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ABSTRACT
Single-pixel imaging is a paradigm that enables the capture of an image from a single point detector using a spatial light
modulator. This approach is particularly interesting for optical set-ups where pixelated arrays of detectors are either too
expensive or too cumbersome (e.g., multispectral, infrared imaging). It acquires the inner product between the image of the
scene and a set of user-defined patterns that are sequentially uploaded onto the spatial light modulator. Compressed data
acquisition reduces the acquisition time, although it leads to an ill-posed reconstruction problem, which is very challenging
for real-time applications.

Recently, neural networks have emerged as competitive alternatives to traditional reconstruction methods. Neural
networks are parametric models that are trained by exploiting large datasets. Their noniterative nature allows for fast
reconstructions, which opens the door to real-time image reconstruction from compressed acquisition.

In this study, we evaluate the different networks for static and dynamic imaging. In particular, we introduce a recurrent
neural network that is designed to exploit the spatiotemporal redundancy in videos via a memory state. We validate our
algorithms on simulated data from the UCF-101 dataset, with a resolution of 128×128 pixels and a compression ratio of
98%. We also show experimentally that we can resolve small spectral differences in the spectrum of human skin measured
in vivo.

Keywords: Hyperspectral imaging, deep learning, image reconstruction, video reconstruction, computational optics,
single-pixel camera

1. INTRODUCTION
A single-pixel (SP) camera is a compressive imager that uses a single point detector to recover a two-dimensional image.1

With a set of lenses and a digital micro-mirror device (DMD), the set-up can acquire the inner product between the scene
and some user-defined light patterns. SP imaging has been used successfully for fluorescence microscopy,2 hyperspectral
imaging,3, 4 diffuse tomography,5 and image-guided surgery.6 As SP measurements are performed sequentially, it is neces-
sary to limit the number of light patterns for real-time applications. Therefore, the reconstruction problem of SP imaging
is typically an under-determined inverse problem.

Under-determination is classically addressed using `2-7 or `1- (or total variation)1 regularization. On the one hand, `2
approaches are fast, but they can lead to reduced image quality. On the other hand, while `1 approaches lead to improved
image quality, they require time-consuming iterative algorithms. Recently, deep neural networks have shown promising
results for image reconstruction.8, 9 10 proposed an auto-encoder network for SP image acquisition and reconstruction.
This represents a useful step towards real-time imaging, although the use of a fully connected layer with more than 99.5%
of the network parameters is not well understood yet. Moreover, this approach processes each frame independently, which
fails to exploit the spatio-temporal redundancy in video sequences.

In this study, we first interpret the SP reconstruction problem as a completion problem where the missing measurements
have to be estimated. Given an image database, we derive analytically the best linear solution of the completion problem.
Then, we freeze the fully connected layer of a network so as to implement this solution, and train only the convolution layers
downstream. Freezing the fully connected layer significantly decreases the number of parameters to be learnt. Finally,
we then propose a fast deep-learning reconstructor that exploits the spatio-temporal features in a video. In particular,
we consider a recurrent neural network (RNN) that is suited to handling image sequences through its internal state that
memorizes previous inputs. Among RNNs, the long short-term memory cells are probably the most popular deep-learning
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variant.11 Here, we consider gated recurrent units, which have been shown to have similar performance to long short-term
memory cells,12 although they have less memory requirement.

This paper is organized as follows. In section 2, we introduce the mathematical framework of SP imaging, alongside
the classic SP reconstruction approaches. In Section 3, we first give an interpretation of the use of a fully connected layer
to project the raw measurement data into the image domain. We also describe our proposed RNN for solving the SP video
problem. Section 4 reports our numerical simulations and experimental results, which are discussed further in Section 5.

2. SINGLE-PIXEL VIDEO RECONSTRUCTION
2.1 Single-pixel acquisition
Let ( fff t)t∈N ∈ RN×1 be a video sequence, where fff t is the t-th frame in the video sequence. With a SP camera, we have
access to a measurement sequence (mmmt)t∈N ∈ RK×1, as given by1

mmmt = PPP fff t∆t, ∀t, (1)

where PPP ∈RM×N is the sequence of patterns that are uploaded onto the DMD, and ∆t is the integration time. For each time
frame, PPP = (pppt,1, . . . , pppt,M)> ∈ RM×N

+ is a matrix that contains a sequence of M patterns. These patterns can be chosen on
an orthogonal basis (e.g., Hadamard;13 Fourier;14 wavelets7). There are several ways to implement patterns with negative
values (see 15 for details). Here, we consider the splitting methods where each pattern is separated into its positive and
negative components. We finally assume that fff t is slowly varying over a period of time M∆t, which corresponds to the
acquisition of each measurement vector mmmt .

2.2 Static single-pixel reconstruction
Static reconstruction recovers fff ∗t ≈ fff t by designing reconstruction schemes Φ that rely solely on the current measurements;
i.e., fff ∗t = Φ(mmmt),∀t. Traditional static approaches solve a sequence of optimization problems of the form

fff ∗t ∈ argmin R( fff t) s.t. PPP fff t∆t = mmmt , ∀t, (2)

where R is typically the `2 norm7), the `1 norm,1 or the total variation semi-norm.16 To speed-up the reconstruction, 10
proposed the use of an auto-encoder network Φ, such that

fff ∗t = Φθθθ
∗(mmmt), ∀t, (3)

where θθθ
∗ represents the weights of the network that are optimized during the training phase. Although the training phase

is time consuming, the evaluation of Equation (3) is fast. However, this approach fails to exploit the spatio-temporal
redundancy within the video sequences, as the same network Φθθθ

∗ is used for all of the time frames, and it has no feedback
mechanism.

2.3 Dynamic reconstruction
Dynamic reconstructions can exploit temporal features by designing reconstruction operators Φ that take into account the
measurements of the previous frames (mmmt ′)0≤t ′≤t for the reconstruction of the current frame fff t :

fff ∗t = Φ(mmmt , . . . ,mmm0). (4)

In particular, different studies that have proposed sparsity-promoting solutions rely on minimizing a problem of the form17

fff ∗t ∈ argmin R( fff t , . . . , fff 0) s.t. PPPt ′ fff t ′∆t ′ = mmmt ′ , 0≤ t ′ ≤ t (5)

However, such approaches require iterative schemes that lead to reconstruction times (∼min) that are too long for real-time
applications.



3. PROPOSED APPROACH
3.1 Static reconstruction through Bayesian completion
Let QQQ ∈ RN×N be an image basis that includes the acquired patterns; i.e., QQQ = [PPP>,HHH>]>, where HHH ∈ RL×N , L = N−M,
represents the missing patterns. On the assumption that QQQ is an orthogonal matrix, the traditional least-squares solution is
given by

fff ∗t = QQQ>yyy∗t , with yyy∗t =
[

mmmt
000

]
, (6)

The zero entries of yyy∗t that correspond to coefficients that are not acquired can be estimated through their correlation with
the acquired coefficients mmmt , by exploiting a database of natural images. Assuming that the measurement vector mmmt is a
sample of a Gaussian random vector, we have18

fff ∗t = QQQ>
[

III
ΣΣΣ21ΣΣΣ

−1
1

]
mmmt +QQQ>

[
000

µµµ2−ΣΣΣ21ΣΣΣ
−1
1 µµµ1

]
, (7)

where ΣΣΣ21 ∈RL×M is the covariance between the missing and the acquired coefficients, ΣΣΣ1 ∈RM×M is the covariance matrix
of the acquired coefficients, µµµ2 is the mean of the measured coefficients, and µµµ2 is the mean of the missing coefficients.
We assume that the covariance matrix ΣΣΣ1 is invertible.

Given an image database { fff (k)}K
k=1, we compute the previous statistics as

µµµ1 =
1
K ∑

k
PPP fff (k), µµµ2 =

1
K ∑

k
HHH fff (k), (8)

ΣΣΣ1 =
1

K−1 ∑
k
(PPP fff (k)−µµµ1)(PPP fff (k)−µµµ1)

>, ΣΣΣ21 =
1

K−1 ∑
k
(HHH fff (k)−µµµ2)(PPP fff (k)−µµµ1)

>. (9)

3.2 Static reconstruction based on deep learning
When the measurement vector mmmt cannot be assumed to be a sample of a Gaussian random vector, the solution to the
completion problem is nonlinear. We propose to learn this through a family of nonlinear mapping Hθθθ parameterized by θθθ .
We consider a neural network model of the form

Hθθθ =Hθθθ L ◦ . . .◦Hθθθ 1 (10)

where Hθθθ L , 1≤ `≤ L, is the `-th layer of the network, and ◦ is the function composition.

The first layer is traditionally a fully connected layer that maps the measurement mmmt ∈ RM to a raw solution f̃ff t ∈ RN ,
as shown in Fig. 1. Mathematically, the output of this layer can be expressed by

f̃ff t =Hθθθ 1(mmmt) =WWWmmmt +bbb (11)

Here, as in 18, we set the weights WWW and the biases bbb to provide the solution given by Equation (7). The rest of the layers
of the network are trained considering the mean square error loss function

θθθ
∗ ∈ argmin

(θθθ 2, ...,θθθ L)

1
K

K

∑
k=1
‖Hθθθ (mmm

(k))− fff (k)‖2 (12)

where {mmm(k) = PPP1 fff (k)∆t}K
k=1 are the measurements associated to the image database { fff (k)}K

k=1.



mmmt f̃ff t fff ∗t

FC(M,N) ConvGRU(9,64) ConvGRU(1,32) Conv(5,1)

Figure 1: Proposed recurrent neural network for single-pixel video reconstruction. The design is inspired by 10, with the
convolutional layers replaced by convolutional gated recurrent units (ConvGRUs) that maintain the long-term temporal
dependency, as in 19. ConvGRU(Ks,Fm) designates a ConvGRU cell with convolutional kernels of size Ks×Ks and Fm
output feature maps.

3.3 Dynamic reconstruction using recurrent neural networks
To exploit the temporal redundancy of video sequences, we use recurrent layers that have a hidden memory state. The
current frame fff ∗t is estimated from the current measurement vector mmmt and the previous hidden state hhht−1

( fff ∗t ,hhht) = Gθθθ (mmmt ,hhht−1) (13)

where G represents the RNN and θθθ are the parameters of the RNN.19 Note that the hidden state is also updated, so as to
maintain long-term dependency.

We propose the four-layer network depicted in Fig. 1. The first layer is a fully connected layer that projects the
measurement frame mmmt to the image domain, as explained in Section 3.2. The next two layers are two convolutional gated
recurrent units,20 which are followed by a (regular) convolutional layer. Given a video database { fff (k)t }1≤k≤K,1≤t≤T , where
fff (k)t ∈ RN is the t-th frame in the k-th video, we trained our network as

θθθ
∗ ∈ argmin

θθθ

K

∑
k=1

T

∑
t=1

‖ fff (k)t −Gθθθ (mmm
(k)
t ,hhh(k)t−1)‖2

2

2ST
+λ‖θθθ‖2

2 (14)

where mmm(k)
t = PPP fff (k)t ∆t is the measurement vector for t-th frame in the k-th video, and λ is the weight decay parameter.

Weight decay is a classical regularization procedure that ensures the convergence of the training.

4. RESULTS AND DISCUSSION
4.1 Numerical experiments
We chose M = 333 Hadamard patterns of size N = 128×128. Our choice for M is mostly motivated by the implementation
of a real-time algorithm. With a DMD refresh rate of 20 kHz, and splitting the Hadamard patterns into positive and negative
patterns,15 the choice of M = 333 leads to a frame rate of about 30 frames per second.

The size of the convolutional kernels and the number of feature maps of our RNN are chosen to mimic those in 10. We
trained and tested our network using the UCF-10121 dataset. This is an action recognition dataset that consists of 13320
videos from 101 action categories. We down-sampled all of the frames to 128×128 pixels.

The recurrent network is implemented using Pytorch22 and trained using the ADAM23 optimiser for 60 epochs. The
step size is initialized to 10−3, and divided by 5 every 40 epochs. Each sample consists of 10 consecutive frames that are
randomly sampled from each video. We set the weight decay parameter λ to 10−6. The number of learned parameters is



(a) Ground Truth (b) (c) (d)

(e) Ground Truth (f) (g) (h)

Figure 2: Reconstruction of two frames of a fluorescence-guided neurosurgery video sequence. (a) Ground truth of frame
#10. (b) Completion method: peak signal-to-noise ratio (PSNR) = 26.76; structural similarity (SSIM) = 0.83. (c) Static
network proposed in 10: PSNR = 26.85; SSIM = 0.83; (d) Proposed recurrent network: PSNR = 27.09; SSIM = 0.84.
(e) Ground truth of frame #15. (f) Completion method: PSNR = 27.83; SSIM = 0.85. (g) Static network proposed in 10:
PSNR = 27.96; SSIM = 0.85. (h) Proposed recurrent network: PSNR = 28.17; SSIM = 0.86.

1021185. Note that the fully connected layer is computed beforehand, as explained in Section 3, so our network does not
learn it.

Table 1: Average peak signal-to-noise ratio (PSNR) and average structural similarity (SSIM) over the UCF-101 test dataset
for the three different methods, as the least-squares solution (see Equation (6)), statistical completion (section 3.1), and the
static network,10 plus our proposed recurrent network (section 3.3).

Method PSNR SSIM

Least-squares solution (6) 20.81 0.9013
Completion method (section 3.1) 21.77 0.9205
Static network10 22.17 0.9255
Proposed recurrent network (section 3.3) 22.25 0.9263

In Table 1, we compare the average peak signal-to-noise ratio (PSNR) and the average structural similarity (SSIM) of
the output of our network with the output of the network of 10, and with the result of the statistical completion (section 3.1)
and that of the `2 regularisation, or the least-squares solution of Equation (6). We compute the PSNR and SSIM over the
whole video frame-by-frame, and we average the frame-wise PSNR and SSIM over every video. We note that the recurrent
network outperforms the other methods, and it is followed closely by the static network. We also note that despite being
outperformed by the two networks, the completion method yields much higher scores than the pseudo-inverse method.

We display some sample frames of a video from the testing set in Fig. 2. It appears that indeed the estimate for the
recurrent network shows greater accuracy compared to the other methods.

4.2 Experimental measurements
To validate our reconstruction methods, we also built the experimental set-up depicted in Fig. 3. The telecentric lens
(Edmund Optics 62901) is positioned such that its image side projects the image of the scene onto the DMD (vialux V-
7001), which is positioned at the object side of the lens. The DMD can implement different light patterns by reflection



Figure 3: Optical set-up of the single-pixel camera.

of the incident light onto a relay lens, which injects the light into an optical fiber (Thorlabs FT1500UMT 0.39NA). This
optical fiber is connected to a spectrometer (BWTek examplar model No BRC115P-V-ST1). We sequentially upload
M = 333 patterns onto the DMD, each of dimension N = 64×64, which gives a compression ratio of 92%. One spectrum
is acquired by the spectrometer for each pattern over 15 ms, to give the total acquisition time of 1.3 s. As depicted in
Fig. 4, we image the back of the hand of a human subject, which shows intact skin, a keloidal scar, and superficial vein
regions. Then, we reconstruct a 64× 64 image with the statistical completion method, using the open-source SPIRiT
Matlab Toolbox.24 The results are shown in Fig. 5.

We can identify the three regions of interest here: the keloidal scar, a vein, and the regular skin. Therefore, we
extract some pixels in each of these regions (see Fig. 4) and compute the average spectrum (see Fig. 6). Each spectrum
is normalized by the spectrum of the halogen lamp. The resulting spectra are in agreement with the biomedical literature.
We observe the blue color of the vein, which has the same amount of blue as for the regular skin, but less intensity in the
red wavelengths.25 The red keloidal scar is less blue than the rest of the skin, although it has many high components in
the red wavelengths.26 We finally integrate the three spectra below 600 nm (blue region) and above 600 nm (red region)
to quantify the blue-to-red ratio of the spectra (see Tab.2). We observe the lowest ratio for the keloidal scar (less blue than
the skin) and the highest for the vein (less red than the skin), as expected.



Figure 4: Back of a hand imaged by an RGB camera (right) and our compressive hyperspectral camera (left). The three
regions of interest are superimposed on the gray-scale compressive image.

Figure 5: Hyperspectral reconstruction of the back of a hand, with light from a halogen lamp.



400 450 500 550 600 650 700 750
Wavelength

(nm)

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

In
te

ns
ity

Keloid Scar
Skin
Vein

Figure 6: Average spectra in the three regions of interest (skin, vein, keloidal scar).

Table 2: Average color values for the different regions of interest

Region of interest λ < 600 nm λ > 600 nm

Keloidal scar 0.283 0.717
Skin 0.321 0.679
Vein 0.341 0.659

5. CONCLUSIONS
We demonstrate the interest for recurrent networks for video reconstruction using numerical simulations. We also show
experimentally the interest for our Bayesian completion reconstruction method for hyperspectral data. In particular, we
demonstrate that we can resolve small spectral differences in the spectrum of human skin measured in vivo.

In future work, we aim to take into account measurement noise and to evaluate our recurrent network using experimental
data. We also plan to improve our dynamic reconstruction by designing other recurrent network architectures.
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