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Abstract

This paper deds with ore of the probably most challenging and, in ou
opinion, little aldressed question that can be found in Distributed Artificial
Intelli gence today, that of the methoddogicd design d a leaning multi-agent
system (MAS). In previous work, in order to solve the arrent software
engineaing poblem of having the ingredients (MAS techniques) but not the
redpes (the methoddogy) we have defined Cassopeia, an agent-oriented, role-
based method for the design & MAS. It relies on three important nations: (1)
independence from the implementation techniques; (2) definition d an agent as a
set of threedifferent levels of roles; (3) spedfication d amethoddogicd process
that reconcil es both the bottom-up and the top-down approacdhes to the problem of
organization. In this paper we show how this method enables Macdhine Leaning
(ML) techniques to be dealy clasdfied and integrated at first hand in the design
process of an MAS, by carefully considering the different levels of behaviors to
which they can be gplied and the techniques which appea to be best suited in
these caes. This presentation allows us to take abroad perspedive on the use of
al the various techniques developed in ML and their patential use within an MAS
design methoddogy. These techniques are ill ustrated by examples taken from the
RoboCup challenge. We then show that a large part of the design adivity is
neverthelessleft to be dore @ aresult of heuristic choices or experimental work.
This alows us to propose the Andromeda framework, which consists in a tighter
integration d ML techniques within Cassopeia itself, in order to asdst the
designer along the different steps of the method and to develop self-improving
MAS.

Keywor ds: agent-oriented design, distributed machine leaning, RoboCup Challenge, coll edive robatics.
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1. INTRODUCTION

Multi-Agent Systems (MAS) have never been technicdly so simple to implement and
conceptually so difficult to design. A number of frameworks are avail able, theoreticd studies
are increasing continuowsly, and it is now even possble to find commercia products that
propacse to solve dmost any o the problems a software enginea usually faces when bulding
an MAS. agents architedures, cooperation and coordination algorithms, communicaion
languages, etc.

The atradivenessof MAS has also increased sinceits birth: these systems, which used to
be restricted to spedfic aeas of applicaionin the late aghties (Bond and Gassr, 198§, can
now be foundamost everywhere, from natural language processng to planning or problem
solving. The potentia to apply a promising "divide and conquer" approach to problems that
were once though to be solvable only by centralized techniques (Deder, 1987 Drogod and
Dubreuil, 199)); the ability to use sociologicd or even hiologicd rather than the traditional
psychoogicd metaphas when designing an intelli gent system (Drogoud and Ferber, 1993
Korf, 1999; the continuows success of internet-related systems and applications which
"naturally" require a decentralized scheme (Moukas, 1999; the gped of bulding open
systems (Hewitt and Inman, 199) rather than closed ores, everything, from marketing to
reseach, contributes to make Distributed Al one of the most promising trends in the present -
and future - of Al.

However, ten yeas after the first use of the term "DAI" for describing this broad domain
of reseach that extends from distributed systems to Artificial Life (Demazea and Muller,
1991 Werner and Demazea, 1993, we dam (and intend to demonstrate in this paper) that
littl e has been dore on the most deli cae part of this novel approach. AlthoughMAS are now
used in very large software engineaing projeds (Woaldridge, 1997, there is no methoddogy
avallable so far, for alowing software enginees to use the MAS techndogy in routine
operations. And this claim is even more true when ore tries to buld adaptive MAS - i.e. MAS
that can learn how to improve themselves using Madiine Leaning tedniques.

1.1. What isamethodology?

Providing a platform, even splendidly programmed, for designing a system is like
providing ingredients withou a reape: depending onthe skill s of the wok, there is always a
chance that something goodwill be moked, bu maybe not. However, the @ok certainly
prevents himself from reproducing this experiment, changing it a littl e bit to acammodate
different tastes or teading it to somebody else. It is and remains a one-shat, stand-alone,
succesd Methoddogies in computer science ae what redpes are for cooking: they replace
neither the intuition na the ading, bu provide aframework for unifying these two adivities.

Basicdly, the main role of a methoddogy is to identify the steps that are necessary to
proceel from the definition d the requirements of a projed to their fulfillment (i.e. the projed
life g/cle). More concretely, a methoddogy supgies the toads for transforming an aways
intuitive and subjedive vison d a system to be built (the dient's requirements, for instance)
into a formalized and oljedive (i.e. which can be shared and reused) definition d the same
system once it has been implemented. It thus provides a projed with "something" that will
stand and remain somewhere between the origina blueprint and the final code:

1. A structured set of guidelines, which includes the steps mentioned abowve, advice for
eat o these steps, and haw to proceed from one step to ancther.
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2. A unified way to dacument the design process Thisis used for sharing the experience
gained duing this processamong designers and/or aaosstime whenever, for instance,
the design hesto be undertaken by dher software enginees.

3. The use of ahomogeneous terminology, which has a meaning at eat step o the o/cle
and suppats the transitions from step to step (it usually also includes a graphicd
terminology besed on dagrams and flowcharts).

4. The use of operationd conceptual abstradions; that is, conceptual structures abstrad
enoughto alow a sufficient choice of techniques when it comes to implementing the
system, bu operational enough to prevent the designer from using urrelated or
outdated techniques.

5. A comprehensive and incremental history of the projed, which gves the posshility to
badktradk from any step to previous ones withou losing what has been dore before.

1.2.  Why amethodology?

In the cae of Distributed Artificial Intelligence the projed requirements intuitively
consist in having a number of agents achieving a @lledive task. To fulfill these requirements,
one must design the agents with spedfic atention to bath their skill s (or functional faaulties)
and their abiliti es to organize themselves. This implies managing at least threedifferent levels
of abstradion at the sametime:

1. Thelevel of theindividual agents (What architedure to implement them? What is their
knowledge and hov do they manage it? What are their skills and hov are they
distributed amongthe agents?).

2. Thelevd of the interadions between the agents (How and what do they communicae?
Can they ad onead ather and in which way?).

3. Thelevel of their organization (how do they cooperate?ls there ashared gaal and hav
can they plan to colledively read it? What is the structure of the organizaion and
how doesit evolve?)

The RoboCup challenge (Kitano et a., 199%&; Kitano et al., 1995 is a good example of
this necessty: designing atean of socce-playing robas requires the designer to pay attention
simultaneously to these threelevels. The programming o the individual skill s is asimportant
as the design d the inter-individual coordination medchanisms or that of the mlledive
cooperation schemes. Moreover, thereis an important interplay between these threelevels: for
example, knowing hav to dribble can enable the players to form powerful colledive
combinations; onthe mntrary, being provided with a team strategy may require the players to
undertake new individual resporsihiliti es (i.e. speda tadics nat spedficdly required when
playing aone).

The eisting methoddogies, espedally the objea-oriented methoddogies (Graham, 1999
that can be mnsidered becaise of some similarities sich as distribution a locdity?, provide an
interesting hesis of analysis (Abbat, 1983 Coad and Yourdon, 199] since they enable the
distribution o the initial requirements alongthe structural and behavioral axes. However, they
do nd offer any methoddogica framework for taking the various organizationa isaues into

1 And also because most agent-based systems are programmed using objed-oriented languages.
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acoun, becaise the organizaion is na considered as an oljed of analysis by itself (Booch,
1994. A number of very interesting studies on bulding agent-oriented methoddogies as
extensions of objed-oriented ores have neverthelessbeen undertaken (seefor example (Port
and Morede, 1999), bu what they can redly provide so far is gill unclea: agents and ohjeds
differ in a number of important respeds, the most naticeale being the aility of agents to
dynamicdly and autonamously change their organizaion, something that objeds are nat
suppased to be dlowed to do. We believe that although olped-oriented languages are the
prime target for implementing MAS, it would be an error to consider agents as only "super-
objeds" (see for instance Woadldridge's arguments abou the importance of the intentiond
stance for building MAS (Woddridge, 1997 even if, in his case, he till relies on a spedfic
technique, the BDI architedure, for designingan MAYS).

On the other hand, the little DAI work (e.g. (Moulin and Cloutier, 1994 Woodldridge,
1992) that deds with methoddogicd aspeds either indiredly addresses the organizational
isaues throughthe use of spedfic negatiation a coordination techniques, or impases certain
agents' architedures - which in faa are only particular methods of implementation. The
Cassopeia method, pesented in (Colli not and Drogod, 1998 Drogou and Collinat, 1998, is
an attempt to overcome this problem of reliance on the implementation by goviding a role-
based abstrad view of the aents within which the different techniques can easily be
clasgfied. Like objed-oriented methods, it does not solve the problem of design bu provides
a framework for explicitly and methodcdly expressng the hypaheses and choices that are
being made during the design process

1.3. Learning Multi-Agent Systems (LMAYS)

The design requirements expressed above ae even stronger when the goal is to make
adaptive MAS, by introducing Madine Leaning (ML) techniques that allow the ayents to
lean haw to behave, how to interad or how to arganize themselves (Weissand Sen, 1995.
Indedd, it requires the ayentsto learn dff erent abiliti es at different levels of abstradion. And it
isimportant not to confuse these levels. individualy leaning a given skill i s not at the same
level as colledively leaning hav to courterad a strategy, for example. Moreover, from a
technicd point of view, the hypaheses, the protocols and the ML techniques to be used in
these two cases are nat likely to be the same.

In this resped, the introduction d ML tedniques in MAS neads to be undertaken
methoddogicdly, carefully identifying which techniques to use & which level and which
levels to consider. Althoughthis introduction hes receved a grea ded of attention in recent
yeas (Sen, 1997 Weiss 1996, few people have redly considered the spedficity of MAS
compared to traditional ML systems. The mgority of the studies ded with very narrow
subjeds auch as the suitability of given ML techniques to such and such task, bu nore of
them redly handes all the foll owing qlestions, which are central to the design o LMAS:

1. Beneficiary: When an agent leans ssmething, whois the beneficiary? The agent itself?
The group d agents? The overall organization? All of them?

2. Learning process How doesit lean? By itself? In interadion with ather agents? In a
group?

3. Learningtasks: What does it lean? How to behave?How to interad? How to organize
itself with the others?

4. Learning techniques: Which technique to use for a given task and a given process?
How to compare their suitabilit y?

5. Learning protocols: What is the mntext that would allow for a @rred evauation d
the leaning task?
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We daim that these questions, among dhers, canna be aswered withou being asked
within an MAS design methoddogicd process which allows the designer to ded with these
multiple levels of abstradion while providing a framework for passbly revising the dhoices.
Conwversely, we strondy believe that the introduwction d ML tedhniques within the
methoddogicd tod itself is the only way to solve the usua problems one faces when
designingan MAS (be it adaptive or nat).

The most crucial of these problems are pointed ou at the end d Sedion 2, after the
presentation d the Cassopeia methoddogy and with the help of a short presentation d the
team we have designed for the RobaCup simulation league. We then propose aclassficaion
of different machine leaning techniques and concepts in Sedion 3. The Andromeda
methoddogy, which is aresult of atight integration o leaning methods with the Cassopeia
concepts, isintroduced in Sedion 4.We conclude by providing some hints abou the future of
our attempt to buld atruly agent-based computer-aided MAS design system.

2. CASSIOPEIA: AN AGENT-ORIENTED, ROLE-BASED MAS DESIGN METHODOLOGY

2.1. Overview of Casdopeia

The Casgopeia method is a way to address a type of problem-solving where olledive
behaviors are put into operation througha set of agents. It is nat targeted at a spedfic type of
applicaion na does it require agiven architedure of agents. However, it is assumed that
althoughthe agents can have different aims the goal of the designer is to make them behave
cooperatively. Casdopeia relies on severa concepts, namely those of role, agent,
dependency, and group. The main ideais that we view an agent as nathing else but a set of
roles, amongwhich we distingush threelevels (seefigure 1):

1.Individual roles, which are the different behaviors that the agents are individualy able to
perform, regardlessof the padlicy they will choase to perform them with.

2.Relational roles, that is how they chocse to interad with ore aother (by
enabling/disabling individual roles), with resped to the mutual dependencies of their
individual roles.

3.0rganizational roles, or how the agents can manage their interadions to become or stay
organized (by enabli ng/disabling some relational roles).
Agent

Individual Relational
Roles Roles

Organizational
Roles

Figure 1 - An abstract view of an agent with itsthree levels of roles

2We have cdled the method Andromeda, the daughter of Cassopeiain Greek mythology.
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Casgopeia procedals from the definition d the mlledive task to the design d the MAS
alongfive steps, depicted in figure 2 as layers, that reconcile both the locad and dobal views
of an MAS (seefigure 3):

1. Theindividual roles layer, which contains the definition d the required individual
rolesin arder to define the types of agent.

2. The dependencies layer, which contains the definition d the dependencies between
these roles (functional, resource-based or goal-based dependencies).

3. The reational roles layer, which contains the definition d the way the ajents can
hande these dependencies, by daying gven relational roles that enable them to
influence other agents or choase how to be influenced by them.

4. The groups layer, which contains the definition o the potential groups that may
appea, with resped to the @owve influences.

5. The organizational roles layer, which contains the description o the dynamics of
these groups, that is the organizaional roles the ajents have to play to make them

appea, evolve or disappea.

<
Typology of organizational roles

Typology of
organizations

L

-
Typology of relational roles

Potential
groups Groups layer

%%7% S

De
dependencies

Enables ‘e - - -
ReqUIres
Facilitates

Figure 2 - Thefive layersused in Cassopeia. The reational and organizational
layers depicted here have deliberately been simplified (with two rolesin each).

>

Functional or
resource-based
dependencies

Dependencies layg
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The order in which the five layers must be designed is not prescribed, in order for
methoddogy to acoommodate ather atop-down o a bottom-up approach (or a mixture of the
two). However, the usual way to enter the methodis to begin by the individual roles layer and
to end bythe organizational roles layer, as depicted in figure 3. It is a bottom-up approach, bu
nat in the ommonly held sense of the term "bottom-up’, because the overall organization (in
the definition d the roles) is taken into acourt from the beginning. Moreover, and urike
most approadies to the design d groups of agents (for example, Mataric's one (Mataric,
1993), the processis nat intended to be sequential, but iterative and incremental.

Individual roles Relational roles Organizational roles :

2 4

Dependencies layer Groups layer

Figure 3 - Cassopeia'sdesign steps and the top-down and
bottom-up paths between them.

2.2. Step 1- definition of theindividual roles

The identification d the individual behaviors that shoud be put into operation by the
agents to achieve the task being considered dces not come under Cassopeia: most of the time,
it results from afunctional (e.g. (Yourdon, 1989) or objed-oriented (e.g. (Abbat, 1983 Coad
and Yourdon, 1991 Rumbaugh et al., 1991) anaysis dep. Given these behaviors, the first
step of Cassopela mnsistsin identifying the required level of abstradion so that the behaviors
make sense with resped to the mlledive adhievement of the task: the designer spedfies the
sets of behaviors that achieve proper functionaliti es, and thus determines the individual roles
that the ayents can pay.

In most of the cases, the definition d the gopropriate roles proceeds in an iterative fashion,
by combining a bottom-up approach — the roles as sts of behaviors — with a top-down
approach — the roles as an integral part of the organizaionto be adieved. The nation d role
is an ambivalent concept, which represents both the function an agent is achieving at a given
time and the position it occupies at the same time in the group d agents. This role definition
requires pedal care, in that the subsequent design ogperations will | argely rely onit.

The designer is freeto define diff erent types of agents based onthese roles and can chocse
to design agents that are e@ther homogeneous (all the ayents are provided with the same set of
domain-dependent roles) or heterogeneous (some ayents are suppied with ony a subset of
these roles).

2.3. Steps2& 3- dependencies and relational roles

The second and third steps consist in analyzing the structure of the organization based on
the dependencies between the individua roles being considered. Such dependencies can be
functional, when they derive from the dependencies that exist between the behaviors
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implemented by these roles, or relational, when they take place &the dstradion level of the
roles. Various types of dependencies can be mnsidered such as coordination, smultaneous or
sequentia fadlitation a condtioning (see(Callinat and Drogod, 1998). The typdogy to be
used is not a priori defined by Cassopeia but shoud be introduced at the level of the
relational roles. The identificaion d these dependencies leads to defining the dependencies
layer of the wlledive task being considered. The designer removes the inconsistent
dependencies and when necessary can dedde to ignare some dependencies acording to the
avail able heuristics of the gplicaion danain. At this paint, the graph orly contains the
dependencies between roles that are suppsed to be relevant with resped to the wlledive
adhievement of the task.

The dependencies between the individual roles are naturally translated into dependencies
between the ayents that can play these roles. In order for the agents to determine their role
depending onthose played by the other agents, they must be provided with some means for
identifying and handling these dependencies. In this aim, Cassopeia resorts to the abstrad
nation d influence an influence relationship between an agent A and an agent B relies on an
existing dependency between the role played by A and the role played by B. A dependency
relationship gves rise to two dstinct roles, the role of influencing agent and the role of
influenced agent, which are put together under the term of relationd roles (the names of the
roles depend d course on the dependency being considered: for example, the inhibition
dependency would gve rise to the roles of inhibitor and inhibited). An influencing agent
produwces signs of influence (anything that enables it to communicae it or be perceved as
playing this role) that correspondto the individual roleit is playing; an influenced agent must
be aleto interpret these signsto play the individual role that corresponds to the influence that
has been exerted. The definition d these relational roles therefore makes it posdble to
distribute the structure of the organizaion amongthe aents, as a transmisson d influence
signs. At this dep, influence signs that come from other sources than the aents, as for
example those produced by the environment, can also be taken into acaourt.

When setting the relational roles, the designer must spedfy the behaviors to control the
individual roles (for instance, how to choose anong severa influences).

2.4. Step4& 5-groupsand organizational roles

At this time, all the potential groups of agents have been defined implicitly. The fourth
step consists in defining the potential groups that may arise. The paths and the dementary
circuits of the dependencies layer can be used to define the patential groupngs of the diff erent
individual roles therefore provide aglobal representation o the structure of the organizations
to which the agents can belong when playing these roles. This is what the groups layer
depicts.

Thefifth and last step addresses the dynamics of the organization. It consists in spedfying
the organizationd rolesthat will enable the agents to manage the formation and dssolution o
the defined groups. A basic typdogy that lists two roles - initiator, participarn - is defined in
Cassopeia, bu it is possble to define new roles (which will have an impad on the definition
of the groups by providing new ways of forming goups - i.e. northierarchica groups, €tc.).

As described in the previous gep, when an agent is invalved in an influence relationship
and podwes ome influence signs, it adopts arole of initiator sinceit initi ates the formation
of a group with ather agents (seefigure 4). An initiator agent plays an individua role that
makes it belong to all the groups it can paentially form with the agents playing roles it is
currently influencing. As a cnsequence, it can evaluate them to dedde which agents are the
most appropriate to form a group in the arrrent context. The designer thus (1) identifies the
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agents likely to pay an initiator role (acording to the groupng potential that has been
identified in the dependencies layer), and (2) determines, for ead of them, the seledion
methods that all ow it to control the formation and dsslution d groups. For an agent, playing
the role of initiator consists in adivating group formation bkehaviors as well as group
dislution bkehaviors. Similarly, playing the role of a participant consists in adivating
commnitment behaviors.

facilitates

1 R2
1
1
P
1 @o/..
1 ,% ’{»
' % > Agent_B
: % gent-
I U
1
1
1 R4
>

- g
1 9(//,'
1 p P @Q 1
1 &) % 1
| <)® / %, /% | Agent_ C
I O, 23 ‘9/;, |
Y 2

g % 1

Qof |
R3 ;
requires
Agent_A

Figure 4 - Example of a group formation.
White drclesrepresent theinactive roles

Group formation bkehaviors are spedfied to enable an initiator agent to dyremicdly
organize ollaboration with ather agents. Basicdly, these behaviors are amed at seleding the
most appropriate agents to collaborate with. These aents are then gdng to pay a role of
participant in this group. Next, the designer speafies the commtment signs, which enable the
initi ator agent to indicate to the seleded agents that a groupis formed with them. The designer
must thus geafy the commitment behaviors used by the ayents to cortrol their relational
roles in resporse to the commitment signs. It is possble, for instance, to consider that these
agents houd inhibit all or part of their relational roles  as to remain committed to the group
— aslongasit ismaintained. Finally, the designer must consider the dislution d agroup.A
group ceases to exist when the agent that plays the role of initiator is stisfied; or a group can
be replacad by a groupthat is considered as more dficient. The designer must thus define the
group dssolution behaviors which produce dissolution signs that are interpreted by the
commitment behaviors of the participant agents.

The table in figure 5 sums up the three levels of roles that are defined by Casdopeia,
alongwith the diff erent types of signs and associated behaviors.
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Roles Basic typology* Associated behaviors Exchanged signs

application- application- dependent

individual dependent

producing the influence signs
according to the domain role
relational e e e SRR influence signs
influenced agent !nterpretlng the |nf|uen_ce signs

in order to control the individual roles

influencing agent

Agent

group formation behavior
initiator .................................................. dissolution Signs
organizational group dissolution behavior

participant commitment behavior commitment signs

*The exact typology can be more complex, if one wants to consider specific influences or different ways to create groups.

Figure 5 - Cassopeiain a nutshell

2.5. Main methodological problems

Casgopeia has been used to design a number of teams of socce-playing (simulated)
robas that run onthe SocceServer (Kitano et a., 1997@). Obvioudly, in such atypicd tean-
game the am of the designer is to enable her or his team to score goals while defending its
own side. Thus, the problem is to design the agents D that they can pay with what we might
cdl a"tean spirit", that is a set of explicit or implicit social rules and constraints that all ows
them to play colledively and prevents them from disturbing their tean mates while they are
playing. Consequently, in addition to their individual socce-playing skill s, the agents shoud
have abiliti es to organize themselves in order to win. From the standpant of multi-agent
systems, the main dfficulty isthen to expresslocally (i.e. at agent level) the behaviors which
allow the coll edive achievement of the task by the team to be obtained. Two ather difficulties
make this game avery interesting, though \ery challenging, standard problem for multi-agent
systems:

1. The dynamics of the game makes it impassble both to define the organization of the
robas in advance and to control the gamein a centralized way.

2. The operations of the oppasing team are by definition unpedictable and consequently
require ahigh level of red-time adaptability.

From the standpant of software engineaing, this problem is aso interesting since it
covers most of the isaues of analysis, design, implementation, experimentation and validation
of artificial organizaionsin a strictly controlled while moderately abstraded world (Kitano et
a., 1995.

The design process (see (Drogou and Collinot, 1998 for more details) led us to define
four individual roles. shoa the ball, place onesdlf, block an oppomnt, and defend. The
typoogy d the relational roles (and thus the dependencies) included the ailities of
coordination, sequential facilitation, simultaneous facilitation and inhibition between two
roles. We kept the basic typoogy d organizational roles (i.e. initiator and participart). The
dependencies layer (and the asociated relational roles) provided us with two pdential groups
centered around the defenders and the shoder. An example of group formation and
management is shown in figure 6.
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Figure 6 - Example taken from the SoccerServer, showing
the evolution of three groups.

Althoughthe use of Casdopeia has grealy eased the design process of these teams, this
work has alowed us to pdant out the most problematic parts of a methoddogicad approac to
the design & MAS, namely the subjedive doices the designer has to make & eadh o the
diff erent steps:

1.Choasing theindividud roles - This choice has a cnsiderable impad on the other steps but
nothing prevents the designer from making irrelevant choices. It is clealy an analysis gep,
but the difficulty is that it takes both the dementary behaviors and the organization to be
obtained into acmurt. Moreover, the roles oud be fully functional in a single-agent mode
as well as in multi-agent modes. The only solution so far is to rely on an informal analysis
of the domain, while experimenting groupngs of el ementary behaviors or functions.

2.Sdeding interesting and consistent dependencies between the dhosen individud roles -
Once a@ain, nahing redly prevents the designer from making irrelevant choices at this
level, since every dependency can be mnsidered as relevant per se. Conwersdly, it is
sometimes difficult to foreseethe interest of a given dependency, although it can be useful
for forming potential groups. The analysis of various ts of experiments and an important
knowledge of the domain are usually required for this gep.

3.Choasing the relationd roles and the semantics associated with them - Although some
typologies have begun to be proposed (see for example, the theory of socia influences by
Castelfranchi (Castelfranchi et al., 1993), this paint is gill fuzzy. On the one hand,
providing the agents with various relationa roles al ows them to enter into rich interadions,
and can be useful for detaili ng the dependencies. On the other hand, this makes the agents
more amplex and thus more difficult to design. A good kalance must be kept between
richness and simplicity, and the semantics of the roles dioud be dealy established.
Experience shows that it is ometimes difficult to doit withou a good knavledge of the
DAI techniques for handling the interadions and communications between agents.

4. Building the potential groups based uponthe dependencies - Simple rules can be gplied to
the dependencies layer for arbitrarily determining the potential groups. However, when it
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comes to choosing which groups will be instantiated, the agents must be provided with
spedfic knowledge @ou their relative interest .

5.Choasing the organzationd roles and their semarntics - Solid knowledge on the avail able
cooperation and regotiation algorithms and protocols is usualy required at this gep (at
least, some dasscd ones like the Contrad Net or Sycara's negotiation techniques (Smith
and Davis, 198Q Sycaa, 1989).

In the @&owve paints, given the relatively important amourt of ad hac, nonformalized,
subjedive or fuzzy information that has to be injeded into the methoddogicd process the
guestion d the red interest of using a design methoddogy can be asked. The answer to such
criticism is usualy to pdnt out that the methoddogy forces this knowledge to be made
explicit throughou the different steps. While it is not totally exad (i.e. the definition d the
individual roles is a hidden process in Cassopeia), it is certainly better than having no
framework for making these choices. However, to be more in the Al way of looking at things,
an answer to this knowledge aquisition problem would be to consider part of thisinformation
as gedfic knowledge that can be aquired by the ayents for improving their individual or
colledive behaviors through experience, instead of relying exclusively on the designer’s
skill s.

Predsely, this latter approach amounts to introducing macine leaning as one of the key
abiliti es of the designed MAS. In sedion 3we review the most promising work that applies
macdhine leaning in dstributed Al to buld adaptive MAS. In sedion 4, we present
Andromeda, a full integration d distributed madine leaning within Cassopeia. Andromeda
is meant to assst the designer at eat Cassopeia step in providing the agents with learning
abiliti es that alow them to lean all or part of the necessary knowledge (roles, dependencies,
group structures, etc.) from experience

3. MACHINE LEARNING AND MAS-DESIGN - A NECESSARY MARRIAGE FOR
SUPPORTING THE DEVELOPMENT OF ADAPTIVE-MAS

3.1. Distributed MachineLearning (DML)

In spite of the reticence of part of the Machine Leaning community who predicts that
DML istoday too hard a problem becaise Madhine Leaningis arealy so dfficult in pradice
pathfinders have nat been stopped from studying the numerous and exciting chall enges that
leaning in a Distributed Environment raises for Al (Dorigo and Schnepf, 1993 Grefenstette
eta., 1990 Lin, 1992 Sen, 1997 Sian, 1991; Singh, 1992 Stone and Veloso, 1996h Weiss
1996; Weissand Sen, 1995). This fdion suppats their view and presents DML as being as
inevitablein DAI as ML was for single-agent Al.

3.2. General DML issues

Clasgcdly, in madiine leaning asingle ayent that learns in an (unknown) environment is
considered. Any aher agent that co-exists in the same environment is usualy considered as
part of the environment and therefore not modeled explicitly as such (see figure 7 below).
Thiskind d leaning context is cdled here single-agent leaning (Dietterich, 1990 Langley,
1996 Mitchell, 1997. In this context, an agent is said to learn from experience E with resped
to some dassof tasks T and performance measure P, if its performance (as a single-agent) at
tasksin T, asmeasured by P, improves with experienceE.
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Many techniques have been developed to address the general issue of single-agent

leaning (Mitchell, 1997. Hereis alist of severa leaning methods in order of the degree of
inductive leg required and the degreeof supervisionthey imply:

Rote leaning, which consists in aaquiring knowledge and skill s that do nd require
modificaion from the leaner to be gplicable (Radlin et al., 1994. This kind d
leaning may be daraderized by the @sence of generalization. The knowledge
memorized canna be re-used in new situations.

Leaning from instances (Instance Based Leaning (Aha et a., 1991), which consistsin
aqquiring knowledge and skill s that require modificaions from the leaner only when a
new context is encourtered and w.r.t. to this context. Thisleaning may be charaderized
by a form of local generalization, and is aso referred to as lazy leaning in that
instances are memorized and the leaning per se is only performed when necessary and
in the context of the task to be solved.

Leaning from examples (concept leaning (Dietterich, 199Q0), which consists in
aqquiring knowledge to charaderize or discriminate a @ncept. Such leaning may be
charaderized by the global generalization it requires. Initial examples are forgotten and
general knowledge that somehow compresses the examples (Quinlan and Rivest, 1989
is dored as dedsiontrees, sets of rules, neural networks, clasgfiers, etc.

Leaning to buld clasdfication (unsupervised leaning (Cheeseman et al., 1988 Gennari
et a., 1989), which consists in arganizing knowledge. This kind d leaning may be
charaderized by the absence of supervision. Classes and their descriptions are built
solely from objed description.

Leaning by pradice or experience (reinforcement leaning (Kadbling et al., 1999,
genetic dgorithms (Goldberg, 1989), which consists in aaquiring skills from an
unknowvn environment. Thiskind d leaning may be charaderized by aform of indirea
supervision, i.e. the reinforcement given by the eavironment used to lean (either asa
"fitness' in genetic dgorithms or "rewards" in reinforcement leaning).

The first difficulty raised by the problem of integrating macdine leaning in a distributed
environment is the different levels at which learning may occur (seefigure 8 below):

— At the level of an agents, it may lean to adiieve its own gaals better. At this level,

leaning is based onsystem-interna estimates of the usefulnessof the actions carr ied
out by the agent. Such an agent is cdled self-interested.
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— At the level of groups of agents, the group may lean to achieve the goals of the group
better. At this level eaning is based on system-internal estimates of the usefulness of
the sum of actions carried out by a goup of agents (either homogeneous or
heterogeneous).

— At thelevel of the whale social organization, the organization may lean to achieve the
goals of the whale organization ketter. The distinction between groups of agents and the
whale organizaionis meant to dfferentiate an intermediate level between the ayent and
the global organizaion, ke it subgoup aganizaion a a one-to-one interrelation. In the
Cassopeia methods, a fundamental hypahesis is to consider in particular the diff erent
one-to-one gent interadions. At this level, leaning is based on the development of
system-internal organizaional structures impaosed onthe system comporents, evaluated
onthe usefulnessof all the agentstaken as awhole (Weissand Sen, 1995.
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Figure 8 - The multi-agent learning levels

A seoond serious difficulty is to analyze the leaning processitself. It raises svera key
guestions. What is the leaning task? what are the leaning context and the leaning protocol
(agents, communicaion, environment, etc. ) ? What is the performance measurement of the
leaning? These questions recave different answers depending onthe leaning context, task
and leaning level: the agent, the group o the whole system. Nevertheless in pradice the
different changes that occur in an MAS are due to changes at the level of the agent. The
following part of this dion proposes akind d structural anaysis of al the possble DML
within a DAI environment. The am is to classfy the leaning independently of the
implementation. Some tasks have drealy been studied in red applicaions, others have not yet
been studied in depth in DAI.

3.3. Different learning tasks

We propose to dfferentiate the leaning tasks depending on the beneficiary of the
leaning: an agent itself, a group d agents or the whole organization. We do nd make this
distinction besed onthe learner becaise in a distributed environment the dfedive tanges
are in pradice dways dore & the level of the ayent itself. Moreover, such a perspedive on
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DML alows us to define distributed machine learning in a fashion similar that of the singe-
agent leaning. an aganzation (be it a singe agent or a group d agents) is sid to learn
from experience E with resped to some dass of tasks T and performance measure P, if its
performance (as an aganzation) at tasks in T, as measured by P, improves with experience
E.

This definition hes the alvantage of being independent of the MAS implementation. Let
us note that some reseachers have proposed to dfferentiate the leaning tasks based on a
different criteria, namely the leaning protocols used (Stone, 1996. Next sedion cktail s the
diff erences between the learning tasks depending onthe beneficiary of the leaning.

3.3.1. Learning basic actions, skill sand roles

Thefirst kind d leaning tasks charaderize situations where an individual agent improves
its performances at reating its goals. At thislevel, a useful distinction may be drawn between
basic actions, skill s and roles. We cdl basic adions those that are considered as primitives
within the language used to describe individua roles (IDL). Individual skills are basic
behavior that may be described usingthe IDL.

Leaning kesic adions is possble and the typicd leaning performance measurements
used in classcd ML, i.e. leaning rate or successrate over time, are used. Beside the DAI
contexts, thiskind d leaning may be implemented using a large variety of macdine leaning
algorithms (Langley, 1996. In the cae of the RoboCup Challenge (Kitano et al., 1997h
Kitano et a., 199%), the agent leaning language includes the adions KICK, DASH, SAY, SEE,
etc. Leaning to "recognize that the ball is at a kicking dstance' (Asada et a., 1999,
"discriminate alversaries from partners™ are examples of leaning tasks at the level of basic
adions. Nevertheless many reseachers consider that the set of basic adions (such as runnng
or kicking) is often gven (by the hardware nfiguration correspondng to the simulation
considered for example) and thus new basic adions ough naot to be leant (Stone and Veloso,
1996b; Stone and Veloso, 19974).

At _shooting_distance

o ©® NO
°o® yes
°® yeS

Figure 9 - Threeleaning examples for the function "is at shoaing dstance"

In contrast, individual skill s require that an adion language be given. The behavior of the
agent will consist in seleding, danning those adions that lead to an individual goal. As for
individual skill' s, explicit definitions of their individual gods are required for measuring
leaning performance Animportant choicefor an agent within an adaptive multi-agent system
iswhether to lean diredly the expeded uility of adionsin agiven state or to model the other
agents in the system. Foll owing Parkes and Ungar (Parkes and Ungar, 1997 we shall cdl the
first type direct-learning and the second ore model-based learning. The standard dired-
leaning approach is based on Q-leaning (Kadbling et a., 1996. Within model-based
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leaning agents two types of leaners may be mnsidered: myopic-learning agents that use
simple short-term leaning models and strategic-learning agents that consider the longterm
equili brium of the system. This latter form of leaning involves often repeaed leaning
situations over time. Model-based learning requires more complex knowledge representations
than those used in reinforcement leaning. Model-based leaning is typicdly studied in
adversary condtions sich as in games (Carmel and Markovitch, 1996 Meyer et a., 1997;
Stone and Veloso, 19960. Mataric draws a somewhat similar type of distinctionsto classfy
individual agent strategies. readive, behavior-based, danner-based and hylrid approades
(Mataric, 1995.

In the cae of the RobaCup Challenge, leaning to "passa ball better” is atypicd dired-
leaning task (Stone and Veloso, 199&). ShodBot (Mizuno& Kourogi& Muraoka, 96) isared
roba that is able to lean to shoa and dibble. It handles numerous parameters (roba speed,
ball spedl, etc.) to perform its leaning (Mizuno&al, 96). Matsubara, Noda and Kaalo
consider the task of "shoaing in a bal in movement (passed by a
partner)"(Matsubara& Noda& Hiraki, 96). They train a neural network to lean this task
(Itsuki& Hitoshi& Kaauo, 9. Ancther key skill for a socce agent isto be aleto intercept the
ball (seeFig. 5. This ill i s obviously more difficult than gdng towards an immobil e ball
(Stone& Veloso, 961). Intercepting a ball is required from defenders (to opp®e akick or
recave apas9, by midfields and attadkers (to recaeve a pass or intercept one from the
opporent) Stone& Veloso, 9&) (Stone& Veloso, 95) (Stone& Veloso, 9%). Stone and Veloso
have propased a Neural-Network-based approac to lean to move towards a ball. Based on
the SAGACE approach to anticipation (Meyer et a., 1997, we have developed a strategic-
lear ning task consisting in anticipating when an attadker will shoa. This latter learning task
requires building amodel of the alversary dedsion onwhen to shoa, which charaderizes this
kind d strategic leaner.

o ® o
5 O o o’ G0 \
e © © .

Figure 10- Leaning example of adired leaningtask of intercepting a ball

3.3.2. Learning a group levé

At the level of a group of agents, leaning is based on system-internal estimates of the
usefulness of the set of actions carried out by the group (either homogeneous or
heterogeneous). The magjor problem faced in such leaning is the credit assgnment problem.
In single-agent leaning, this problem also existsin the reinforcement leaning framework. In
this case, the leaner is not informed o the wrrednessof adions taken individualy but is
only informed of their correadnessas a whaole. The single-agent leaner faces the problem of
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determining the degreeto which ead adion in the sequence deserves credit or blame for the
final outcome.

In the cae of grouplevel leaning the mmplexity of the problem is further increased,
because it requires determining which set of adions performed by the different agents in the
sequence deserves credit or blame for the final outcome. One gproadc consistsin distributing
the aedit between the different agents (Gu and Maddox, 199%. The problem thus comes
down to the single-agent leaning keing gven its dare of the global credit. This credit
assgnment problem has been studied in the framework of clasdgfier systems and algorithms
such as the bucket brigade (Dorigo and Bersini, 1994 Goldberg, 1989 Grefenstette, 1988
Grefenstette @ al., 1990 are used to solve the multi-agent credit assgnment problem
(Grefenstette, 1988 Riolo, 198&; Riolo, 1987h Wersterdale, 1987.There is an abundant
literature on the use of Reinforcement Leaning (RL) in dstributed environments and the
different ways of providing feadbad to agents on their adions. It can be dore by goba
systems or other agents (inter-agent credit-assgnment (Goldman,97)), Mataric, for example,
propcse to define progress estimators so as to help the ayent better evaluate its progresson
towards agoa (Mataric, 1994).

In the cae of the RobaCup Challenge, "to score more goals' is an example of task for a
set of attadkers. An obvious credit may be the number of goals <ored per minute. The
assgnment of the aedit may then be shared amongst the dtadkers. To simplify, a heuristics
may be to gve most of the aedit to the striker and the rest equitably between the other
attadkers. Other heuristics may give more anphasis to the sequence of adions and gve more
credit to the player that passed the ball to the striker (Stone and Veloso, 1996k Stone 4 al.,
1996. Many aher group-level leaning tasks may be represented by the aility of individual
agents to selea the skills"when to dribble, pass or shod", " anticipate paositioning before
recaving kel from partner”, "block the opporent”, "set atrap to intercept a ball". Aubineau &
Lalande (1996 have developed an approach based on Reinforcement Leaning to lean to
seled aCassopeiaindividual role, that isto lean relational roles.

°9
(5]

Figure 11- A group learning a" one-two pass' task

3.3.3. Learning a the organization leve

At the level of thewhadle social organization, leaning is based onthe development of
system-internal organizaional structures impased onthe system comporents evaluated onthe
usefulness of the whole group. (Ito and Yano, 1995 Lund, 199% Mataric, 1994h. A
promising approach used to make a social organization lean is the use of genetic
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programming (GP), a dass of adaptive dgorithms used to evolve solution structures that
optimize agiven evaluation criterion. The social evolution d strategies may be investigated
using genetic dgorithm techniques (Takadama and Nakasuka, 1996. Ito shows for example
that robust and cooperative strategies emerge through ou the evolution starting from simple
ones (Ito and Yano, 1995. Haynes et a., represent cooperation strategies that can be
manipulated by GPs (Haynes et al., 19950). Their results in the predator-prey domain show
that with minimal inpu of domain knowvledge aad human intervention, the construction o
good cooperation strategies can be built. In the cae of the RoboCup Challenge, many
reseachers am at such a level of leaning (Stone et al., 1996 but few results have been
obtained so far. "Increase the occupation d the alversary field", "increase the time the team
has kept the ball", aretypicd and dfficult leaningtasks at the organization level.

Figure 12 kelow summarizes diff erent forms of DML reviewed in the previous sdion.

Distributed M achine Learning

Self-interested agent learning group of agents learning organizational learning

Basic action or function Skills and roles

Function learning No explicit model of other agents M odel-based

| l—l—l

direct-learning myopic-learning | strategic-learning

Figure 12 - Different formsof DML
3.4. Different learning protocols

3.4.1. Thetraining experience

Whoever is leaning, the richness of MAS alows many protocols to be defined with
different environments, different sets of agents (homogeneous or heterogeneous), different
agent-to-agent interadions and agent-environment interadions (Sen, 1997 Weiss 1996. The
choice of protocol is diredly linked to the nature of the training experiences from which the
multi-agent system will lean. The different types of training experiences can have a
significant impad on the successor falure of the leaning. In a DAl environment, there ae
many properties of the protocols that restrict the type of leaning pssble. One iswe is
whether the feedbadk is dired or indired w.r.t. to the task to be leaned. We discussed above
the importance of thisisaue for credit assgnment. A secondisaue is the @ntext in which the
agent leans, with ore or many aher agents, with a leaning agent or nat, in repedaed
condtions, in red condtions, etc. A third iswue is related to the leanability of the task
considering the training experience that is a hand. This latter issue has been studied
extensively in single-agent leaning (Keans, 1990 bu this areais ill open in multi-agent
leaning.

In the cae of the RobaCup Challenge, many protocols may be conceved to buld training
experiences for leaning. As an example, let us consider the setting used by Stone and Veloso
to train a Neural Network-based defender that ough to lean the angle it shoud turn to stop
the ball. Stone and Veloso propose to consider a set of experiences defined using the
following movement generator where BD = Ball Distance, BA = Ball Ange, TA = Turn
Angle:
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while BD>14, TURN (BA)

when BD<=14, set TA= Random Angl e between -45 and 45
record BD, BA, previous BD, TA

TURN (BA + TA)

DASH

record result (from coach)

Aslongas the ball i s further than a given threshald, the defender observes the ball. When
it becomes close enough,the defender choases arandam angle and moves. A coadh is used to
label such produced examples as GOAL when the player scores, SAVE when the ball is
recovered, and MISSin ather cases. These generated examples are then used to train a neura
network to lean the proper angle the defender shoud turn in order to stops goals. Stone and
Veloso have propased for ead charaderistic to lean to isolate situations requiring such
charaderistics andto produce examples from these situations.

In the cae of the RoboCup Challenge, the leaning protocols may be broken dawvn into
several types (Kitano et a., 199%) including: off-line skill | eaning byindividual agent, off-
line ollaborative leaning by teams of agents, on-line skill and collaborative leaning (the
ability to adaptively change ollaborative or individual behaviors during the aurse of a game
could contribute to a team's succesy and an-line alversaria leaning, i.e. leaningto read to
predicted opporent adions.

3.4.2. Game-theory based protocols

The most charaderistic protocols in DML are the ones that include more than ore leaning
agent. Game theory has emerged as one of the most interesting frameworks for studying
multi-agent leaning protocols (Fudenberg and D., 1998. According to Parkes and Ungar
(Parkes and Ungar, 1997"multi-agent systems can ke viewed as games where the artificial
agents are bounded-rationd utilit y-maximizers with incomplete information abou the other
agents in the systems". The problem of the designers of MAS may then be viewed as one of
establi shing rules of the game that encourage agents to choose strategies that optimize system-
wide utility. Game theory offers elaborate studies of the dfed of deserters on individual
optimality (Axelrod 1984, bu the domains it treas are typicdly much more dealy
constrained than environments in which robas are situated. In particular, game theory deds
with rational agents cgpable of evaluating the utility of their adions and strategies ; a setting
that is sldom foundin MAS. To cope with such contexts in DML, adversarial behaviors may
be inferred from the alversaries' past behavior (Carmel and Markovitch, 1996 Meyer et a.,
1997; Mor et a., 1996. The progress over the last few yeas in the design d adaptive
leaning agorithms, with the help of genetic dgorithms, has made it possble to make such
inferences thanks to which the macdines build for themselves an internal representation d
their adversaries.

3.5.  An immense unexplored field with as yet promising but scarce
results

We present below a brief overview of the tedhniques used in single-agent leaning that
have been adapted to DML. In DML the most studied leaning problem can be formulated as
leaning state-adion a state-adion-value functions that represent the best adion that an agent
shoud take given a past history of rewards and adions of the other agents (Parkes & Ungar,
97). The state of the world models al of the information that an agent uses to adapt its
behavior. The main approach explored sofar to leaning in dstributed systems is
reinforcement learning (Stone, 1996 Weiss and Sen, 1995. The principle is
straightforward: the tendency to chocse an adionin agiven stateis grengthened if the result it
prodwces is favorable, weskened atherwise. Many aher leaning techniques can also be
implemented.
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Machine Learning Techniques

Machine Learning Task in DAI

Reinforcement Learning
(Asada et al., 1996; Gu and Maddox, 1995; Lin,
1992; Schwartz, 1993)

All the learning tasks
— Improving basic actions
— Improving individual skills
— Improving individual roles (single-agent, direct, myopic)
— Improving group behavior (coordination)
— Improving social behavior (cooperation)
— Improving communication

Neural Networks
(Parisi et al., 1994; Stone and Veloso, 1996a;
Werner, 1994)

Numerical classification tasks
- Improving basic actions
— Improving group/behavior (coordination)

Case-Based Reasoning
(Haynes et al., 1996; Plaza et al., 1995)

Knowledge-sharing tasks
— Sharing distributed symbolic knowledge

Instance-Based Learning
(Decker and Lesser, 1995; Haynes, 1997;
Nagendra Prasad and Lesser, 1997)

Decision/classification tasks
— Improving group team behavior (coordination)

Inductive Learning
(Davies and P. Edwards, 1996; Goldman and
Rosenschein, 1995 ; Potter et al., 1995; Stone
and Veloso, 1997b)

Symbolic classification and knowledge sharing tasks
— distributed classification
— strategic learning
— Sharing /confronting distributed symbolic knowledge
— deciding to be altruistic

Genetic Algorithms

(Fogarty et al., 1995; Schultz, 1994)
Genetic Programming

(Haynes et al., 1995a; Ito and Yano, 1995)

Optimization tasks
— Improving individual role (single-agent, direct, myopic)
— Improving group behavior (coordination)
— Improving social behavior

Table 3-1 - Overview of the different ML techniquesthat can be applied to DAI

3.6. Nofully-integrated methodologies

The examples of DML tasks that have been presented above have shown in many cases
the benefit of integrating DML in an MAS. The problem of integrating ML in the design
methoddogy has not been studied much. The first benefit of integrating DML in the design
process is to prodwce fina systems that are alaptive and lean to improve their globa
performance Thereis a mnsensus in the Al community that such a goal is per se adesirable
one. The second lkenefit is at the level of the methoddogy itself. We have pinpanted several
difficulties resulting from the use of Cassopeia. In particular, the design dedsion may require
an expertise that is not necessary when developing an MAS. An integration d DML in the
design pocess would therefore dtempt to make such steps easier and at the same time
guaranteethat the produced architedure is adaptable.

Mataric in a semina paper has proposed a methoddogy which relies mainly on ore
madine leaning technique, reinforcement learning. Her approad, cdled "basic behavior
approach” (Mataric, 1999 is a "methoddogy [for] automaticdly generating hgher-level
behaviors by having the agents lean throughtheir interadions with the world and with ather
agents, i.e. through ursupervised reinforcement leaning'. Althougha pionee in the field, her
approad has ®veral flaws: the leaning technique used is restricted to reinforcement leaning,
the design processis a sequentia one that does not easily acommodate iterative design. In the
next sedion we propcse our approach to the isaue of defining a general framework for
integrating maadine leaning techniques.
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4. ANDROMEDA: A FRAMEWORK AND A METHODOLOGY FOR INTEGRATING
MACHINE-LEARNING IN THE MAS DESIGN

4.1. Introduction

To employ DML it is necessary to define the level at which leaning is expeded, define
the learning task and its evaluation and finally to define protocols for learning. We shall seein
the following hav Cassopeia may be used to arganize the different levels where Andromeda
uses DML. The proposed modificationin Andromedaisto be ale to decompose nat in terms
of behaviors (which all ows an immediate implementation) but in terms of gods. This change
requires that the designer dlicitate the knowledge & the level of gods and not functionalities
or behaviors. Thisis the key of the Andromeda approach: adaptive behaviors or ones that
will be learned are defined in terms of their god and not in terms of a program, with no
other semantics but that of the behavior produced. By doing so Andromeda alows the
designer to define both the goals as a designer and the material necessary for performing the
leaning steps. As a mnsequence the designed MAS may be alaptive so as to read the
defined gaals in evolving environments. The next five sedions present the design adivity in
Andromeda correspondng to the Cassopeia layers, i.e. the methoddogicd framework.

4.2. Phasel- Learningindividual actions, skill sand individual roles

In Andromeda, phase 1 concerns the definition d individual adions, skill s and individual
roles. The language used for describing individual roles is cdled the individual role language
(IRL). In this language that will not be described formally here, we distingush between
adions, skill s that are composed of basic adions, and individua roles compased o skill s. In
the RoboCup Challenge, the IRL basic adions are given: TURN, DASH, KICK, SAY, CHANGE
VIEW, MOVE. Any particular programming language using these adions as primitives may be
taken for an IRL.

In this first phase, the beneficiary of the leaning is obviously the agent itself. Its task
consistsin leaningitsrolesin IRL with noexplicit modeling d the other agents, but with an
explicit description d the goals to be readed and their performance measurements. In that
resped, the mgjor difference with Cassopeia is that the individual roles are seen as dynamic
planners provided with gaals. To read these goals, the agents can either build new behaviors
or tune given behaviors by adjusting their parameters. The table below summarizes the main
charaderistics of this phase.

Beneficiary A single agent

Task - Learning a behavior in an individual role language (IRL)
- with no explicit modeling of other agents per se
- with an explicit description of the goal to be reached
Approaches [Define a self-interested goal G and performance measurement P for:
- building a behavior represented in IRL for reaching G, or
— tuning a behavior by adjusting parameters for reaching G
Techniques | Reinforcement learning, Genetic Algorithms, Neural Networks
Difficulties The expressive power of IRL, the description of the goal G,
the learning performance measurements P,
the choice of learning protocols.
Protocols One given agent:
1. alone in the environment (either off-line or on-line)
2. with one to many non adaptive agents (either off-line or on-line)
3. with one to many adaptive agents (either off line or on-line)
4. in real conditions (on-line)

Table4-1 - Andromeda s Phase 1 in a nutshell
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From a methoddogica point of view, the am of this phase is to asgst the designer in the
definition d the individual roles by alowing the agents to lean o tune them. But it is not
intended to replace the designer's work: there is gill, of course, the possbility to define
behavior-based roles (as in Cassopeia) along with the new goal-based roles. We have, for
example, used this ability in the design d the simulation tean that will be competing in
RobaCup'98 (Kitano et a., 1997h: while the dtadkers rely on previously defined readive
behaviors (Drogod and Duhaut, 1996, the defenders have learned new behaviors. Moreover,
"innate" and aaquired roles can coexist in the same agents withou any problem.

4.3. Phase2 - learning one-to-one dependencies

Andromeda’s phase 2 concerns the building d the one-to-one dependencies between the
individual roles. This corresponds to the dependencies layer of Casgopeia. The language used

for describing influences is IDL. This language is made up d predicates sich as ENABLE,
FACILITATE, REDUNDANT, GOAL COMPETITION, RESOURCE COMPETITION, INDEPENDENT,

INTERFERENCE, INCOMPATIBLE, COORDINATION. The semantics of the terms in the IDL is given
with resped to the impada of other individual roles on the performance of the agent. Given R1
and R2, two agents having individual roles R1 and R2 charaderized by performances P1
when R2 is absent and P'1 when R2 is present, here foll ows the semantics of a few terms we
areusingin ou IDL:

(P1=0and P'1 #0) > ENABLER1R2)
(P1=P’1) > INDEPENDAN{R1,R2)
(P’1>P1) >  FACILITATES (R1,R2)
(P'1=0) > INCOMPATIBLHR1,R2)

With resped to the posshility to introduce hand-coded individual roles in phase 1, it has
to be noted that dependencies between agents whose individual role is not attached to a
performance measurement P nead to be given by the designer because their dependencies with
other agents canna be leaned.

The beneficiary of the leaning is once again a sole agent. Its task consists in leaning, in
IDL, the influences that the roles of the agents it is interading with exert on itself, which
amouns to bulding an explicit model of these agents. The table below summarizes the
charaderistics of this phase:

Beneficiary An individual agent in a given individual role and associated goal G
Task Learning the influences of other individual roles on one’s own current
individual role by explicit modeling of the other agents
Approaches |Use the definition of the self-interested goal G for:
— building a model of the influence of other individual roles
— tuning a behavior by adjusting parameters for reaching G when
confronted to other individual goals
Techniques Relational learning (Aha, 1992 ; Giordana et al., 1997; Muggleton and
Raedt, 1994; Zucker et al., 1998) Concept learning (Dietterich 1990)
Difficulties The expressive power of IDL, the choice of learning protocols.
Protocols Two agents with a fixed individual role R1 and R2 where:
1. R1lis adaptive and R2 is not (either off line or online),
2. R1 and R2 adaptive (either off line or online),
3. Real condition (online)

Table4-2 - Andromeda's Phase 2 in a nutshell

The methoddogicd interest of this phase is obvious: only the meaningful dependencies
will be kept, that is the dependencies that expressan influence between two agents when they
are playing two gven individual roles. However, the key role of the protocol used for the
leaning task shoud na be underestimated: it relies on the same hypahesis as that being
made in Casdopeia, namely that the definition d one-to-one dependencies is sufficient to
constitute relevant groups. In the caes where an agent simultaneously needs to influence or be

Page 22



influenced by a number of agentsthat play the samerole, it isthe duty of the designer to apply
this knowledge and dcefine spedfic protocols. Working undr this hypahesis nevertheless
means that it simplifies performance e/aluation duingthe leaning process

4.4. Phase3- learningrelational roles

In Andromeda, phese 3 concerns the building d the relational roles. The language used
for describing relational roles is RRL. This language is made up d predicaes such as
INFLUENCING and INFLUENCED. Which correspondto the typology d relational roles introduced
in Cassopeia. The mgjor difference with Cassopeia, however, is that the relational roles are
defined using gals which alow flexible relational roles that may be leaned in dfferent
contexts.

The relational roles are built primarily by analyzing the dependencies leaned in terms of
"adive" influences. The fad that the role played by an agent A dependis on ancther role (i.e.
that must be played by ancther agent) shoud bah enable A to influence the other agentsin a
spedfic way, and induwce these aents to read¢ acwrdingly (i.e. by undrtaking the
correspondng role). The goals to be reatied when trying to lean the relational roles are
therefore thredold: (1) knowing which influence sign to produce and when to prodiwceit; (2)
knowing hawv to choose anong dfferent influence signs and (3) knowing how to read to an
influence sign by seleding the gpropriate individual role. The adions or skill s that will be
undertaken when triggering these roles can either be provided by the designer (i.e. spedfic
communicaion protocols or role seledion mechanisms) or, as in the cae of the individua
roles, leaned bythe agents.

In this case, the beneficiary of the leaning task is nat one agent, bu a set of two agents
that in fad lean to coordinate themselves with resped to their dependencies. The table below
summarizes the charaderistics of this phase:

Beneficiary Two agents having several individual roles

Task Learning coordination and relational roles in RRL with explicit modeling of the
other agent's individual roles

Approaches - building Model: finding when to change individual role

- building Model: finding when informing about one's individual role
- tuning a model: adjusting own parameters for changing of individual
roles.

Techniques Relational learning, Genetic algorithms

Instance Based Learning, Genetic programming
Difficulties The expressive power of RRL, Learning measurements
Protocols Two agents:

1. two adaptive agents (either off-line or on-line)
2. one non-adaptive agent (either off-line or online)
3. in real conditions (online with all the other agents)

Table 4-3 - Andromeda' s Phase 3in a nutshell

4.5. Phase4 - learningto build groups of agents

In Andromeda, phese 4 concerns asssting the designer in defining the groups of agents.
The language used for group dfinitionis cdled GDL. Asin Cassopeia, agroup d agentsis
built uponthe one-to-one dependencies and corresponds to a path onthe dependencies graph.
Although leing provided with relational roles is in most cases aufficient for the ayents to
coordinate themselves, the idea behind establishing these groups is to enable the agents to
explicitly cooperate by identifying the regularities in the simultaneous adivation d their
individual roles by their relational roles.

Page 23



In this phase, the beneficiary of the leaning is therefore aset of agents (althoughthe
identificalion is dgill being made & agent level). The table below summarizes the
charaderistics of this phase:

Beneficiary A group of agents already provided with their relational roles
Task Identifying configurations in GDL with explicit modeling of the other's individual
roles
Approaches Building groups
Techniques Conceptual clustering (Stepp and Michalski, 1986) to organize roles
Case Based Reasoning (Kolodner, 1993) to memorize previous design case
Difficulties Evaluation of group usefulness
Protocols Unsupervised learning protocols

Table 4-4 - Andromeda’ s Phase 4 in a nutshell

The designer can arient the identificaion d the groups by providing spedfic goas (and
their correspondng performance measurements) that shoud be wlledively readed by the
sets of agents. This enables the agents, when two dfferent groups can be formed for the same
end, to compare their performancewith regard to these goals.

4.6. Phase5- organizational role

In Andromeda, the fifth and last phase cncerns the definition d organizaional rolesin a
languege cdled ORL, which contains predicates smilar to the types of roles defined in the
typoogy introduced in the fifth layer of Cassopeia. The organizaional roles play the same
role w.r.t. the groups as the relational roles w.r.t. the dependencies. For a set of agents, the
goal to be readed in this case is not simply to rely ontheir relational roles for seleding the
appropriate individual roles, but to be ale to identify the situations in which they can adively
and dyramicdly manage the olledive seledion d a given set of roles previously identified
asagroup.

The behaviors or skill s that will be undertaken by the agents when triggering ore of these
roles can either be suppied by the designer (i.e. spedfic negatiation protocols or cooperation
schemes) or leaned by the agents. The first option is nevertheless likely to be the most
common case sincethe latter isavery difficult learning task.

The beneficiary of the leaning is theoreticdly the entire set of groups of agents, i.e. the
overal MAS. However, tuning the global behavior of the MAS means that the designer must
be ale to define one or more global utility functions, which is not always the cae. So, in
pradice, the beneficiaries are the group d agents for which such a function can be eaily
defined.

Beneficiary All the groups of agents
Task Explicit modeling of the dynamics of groups in the ORL.
Approaches - building Model of others: finding when enabling/disabling the relational roles
- tuning @ model: adjusting own parameters for changing the relational roles.
Techniques Relational learning, Genetic algorithms
Instance Based Learning, Genetic programming
Difficulties Conceiving organizational roles
Protocols Real conditions, where performances are measured by the global utility function
of the MAS.

Table 4-5 - Andromeda’s Phase 5 in a nutshell

4.7. Andromedamethodological process

Andromeda’s basic principle is to let the leaning experiments take placebetween ead of
the layers definitions in Cassopeia. In that way, for example, ornce the designer has defined
the goals to read within the first layer, the mrrespondng roles are leant by the agents (in an
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environment depending onthe protocol chosen) and then reintroduced as individual roles in
the same layer (possbly besides roles already hand-coded by the designer). The goal of the
methoddogy is to kegp a maximum of flexibility in the design pocess that is to allow the
designer to introduce knowledge & the different levels, while suppating the posshility to be
asgsted by the leaning system when the overall complexity becmes too important, or when
he does nat redly manage dl the subtleties of the domain.

Keging a good lalance between these hand-coded and leant roles sioud alow the
designer to kegp onmanaging the design process while dlowing the system to propcse him
new original solutions. These two approaches can be cmbined very fredy, the designer may:

— entirely designagiven layer and rely onthe ayents for learning the subsequent ones. We
have for instance used this approac for leaning the relational and aganizational roles
of ateam of robas whaoseindividual roles had been previously defined.

— partialy define the diff erent roles, requiring from the system that it completes them with
resped to certain gaals, which authorizes avery powerful incremental approach.

— design the whole system and rely on the aents for tuning the doices made, by
adjusting the parameters used at ead level.

The design pheses order, asin Cassopeia, is not redly prescribed and all ows to undertake
an incremental as well as iterative design process However, it is a littl e bit more difficult to
start at any of the phases, since they usually require that the previous ones be ather partialy
designed or leant. We therefore recommend a bottom-up pocess in which the order of the
steps corresponds to the numbering d the phases. The figure below presents the integration
the Cassopeia's layers and Andromeda’s phases.

Environment
| Participant | o )
| /i Set of Organizational rolesinRRL | === === ==x.
- < e o CEEEEEEREEEEEE LR Phase 5

\ ; \ Goals, Performances > Relational Learning
:‘ ) { Genetic algorithms
| 4 Instance-Based Learning

S Genetic programming

Reinforcement Learning

Phase 4
.............................. »- Unsupervised Learning
Conceptual Clustering
Case-Based Reasoning
Memory-based Learning

Set of relational roles in RRL
.......................... Phase 3

Goals, Performances Relational learning
.............................. > Genetic algorithms
Genetic Programming
Reinforcement Learning

Set of dependenciesiniDL | Tttt Tl

Requires Phase 2
Facilitates M 0 i i i i i i s e e e P Relational Learning
Concept Learning

| Phase 1

. LU Goals, Performances . Reinforcement Learning
Genetic Algorithms
Neural Networks

[

Figure 13- Thefivelayers of Cassopeia and the wrre sponding
learning phases used in Andromeda
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The mgjor differencewith the Cassopeia design processis that the roles are defined using
goals which afford to have flexible roles that may be leaned in dfferent contexts. The
leaning approaches may vary from:

— knowledge intensive approadies. the behavior is defined by the designer as a
parameterized description in the wrrespondng language and leaning consists in
adjusting the parameters depending onthe environments. When no marameters exist, this
phase in Andromeda is smilar to that of Cassopeia.

— learning intensive approacdes: the behavior defined in terms of its goal may be leaned
in the mrrespondnglanguege (IRL, IDL, GDL or ORL) from experiences.

S. CONCLUSION

One of the most challenging and, in ou opinion, little addressed questions that can be
foundin Distributed Artificia Intelligence today is that of the methoddogicd design d a
leaning multi-agent system. In this paper we have shown howv an agent-oriented, role-based,
method, Cassopeia, could be used to classfy and integrate Madine Leaning (ML)
techniques in the design processof an MAS by carefully considering the different levels of
behaviors to which they can be gplied and the techniques which appea to be best suited at
ead level. Using the RoboCup Chall enge, we have shown the large part of the MAS-design
adivity often left to be done as aresult of heuristic dhoices or experimental adivities.

One key motivation for integrating macdiine leaning techniques into the MAS design
processis to develop adaptive MAS. It has appeaed that such integration alows bath the
development of adaptive agents and also suppats the development processitself. The more
than fifty yeas of experienced acaumulated in the field of machine leaning (Saitta and Neri,
19989 have shown that leaning is not the sole means to aauire knowledge and that
knowledge-intensive gproaches have been succesdul. For this reason, we cnsider that
Andromeda forms a bridge between knowledge-intensive methods such as Cassopeia and
more leaning-intensive gproadies that rely on machine leaning. In agents designed using
the Andromeda methoddogy, there ouglt to be agood lalance between their leant behaviors
and innate skill s.

Finaly, we consider that Andromedais the first attempt to integrate the variety of macine
leaning techniques to suppat the MAS-design process and also design leaning MAS. Our
current work is focused on the development of an integrated platform to suppat the
development of MAS foll owing the Andromeda approach.

On atheoreticd level, we ae working onthe definition o a strong formalizaion d the
five different description languages used at the various architedural level that, besides being
used in the various leaning tasks, will serve in Cassopeia itself for describing the diff erent
layers. On a pradicd level, we have begun wsing Andromeda for designing the four teams of
socca-playing robas® we ae airrently bulding with the suppat of the CNRS and the
University of Paris 6. This sioud soon povide us with arich base of experimental data.

3 That shoud enter the four competiti ons defined in RoboCup : simulation league, small-size, middle-size and legged robats.
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