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Abstract

This paper deals with one of the probably most challenging and, in our
opinion, littl e addressed question that can be found in Distributed Artificial
Intelli gence today, that of the methodological design of a learning multi -agent
system (MAS). In previous work, in order to solve the current software
engineering problem of having the ingredients (MAS techniques) but not the
recipes (the methodology) we have defined Cassiopeia, an agent-oriented, role-
based method for the design of MAS. It relies on three important notions: (1)
independence from the implementation techniques; (2) definition of an agent as a
set of three different levels of roles; (3) specification of a methodological process
that reconciles both the bottom-up and the top-down approaches to the problem of
organization. In this paper we show how this method enables Machine Learning
(ML) techniques to be clearly classified and integrated at first hand in the design
process of an MAS, by carefully considering the different levels of behaviors to
which they can be applied and the techniques which appear to be best suited in
these cases. This presentation allows us to take a broad perspective on the use of
all the various techniques developed in ML and their potential use within an MAS
design methodology. These techniques are ill ustrated by examples taken from the
RoboCup challenge. We then show that a large part of the design activity is
nevertheless left to be done as a result of heuristic choices or experimental work.
This allows us to propose the Andromeda framework, which consists in a tighter
integration of ML techniques within Cassiopeia itself, in order to assist the
designer along the different steps of the method and to develop self-improving
MAS.

Keywords: agent-oriented design, distributed machine learning, RoboCup Challenge, collective robotics.
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1. INTRODUCTION

Multi -Agent Systems (MAS) have never been technically so simple to implement and
conceptually so diff icult to design. A number of frameworks are available, theoretical studies
are increasing continuously, and it is now even possible to find commercial products that
propose to solve almost any of the problems a software engineer usually faces when building
an MAS: agents' architectures, cooperation and coordination algorithms, communication
languages, etc.

The attractiveness of MAS has also increased since its birth: these systems, which used to
be restricted to specific areas of application in the late eighties (Bond and Gasser, 1988), can
now be found almost everywhere, from natural language processing to planning or problem
solving. The potential to apply a promising "divide and conquer" approach to problems that
were once thought to be solvable only by centralized techniques (Decker, 1987; Drogoul and
Dubreuil , 1991); the abilit y to use sociological or even biological rather than the traditional
psychological metaphors when designing an intelli gent system (Drogoul and Ferber, 1993;
Korf, 1992); the continuous success of internet-related systems and applications which
"naturally" require a decentralized scheme (Moukas, 1996); the appeal of building open
systems (Hewitt and Inman, 1991) rather than closed ones, everything, from marketing to
research, contributes to make Distributed AI one of the most promising trends in the present -
and future - of AI.

However, ten years after the first use of the term "DAI" for describing this broad domain
of research that extends from distributed systems to Artificial Life (Demazeau and Muller,
1991; Werner and Demazeau, 1992), we claim (and intend to demonstrate in this paper) that
littl e has been done on the most delicate part of this novel approach. Although MAS are now
used in very large software engineering projects (Wooldridge, 1997), there is no methodology
available so far, for allowing software engineers to use the MAS technology in routine
operations. And this claim is even more true when one tries to build adaptive MAS - i.e. MAS
that can learn how to improve themselves using Machine Learning techniques.

1.1. What is a methodology?

Providing a platform, even splendidly programmed, for designing a system is li ke
providing ingredients without a recipe: depending on the skill s of the cook, there is always a
chance that something good will be cooked, but maybe not. However, the cook certainly
prevents himself from reproducing this experiment, changing it a littl e bit to accommodate
different tastes or teaching it to somebody else. It is and remains a one-shot, stand-alone,
success! Methodologies in computer science are what recipes are for cooking: they replace
neither the intuition nor the coding, but provide a framework for unifying these two activities.

Basically, the main role of a methodology is to identify the steps that are necessary to
proceed from the definition of the requirements of a project to their fulfillment (i.e. the project
li fe cycle). More concretely, a methodology supplies the tools for transforming an always
intuitive and subjective vision of a system to be built (the client's requirements, for instance)
into a formalized and objective (i.e. which can be shared and reused) definition of the same
system once it has been implemented. It thus provides a project with "something" that will
stand and remain somewhere between the original blueprint and the final code:

1. A structured set of guidelines, which includes the steps mentioned above, advice for
each of these steps, and how to proceed from one step to another.
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2. A unified way to document the design process. This is used for sharing the experience
gained during this process among designers and/or across time whenever, for instance,
the design has to be undertaken by other software engineers.

3. The use of a homogeneous terminology, which has a meaning at each step of the cycle
and supports the transitions from step to step (it usually also includes a graphical
terminology based on diagrams and flowcharts).

4. The use of operational conceptual abstractions; that is, conceptual structures abstract
enough to allow a suff icient choice of techniques when it comes to implementing the
system, but operational enough to prevent the designer from using unrelated or
outdated techniques.

5. A comprehensive and incremental history of the project, which gives the possibilit y to
backtrack from any step to previous ones without losing what has been done before.

1.2. Why a methodology?

In the case of Distributed Artificial Intelli gence, the project requirements intuitively
consist in having a number of agents achieving a collective task. To fulfill  these requirements,
one must design the agents with specific attention to both their skill s (or functional faculties)
and their abiliti es to organize themselves. This implies managing at least three different levels
of abstraction at the same time:

1. The level of the individual agents (What architecture to implement them? What is their
knowledge and how do they manage it? What are their skill s and how are they
distributed among the agents?).

2. The level of the interactions between the agents (How and what do they communicate?
Can they act on each other and in which way?).

3. The level of their organization (how do they cooperate? Is there a shared goal and how
can they plan to collectively reach it? What is the structure of the organization and
how does it evolve?)

The RoboCup challenge (Kitano et al., 1997a; Kitano et al., 1995) is a good example of
this necessity: designing a team of soccer-playing robots requires the designer to pay attention
simultaneously to these three levels. The programming of the individual skill s is as important
as the design of the inter-individual coordination mechanisms or that of the collective
cooperation schemes. Moreover, there is an important interplay between these three levels: for
example, knowing how to dribble can enable the players to form powerful collective
combinations; on the contrary, being provided with a team strategy may require the players to
undertake new individual responsibiliti es (i.e. special tactics not specifically required when
playing alone).

The existing methodologies, especially the object-oriented methodologies (Graham, 1994)
that can be considered because of some similarities such as distribution or locality1, provide an
interesting basis of analysis (Abbott, 1983; Coad and Yourdon, 1991) since they enable the
distribution of the initial requirements along the structural and behavioral axes. However, they
do not offer any methodological framework for taking the various organizational issues into

                                                
1 And also because most agent-based systems are programmed using object-oriented languages.
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account, because the organization is not considered as an object of analysis by itself (Booch,
1994). A number of very interesting studies on building agent-oriented methodologies as
extensions of object-oriented ones have nevertheless been undertaken (see for example (Pont
and Moreale, 1996)), but what they can really provide so far is still unclear: agents and objects
differ in a number of important respects, the most noticeable being the abilit y of agents to
dynamically and autonomously change their organization, something that objects are not
supposed to be allowed to do. We believe that although object-oriented languages are the
prime target for implementing MAS, it would be an error to consider agents as only "super-
objects" (see for instance Wooldridge's arguments about the importance of the intentional
stance for building MAS (Wooldridge, 1997) even if, in his case, he still relies on a specific
technique, the BDI architecture, for designing an MAS).

On the other hand, the littl e DAI work (e.g. (Moulin and Cloutier, 1994; Wooldridge,
1992)) that deals with methodological aspects either indirectly addresses the organizational
issues through the use of specific negotiation or coordination techniques, or imposes certain
agents' architectures - which in fact are only particular methods of implementation. The
Cassiopeia method, presented in (Colli not and Drogoul, 1998; Drogoul and Colli not, 1998), is
an attempt to overcome this problem of reliance on the implementation by providing a role-
based abstract view of the agents within which the different techniques can easily be
classified. Like object-oriented methods, it does not solve the problem of design but provides
a framework for explicitl y and methodically expressing the hypotheses and choices that are
being made during the design process.

1.3. Learning Multi-Agent Systems (LMAS)

The design requirements expressed above are even stronger when the goal is to make
adaptive MAS, by introducing Machine Learning (ML) techniques that allow the agents to
learn how to behave, how to interact or how to organize themselves (Weiss and Sen, 1995).
Indeed, it requires the agents to learn different abiliti es at different levels of abstraction. And it
is important not to confuse these levels: individually learning a given skill i s not at the same
level as collectively learning how to counteract a strategy, for example. Moreover, from a
technical point of view, the hypotheses, the protocols and the ML techniques to be used in
these two cases are not likely to be the same.

In this respect, the introduction of ML techniques in MAS needs to be undertaken
methodologically, carefully identifying which techniques to use at which level and which
levels to consider. Although this introduction has received a great deal of attention in recent
years (Sen, 1997; Weiss, 1996), few people have really considered the specificity of MAS
compared to traditional ML systems. The majority of the studies deal with very narrow
subjects such as the suitabilit y of given ML techniques to such and such task, but none of
them really handles all  the following questions, which are central to the design of LMAS:

1. Beneficiary: When an agent learns something, who is the beneficiary? The agent itself?
The group of agents? The overall organization? All of them?

2. Learning process: How does it learn? By itself? In interaction with other agents? In a
group?

3. Learning tasks: What does it learn? How to behave? How to interact? How to organize
itself with the others?

4. Learning techniques: Which technique to use for a given task and a given process?
How to compare their suitabilit y?

5. Learning protocols: What is the context that would allow for a correct evaluation of
the learning task?
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We claim that these questions, among others, cannot be answered without being asked
within an MAS design methodological process, which allows the designer to deal with these
multiple levels of abstraction while providing a framework for possibly revising the choices.
Conversely, we strongly believe that the introduction of ML techniques within the
methodological tool itself is the only way to solve the usual problems one faces when
designing an MAS (be it adaptive or not).

The most crucial of these problems are pointed out at the end of Section 2, after the
presentation of the Cassiopeia methodology and with the help of a short presentation of the
team we have designed for the RoboCup simulation league. We then propose a classification
of different machine learning techniques and concepts in Section 3. The Andromeda2

methodology, which is a result of a tight integration of learning methods with the Cassiopeia
concepts, is introduced in Section 4. We conclude by providing some hints about the future of
our attempt to build a truly agent-based computer-aided MAS design system.

2. CASSIOPEIA: AN AGENT-ORIENTED, ROLE-BASED MAS DESIGN METHODOLOGY

2.1. Overview of Cassiopeia

The Cassiopeia method is a way to address a type of problem-solving where collective
behaviors are put into operation through a set of agents. It is not targeted at a specific type of
application nor does it require a given architecture of agents. However, it is assumed that
although the agents can have different aims the goal of the designer is to make them behave
cooperatively. Cassiopeia relies on several concepts, namely those of role, agent,
dependency, and group. The main idea is that we view an agent as nothing else but a set of
roles, among which we distinguish three levels (see figure 1):

1. Individual roles, which are the different behaviors that the agents are individually able to
perform, regardless of the policy they will choose to perform them with.

2. Relational roles, that is how they choose to interact with one another (by
enabling/disabling individual roles), with respect to the mutual dependencies of their
individual roles.

3. Organizational roles, or how the agents can manage their interactions to become or stay
organized (by enabling/disabling some relational roles).

Agent

Relational
Roles

Organizational
Roles

Individual
Roles

Figure 1 - An abstract view of an agent with its three levels of roles

                                                
2 We have called the method Andromeda, the daughter of Cassiopeia in Greek mythology.
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Cassiopeia proceeds from the definition of the collective task to the design of the MAS
along five steps, depicted in figure 2 as layers, that reconcile both the local and global views
of an MAS (see figure 3):

1. The individual roles layer, which contains the definition of the required individual
roles in order to define the types of agent.

2. The dependencies layer, which contains the definition of the dependencies between
these roles (functional, resource-based or goal-based dependencies).

3. The relational roles layer, which contains the definition of the way the agents can
handle these dependencies, by playing given relational roles that enable them to
influence other agents or choose how to be influenced by them.

4. The groups layer, which contains the definition of the potential groups that may
appear, with respect to the above influences.

5. The organizational roles layer, which contains the description of the dynamics of
these groups, that is the organizational roles the agents have to play to make them
appear, evolve or disappear.

R2 R1

R4 R3

R2

R4

R1

R3

Dependencies layer

Individual roles layer

Relational roles layer

Facilitator

Dependent

Conflicts
with

Facilitates

Typology of relational roles

Requires
Enables

R4

R1

Groups layer

R3

Organizational roles layer

Initiator

Participant

Typology of organizational roles

Typology of 
organizations

Potential
groups

R2

Functional or
resource-based
dependencies

Typology of 
dependencies

Typology of individual roles

Figure 2 - The five layers used in Cassiopeia. The relational and organizational
layers depicted here have deliberately been simpli fied (with two roles in each).
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The order in which the five layers must be designed is not prescribed, in order for
methodology to accommodate either a top-down or a bottom-up approach (or a mixture of the
two). However, the usual way to enter the method is to begin by the individual roles layer and
to end by the organizational roles layer, as depicted in figure 3. It is a bottom-up approach, but
not in the commonly held sense of the term "bottom-up", because the overall organization (in
the definition of the roles) is taken into account from the beginning. Moreover, and unlike
most approaches to the design of groups of agents (for example, Mataric's one (Mataric,
1993)), the process is not intended to be sequential, but iterative and incremental.

11 33 55

22 44

Individual roles Relational roles Organizational roles

Dependencies layer Groups layer

Agents

Organization

Local
viewpoint

Global
viewpoint

Figure 3 - Cassiopeia's design steps and the top-down and
bottom-up paths between them.

2.2. Step 1 - definition of the individual roles

The identification of the individual behaviors that should be put into operation by the
agents to achieve the task being considered does not come under Cassiopeia: most of the time,
it results from a functional (e.g. (Yourdon, 1989)) or object-oriented (e.g. (Abbott, 1983; Coad
and Yourdon, 1991; Rumbaugh et al., 1991)) analysis step. Given these behaviors, the first
step of Cassiopeia consists in identifying the required level of abstraction so that the behaviors
make sense with respect to the collective achievement of the task: the designer specifies the
sets of behaviors that achieve proper functionaliti es, and thus determines the individual roles
that the agents can play.

In most of the cases, the definition of the appropriate roles proceeds in an iterative fashion,
by combining a bottom-up approach — the roles as sets of behaviors — with a top-down
approach — the roles as an integral part of the organization to be achieved. The notion of role
is an ambivalent concept, which represents both the function an agent is achieving at a given
time and the position it occupies at the same time in the group of agents. This role definition
requires special care, in that the subsequent design operations will l argely rely on it.

The designer is free to define different types of agents based on these roles and can choose
to design agents that are either homogeneous (all the agents are provided with the same set of
domain-dependent roles) or heterogeneous (some agents are supplied with only a subset of
these roles).

2.3. Steps 2 & 3 - dependencies and relational roles

The second and third steps consist in analyzing the structure of the organization based on
the dependencies between the individual roles being considered. Such dependencies can be
functional, when they derive from the dependencies that exist between the behaviors
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implemented by these roles, or relational, when they take place at the abstraction level of the
roles. Various types of dependencies can be considered such as coordination, simultaneous or
sequential facilit ation or conditioning (see (Colli not and Drogoul, 1998)). The typology to be
used is not a priori defined by Cassiopeia but should be introduced at the level of the
relational roles. The identification of these dependencies leads to defining the dependencies
layer of the collective task being considered. The designer removes the inconsistent
dependencies and when necessary can decide to ignore some dependencies according to the
available heuristics of the application domain. At this point, the graph only contains the
dependencies between roles that are supposed to be relevant with respect to the collective
achievement of the task.

The dependencies between the individual roles are naturally translated into dependencies
between the agents that can play these roles. In order for the agents to determine their role
depending on those played by the other agents, they must be provided with some means for
identifying and handling these dependencies. In this aim, Cassiopeia resorts to the abstract
notion of influence: an influence relationship between an agent A and an agent B relies on an
existing dependency between the role played by A and the role played by B. A dependency
relationship gives rise to two distinct roles, the role of influencing agent and the role of
influenced agent, which are put together under the term of relational roles (the names of the
roles depend of course on the dependency being considered: for example, the inhibition
dependency would give rise to the roles of inhibitor and inhibited). An influencing agent
produces signs of influence (anything that enables it to communicate it or be perceived as
playing this role) that correspond to the individual role it is playing; an influenced agent must
be able to interpret these signs to play the individual role that corresponds to the influence that
has been exerted. The definition of these relational roles therefore makes it possible to
distribute the structure of the organization among the agents, as a transmission of influence
signs. At this step, influence signs that come from other sources than the agents, as for
example those produced by the environment, can also be taken into account.

When setting the relational roles, the designer must specify the behaviors to control the
individual roles (for instance, how to choose among several influences).

2.4. Step 4 & 5 - groups and organizational roles

At this time, all the potential groups of agents have been defined implicitl y. The fourth
step consists in defining the potential groups that may arise. The paths and the elementary
circuits of the dependencies layer can be used to define the potential groupings of the different
individual roles therefore provide a global representation of the structure of the organizations
to which the agents can belong when playing these roles. This is what the groups layer
depicts.

The fifth and last step addresses the dynamics of the organization. It consists in specifying
the organizational roles that will enable the agents to manage the formation and dissolution of
the defined groups. A basic typology that lists two roles - initiator, participant - is defined in
Cassiopeia, but it is possible to define new roles (which will have an impact on the definition
of the groups by providing new ways of forming groups - i.e. non-hierarchical groups, etc.).

As described in the previous step, when an agent is involved in an influence relationship
and produces some influence signs, it adopts a role of initiator since it initiates the formation
of a group with other agents (see figure 4). An initiator agent plays an individual role that
makes it belong to all the groups it can potentially form with the agents playing roles it is
currently influencing. As a consequence, it can evaluate them to decide which agents are the
most appropriate to form a group in the current context. The designer thus (1) identifies the
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agents likely to play an initiator role (according to the grouping potential that has been
identified in the dependencies layer), and (2) determines, for each of them, the selection
methods that allow it to control the formation and dissolution of groups. For an agent, playing
the role of initiator consists in activating group formation behaviors as well as group
dissolution behaviors. Similarly, playing the role of a participant consists in activating
commitment behaviors.

R1R3

R4

R1

R2

R3R3

R2R2

R4R4

facilitates

requires

Agent_B

Agent_A

Agent_C

Initiator

Dependent

Participant

Facilitator

Participant

Required

Figure 4 - Example of a group formation.
White circles represent the inactive roles

Group formation behaviors are specified to enable an initiator agent to dynamically
organize collaboration with other agents. Basically, these behaviors are aimed at selecting the
most appropriate agents to collaborate with. These agents are then going to play a role of
participant in this group. Next, the designer specifies the commitment signs, which enable the
initiator agent to indicate to the selected agents that a group is formed with them. The designer
must thus specify the commitment behaviors used by the agents to control their relational
roles in response to the commitment signs. It is possible, for instance, to consider that these
agents should inhibit all or part of their relational roles so as to remain committed to the group
— as long as it is maintained. Finally, the designer must consider the dissolution of a group. A
group ceases to exist when the agent that plays the role of initiator is satisfied; or a group can
be replaced by a group that is considered as more eff icient. The designer must thus define the
group dissolution behaviors which produce dissolution signs that are interpreted by the
commitment behaviors of the participant agents.

The table in figure 5 sums up the three levels of roles that are defined by Cassiopeia,
along with the different types of signs and associated behaviors.
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Roles Associated behaviors

individual

relational

organizational

Basic typology*

application-
dependent

application- dependent

influencing agent

influenced agent

initiator

participant

group formation behavior

group dissolution behavior

producing the influence signs
according to the domain role

interpreting the influence signs
in order to control the individual roles

commitment behavior

Agent

Exchanged signs

_

influence signs

commitment signs

dissolution signs

*The exact typology can be more complex, if one wants to consider specific influences or different ways to create groups.

Figure 5 - Cassiopeia in a nutshell

2.5. Main methodological problems

Cassiopeia has been used to design a number of teams of soccer-playing (simulated)
robots that run on the SoccerServer (Kitano et al., 1997a). Obviously, in such a typical team-
game the aim of the designer is to enable her or his team to score goals while defending its
own side. Thus, the problem is to design the agents so that they can play with what we might
call a "team spirit" , that is a set of explicit or implicit social rules and constraints that allows
them to play collectively and prevents them from disturbing their team mates while they are
playing. Consequently, in addition to their individual soccer-playing skill s, the agents should
have abiliti es to organize themselves in order to win. From the standpoint of multi -agent
systems, the main diff iculty is then to express locally (i.e. at agent level) the behaviors which
allow the collective achievement of the task by the team to be obtained. Two other diff iculties
make this game a very interesting, though very challenging, standard problem for multi -agent
systems:

1. The dynamics of the game makes it impossible both to define the organization of the
robots in advance and to control the game in a centralized way.

2. The operations of the opposing team are by definition unpredictable and consequently
require a high level of real-time adaptabilit y.

From the standpoint of software engineering, this problem is also interesting since it
covers most of the issues of analysis, design, implementation, experimentation and validation
of artificial organizations in a strictly controlled while moderately abstracted world (Kitano et
al., 1995).

The design process (see (Drogoul and Colli not, 1998) for more details) led us to define
four individual roles: shoot the ball , place oneself, block an opponent, and defend. The
typology of the relational roles (and thus the dependencies) included the abiliti es of
coordination, sequential facilit ation, simultaneous facilit ation and inhibition between two
roles. We kept the basic typology of organizational roles (i.e. initiator and participant). The
dependencies layer (and the associated relational roles) provided us with two potential groups
centered around the defenders and the shooter. An example of group formation and
management is shown in figure 6.
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Figure 6 - Example taken from the SoccerServer, showing
the evolution of three groups.

Although the use of Cassiopeia has greatly eased the design process of these teams, this
work has allowed us to point out the most problematic parts of a methodological approach to
the design of MAS, namely the subjective choices the designer has to make at each of the
different steps:

1. Choosing the individual roles - This choice has a considerable impact on the other steps but
nothing prevents the designer from making irrelevant choices. It is clearly an analysis step,
but the diff iculty is that it takes both the elementary behaviors and the organization to be
obtained into account. Moreover, the roles should be fully functional in a single-agent mode
as well as in multi -agent modes. The only solution so far is to rely on an informal analysis
of the domain, while experimenting groupings of elementary behaviors or functions.

2. Selecting interesting and consistent dependencies between the chosen individual roles -
Once again, nothing really prevents the designer from making irrelevant choices at this
level, since every dependency can be considered as relevant per se. Conversely, it is
sometimes diff icult to foresee the interest of a given dependency, although it can be useful
for forming potential groups. The analysis of various sets of experiments and an important
knowledge of the domain are usually required for this step.

3. Choosing the relational roles and the semantics associated with them - Although some
typologies have begun to be proposed (see, for example, the theory of social influences by
Castelfranchi (Castelfranchi et al., 1992)), this point is still fuzzy. On the one hand,
providing the agents with various relational roles allows them to enter into rich interactions,
and can be useful for detaili ng the dependencies. On the other hand, this makes the agents
more complex and thus more diff icult to design. A good balance must be kept between
richness and simplicity, and the semantics of the roles should be clearly established.
Experience shows that it is sometimes diff icult to do it without a good knowledge of the
DAI techniques for handling the interactions and communications between agents.

4. Building the potential groups based upon the dependencies - Simple rules can be applied to
the dependencies layer for arbitrarily determining the potential groups. However, when it
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comes to choosing which groups will be instantiated, the agents must be provided with
specific knowledge about their relative interest .

5. Choosing the organizational roles and their semantics - Solid knowledge on the available
cooperation and negotiation algorithms and protocols is usually required at this step (at
least, some classical ones like the Contract Net or Sycara's negotiation techniques (Smith
and Davis, 1980; Sycara, 1989)).

In the above points, given the relatively important amount of ad hoc, non-formalized,
subjective or fuzzy information that has to be injected into the methodological process, the
question of the real interest of using a design methodology can be asked. The answer to such
criticism is usually to point out that the methodology forces this knowledge to be made
explicit throughout the different steps. While it is not totally exact (i.e. the definition of the
individual roles is a hidden process in Cassiopeia), it is certainly better than having no
framework for making these choices. However, to be more in the AI way of looking at things,
an answer to this knowledge acquisition problem would be to consider part of this information
as specific knowledge that can be acquired by the agents for improving their individual or
collective behaviors through experience, instead of relying exclusively on the designer’s
skill s.

Precisely, this latter approach amounts to introducing machine learning as one of the key
abiliti es of the designed MAS. In section 3 we review the most promising work that applies
machine learning in distributed AI to build adaptive MAS. In section 4, we present
Andromeda, a full i ntegration of distributed machine learning within Cassiopeia. Andromeda
is meant to assist the designer at each Cassiopeia step in providing the agents with learning
abiliti es that allow them to learn all or part of the necessary knowledge (roles, dependencies,
group structures, etc.) from experience.

3. MACHINE LEARNING AND MAS-DESIGN - A NECESSARY MARRIAGE FOR
SUPPORTING THE DEVELOPMENT OF ADAPTIVE-MAS

3.1. Distr ibuted Machine Learning (DML)

In spite of the reticence of part of the Machine Learning community who predicts that
DML is today too hard a problem because Machine Learning is already so diff icult in practice,
pathfinders have not been stopped from studying the numerous and exciting challenges that
learning in a Distributed Environment raises for AI (Dorigo and Schnepf, 1993; Grefenstette
et al., 1990; Lin, 1992; Sen, 1997; Sian, 1991 ; Singh, 1992; Stone and Veloso, 1996b; Weiss,
1996 ; Weiss and Sen, 1995 ). This section supports their view and presents DML as being as
inevitable in DAI as ML was for single-agent AI.

3.2. General DML issues

Classically, in machine learning a single agent that learns in an (unknown) environment is
considered. Any other agent that co-exists in the same environment is usually considered as
part of the environment and therefore not modeled explicitl y as such (see figure 7 below).
This kind of learning context is called here single-agent learning (Dietterich, 1990; Langley,
1996; Mitchell , 1997). In this context, an agent is said to learn from experience E with respect
to some class of tasks T and performance measure P, if its performance (as a single-agent) at
tasks in T, as measured by P, improves with experience E.
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Figure 7: The single-agent machine learning framework

 Many techniques have been developed to address the general issue of single-agent
learning (Mitchell , 1997). Here is a li st of several learning methods in order of the degree of
inductive leap required and the degree of supervision they imply:

− Rote learning, which consists in acquiring knowledge and skill s that do not require
modification from the learner to be applicable (Rachlin et al., 1994). This kind of
learning may be characterized by the absence of generalization. The knowledge
memorized cannot be re-used in new situations.

− Learning from instances (Instance Based Learning (Aha et al., 1991)), which consists in
acquiring knowledge and skill s that require modifications from the learner only when a
new context is encountered and w.r.t. to this context. This learning may be characterized
by a form of local generalization, and is also referred to as lazy learning in that
instances are memorized and the learning per se is only performed when necessary and
in the context of the task to be solved.

− Learning from examples (concept learning (Dietterich, 1990)), which consists in
acquiring knowledge to characterize or discriminate a concept. Such learning may be
characterized by the global generalization it requires. Initial examples are forgotten and
general knowledge that somehow compresses the examples (Quinlan and Rivest, 1989)
is stored as decision trees, sets of rules, neural networks, classifiers, etc.

− Learning to build classification (unsupervised learning (Cheeseman et al., 1988; Gennari
et al., 1989)), which consists in organizing knowledge. This kind of learning may be
characterized by the absence of supervision. Classes and their descriptions are built
solely from object description.

− Learning by practice or experience (reinforcement learning (Kaelbling et al., 1996),
genetic algorithms (Goldberg, 1989)), which consists in acquiring skill s from an
unknown environment. This kind of learning may be characterized by a form of indirect
supervision, i.e. the reinforcement given by the environment used to learn (either as a
"fitness" in genetic algorithms or "rewards" in reinforcement learning).

The first diff iculty raised by the problem of integrating machine learning in a distributed
environment is the different levels at which learning may occur (see figure 8 below):

− At the level of an agents, it may learn to achieve its own goals better. At this level,
learning is based on system-internal estimates of the usefulness of the actions carr ied
out by the agent. Such an agent is called self-interested.
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− At the level of groups of agents, the group may learn to achieve the goals of the group
better. At this level earning is based on system-internal estimates of the usefulness of
the sum of actions carr ied out by a group of agents (either homogeneous or
heterogeneous).

− At the level of the whole social organization, the organization may learn to achieve the
goals of the whole organization better. The distinction between groups of agents and the
whole organization is meant to differentiate an intermediate level between the agent and
the global organization, be it subgroup organization or a one-to-one interrelation. In the
Cassiopeia methods, a fundamental hypothesis is to consider in particular the different
one-to-one agent interactions. At this level, learning is based on the development of
system-internal organizational structures imposed on the system components, evaluated
on the usefulness of all the agents taken as a whole (Weiss and Sen, 1995).

Environment

Functionalities

Knowledge
Learned

Knowledge
Learned

Learning

Functionalities

Knowledge
Learned

Learning

Functionalities

Knowledge
Learned

Knowledge
Learned

Learning

Functionalities

Knowledge
Learned

Learning

agent level

groups of agents level

organization level

Figure 8 - The multi-agent learning levels

A second serious diff iculty is to analyze the learning process itself. It raises several key
questions. What is the learning task? what are the learning context and the learning protocol
(agents, communication, environment, etc. ) ? What is the performance measurement of the
learning? These questions receive different answers depending on the learning context, task
and learning level: the agent, the group or the whole system. Nevertheless, in practice the
different changes that occur in an MAS are due to changes at the level of the agent. The
following part of this section proposes a kind of structural analysis of all the possible DML
within a DAI environment. The aim is to classify the learning independently of the
implementation. Some tasks have already been studied in real applications, others have not yet
been studied in depth in DAI.

3.3. Different learning tasks

 We propose to differentiate the learning tasks depending on the beneficiary of the
learning: an agent itself, a group of agents or the whole organization. We do not make this
distinction based on the learner because in a distributed environment the effective changes
are in practice always done at the level of the agent itself. Moreover, such a perspective on
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DML allows us to define distributed machine learning in a fashion similar that of the single-
agent learning: an organization (be it a single agent or a group of agents) is said to learn
from experience E with respect to some class of tasks T and performance measure P, if its
performance (as an organization) at tasks in T, as measured by P, improves with experience
E.

This definition has the advantage of being independent of the MAS implementation. Let
us note that some researchers have proposed to differentiate the learning tasks based on a
different criteria, namely the learning protocols used (Stone, 1996). Next section details the
differences between the learning tasks depending on the beneficiary of the learning.

3.3.1.  Learning basic actions, skill s and roles

The first kind of learning tasks characterize situations where an individual agent improves
its performances at reaching its goals. At this level, a useful distinction may be drawn between
basic actions, skill s and roles. We call basic actions those that are considered as primitives
within the language used to describe individual roles (IDL). Individual skill s are basic
behavior that may be described using the IDL.

Learning basic actions is possible and the typical learning performance measurements
used in classical ML, i.e. learning rate or success rate over time, are used. Beside the DAI
contexts, this kind of learning may be implemented using a large variety of machine learning
algorithms (Langley, 1996). In the case of the RoboCup Challenge (Kitano et al., 1997b;
Kitano et al., 1997c), the agent learning language includes the actions KICK, DASH, SAY , SEE,
etc. Learning to "recognize that the ball i s at a kicking distance" (Asada et al., 1996),
"discriminate adversaries from partners " are examples of learning tasks at the level of basic
actions. Nevertheless, many researchers consider that the set of basic actions (such as running
or kicking) is often given (by the hardware configuration corresponding to the simulation
considered for example) and thus new basic actions ought not to be learnt (Stone and Veloso,
1996b ; Stone and Veloso, 1997a).

At_shooting_distance

no

yes

yes

Figure 9 - Three learning examples for the function "is at shooting distance"

In contrast, individual skill s require that an action language be given. The behavior of the
agent will consist in selecting, planning those actions that lead to an individual goal. As for
individual skill s, explicit definitions of their individual goals are required for measuring
learning performance. An important choice for an agent within an adaptive multi -agent system
is whether to learn directly the expected utilit y of actions in a given state or to model the other
agents in the system. Following Parkes and Ungar (Parkes and Ungar, 1997)  we shall call the
first type direct-learning and the second one model-based learning. The standard direct-
learning approach is based on Q-learning (Kaelbling et al., 1996). Within model-based
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learning agents two types of learners may be considered: myopic-learning agents that use
simple short-term learning models and strategic-learning agents that consider the long-term
equili brium of the system. This latter form of learning involves often repeated learning
situations over time. Model-based learning requires more complex knowledge representations
than those used in reinforcement learning. Model-based learning is typically studied in
adversary conditions such as in games (Carmel and Markovitch, 1996; Meyer et al., 1997 ;
Stone and Veloso, 1996b). Mataric draws a somewhat similar type of distinctions to classify
individual agent strategies: reactive, behavior-based, planner-based and hybrid approaches
(Mataric, 1995).

In the case of the RoboCup Challenge, learning to "pass a ball  better" is a typical direct-
learning task (Stone and Veloso, 1996a). ShooBot (Mizuno&Kourogi& Muraoka, 96) is a real
robot that is able to learn to shoot and dribble. It handles numerous parameters (robot speed,
ball speed, etc.) to perform its learning (Mizuno&al, 96). Matsubara, Noda and Kazuo
consider the task of " shooting in a ball i n movement (passed by a
partner)"(Matsubara&Noda&Hiraki, 96). They train a neural network to learn this task
(Itsuki& Hitoshi& Kazuo, 96). Another key skill for a soccer agent is to be able to intercept the
ball (see Fig. 5). This skill i s obviously more diff icult than going towards an immobile ball
(Stone&Veloso, 96b). Intercepting a ball i s required from defenders (to oppose a kick or
receive a pass), by midfields and attackers (to receive a pass or intercept one from the
opponent) Stone&Veloso, 96c) (Stone&Veloso, 95a) (Stone&Veloso, 95c). Stone and Veloso
have proposed a Neural-Network-based approach to learn to move towards a ball . Based on
the SAGACE approach to anticipation (Meyer et al., 1997), we have developed a strategic-
learning task consisting in anticipating when an attacker will shoot. This latter learning task
requires building a model of the adversary decision on when to shoot, which characterizes this
kind of strategic learner.

Figure 10 - Learning example of a direct learning task of intercepting a ball

3.3.2. Learning at group level

At the level of a group of agents, learning is based on system-internal estimates of the
usefulness of the set of actions carr ied out by the group (either homogeneous or
heterogeneous). The major problem faced in such learning is the credit assignment problem.
In single-agent learning, this problem also exists in the reinforcement learning framework. In
this case, the learner is not informed of the correctness of actions taken individually but is
only informed of their correctness as a whole. The single-agent learner faces the problem of
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determining the degree to which each action in the sequence deserves credit or blame for the
final outcome.

In the case of group-level learning the complexity of the problem is further increased,
because it requires determining which set of actions performed by the different agents in the
sequence deserves credit or blame for the final outcome. One approach consists in distributing
the credit between the different agents (Gu and Maddox, 1995). The problem thus comes
down to the single-agent learning being given its share of the global credit. This credit
assignment problem has been studied in the framework of classifier systems and algorithms
such as the bucket brigade (Dorigo and Bersini, 1994; Goldberg, 1989; Grefenstette, 1988;
Grefenstette et al., 1990) are used to solve the multi -agent credit assignment problem
(Grefenstette, 1988; Riolo, 1987a; Riolo, 1987b; Wersterdale, 1987).There is an abundant
literature on the use of Reinforcement Learning (RL) in distributed environments and the
different ways of providing feedback to agents on their actions. It can be done by global
systems or other agents (inter-agent credit-assignment (Goldman,97)), Mataric, for example,
propose to define progress estimators so as to help the agent better evaluate its progression
towards a goal (Mataric, 1994a).

In the case of the RoboCup Challenge, "to score more goals" is an example of task for a
set of attackers. An obvious credit may be the number of goals scored per minute. The
assignment of the credit may then be shared amongst the attackers. To simpli fy, a heuristics
may be to give most of the credit to the striker and the rest equitably between the other
attackers. Other heuristics may give more emphasis to the sequence of actions and give more
credit to the player that passed the ball to the striker (Stone and Veloso, 1996b; Stone et al.,
1996). Many other group-level learning tasks may be represented by the abilit y of individual
agents to select the skill s "when to dribble, pass or shoot", " anticipate positioning before
receiving ball from partner", "block the opponent", "set a trap to intercept a ball" . Aubineau &
Lalande (1996) have developed an approach based on Reinforcement Learning to learn to
select a Cassiopeia individual role, that is to learn relational roles.

Figure 11 - A group learning a " one-two pass" task

3.3.3. Learning at the organization level

At the level of the whole social organization, learning is based on the development of
system-internal organizational structures imposed on the system components evaluated on the
usefulness of the whole group. (Ito and Yano, 1995; Lund, 1995; Mataric, 1994b). A
promising approach used to make a social organization learn is the use of genetic
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programming (GP), a class of adaptive algorithms used to evolve solution structures that
optimize a given evaluation criterion. The social evolution of strategies may be investigated
using genetic algorithm techniques (Takadama and Nakasuka, 1996). Ito shows for example
that robust and cooperative strategies emerge through out the evolution starting from simple
ones (Ito and Yano, 1995). Haynes et al., represent cooperation strategies that can be
manipulated by GPs (Haynes et al., 1995b). Their results in the predator-prey domain show
that with minimal input of domain knowledge and human intervention, the construction of
good cooperation strategies can be built . In the case of the RoboCup Challenge, many
researchers aim at such a level of learning (Stone et al., 1996) but few results have been
obtained so far. "Increase the occupation of the adversary field", "increase the time the team
has kept the ball" , are typical and diff icult learning tasks at the organization level.

Figure 12 below summarizes different forms of DML reviewed in the previous section.

F u nct i o n  l earning

B asi c acti on  or funct i on

di rect- l earni ng

N o  ex pl i ci t model of other agents

myopi c-l earni ng strategi c- l earni ng

M o del -based

Sk i l l s  an d  ro l es

Sel f- i nterested  agent l earning group  of agents  l earni ng organi zati onal l earni ng

D istri buted  M achi ne  L earning

Figure 12 - Different forms of DML

3.4. Different learning protocols

3.4.1.  The training experience

Whoever is learning, the richness of MAS allows many protocols to be defined with
different environments, different sets of agents (homogeneous or heterogeneous), different
agent-to-agent interactions and agent-environment interactions (Sen, 1997; Weiss, 1996). The
choice of protocol is directly linked to the nature of the training experiences from which the
multi -agent system will l earn. The different types of training experiences can have a
significant impact on the success or failure of the learning. In a DAI environment, there are
many properties of the protocols that restrict the type of learning possible. One issue is
whether the feedback is direct or indirect w.r.t. to the task to be learned. We discussed above
the importance of this issue for credit assignment. A second issue is the context in which the
agent learns, with one or many other agents, with a learning agent or not, in repeated
conditions, in real conditions, etc. A third issue is related to the learnabilit y of the task
considering the training experience that is at hand. This latter issue has been studied
extensively in single-agent learning (Kearns, 1990) but this area is still open in multi -agent
learning.

In the case of the RoboCup Challenge, many protocols may be conceived to build training
experiences for learning. As an example, let us consider the setting used by Stone and Veloso
to train a Neural Network-based defender that ought to learn the angle it should turn to stop
the ball . Stone and Veloso propose to consider a set of experiences defined using the
following movement generator where BD = Ball Distance, BA = Ball Angle, TA = Turn
Angle:
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while BD > 14, TURN (BA)
when BD <= 14, set TA = Random Angle between -45 and 45
record BD, BA, previous BD, TA
TURN (BA + TA)
DASH
record result ( from coach)

As long as the ball i s further than a given threshold, the defender observes the ball . When
it becomes close enough, the defender  chooses a random angle and moves. A coach is used to
label such produced examples as GOAL when the player scores, SAVE when the ball i s
recovered, and MISS in other cases. These generated examples are then used to train a neural
network to learn the proper angle the defender should turn in order to stops goals. Stone and
Veloso have proposed for each characteristic to learn to isolate situations requiring such
characteristics and to produce examples from these situations.

In the case of the RoboCup Challenge, the learning protocols may be broken down into
several types (Kitano et al., 1997c) including: off- line skill l earning by individual agent, off-
line collaborative learning by teams of agents, on-line skill and collaborative learning (the
abilit y to adaptively change collaborative or individual behaviors during the course of a game
could contribute to a team's success) and on-line adversarial learning, i.e. learning to react to
predicted opponent actions.

3.4.2.  Game-theory based protocols

The most characteristic protocols in DML are the ones that include more than one learning
agent. Game theory has emerged as one of the most interesting frameworks for studying
multi -agent learning protocols (Fudenberg and D., 1998). According to Parkes and Ungar
(Parkes and Ungar, 1997)"multi -agent systems can be viewed as games where the artifi cial
agents are bounded-rational utilit y-maximizers with incomplete information about the other
agents in the systems". The problem of the designers of MAS may then be viewed as one of
establishing rules of the game that encourage agents to choose strategies that optimize system-
wide utilit y. Game theory offers elaborate studies of the effect of deserters on individual
optimality (Axelrod 1984), but the domains it treats are typically much more clearly
constrained than environments in which robots are situated. In particular, game theory deals
with rational agents capable of evaluating the utilit y of their actions and strategies ; a setting
that is seldom found in MAS. To cope with such contexts in DML, adversarial behaviors may
be inferred from the adversaries' past behavior (Carmel and Markovitch, 1996; Meyer et al.,
1997 ; Mor et al., 1996). The progress over the last few years in the design of adaptive
learning algorithms, with the help of genetic algorithms, has made it possible to make such
inferences thanks to which the machines build for themselves an internal representation of
their adversaries.

3.5. An immense unexplored field with as yet promising but scarce
results

We present below a brief overview of the techniques used in single-agent learning that
have been adapted to DML. In DML the most studied learning problem can be formulated as
learning state-action or state-action-value functions that represent the best action that an agent
should take given a past history of rewards and actions of the other agents (Parkes & Ungar,
97). The state of the world models all of the information that an agent uses to adapt its
behavior. The main approach explored so far to learning in distributed systems is
reinforcement learning (Stone, 1996; Weiss and Sen, 1995). The principle is
straightforward: the tendency to choose an action in a given state is strengthened if the result it
produces is favorable, weakened otherwise. Many other learning techniques can also be
implemented.
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Machine Learning Techniques Machine Learning Task in DAI
Reinforcement Learning
(Asada et al., 1996; Gu and Maddox, 1995; Lin,
1992; Schwartz, 1993)

All the learning tasks
− Improving basic actions
− Improving individual skills
− Improving individual roles (single-agent, direct, myopic)
− Improving group behavior (coordination)
− Improving social behavior (cooperation)
− Improving communication

Neural Networks
(Parisi et al., 1994; Stone and Veloso, 1996a;
Werner, 1994)

Numerical classification tasks
− Improving basic actions
− Improving group/behavior (coordination)

Case-Based Reasoning
(Haynes et al., 1996; Plaza et al., 1995)

Knowledge-sharing tasks
− Sharing distributed symbolic knowledge

Instance-Based Learning
(Decker and Lesser, 1995; Haynes, 1997;
Nagendra Prasad and Lesser, 1997)

Decision/classification tasks 
− Improving group team behavior (coordination)

Inductive Learning
(Davies and P. Edwards, 1996; Goldman and
Rosenschein, 1995 ; Potter et al., 1995; Stone
and Veloso, 1997b)

Symbolic classification and knowledge sharing tasks
− distributed classification
− strategic learning
− Sharing /confronting distributed symbolic knowledge
− deciding to be altruistic

Genetic Algorithms
(Fogarty et al., 1995; Schultz, 1994)
Genetic Programming
(Haynes et al., 1995a; Ito and Yano, 1995)

Optimization tasks 
− Improving individual role (single-agent, direct, myopic)
− Improving group behavior (coordination)
− Improving social behavior

Table 3-1 - Overview of the different ML techniques that can be applied to DAI

3.6. No fully-integrated methodologies

The examples of DML tasks that have been presented above have shown in many cases
the benefit of integrating DML in an MAS. The problem of integrating ML in the design
methodology has not been studied much. The first benefit of integrating DML in the design
process is to produce final systems that are adaptive and learn to improve their global
performance. There is a consensus in the AI community that such a goal is per se a desirable
one. The second benefit is at the level of the methodology itself. We have pinpointed several
diff iculties resulting from the use of Cassiopeia. In particular, the design decision may require
an expertise that is not necessary when developing an MAS. An integration of DML in the
design process would therefore attempt to make such steps easier and at the same time
guarantee that the produced architecture is adaptable.

Mataric in a seminal paper has proposed a methodology which relies mainly on one
machine learning technique, reinforcement learning. Her approach, called "basic behavior
approach" (Mataric, 1995) is a "methodology [for] automatically generating higher-level
behaviors by having the agents learn through their interactions with the world and with other
agents, i.e. through unsupervised reinforcement learning". Although a pioneer in the field, her
approach has several flaws: the learning technique used is restricted to reinforcement learning,
the design process is a sequential one that does not easily accommodate iterative design. In the
next section we propose our approach to the issue of defining a general framework for
integrating machine learning techniques.
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4. ANDROMEDA: A FRAMEWORK AND A METHODOLOGY FOR INTEGRATING
MACHINE-LEARNING IN THE MAS DESIGN

4.1. Introduction

To employ DML it is necessary to define the level at which learning is expected, define
the learning task and its evaluation and finally to define protocols for learning. We shall see in
the following how Cassiopeia may be used to organize the different levels where Andromeda
uses DML. The proposed modification in Andromeda is to be able to decompose not in terms
of behaviors (which allows an immediate implementation) but in terms of goals. This change
requires that the designer elicitate the knowledge at the level of goals and not functionali ties
or behaviors. This is the key of the Andromeda approach: adaptive behaviors or ones that
will be learned are defined in terms of their goal and not in terms of a program, with no
other semantics but that of the behavior produced. By doing so Andromeda allows the
designer to define both the goals as a designer and the material necessary for performing the
learning steps. As a consequence, the designed MAS may be adaptive so as to reach the
defined goals in evolving environments. The next five sections present the design activity in
Andromeda corresponding to the Cassiopeia layers, i.e. the methodological framework.

4.2. Phase 1 - Learning individual actions, skill s and individual roles

 In Andromeda, phase 1 concerns the definition of individual actions, skill s and individual
roles. The language used for describing individual roles is called the individual role language
(IRL). In this language that will not be described formally here, we distinguish between
actions, skill s that are composed of basic actions, and individual roles composed of skill s. In
the RoboCup Challenge, the IRL basic actions are given: TURN, DASH, KICK, SAY, CHANGE
VIEW, MOVE. Any particular programming language using these actions as primitives may be
taken for an IRL.

In this first phase, the beneficiary of the learning is obviously the agent itself. Its task
consists in learning its roles in IRL with no explicit modeling of the other agents, but with an
explicit description of the goals to be reached and their performance measurements. In that
respect, the major difference with Cassiopeia is that the individual roles are seen as dynamic
planners provided with goals. To reach these goals, the agents can either build new behaviors
or tune given behaviors by adjusting their parameters. The table below summarizes the main
characteristics of this phase.

Beneficiary A single agent
Task − Learning a behavior in an individual role language (IRL)

− with no explicit modeling of other agents per se
− with an explicit description of the goal to be reached

Approaches Define a self-interested goal G and performance measurement P for:
− building a behavior represented in IRL for reaching G, or
− tuning a behavior by adjusting parameters for reaching G

Techniques Reinforcement learning, Genetic Algorithms, Neural Networks
Difficulties The expressive power of IRL, the description of the goal G,

the learning performance measurements P,
the choice of learning protocols.

Protocols One given agent:
1. alone in the environment (either off-line or on-line)
2. with one to many non adaptive agents (either off-line or on-line)
3. with one to many adaptive agents (either off line or on-line)
4. in real conditions (on-line)

Table 4-1 - Andromeda's Phase 1 in a nutshell
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From a methodological point of view, the aim of this phase is to assist the designer in the
definition of the individual roles by allowing the agents to learn or tune them. But it is not
intended to replace the designer's work: there is still , of course, the possibilit y to define
behavior-based roles (as in Cassiopeia) along with the new goal-based roles. We have, for
example, used this abilit y in the design of the simulation team that will be competing in
RoboCup'98 (Kitano et al., 1997b): while the attackers rely on previously defined reactive
behaviors (Drogoul and Duhaut, 1996), the defenders have learned new behaviors. Moreover,
"innate" and acquired roles can coexist in the same agents without any problem.

4.3. Phase 2 - learning one-to-one dependencies

 Andromeda's phase 2 concerns the building of the one-to-one dependencies between the
individual roles. This corresponds to the dependencies layer of Cassiopeia. The language used
for describing influences is IDL. This language is made  up of predicates such as ENABLE,
FACILITATE, REDUNDANT, GOAL COMPETITION, RESOURCE COMPETITION, INDEPENDENT,
INTERFERENCE, INCOMPATIBLE, COORDINATION. The semantics of the terms in the IDL is given
with respect to the impact of other individual roles on the performance of the agent. Given R1
and R2, two agents having individual roles R1 and R2 characterized by performances P1
when R2 is absent and P’1 when R2 is present, here follows the semantics of a few terms we
are using in our IDL:

(P1=0 and P’1 ≠0 ) Æ ENABLE(R1,R2)
(P1=P’1) Æ INDEPENDANT(R1,R2)
(P’1>P1) Æ FACILITATES (R1,R2)
(P’1=0) Æ INCOMPATIBLE(R1,R2)

With respect to the possibilit y to introduce hand-coded individual roles in phase 1, it has
to be noted that dependencies between agents whose individual role is not attached to a
performance measurement P need to be given by the designer because their dependencies with
other agents cannot be learned.

The beneficiary of the learning is once again a sole agent. Its task consists in learning, in
IDL, the influences that the roles of the agents it is interacting with exert on itself, which
amounts to building an explicit model of these agents. The table below summarizes the
characteristics of this phase:

Beneficiary An individual agent in a given individual role and associated goal G
Task Learning the influences of other individual roles on one’s own current

individual role by explicit modeling of the other agents
Approaches Use the definition of the self-interested goal G for:

− building a model of the influence of other individual roles
− tuning a behavior by adjusting parameters for reaching G when

confronted to other individual goals
Techniques Relational learning (Aha, 1992 ; Giordana et al., 1997; Muggleton and

Raedt, 1994; Zucker et al., 1998) Concept learning (Dietterich 1990)
Difficulties The expressive power of IDL, the choice of learning protocols.
Protocols Two agents with a fixed individual role R1 and R2 where:

1. R1 is adaptive and R2 is not (either off line or online),
2. R1 and R2 adaptive (either off line or online),
3. Real condition (online)

Table 4-2 - Andromeda's Phase 2 in a nutshell

The methodological interest of this phase is obvious: only the meaningful dependencies
will be kept, that is the dependencies that express an influence between two agents when they
are playing two given individual roles. However, the key role of the protocol used for the
learning task should not be underestimated: it relies on the same hypothesis as that being
made in Cassiopeia, namely that the definition of one-to-one dependencies is suff icient to
constitute relevant groups. In the cases where an agent simultaneously needs to influence or be
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influenced by a number of agents that play the same role, it is the duty of the designer to apply
this knowledge and define specific protocols. Working under this hypothesis nevertheless
means that it simpli fies performance evaluation during the learning process.

4.4. Phase 3 - learning relational roles

 In Andromeda, phase 3 concerns the building of the relational roles. The language used
for describing relational roles is RRL. This language is made up of predicates such as
INFLUENCING and INFLUENCED. which correspond to the typology of relational roles introduced
in Cassiopeia. The major difference with Cassiopeia, however, is that the relational roles are
defined using goals which allow flexible relational roles that may be learned in different
contexts.

The relational roles are built primarily by analyzing the dependencies learned in terms of
"active" influences. The fact that the role played by an agent A dependis on another role (i.e.
that must be played by another agent) should both enable A to influence the other agents in a
specific way, and induce these agents to react accordingly (i.e. by undertaking the
corresponding role). The goals to be reached when trying to learn the relational roles are
therefore threefold: (1) knowing which influence sign to produce and when to produce it; (2)
knowing how to choose among different influence signs and (3) knowing how to react to an
influence sign by selecting the appropriate individual role. The actions or skill s that will be
undertaken when triggering these roles can either be provided by the designer (i.e. specific
communication protocols or role selection mechanisms) or, as in the case of the individual
roles, learned by the agents.

In this case, the beneficiary of the learning task is not one agent, but a set of two agents
that in fact learn to coordinate themselves with respect to their dependencies. The table below
summarizes the characteristics of this phase:

Beneficiary Two agents having several individual roles
Task   Learning coordination and relational roles in RRL with explicit modeling of the

other agent's individual roles
Approaches − building Model: finding when to change individual role

− building Model: finding when informing about one's individual role
− tuning a model: adjusting own parameters for changing of individual

roles.
Techniques Relational learning, Genetic algorithms

Instance Based Learning, Genetic programming
Difficulties The expressive power of RRL, Learning measurements
Protocols Two agents:

1. two adaptive agents (either off-line or on-line)
2. one non-adaptive agent (either off-line or online)
3. in real conditions (online with all the other agents)

Table 4-3 - Andromeda's Phase 3 in a nutshell

4.5. Phase 4 - learning to build groups of agents

In Andromeda, phase 4 concerns assisting the designer in defining the groups of agents.
The language used for group definition is called GDL. As in Cassiopeia, a group of agents is
built upon the one-to-one dependencies and corresponds to a path on the dependencies graph.
Although being provided with relational roles is in most cases suff icient for the agents to
coordinate themselves, the idea behind establishing these groups is to enable the agents to
explicitl y cooperate by identifying the regularities in the simultaneous activation of their
individual roles by their relational roles.
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In this phase, the beneficiary of the learning is therefore a set of agents (although the
identification is still being made at agent level). The table below summarizes the
characteristics of this phase:

Beneficiary A group of agents already provided with their relational roles
Task Identifying configurations in GDL with explicit modeling of the other's individual

roles
Approaches Building groups
Techniques Conceptual clustering (Stepp and Michalski, 1986) to organize roles

Case Based Reasoning (Kolodner, 1993) to memorize previous design case
Difficulties Evaluation of group usefulness
Protocols Unsupervised learning protocols

Table 4-4 - Andromeda's Phase 4 in a nutshell

The designer can orient the identification of the groups by providing specific goals (and
their corresponding performance measurements) that should be collectively reached by the
sets of agents. This enables the agents, when two different groups can be formed for the same
end, to compare their performance with regard to these goals.

4.6. Phase 5 - organizational role

In Andromeda, the fifth and last phase concerns the definition of organizational roles in a
language called ORL, which contains predicates similar to the types of roles defined in the
typology introduced in the fifth layer of Cassiopeia. The organizational roles play the same
role w.r.t. the groups as the relational roles w.r.t. the dependencies. For a set of agents, the
goal to be reached in this case is not simply to rely on their relational roles for selecting the
appropriate individual roles, but to be able to identify the situations in which they can actively
and dynamically manage the collective selection of a given set of roles previously identified
as a group.

The behaviors or skill s that will be undertaken by the agents when triggering one of these
roles can either be supplied by the designer (i.e. specific negotiation protocols or cooperation
schemes) or learned by the agents. The first option is nevertheless likely to be the most
common case since the latter is a very diff icult learning task.

The beneficiary of the learning is theoretically the entire set of groups of agents, i.e. the
overall MAS. However, tuning the global behavior of the MAS means that the designer must
be able to define one or more global utilit y functions, which is not always the case. So, in
practice, the beneficiaries are the group of agents for which such a function can be easily
defined.

Beneficiary All the groups of agents
Task Explicit modeling of the dynamics of groups in the ORL.
Approaches  - building Model of others: finding when enabling/disabling the relational roles

 - tuning a model: adjusting own parameters for changing the relational roles.
Techniques Relational learning, Genetic algorithms

Instance Based Learning, Genetic programming
Difficulties Conceiving organizational roles
Protocols Real conditions, where performances are measured by the global utility function

of the MAS.

Table 4-5 - Andromeda's Phase 5 in a nutshell

4.7. Andromeda methodological process

Andromeda's basic principle is to let the learning experiments take place between each of
the layers definitions in Cassiopeia. In that way, for example, once the designer has defined
the goals to reach within the first layer, the corresponding roles are learnt by the agents (in an
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environment depending on the protocol chosen) and then reintroduced as individual roles in
the same layer (possibly besides roles already hand-coded by the designer). The goal of the
methodology is to keep a maximum of flexibilit y in the design process, that is to allow the
designer to introduce knowledge at the different levels, while supporting the possibilit y to be
assisted by the learning system when the overall complexity becomes too important, or when
he does not really manage all the subtleties of the domain.

Keeping a good balance between these hand-coded and learnt roles should allow the
designer to keep on managing the design process, while allowing the system to propose him
new original solutions. These two approaches can be combined very freely, the designer may:

− entirely design a given layer and rely on the agents for learning the subsequent ones. We
have for instance used this approach for learning the relational and organizational roles
of a team of robots whose individual roles had been previously defined.

− partially define the different roles, requiring from the system that it completes them with
respect to certain goals, which authorizes a very powerful incremental approach.

− design the whole system and rely on the agents for tuning the choices made, by
adjusting the parameters used at each level.

The design phases order, as in Cassiopeia, is not really prescribed and allows to undertake
an incremental as well as iterative design process. However, it is a littl e bit more diff icult to
start at any of the phases, since they usually require that the previous ones be either partially
designed or learnt. We therefore recommend a bottom-up process, in which the order of the
steps corresponds to the numbering of the phases. The figure below presents the integration
the Cassiopeia's layers and Andromeda's phases.

R2 R1

R4 R3

R2

R4

R1

R3

Dependencies layer

Individual roles layer

Relational roles layer

Facilitator

Dependent

Conflicts
with

Facilitates
Requires

Enables

R4

R1

Groups layer

R3

Organizational roles layer

Initiator

Participant

R2

Phase 1
Reinforcement Learning
Genetic Algorithms
Neural Networks

Goals, Performances

Set of dependencies in IDL

Phase 2
Relational Learning
Concept Learning

Set of relational roles in RRL
Phase 3
Relational learning
Genetic algorithms
Genetic Programming
Reinforcement Learning

Set of Groups in GDL

Phase 4
Unsupervised Learning
Conceptual Clustering
Case-Based Reasoning
Memory-based Learning

Set of Organizational roles in RRL

Phase 5
Relational Learning
Genetic algorithms
Instance-Based Learning
Genetic programming
Reinforcement Learning

Environment

Goals, Performances

Goals

Goals, Performances

Set of individual roles in IRL

Goals, Performances

Figure 13 - The five layers of Cassiopeia and the corresponding
learning phases used in Andromeda
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The major difference with the Cassiopeia design process is that the roles are defined using
goals which afford to have flexible roles that may be learned in different contexts. The
learning approaches may vary from:

− knowledge intensive approaches: the behavior is defined by the designer as a
parameterized description in the corresponding language and learning consists in
adjusting the parameters depending on the environments. When no parameters exist, this
phase in Andromeda  is similar to that of Cassiopeia.

− learning intensive approaches: the behavior defined in terms of its goal may be learned
in the corresponding language (IRL, IDL, GDL or ORL) from experiences.

5. CONCLUSION

One of the most challenging and, in our opinion, littl e addressed questions that can be
found in Distributed Artificial Intelli gence today is that of the methodological design of a
learning multi -agent system. In this paper we have shown how an agent-oriented, role-based,
method, Cassiopeia, could be used to classify and integrate Machine Learning (ML)
techniques in the design process of an MAS by carefully considering the different levels of
behaviors to which they can be applied and the techniques which appear to be best suited at
each level. Using the RoboCup Challenge, we have shown the large part of the MAS-design
activity often left to be done as a result of heuristic choices or experimental activities.

One key motivation for integrating machine learning techniques into the MAS design
process is to develop adaptive MAS. It has appeared that such integration allows both the
development of adaptive agents and also supports the development process itself. The more
than fifty years of experienced accumulated in the field of machine learning (Saitta and Neri,
1998) have shown that learning is not the sole means to acquire knowledge and that
knowledge-intensive approaches have been successful. For this reason, we consider that
Andromeda forms a bridge between knowledge-intensive methods such as Cassiopeia and
more learning-intensive approaches that rely on machine learning. In agents designed using
the Andromeda methodology, there ought to be a good balance between their learnt behaviors
and innate skill s.

Finally, we consider that Andromeda is the first attempt to integrate the variety of machine
learning techniques to support the MAS-design process and also design learning MAS. Our
current work is focused on the development of an integrated platform to support the
development of MAS following the Andromeda approach.

On a theoretical level, we are working on the definition of a strong formalization of the
five different description languages used at the various architectural level that, besides being
used in the various learning tasks, will serve in Cassiopeia itself for describing the different
layers. On a practical level, we have begun using Andromeda for designing the four teams of
soccer-playing robots3 we are currently building with the support of the CNRS and the
University of Paris 6. This should soon provide us with a rich base of experimental data.

                                                
3 That should enter the four competitions defined in RoboCup : simulation league, small -size, middle-size and legged robots.
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