl ) + ∆π

C3 B = B↓ X (π + pl ) + (1 − ∆)(ph − π − pl)

Having detailed the solution for a simple game, let us consider

an example.

Example 6.3. Let N = 3 and T = 1, such that the consumption

of each of the three players is given by: x1 = 0.9, x2 = 0.6, x3 = 0.4.

Furthermore, the prices satisfy ph = 0.55,pl = 0.2, PL = 0.3 In Table

2, the costs of each coalition for several battery sizes are shown, and

the minimum cost, which coincides with the value of the coalition,

is highlighted in blue.

Table 2: Value of all the coalitions for different battery sizes.
Optimal battery sizes are highlighted and coincide with the
derivation in Table 1 using the fact that ∆ = 0.11428.

Coalition / Battery size 0 1 2 3

(0,) 0.495 0.480 0.78 1.08

(1,) 0.330 0.420 0.72 1.02

(2,) 0.220 0.380 0.68 0.98

(0, 1) 0.825 0.775 0.9 1.2

(0, 2) 0.715 0.665 0.86 1.16

(1, 2) 0.550 0.5 0.8 1.1

(0, 1, 2) 1.045 0.995 0.98 1.28

For this game, the core is given as the vectors satisfying the

following constraints: (20)-(26).

x0 ≤ 0.48 (20)

x1 ≤ 0.33 (21)

x2 ≤ 0.22 (22)

x0 + x1 ≤ 0.775 (23)

x0 + x2 ≤ 0.665 (24)

x1 + x2 ≤ 0.5 (25)

x0 + x1 + x2 = 0.98 (26)

Since x1 +x2 ≤ 0.5, we have x0 ≥ 0.48 = 0.48. Substituting x0 in
Inequalities (23) and (24) we obtain: x1 ≤ 0.295, x2 ≤ 0.185. Now,

it follows that x0 + x1 + x2 ≤ 0.48 + 0.295 + 0.185 = 0.96 < 0.98

hence the problem is unfeasible.

Hence, for discrete battery sizes, the core may be empty. Fur-

thermore, because the ramp constraints played no role in this case,

the result is more general.

6.2 The ϵ-core of a discrete game
In view of the potentially empty core in the discrete case, we turn

to consider a relaxed solution concept, namely the ϵ−core. The idea
is that we allow each coalition to be unsatisfied with the payoff

up to ϵ . In particular, with ϵ = 0 the solution coincides with the

original concept of the core.

Because the ϵ − core is always non-empty for a sufficiently large

value of ϵ , we are interested in bounding the value of ϵ for which
we can guarantee that the ϵ − core is non-empty.

We begin by building an approximation of the core. This ap-

proximation will be used for obtaining a solution for the discrete

version of the game, given that we cannot apply the dual approach

for discrete battery sizes. Because we shall use this approximation

as our solution, we are mostly interested in finding the value of ϵ
associated with such a solution, rather than with a value that holds

for every payoff.

Lety ∈ core(Gc ) be a vector in the core of the continuous variant

of the game, which its guaranteed to exit. For this vector we know

that

∑
N yn = vc (N ), because every payoff in the core is efficient.

We can then define the approximation of a vector in the core of the

discrete game as:

ŷ = y
vd (N )

vc (N )
(27)

If δ denotes the difference vd (N ) − vc (N ), we can rewrite (27)

as:

ŷ = y + y
δ

vc (N )
(28)

This new vector is efficient in the discrete game, and in it, every

player pays proportionally the same as in the continuous game. Yet,

it might not satisfy group rationality for some coalitions (indeed, if

the game has an empty core, it necessarily violates at least one of
them). By definingMS (z) =

∑
n∈S zn −vd (S) to be the violation of

the constraints associated with the coalition S , we can denote by

M(z) = maxS ∈2N MS (z) the largest violation of any constraint. It

follows that y is in the core of the game if and only ifM(y) ≤ 0. If

M(y) > 0, by definition we know that y belongs to theM(y) − core
of the game.

Proposition 6.4. There exists ϵ satisfying

ϵ ≤
vd (N ) −vc (N )

vc (N )

( ∑
n∈N

yn −min

n
yn

)
such that the ϵ−core is nonempty, where y is a vector in the core of
the continuous version of the game.

Proof. We know that vd > vd . It follows that any vector that

satisfies

∑
n∈S zs ≤ vc (S), also satisfies

∑
n∈S zs ≤ vd (S); hence, y

satisfies all the inequality constraints that define the discrete core.

When considering ŷ and the discrete core, we have that, for any

coalition S , the inequality can be violated by at most

∑
n∈S yn

δ
vc (N )

(because we know that the constraint is satisfied in the continuous

case). The maximum of all those violations is clearly achieved in a

coalition with N − 1 players. That completes the proof. □

We proceed to show how Proposition 6.4 is reflected in the ex-

ample introduced in the previous subsection.



Conference’17, July 2017, Washington, DC, USA Kiedanski, et al.

Table 3: Example with continuous battery sizes

Coalition Opt. Bat. Size Incurred Cost Integrality Gap

(0,) 0.9 0.45 0.030

(1,) 0.6 0.30 0.030

(2,) 0.4 0.20 0.020

(0, 1) 1.5 0.75 0.025

(0, 2) 1.3 0.65 0.015

(1, 2) 1.0 0.50 0.000

(0, 1, 2) 1.9 0.95 0.030

Example 6.5. Continuation of the Example 6.3.

Recall the game introduced in Subsection 6.1 with associated

coalitions whose costs are described in Table 2. The costs and opti-

mal battery sizes of the continuous version of the game are given

in Table 3. The last column shows the difference in cost between

the discrete problem and the continuous one.

Applying Theorem 4.4 and Equation (12), we obtain the vector

y = (0.45, 0.3, 0.2) that is in the core of the continuous game. Then,

the approximation of a payoff vector of the discrete game is ob-

tained by applying Equation (27) with vd (N) = 0.98, vc (N) = 0.95

yielding

ŷ = (0.4642, 0.3094, 0.2063)

.

From Proposition 6.4, we know that an upper-bound on ϵ is

given by:
0.98−0.95

0.95 (0.45 + 0.3) ∼ 0.0236. We can verify that indeed

M(ŷ) = M(1,2)(ŷ) = 0.5157 − 0.5 = 0.0157 < 0.0236.

7 NUMERICAL SIMULATIONS
In this section, we numerically evaluate the performance of coali-

tional storage games using real data, andwe quantify the consumers’

benefit obtained by implementing such a scheme.

We are interested in answering the following questions. What

is the actual benefit for consumers of using the scheme? What is

the optimal size of the scenario set and how is it reflected in the

output? How bad (if at all) is in practice the approximated solution

introduced in Section 6.2? And, finally, do we achieve an increase

in the number of storage units in the grid while being profitable

for end users?

A realistic assessment of the performance of the scheme should

be made on an out-of-sample dataset, i.e., using consumption that

corresponds to days after the purchase of the battery. Unfortu-

nately, the studied model does not explicitly specify how to do that.

Therefore, two alternatives, both related to the original problem,

are considered and evaluated here, as follows.

First, let y ∈ core(G) be a vector in the core of the game, solved

by generating scenarios from day 1 until day D = |Ω |. The first

proposed technique is to obtain a new vector yd for each day in

the future D + 1,D + 2, . . . so that vector yd is efficient for day d
(the same of payment of each player is exactly the cost incurred

during the day) and each player pays proportionally the same as

they did in y. We shall call this technique Keep Proportions. The
second proposed technique is to fix the battery size obtained by

the shared investment (using a discrete battery size and stochastic

load profiles), and then employ Equation (12) in order to obtain the

new payments for each player (using the consumption of the new

day). We shall call this technique Re-Solving. Finally, we employ

two other cost assignments as benchmarks, as follows. First, we

consider the Default, which is the cost incurred by each player if

they decided not to invest in storage at all and pay the default price

for their electricity. In addition, we consider the Individual cost,
which consists of the cost paid by each of the players if they decide

to buy a battery on their own if it is profitable. It coincides with the

Default cost if the optimal battery size is 0, but it is lower otherwise.

Even though the Individual investment might seem strictly better

than the Default one, it entails risks associated with it (buying

storage without help) not included in the model. Consequently for

cases in which players are risk-averse or the profits are small, the

Default investment might be a better solution.

We obtained the consumption profile of each user from the Aus-

Grid project [18]
1
, which consists on data of 128 users between the

1st of July of 2012 and the 29th of June of 2013. The consumption

is sampled every 30 minutes, so T = 48. In particular, because

we are only interested in the consumption during the times when

electricity is most expensive, which we assumed to be the second

half of the day, we only keep the second half of the consumption

of each day.

As mentioned above, we assume that the lower price spans the

first half of the day, and the most expensive price spans the rest.

As actual tariffs, we used reference prices from New Mexico [11]:

ph = 18.9 cents per kWH and pl = 5.1 cents.

For the battery characteristics, we used Telsa’s Powerwall 2

[1], for which we have BPW 2 = (13.5, 555.5, 365 × 15, 5), where

we assumed a life expectancy of 15 years, slightly more than the

warranty.

Unless explicitly stated otherwise, all games considered in what

follows are of the discrete type.

7.1 Sensitivity to the size of the scenario set
We start by analyzing the impact of changing the look-back thresh-

old in the individual payments as well as in the size of the battery.

By look-back threshold we mean the number of scenarios used in

the stochastic optimization problem. Recall that we assume that

each day is equivalent to one scenario and that the probability of

observing the load of any given day is the same as in any other day.

We create 9 coalitional games with 15, 30 and 45 consumers by

sampling the consumer’s id and the period of the year from the

dataset. For each of the 27 games, we vary the number of scenarios

used from 1 to 45.

In Figure 1, the change in the optimal battery size for each coali-

tion is plotted as a function of the number of scenarios considered

and each line corresponds to one of the different games. We ob-

serve that, in most games, the optimal battery size tends to stabilize

around 35 − 40 scenarios. This observation shall be employed in

future simulations in order to select the number of scenarios.

We proceed to consider the accuracy of the approximated solu-

tion for discrete games.

1
https://www.ausgrid.com.au/Industry/Our-Research/Data-to-share/Solar-home-

electricity-data

https://www.ausgrid.com.au/Industry/Our-Research/Data-to-share/Solar-home-electricity-data
https://www.ausgrid.com.au/Industry/Our-Research/Data-to-share/Solar-home-electricity-data
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Figure 1: Changes in the optimal battery size in a commu-
nity

7.2 Accuracy of the approximation
One way to measure the accuracy of the approximation is to con-

sider the empirical value of ϵ that defines the ϵ − core . If we can
compute the value of each of the 2

N − 1 possible coalitions, then

we could check if our approximation is within the core and if so,

how far. We will proceed to do so, but only for small values of N .

An important observation is that the absolute value of the vio-

lation does not satisfactorily capture the accuracy of the approxi-

mation: a value of ϵ = 1 when the order of magnitude is a million

can be small, but if it is in the order of the tenths it might be too

large. To account for this, we consider the value of the violation

divided by the total cost of the coalition in which the maximum

violation occurs, that is:
MS∗ (y)
vd (S∗)

, where S∗ is the coalition for which

the maximum violation occurs.

We generated 30 games for each number of players between 3

and 10 (inclusive) using 40 scenarios in each game. The box plots in

Figure 2 depict the change in the relative violation of the constraints

as the number of players changes. The values are only for the cases

when the core of the discrete game is non-empty as it is impossible

to measure the distance to the empty set.

As can be seen, as the number of players increases, the violation

becomes less meaningful, in line with the results of Lemma 6.2.

This supports the claim that it is better to have larger coalitions, as

they are more robust in some sense.

7.3 Overall performance
We conclude the numerical evaluation by considering the overall

performance of the model. A central question is whether the coop-

erative game can be an efficient method for increasing the number

of storage devices in the power grid without outside incentives.

To do so, two measures are needed, namely: the economic benefit

of each consumer of participating in the coalition, and the number

of extra storage units that are installed.

We simulated 96 coalitional storage games varying the number of

players N ∈ {15, 30, 45}, the number of scenarios used for making

the decision |Ω | =W ∈ {30, 45} and the number of days after the

investment in which the decision was evaluated F ∈ {15, 30}. For

each combination of parameters, 8 games were created by sampling

the load profile of differnet users.

3 4 5 6 7 8 9 10

0
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3

·10−2
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S
∗

(y
)/
v
d
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)

Figure 2: The relative maximum violation of the approxi-
mated solution for a varying number of players

For the two techniques used to distribute the costs during the

test days and the two benchmarks, Figure 3 depicts the total cost

of 10 of the players for one such game. Although some of the

players do much better by joining the coalition, others are worse

off. Observe that in particular, for player 4 the technique is very

negative, while for player 6 it is highly profitable. This can happen

if the scenarios do not adequately represent the loads of each user

and the investment is made with consumption profiles that are not

very representative of the average consumption of those users. One

example of that is assigning the same probability to an extreme

peak of consumption. For example, if the average consumption of

a player is X kWh per day but the scenarios used to determine the

cost division coincide with all the days in which he/she consumes

above X , then the outcome will not be favourable for he/she.
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Figure 3: The total cost of individual players for 15 days after
the investment using the different techniques to assign the
cost.

A thorough assessment of the performance is provided in Ta-

ble 4. For each combination of the considered parameters, the table

depicts the percentage of users (on average) that are better off by

using one cost assignment technique over the other. As an example,
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Table 4: Comparison of the different cost distribution strategies. In each column the notation A < B indicates the percentage
of the players that did worse in A than in B. The presented results are the mean and the standard deviation. N stands for the
number of consumers, F for the number of test (future) days andW for the number of scenarios.

De f ault < KeepProportion De f ault < Re − solvinд De f ault < Individual KeepProportion < Re − solvinд KeepProportion < Individual Re − solvinд < Individual
N F W

15 15 30 0.59 ± 0.08 1.0 ± 0.0 0.33 ± 0.2 0.44 ± 0.06 0.43 ± 0.08 0.33 ± 0.2

45 0.55 ± 0.15 1.0 ± 0.0 0.12 ± 0.12 0.47 ± 0.18 0.47 ± 0.18 0.12 ± 0.12

30 30 0.58 ± 0.1 1.0 ± 0.0 0.33 ± 0.2 0.44 ± 0.08 0.43 ± 0.09 0.31 ± 0.19

45 0.57 ± 0.11 1.0 ± 0.0 0.12 ± 0.12 0.43 ± 0.11 0.45 ± 0.13 0.12 ± 0.12

30 15 30 0.55 ± 0.07 1.0 ± 0.0 0.3 ± 0.17 0.49 ± 0.05 0.46 ± 0.06 0.3 ± 0.17

45 0.53 ± 0.08 1.0 ± 0.0 0.13 ± 0.05 0.48 ± 0.09 0.47 ± 0.08 0.13 ± 0.05

30 30 0.55 ± 0.05 1.0 ± 0.0 0.3 ± 0.17 0.49 ± 0.06 0.47 ± 0.05 0.3 ± 0.17

45 0.6 ± 0.06 1.0 ± 0.0 0.13 ± 0.05 0.45 ± 0.07 0.42 ± 0.08 0.13 ± 0.05

45 15 30 0.55 ± 0.04 1.0 ± 0.0 0.27 ± 0.15 0.49 ± 0.05 0.46 ± 0.04 0.27 ± 0.15

45 0.56 ± 0.06 1.0 ± 0.0 0.12 ± 0.04 0.46 ± 0.06 0.44 ± 0.06 0.12 ± 0.04

30 30 0.56 ± 0.03 1.0 ± 0.0 0.27 ± 0.15 0.48 ± 0.04 0.46 ± 0.04 0.27 ± 0.15

45 0.6 ± 0.03 1.0 ± 0.0 0.12 ± 0.04 0.43 ± 0.04 0.41 ± 0.03 0.12 ± 0.04

consider the two highlighted cells in the table. The blue one indi-

cates that, for the simulations with 45 consumers, 45 scenarios and

15 test days, only 12% of the consumers preferred the Individual in-
vestment over the Default one (all the rest preferred the Default).
On the other hand, the red cell indicates that 60% of the players

preferred the Keep Proportion technique versus doing nothing,

in the games with 30 players, 30 test days and 45 scenario days. We

observe that the Keep Proportion technique has very different

outcomes: for about half of the players, it is profitable, yet for the

other half it is not. Nevertheless, we observe that not investing at

all in storage is always worse than joining the grand coalition and

paying a cost calculated using the Re-solving technique.

Furthermore, we consider the increase in storage owned by the

players while participating in the cooperative scheme. For the same

scenarios as in Table 4, Table 5 depicts the average increase in

the number of batteries and the percentage of change. It can be

seen that cooperation duplicates or even triplicates the number of

storage owned by players in consideration (with respect to buying

storage individually). Furthermore, knowing that using the payment

scheme Re-solving no player is worse than doing nothing, we

conclude that coalitional storage games are capable of increasing

the amount of storage in the community while satisfying individual

needs.

8 CONCLUSIONS AND FUTUREWORK
In this study we extended the coalitional storage game for model-

ing the shared investment in storage. We provided two extensions,

namely, considering discrete battery sizes and accommodating a

stochastic representation of the load. We believe that these exten-

sions are important steps towards the deployment of the theoretical

findings of this line of work in real-life settings.We have shown that

the cooperative investment is always profitable when continuous

batteries are considered and almost always profitable in the case

of discrete batteries. Furthermore, we provided computationally-

efficient algorithms for finding such solutions. These solutions

specify how the costs should be split among players.

It follows from our theoretical model that the shared investment

is profitable for players when their real consumption distribution

is taken into account. Unfortunately, our numerical results indicate

that using an approximation of such consumption profiles can

Averge difference Percentage of increase

N F W

15 15 30 3.8 inf

45 4.4 inf

30 30 3.8 inf

45 4.4 inf

30 15 30 8.1 232.63

45 8.4 374.67

30 30 8.1 232.63

45 8.4 374.67

45 15 30 12.8 242.51

45 12.4 373.10

30 30 12.8 242.51

45 12.4 373.10

Table 5: Changes in the number of batteries between indi-
vidual and cooperative investments.

lead to unsatisfied players in the long run. Thus, building better

approximations of the considered profiles is one of our lines for

future work.

In our numerical simulations, the cooperative scheme achieved

an increase between 100% and 250% in the amount of storage hosted

in residential premises compared to the setting in which consumers

invest individually, when it was profitable for them to do so. Accord-

ingly, we believe that coalitional games offer solution concepts that

are very well positioned to boost the number of distributed stor-

age devices in Smart Grids. Furthermore, some consumers might

consider the tasks of installing storage in their homes overly com-

plicated. In such a case, opting to participate in a collective storage

(which might not require more than a simple agreement) may offer

a more attractive approach to adopting storage.

It is important to note that a coalitional game cannot make a

battery profitable if the gap between the high price and the low price

of electricity is lower than the amortized cost of the battery. That

is, the viability of buying storage depends first on the electricity

tariffs and on the storage prices, and obviously our model (and its

implied scheme) cannot get around this problem. Nevertheless, if

storage is barely profitable, participating in a shared investment



Discrete and stochastic coalitional storage games Conference’17, July 2017, Washington, DC, USA

will provide higher margins of profit at a reduced risk (which is

shared among the members of the coalition). Relatedly, we expect

battery technologies to improve and decrease their costs in the

future, hence increasing the applicability of the cooperative game

approach proposed in this study.

Our study indicates several directions for future research that

could further increase the benefits of the proposed solution. One

such is to consider advance tariff models, for example those that

include peak demand charges; another is to find efficient schemes

to update an existing coalition once either new players wish to join

or present ones wish to leave.
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A MATRIX FORMULATION OF THE
OPTIMIZATION PROBLEM

In this appendix we provide the matrices and vectors involved in

the matrix formulation of the linear optimization problem (6a).

Acd =


δ 0 0 1 −1 0 0 . . . 0

δ 0 0 0 0 1 −1 . . . 0

...
...

...

(1 −Tδ ) 1 −1 0 1 0 1 . . .


(29)

such that Acd ∈ M(T+1)×(2T+3)

bcd =



xS
1

xS
2

...

xST
0


with

∑
n∈S

xnt = xSt (30)

R2T+3 ∋ ccd =
[
−(π + pl ) −ph pl −ph 0 −ph . . . 0

]
(31)

B PROOF OF PROPOSITION 4.1
Proposition 4.1. The optimization problems (5) and (6a) are equiv-

alent.

Proof. The basic idea is as follows: each variable e+t , e
−
t allows

us to represent the minimum inside the summation in Equation (4),

while E+, E− represent the outer minimum.

Specifically, by Equation (6b):min{δB, xSt } = min{δB, δB+e+t −

e−t } = min{δB, δB − e−t } = δB − e−t .
Doing some extra arithmetic we obtain that:

min

B,
T∑

t= T
2

min{xSt , δB}

 = min{B,
∑
t
δB − e−t }

= min{B,B + E+ − E−} = B − E−

vS (B) =
BP

L
+ ph

T∑
t= T

2

xSt − (ph − pl )(B − E−)

=
BP

L
+ pl (B − E−) + ph

∑
t ∈T

xSt − ph (B − E−)

=
BP

L
+ pl (B − E−) + ph

∑
t
(δB + e+t − e−t )

− ph ((
∑
t
(δB − e−t ) − E−)

=
BP

L
+ pl (B − E−) + ph (E+ +

∑
t
e+)

(32)

□
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C STOCHASTIC LP FORMULATION
In this appendix we formulate the large linear optimization prob-

lem (33) that is obtained by merging the optimization problem

associated with the first stage (15a) and second stage (16a) of the

stochastic formulation of the cost of a coalition.

PS ) minimize

B, E+, E−, e+, e−
πB +

∑
w ∈Ω

p(w)C(B, E+, E−, e+, e−,w)

subject to

δB + e+t (w) − e−t (w) =
∑
n∈S

xnt (w) ∀t ∈ T , ∀w ∈ Ω,

B + E+(w) − E−(w) =
∑
t
(δB − e−t (w)), ∀w ∈ Ω,

B, E+, E−, e+, e− ≥ 0

(33)

where:

C(B, E+, E−, e+, e−,w) = pl (B − E−(w)) + ph (E+(w) +
∑
t
e+t (w))

D PROOF OF STOCHASTIC BALANCE
This appendix provides the proof of Theorem 5.2.

Theorem 5.2. The cooperative game defined by using optimiza-

tion problem (33) as the cost of each coalition is balanced and,

therefore, it has a non-empty core.

Proof. For the continuous and stochastic version of the problem

we shall use the notation Acs ,bcs , ccs to denote the components

of the matrix formulation of the associated LP. Furthermore, let

W = |Ω |.

The proof is quite similar to that of the deterministic case. Ob-

serve that the main difference between the feasible sets of optimiza-

tion problems (33) and (6a) is that in the former, each constraint is

repeated for each scenario w ∈ Ω. Therefore, we shall show that

the same ideas used in the proof of Theorem 4.3 still hold when

each constraint is also indexed byw . First, we show that the con-

sumption profiles are still additive while multiplying them by the

balanced coefficients (Equation (34)):

∑
S

α(S)xSt (w) =
∑
S

α(S)
∑
n∈S

xnt (w)

=
∑
n∈N

xnt (w)
∑

S : i ∈S
α(S) =

∑
n∈N

xnt (w) = xNt (w)
(34)

Finally, we show that the balanced solution is still feasible for

the Grand Coalition problem (35).

Acs

(∑
S

α(S)yS

)
=

∑
S

α(S) (AyS ) =

=
∑
S

α(S)



xS
1
(w0)

...

xST (w0)

0

xS
1
(w1)

...

xST (wW )

0



=



∑
S α(S)x

S
1
(w0)

...∑
S α(S)x

S
T (w0)∑

S α(S)0∑
S α(S)x

S
1
(w1)

...∑
S α(S)x

S
T (wW )∑

S α(S)0



=



xN
1
(w0)

...

xNT (w0)

0

xN
1
(w1)

...

xNT (wW )

0



(35)

□
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