N

N

DMeroon, A Distributed Class-based Causally-Coherent
Data Model — General documentation - Revision 1.64

Christian Queinnec

» To cite this version:

Christian Queinnec. DMeroon, A Distributed Class-based Causally-Coherent Data Model — General
documentation - Revision 1.64. [Research Report| lip6.1998.039, LIP6. 1998. hal-02547797

HAL Id: hal-02547797
https://hal.science/hal-02547797v1
Submitted on 20 Apr 2020

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-02547797v1
https://hal.archives-ouvertes.fr

B

DMEROON
A Distributed Class-based Causally-Coherent Data, Model
— General documentation — Revision: 1.64 —

Christian Queinnec
Université Paris 6 — Pierre et Marie Curie
LIP6, 4 place Jussieu, 75252 Paris Cedex
France — Ml: Christian.Queinnec@lip6.fr

DMEROON provides a data model above a coherently distributed shared memory. DMEROON allows multiple
users to statically or dynamically create new classes hierarchically organized, to dynamically instantiate
these classes and, to dynamically and coherently share the resulting instances over a network. DMEROON
automatically takes care of representation and alignment, marshaling and unmarshaling objects, migrating
and sharing objects, local and global garbage collections.

This document describes DMEROON, its philosophy of design, its architecture and principles of implemen-
tation, and its bindings with various languages. It also presents some internal details within DMEROON or
some applications above DMEROON.

This document tries to present the overlines of DMEROON, in places, it describes features which are not
implemented, in some other places there are implemented features that are not documented. I packed it up
in order for interested people to get an idea and, perhaps, induce them to pursue my effort or definitively
convince me of its little value. I have a lot of lectures to prepare for the following months and will not be
able to devote much time to DM EROON.

Contents

1 Introduction to DMEROON

1.1
1.2
1.3
14

21
2.2
2.3

24
2.5

2.6

3.1
3.2
3.3
3.4
3.5
3.6

About this document
About DMEROON o oo e
Frequently Asked Questions e
Acknowledgments L. e

Fundamental data model

Types of fields e
Access tofields e
Distributed aspects o e e e e e e e e
2.3.1 Clocks e e e e e
SIteS e e e e e
Class-based model e
2.5.1 Main predefined classes
Abstract APL e
2.6.1 Imitialization e
2.6.2 Class. 0 i e e e e e
2.6.3 Fields e e e e e
2.6.4 Allocation e
2.6.5 Site e e e
2.6.6 Clock e e
2.6.7 Communication e e e e e e
2.6.8 Equality
2.6.9 Ubiquity L
2.6.10 DMEROON a8 & SEIVET « v & v v v v v v v e e e e e i e e e e e e e e e e
2.6.11 Miscellaneous o o e e e e e e e e e e e e

C binding

Functions e
Global variables e e
Contexts e e e e e e e e
Error codes e e e e e
Static generation of classes L
Tutorial examples oL
3.6.1 Dynamiccreation L e e e
3.6.2 Static definition L
3.6.3 Recursive class e e

11
12
14
15
16
16
18
18
21
21
22
22
23
23
23
23
24
25
25
25

4 Scheme binding

4.1 Functions
4.2 Variables
4.3 Libraries e
431 Tools
4.3.2 DMEROONet v v vt i it e it
4.4 Scheme peculiarities L.
441 Biglooo
5 DMEROONSCRIPT binding
5.1 Programs
5.2 Comnstants
5.3 Accesstofield.o
5.4 Commands
5.4.1 Basic commands
5.4.2 Vocabulary commands
5.4.3 Stack commands
5.4.4 Boolean commands
5.4.5 Arithmetic commands
5.4.6 Meta commands
5.4.7 Miscellaneous commands
5.5 DMEROONAPI
5.5.1 Debugging command
5.6 Use. e e e
5.7 DMEROONSCRIPT API.
5.7.1 Explicit evaluation
5.8 Development environment
5.9 Examples

6 Icsvas binding

Appendices

A DMEROON source files

A.1 Structuresoffiles

A.1.1 The TOP/DMeroon/c/ directory

A2 Rebuilding DMEROON
A3 Otherfiles
A31 C. . e
A32 Bigloo
A4 Binding DMEROON ot
A.4.1 The dmrzxz.hheader
A42 Thedmyzx.cfile
A43 Thegzxr.mkffile
A5 Writing code for DMEROON

B Object internal representations

B.1 Localobjecto
B.1.1 Uninitialized
B.1.2 Local sharable
B.1.3 Localcopyable
B.1.4 Semi-externalized
B.1.5 Externalized

CONTENTS

CONTENTS

B.2 Remote e
B.2.1 Reexported e
B.3 Site . ..o
B4 Class o e
B.5 Miscellaneous
B.6 Propertieso e e e
B.6.1 Object o e e e e
B.6.2 Entryitem L
B.6.3 Exititem

C Protocols
C.1 Existing protocols L e
C.2 Adding protocols
C.3 Some classes e
C.4 The DMEROON inner protocol o . o0t e e e e e
C.4.1 Ubiquitous objects o o e e
C.4.2 Stack-related commandso
C.4.3 Useful commands L
C.44 Specific commands L.
C.4.5 Technical commands e
C.5 Object-based protocol e
C.6 DMEROON and http e
C.6.1 The http protocol
C.6.2 Publishing informations Lo

D Driving DMEROON servers
D.1 Measuring the progress of a remote process
D.2 Distributed X cut buffer

CONTENTS

List of Figures

1.1

21
2.2
2.3
24
2.5

5.1
5.2

Al
A2

B.1
B.2
B.3
B.4
B.5
B.6

DMEROON OVEIVIEW v it et e e it e e e e e e e e e e e 8
DMEROON instance example 11
A remote pointer L L L e e 15
Locally cached remote object L 16
Object monitored by a clock with an up to date replica 17
Object monitored by a clock with an obsolete replica 17
A Site displayed in html oL 65
A mutable object displayed in html Lo 65
Layers and relationship between files L o L o 75
Objects in C, Bigloo and Ieslas o 80
States of local objects Lo e 83
Local uninitialized object 84
Semi-externalized objecto e 84
Externalized object L 86
Exit item with absent class and absent clock 0L 87
Reexported Exit item L 88

LIST OF FIGURES

Chapter 1

Introduction to DMEROON

DMEROON was conceived with many different goals in mind: portability with respect to hardware and
languages, expressiveness, dynamicity, coherency, reusability, self-description etc. DMEROON is the data
layer of a distributed language, named ICSLAS, which is still under progress. Nevertheless DMEROON has
been carefully designed so it can also be used, independently of IcsLAS, for various purposes:

e as a class-based system,

e as a marshaling engine,

e as a message passing layer,

e as a distributed shared memory.

DMEROON is based on a number of research results and offers unique features:

1.

language design [Que93],

DMEROON offers a class-based system with regular or indexed fields without inheritance restriction.
Objects can be shared if remotely referenced but still retain their identity.

object-oriented self-description [QC88, Que90].

Objects are described by their classes and classes are objects as well. Most of the implementation
of DMEROON can be freely inspected programmatically. The object system is distributed and sup-
ports multi-users working together i.e., dynamically creating new classes and dynamically exchanging
instances of them.

shared data coherency [Que94a, Que94b],

Mutation of remotely shared mutable objects is coherently i.e., causally propagated to sites caching
copies of these objects through a lazy invalidation protocol. DMEROON supports the notion of remote
pointer i.e., a field of type reference may refer to any kind of DMEROON object independently of its
location.

marshaling engine [Que97b],

Marshaling objects is considered as a compilation process, the resulting stream of bytes is then con-
sidered as a program which is interpreted by a deserialization interpreter. The exchange protocol is
therefore specified as a language and, most often, many different strategies of compilation exist; for all
of them the unmarshaling interpreter remains constant.

garbage collection design [LQP92],

Remotely shared data are managed with a reference counter. Useless objects or classes automatically
disappear, cycles of garbage are also recycled via another GC technique.

7

8 CHAPTER 1. INTRODUCTION TO DMEROON

DMEROON may be used for very different purposes, see figure 1.1, as well with various languages for which
a binding exists (Scheme (Bigloo, Scheme—C, OScheme, SCM, ...), C, Emacs, Tcl, all under progress).

e First, you may use DMEROON, stand alone, in a single process i.e., as a single site, just to take benefit
of its library of classes and objects. You may define your own classes, instantiate them, read or modify
fields within these objects. You may also describe or access C structured values with DM EROON classes.
Garbage collection is active if possible. You may inspect or modify DMEROON objects via the HTTP
protocol and thus control the parameters of your application in the spirit of Paws!. You may also
extend the DMEROON server to support additional protocols.

e Second, you can start multiple sites (i.e., processes on possibly different machines) and let DMEROON
be the marshaling/unmarshaling engine. You then copy structured values from site to site. Regular
unstructured values such as messages i.e., sequences of bytes, may also be exchanged if represented by
instances of String.

e Third, your application may be supported by the shared distributed memory provided by DMEROON,
you may then use shared objects. Examples of such applications are the distributed management
of DMEROON sources, distributing computations (farming) upon a synchronizing memory, archiving
structured and complex data for a variety of processes.

e Fourth, DMEROON may be the unifying framework that hosts, on a variety of sites, a variety of
applications allowing you and your colleagues to cooperate above a coherent memory.

other interactive

program.c

libdmeroon0.a

program.c

libdmeroon.a

interpreter

libdmeroon.a B

» http client

for C for C for Scheme
DMEROON T DMerooN | ~ | DMEeroonNn | 7 R
private : shared - shared :
memory L memory memory R

Figure 1.1: DMEROON overview

1.1 About this document

This document is a pot-pourri around DMEROON. It first describes the generic aspects of DMEROON then
details its current bindings (with C and Scheme). Additional appendices describe some finer points of the
implementation (as students keep asking me!).

Implementation note: Warning! This document is under construction as recalled in some
sections. I also sometimes comment finer points inside implementation notes such as this one.

1.2 About DMEROON

DMEROON is freely accessible under Gnu Library General Public License version 2. All remarks, bugs,
patches, extensions, stories etc. are to be mailed to:

Christian.Queinnec@lip6.fr

Online fresh information is available from:

'http://zenon.inria.fr:8003 /koala/phk /k-web/intro.html

1.3. FREQUENTLY ASKED QUESTIONS 9

http://www-spi.lip6.fr/~queinnec/WWW/DMeroon.html
Additional questions may be addressed to:
DMeroon@spi.lip6.fr
To subscribe to this unmoderated mailing list, send a mail to:
DMeroon-request@spi.lip6.fr
Insults are left to the following mailing list if one cares to create it:
DMeroon-haters@to.appear.somewhere
Finally, an ever-changing DMEROON server is sometimes reachable at:
http://youpou.lip6.fr:56423/

1.3 Frequently Asked Questions

<< Section under construction >>

© what means DMEROON ¢
The name DMEROON stands for “Distributed MEROON” where MEROON is the name of an object system
for Scheme. Informations on MEROON is available on:

http://www-spi.lip6.fr/~queinnec/WWW/Meroon.html
MEROON’s own FAQ tells us that the name MEROON was the name of my son’s teddy bear.

o How about PVM?

DMEROON is different from PVM for at least two reasons: DMEROON provides you a distributed shared
memory and structured objects with pointers. Conversely PVM offers task control, host management whereas
DMEROON only deals with data. Due to its youth, it is not ported as PVM is.

o How about Corba or ILU?

DMEROON is different from Corba and ILU: it does not provide multiple inheritance of interfaces nor
remote method invocation. It offers you automatic coherency for shared mutable objects, source code and
extensibility due to the self-description of the implementation. However, it might be interesting to let DME-
ROON understands the ITOP protocol. Corba offers pointers to remote interfaces whereas DMEROON offers
real mobile objects.

o How about Java?

DMEROON is different from Java: it offers you indexed fields allowing multiple values to be packed
together (so they are not split apart when marshaled), it offers a distributed shared memory and automatic
coherency. With Java RMI, a remote object is represented by a stub implementing some interface, the class
of the local stub and the class of the remote object are not comparable whereas in DMEROON they are
the same. Moreover in Java, the stub and the server object are compelled to inherit from special classes,
this is needless in DMEROON. DMEROON also offers handling C values (unsigned int for instance) with C
semantics.

1.4 Acknowledgments

Jing Wang wrote the first version of the http protocol part that allows to modify mutable fields of objects.
Jean-Michel Inglebert contributed with dmClient a tool to write and debug DMEROONSCRIPT programs.

10

CHAPTER 1. INTRODUCTION TO DMEROON

Chapter 2

Fundamental data model

A DMEROON object is an ordered contiguous sequence of fields, see figure 2.1. Fields may be regular (mono-
field) or indexed (poly-field). A regular field holds a single value while an indexed field holds an ordered
sequence of values whose number of elements is determined at instance creation time (currently this number
is stored right before these values). This uniform model allows to represent all mundane data structures
such as records, vectors, strings with full inheritance ability®.

The object shown on figure 2.1 starts with two regular fields, followed by an indexed field, itself followed
by a regular field. As in C, a DMEROON reference refers the first byte of its content. DMEROON also stores
a reference to the class of the object as well as a reference to its proxy (a DMEROON object containing all
the information needed to manage distribution) in a prefixed header which itself may be prefixed by the
standard header required by the binding language if any (see figure A.2, page 80).

malloc header I
and/or
type header h

DMEROON refi R e e m—
reference first (mono-)field

| |
| |
| second (mono-)field :
[size of third (poly-)field [

i last value of third (poly-)field
: fourth (mono-)field :
| |
| |

... other mono- or poly- fields ...

Figure 2.1: DMEROON instance example

INever dreamt of a colored string ? That is, from an implementation point of view: a repetition of characters followed by a
color.

11

12 CHAPTER 2. FUNDAMENTAL DATA MODEL

2.1 Types of fields

All fields have a precise type as shown in table 2.1. These types have sizes and alignment constraints that
depend on the site (the hardware running DMEROON) and on the C compiler used to compile the DMEROON
library. The sizes mentioned in the table are the usual ones. Every implementation of DMEROON must
implement all these basic types with their associated range but, on a particular site, some fields may be
bigger than indicated to implement the correct range of values.

Implementation note: For any machine I know, these sizes are the real sizes.

Every DMEROON type has an associated class with a single field, the value field, of that type. Hence
natl is associated to class Natl, etc. These classes are used in the implementation of DMEROON and may
be used or refined by interested users, see table 2.3.

For every C structure that has an equivalent DMEROON class, the layout of the structure and the layout
of the class are the same (same order of fields, same sizes, same alignment constraints). The DMEROON
model is richer since it allows indexed fields, it is also poorer since C offers bounded arrays that are currently
not part of the DMEROON model.

Implementation note: C structures are subsumed by DMEROON classes at the exception of
arrays. For instance, char s[5] s currently not supported in DMEROON, you must use instead
an indezed field or five contiguous regular fields.

Some basic types deserve special explanation.

e Signed integer types have a symmetric range to be free of one-complement or two-complement encod-
ings.

Implementation note: XDR then Corba adhere to two-complement, I may change on
that point.

e The reference type is used to hold a pointer to another DM EROON instance. The referenced instance
can be local to the current site or remote without any semantical differences.

Implementation note: A reference to a DMEROON instance is the address of the first
byte of its first field. This makes easy to allocate C structures with DMEROON allocation
functions and to handle them as C or DMEROON objects. For languages in which objects are
described by the address of the first word of their header (Bigloo for instance), pointers have
to be translated back and forth between DMEROON and the binding language. See figure A.2
for some implementation schemes.

e The data type can be used to record any non-DMEROON information that fits in the size of a pointer
to a local C datum i.e., a void* value. Such local information can be a file descriptor, a Scheme
value, an EBCDIC character, etc. You may transmit such a field, without DMEROON blessing, that is,
DMEROON does not ensure you anything on the size or on the representation of the transmitted field.
However if you use homogeneous machines, you may try.

e The code type is similar but may hold the address of a C function. The same lack of DMEROON
blessing holds of course. You may try it if you are sure that your functions are linked with similar
addresses on different machines.

e The “netnat*” types are similar to their “nat*” counterpart except that these natural numbers are
stored in “network order”. Some data structures, generally related to network structures (sockaddr_in
for instance), impose this encoding, it is therefore useful and less painful to let DMEROON manages
this encoding for you. That is, you never have to use “netnat *” numbers only their equivalent “nat *”
numbers.

2.1. TYPES OF FIELDS

13

index | name size meaning
(bytes)
0 nought 0 not instantiable
1 natl 1 natural (unsigned) number from 0 to 256! — 1
2 nat2 2 natural (unsigned) number from 0 to 256% — 1
3 nat3 4 natural (unsigned) number from 0 to 2564 — 1
4 nat4 8 natural (unsigned) number from 0 to 256% — 1
) reference 4 or 8 | pointer to a DMEROON instance
6 data 4 or 8 | non-DMEROON information (the size of a void* C variable)
7 code 4 or 8 | address of a C function
8 int1 1 (signed) small integer from —256'/2 + 1 to 256'/2 — 1
9 int2 2 (signed) small integer from —256%/2+ 1 to 256%/2 — 1
10 int3 4 (signed) small integer from —256%/2 + 1 to 256*/2 — 1
11 int4 8 (signed) small integer from —256%/2 + 1 to 256%/2 — 1
12 chari 1 ISO Latinl character
13 netnat?2 2 natural (unsigned) number from 0 to 2562 — 1 in network order
14 netnat3 4 natural (unsigned) number from 0 to 256* — 1 in network order
15 unicode 2 not yet implemented
16 floatl 4 IEEE floating point number with 32 bits
17 float2 8 IEEE floating point number with 64 bits
18 float3 16 IEEE floating point number with 128 bits
19 offset 4 internally needed by DMEROON
20 date 8 date following Unix convention
21 key 16 internally needed by DMEROON
22 class-options 4 internally needed by DMEROON
23 field-options 4 internally needed by DMEROON
24 port-options 4 internally needed by DMEROON
25 site-options 4 internally needed by DMEROON
26 external-options 4 internally needed by DMEROON
27 context-options 4 internally needed by DMEROON
28-63 reserved by DM EROONoOneone

Table 2.1: DMEROON primitive types

14 CHAPTER 2. FUNDAMENTAL DATA MODEL

e The “*¥4” types are not necessarily usable everywhere since they often occupy eight bytes and not all
hardware are able to add or divide 8bytes entities. It is nevertheless possible to migrate objects with
such fields from site to site, but you may not have, in some language binding, the possibility to manage
(i-e., read or write) these 8bytes entities. Nevertheless these types exist and are predefined.

e The float3 type is not implemented everywhere due to the lack of a common representation. It was
initially intended for long double of C but, unfortunately, their size may be 8 (sparc-bsd), 10 (ieee
80bits), 12 (linux) or 16 (sparc-solaris) bytes.

Implementation note: Types are encoded with a single byte. This leaves around 200 types
free for future extension. If you plan to introduce new statically predefined types, remember
that you will not be able to communicate with servers lacking them. However if your addi-
tional types are valuable, make others share them! Future releases of DMEROON will probably
use more predefined types for internal usage that is why some bytes are reserved.

e The key is an internal DMEROON type used to name objects that are to be known via the network. A
key qualifies a single object and is never reused. It is difficult to forge meaningful keys ex nihilo, this
allows to protect hidden remote objects from being discovered.

Implementation note: Currently, a key is composed of the IP number of the DMEROON
server where it was allocated, of the portnumber used by this server, of the date of creation,
of the value of a 16bits cyclic counter and, finally, of 32bits randomly computed. I may adopt
the DCE naming scheme some day.

2.2 Access to fields

Any DMEROON instance can deliver the content of its regular fields. Given an additional index i, it can also
return the content of the ¢-th value of an indexed field. Of course, it is not possible to access a field that
does not exist in an instance and, for indexed fields, indexes are checked to be within the range defined by
the instance. Mutable fields can be altered with the same limitations. Indexed fields can return the number
of values they hold on a per-instance basis.

The precise way to access, inquire or modify a field in a DMEROON instance depends on which binding
language is used with DMEROON: see, for instance, the C binding (chapter 3) or the Scheme binding (chapter
4). However access should always be performed via the appropriate functions to ensure the consistency and
the safety of DMEROON space and to give time to DMEROON to serve http requests or to manage, i.e.,
garbage collect, the memory.

A field is qualified by some options that conditionalize the access, see table 2.2. These options may be
freely combined. By default, fields are not mutable, not volatile, not local and not secret.

kind meaning

mutable | The field can be modified through the API.

volatile | The content of the field may evolve spontaneously.

local Never marshal the content of this field, its meaning is only local.
secret The field cannot be read.

Table 2.2: DMEROON field options

DMEROON prevents the mutation of immutable fields. Only mutable fields may be written. By default,
fields are immutable.

A volatile field cannot be cached: it must be read every time it is accessed. Even if the user cannot
modify it i.e., the field is immutable, its content may evolve. Volatile fields are often used by the DMEROON
implementation to allow the inspection of immutable but evolving values.

2.3. DISTRIBUTED ASPECTS 15

A local field cannot be read outside of the current site: it only has a local meaning. By default, fields
are not local. Local fields are handy for fields of the data or code type and may also be used to keep fields
secret.

A secret field cannot be read at all. It is probably not very interesting to be volatile at the same time.
This option is handy for some internal fields reserved to the implementation.

A field of type reference is always restricted to only refer to instances (whether direct or indirect) of a
given class. The root of all classes that is, Object, allows for all DMEROON objects.

2.3 Distributed aspects

DMEROON manages the DMEROON space which is the union of all DMEROON objects. Within a process,
the user space is the complement of the DM EROON space: values of data and code fields usually refer to the
user space. It is possible to perform computations in the user space then to copy results in the DMEROON
space to share them or exchange them with the marshaling/unmarshaling capacity of DMEROON.

A reference to a DMEROON object from the user space always refers to an instance such as the one
shown on figure 2.1. This is an invariant maintained by DMEROON: the user of the API never sees internal
DMEROON objects (such as Entry or Exit items).

an Entry

an object another object

y an Exit

Sitel

Figure 2.2: A remote pointer

The content of a field of type reference may be null or not. If non-null then it refers to a DMEROON
object. It is possible to merge its own DMEROON space with other DMEROON spaces if they are available
via the network. When merged, referenced objects may belong to one or another site without semantical
differences: users do not need to be aware of distribution but for speed. If the referenced object is local, the
reference is represented by a regular pointer; if the referenced object is not local, then a remote pointer is
used instead as shown on figure 2.2.

When a field of type reference is read, the DMEROON object which is referred to is brought locally i.e.,
is cached and a reference onto it is returned to the user (see figure 2.3). The cached object is also known
as a replica. A coherency protocol is run by DMEROON to ensure the consistency of the cached replica with
respect to communications between sites. Access to DMEROON objects should only be done through the
DMEROON API in order to maintain the consistency. This is costly with respect to direct access with offsets
as in C but allows DMEROON to garbage collect its space, maintain consistency, serve requests and the like.
DMEROON allows you to send references onto objects towards remote sites. Then all information exchanges
between sites (if represented by objects) are noticed by DMEROON so it may ensure coherency.

Reading a field of a cached object may be efficient under certain circumstances (not volatile, validly
cached). Writing a field always implies sending a message to the site that owns the original object asking

16 CHAPTER 2. FUNDAMENTAL DATA MODEL

an Entry

an object an original object

cached object

\

y an Exit

Sitel

Figure 2.3: Locally cached remote object

that site to perform the mutation. These details are fortunately hidden for the users.

2.3.1 Clocks

A shared mutable object is monitored by a clock, an instance of the predefined class Clock. When such an
object is mutated, its clock is incremented. Whenever sites exchange messages, they lazily propagate the
clocks they are aware of i.e., their clocks and others.

When an object is cached on a site, its associated clock is also cached. Moreover, the exit item associated
to the object memorizes the time when the cached object was read. For instance, on figure 2.4, the replica
was read at time 14.

Before a replica is read, its associated clock is checked not to have changed since the replica was fetched.
On figure 2.4, Sitel is not aware of any change on this clock so the replica is not obsolete. Had a message
been sent from Site2 recently, then Sitel would have advanced the clock to 15 thus making obsolete the
replica (see figure 2.5). When the replica is out of date, a request for a fresher copy will be sent (this
will authorize Site2 to advance its (cached) clocks with respect to Sitel). This is the essence of the lazy
invalidation protocol described in [Que94al.

There is a trade-off between the number of clocks to propagate and the number of objects that are
simultaneously invalidated because they are monitored by the same clock. DMEROON allows you to choose
the right grain: you may create clocks (or even subclass the Clock class) and associate them to objects on
a per-object basis.

All entry items have a reference counter counting the number of remote pointers referencing an object.
This allows for a simple garbage collector. A more elaborated marking GC is run by DMEROON to take care
of useless distributed cycles.

2.4 Sites

A site corresponds to a single address space (usually a process in Unix parlance). Sites may be connected
to form a bigger DM EROON space.

When a DMEROON object is allocated on a site, it is owned by this very site. If the object is motile, it
may migrate that is, be owned by another site. The site that owns an object serializes the mutations that
are applied on this object. It is possible to know which site owns an object.

An object is local to a site if it owned by this site, otherwise the object is remote and associated to an
Exit item i.e., remotely pointed. An object is present if local or cached. An object is absent if remote and

2.4. SITES

17

. a cached clock
a cached mutable object

Sitel

a mutable object a Clock

Figure 2.4: Object monitored by a clock with an up to date replica

a cached clock
a cached mutable object

Sitel

a mutable object

Figure 2.5: Object monitored by a clock with an obsolete replica

18 CHAPTER 2. FUNDAMENTAL DATA MODEL

not cached i.e., not associated to a replica on the current site. A replica is valid or, a remote object is validly
cached if its associated clock is not known to be out of date as perceived by the current site (see figure 2.5).

Sites are reified into instances of the immutable Site class. These objects may be read to discover the
properties of the site. A site has an information field that holds values that are said to be published i.e.,
readable by any one in possession of a reference onto that site object.

2.5 Class-based model

Any DMEROON instance belongs to a particular class, the class of which it is a direct instance. Classes are
related by inheritance. As MeroonV3 or Java, DMEROON is a single inheritance class-based model. When
a class A inherits from a class B, all the fields of B are also fields of A with the same properties. Therefore
when a class is defined only the additional fields it introduces are mentioned.

DMEROON predefines a hierarchy of classes, most of them can be subclassed at will without restriction.
The actual core hierarchy is shown on figure 2.3 where indentation means “subclass of”, for instance Type is
a direct subclass of Object, DMeroonType is a subclass of Type and therefore an indirect subclass of Object.
The implementation of DMEROON ensures that the is-a-subclass check (when comparing two classes) or the és-
an-instance check is always performed in constant time. Furthermore, in the current implementation of DME-
ROON, all predefined classes are statically allocated and not dynamically created i.e., they are ubiquitous.

Classes may be customized with some options. These are:

e non-subclassable: it is not possible to create a subclass of such a class (but predefined sub-classes
may exist).

e immotile: instances of that class cannot be migrated i.e., change their owning site (they may be
shared i.e., remotely pointed instead).

e non-instantiable characterizes a class that cannot be instantiated (this is reserved for some internal
classes of DMEROON).

e mutable: instances of such a class have at least one mutable field. This option is deduced from the
options of the fields.

e volatile: instances of such a class have at least one volatile field. This option is deduced from the
options of the fields.

e copyable: instances of such a class are, by default, copied rather than shared when communicated
from one site to another one.

e sharable: instances of such a class are, by default, shared rather than copied when communicated
from one site to another one.

2.5.1 Main predefined classes

Only the core classes are defined here. Many more useful classes also exist and will be described elsewhere
in particular those of the IcsLAS language.

Object [Class]

This class is the root of the inheritance tree. All classes inherit from Object therefore all objects are
(direct or indirect) instances of Object. The Object class has no field. The Object class is itself an instance
of Class.

2.5. CLASS-BASED MODEL

Object the root of all classes
Type
CType types of the C support language
DMeroonType DMEROON portable types
Class
Field
String repetition of charl
MutableVector mutable vector of DMEROON references
ImmutableVector immutable vector of DMEROON references
Clock
Hashtable
BoundedStack
ImmutableLink
ImmutablePair immautable dotted pairs a la Lisp
QueueLink
Symbol immutable symbols d la Lisp
Boolean Booleans as in Smalltalk
True #t as wn Scheme
False #f as in Scheme
ImmutableByteVector
Null nil as in Lisp
Site the class of the current site
Dictionary dictionary node, see appendiz C.6
Value Classes for all DMLEEROON types as in Java
Number
ExactNumber
SignedNumber
Intl
Int2
Int3
Int4
UnsignedNumber Classes for unsigned numbers (not as in Java)
Nat1
Nat2
Nat3
Nat4
InexactNumber
Floatl
Float2
Float3 not always present
Charl
NetNat2 Nat2 n network-order
NetNat3 Nat3 in network-order
Data reference to non-DMEROON values
Code reference to C functions
Reference reference to a DMEROON object
Date portable date
Context used for bindings
Facts asynchronous facts reported by DMEROON

Table 2.3: Hierarchy of predefined classes

19

20 CHAPTER 2. FUNDAMENTAL DATA MODEL

Class [Class]
options a sequence of bits encoded as a class-option
super an indexed sequence of reference to the superclasses
field an indexed sequence of instances of Field
name a repetition of characters

This class describes the structure of classes. All classes are direct or indirect instances of Class, partic-
ularly Object and Class according to the ObjVlisp model [Coi87]: Class inherits from Object, Object is
an instance of Class and so is Class itself.

The options field describes some properties of the class such as its immutability or motility etc. This field
is reserved for DMEROON’s usage. An instance of an immotile class cannot migrate from a site to another
one: it is nailed down to the site where it was created. An immotile instance may be copied or remotely
referenced hence shared. A non-subclassable class cannot be sub-classed. An immutable class imposes its
immutability to all its fields.

The indexed super field refers in order to the super-classes. Object is the super-class of index 0, the last
super-class is the class itself.

The indexed field field refers to instances of Field describing the fields of the class.

Field [Class]
options a sequence of bits encoded as a £ield-options
introducing a reference to the class that introduced the field
referring a reference to the class the values should be instance of
offset an indexed sequence of offset
name a repetition of characters

This class describes how to access fields within instances. A field descriptor encapsulates all the infor-
mation needed to access or introspect such a field in an instance of such a class.

The options field describes some properties of the field such as its immutability etc. This field is reserved
for DMEROON’s usage.

The introducing field refers to the Class instance that introduced that field i.e., the class from which
this field is inherited.

When the field holds reference(s), the referring field contains the class the referred values should be
(direct or indirect) instances of. This field is useless for other DMEROON types.

The indexed offset field (a kind of nat3) contains raw numbers encoding the type of the value of the
field, the type of the repetition factor if any and how to access this(these) value(s).

Type [Class]
index a natl index characterizing this type
alignment a natl number constraining the allocation
size a nat?2 size (in bytes)
repsize a nat?2 size (in bytes)
name a repetition of characters

This class describes the implementation of a DMEROON type. All DMEROON types are characterized
by an index, a small natural number. Conversely, this index allows to retrieve the associated type. The
alignment field expresses the constraints of the hardware (as understood by the C compiler) to record a

2.6. ABSTRACT API 21

value of that type. Values of that type have a length of size bytes per se and a length of repsize (that is
size plus some padding) when repeated (as in an array of that type).

Two sorts of types exist: C types and DMEROON portable types, they are described by special subclasses
of Type: the CType and DMeroonType classes. C types describe the implementation and are initialized by
the C compiler used to compile DMEROON. DMEROON portable types have a field telling which C type is
used to implement them. Reciprocally, C types have a field telling which DMEROON type might implement
them. C types are only used by the implementation and are not to be seen by normal users.

String [Class]
character a (nat3-indexed repetition of characters

This class describes immutable strings.

Symbol [Class]
character a (nat3-indezed repetition of characters

This class describes symbols la Lisp also known as unique strings in Java parlance. Two different symbols
differ at least by a character or the number of characters they have. Symbols are immutable.

2.6 Abstract API

This section summarizes the abstract primitives offered by DMEROON. Of course, their exact interface
depends on the binding language. All details are not included here, the precise documentation should be
referred to.

Primitives are sorted by level on table 2.4. Level O corresponds to primitives that may run on a single site,
level 1 are for simple distributed primitives while level 2 corresponds to more complex primitives. Primitives
of level 0 are generally immediate i.e., non blocking, while others may require communication with remote
sites and therefore are non immediate.

Implementation note: Currently, level 2 primitives are still in a flux.

DMEROON functions or variables all have a name starting with the DM prefix: this prefix may be longer.
Due to the binding language, dash or underscore may be additionally used. When a call is erroneous, the
error is reported in a way that depends on the binding language. Function calls often return some useful
data in a way that also depends on the binding language.

An immediate primitive is a primitive that answers in a bounded time. Primitives that require commu-
nication with other sites may take a long time hence are not immediate. It is possible, with some bindings,
to bound the duration of a call to such a primitive and to return an error when this duration is exhausted
without answer.

2.6.1 Initialization

Before using DMEROON, you must initialize it with DM_initialize. This function is sometimes implic-
itly called but it is harmless to call it again. It returns an object that describes the current site. By
default, a DMEROON server is started that listens to a TCP port. The port number is currently de-
fined as the value of the DMEROON_SERVING_PORT environment variable or, by default, as the value of the
DM_DMEROON_FAVORITE_PORT cpp variable which is currently:

#define DM_DMEROON_FAVORITE_PORT 56423

22 CHAPTER 2. FUNDAMENTAL DATA MODEL

Level | Functionality

initialize DMEROON library

check whether an instance is an instance of a class
return the direct class of an instance

get the content of a regular field within an object
get the content of a indexed field within an object
get the length of a indexed field within an object
set the content of a regular field within an object
set the content of a indexed field within an object
instantiate a class

declare the end of the initialization of an object
create a subclass

get the site that owns the object

set the site that owns the object (i.e., migrate the object)
set the clock associated to a mutable object

get the clock associated to a mutable object
connect the current site to a remote site

send to another site a reference onto an object
receive a reference

check whether two pointers refer to a same object

o

N = ONNODODODODODODOoOOoOOoOoo

Table 2.4: DMEROON primitives

2.6.2 Class

A DMEROON instance has a single class of which it is a direct instance of. This class may be obtained with
DM _class_of. Inversely, it is possible to check with DM_is_a whether an object is an instance of a given
class. Once a class is obtained, a direct or indirect instance of Class, its fields may be read, for instance,
to get its super-classes. Additionally, the DM_is_a subclass predicate allows to compare classes in subclass
relationship.

2.6.3 Fields

Fields may be read or written depending on their mutability characteristics. DM_field value takes an object,
a field descriptor (i.e., one of the fields of its class) and returns the content of the given field. If the field
is indexed then DM_indexed_field_value takes an object, a field descriptor and an index and returns the
content of the indexed field at that index. Indexes are checked to be valid for the given object. It is possible
to discover the length of an indexed field with DM_indexed_field length given an object and an indexed
field descriptor. Indexes are zero-based.

A mutable field may be written with DM_set_field_value that takes an object, a field descriptor and a
value. A mutable indexed field may be written with DM_set_indexed field value that takes an additional
index. For that last primitive, pay attention to the order of the arguments: an indexed field is always
followed by an index number; in a mutation, the new value always appears last.

As shown on figure 2.1, an indexed field is represented by a repetition prefixed by its length (d la Pascal
strings). The encoding of the length is explicitly chosen when the class is created: it may be any of the
‘nat*” types. This type as well as the type of the value stored in a field may be obtained through the field
descriptor via the DM_field_types function.

Accessing a (possibly indexed) field of a local object is simple: reading is allowed if the field is not secret,
writing is allowed if the field is mutable. Accessing a (possibly indexed) field of a remote object is subject
to the same restrictions, however, to read a volatile field involves sending a request to the owner of the
object, but to read a local field is always local. Writing a local field of a (probably remote) object is always
a local operation, in the other cases, writing a field of a remote object involves sending a request to perform

2.6. ABSTRACT API 23

that remote mutation. Note that reading immutable non volatile fields of a present object is always a local,
therefore fast, operation.

2.6.4 Allocation

An object may be allocated with the DM_allocate function that takes a class and some allocation parameters
to specify the length of the indexed fields. For example, a String is a class with a single indexed field of type
charl, the repetition factor is a nat3 to allow for large strings of characters. The allocation of a String
requires one nat3 value to be able to compute the size of the instance to allocate. Once an instance is
allocated, the sizes of its indexed fields cannot be modified.

The allocation primitive is not part, stricto sensu, of DMEROON but must be provided by the binding
language. It is often implemented with help of Hans Boehm’s Garbage Collector?. A binding with CMM
[AF94] is under study.

After an object is allocated, it must be initialized. All its fields are considered as readable or writable
without the constraints required by the fields but only until the object is declared initialized. Once declared
initialized, objects’ fields acquire their definite characteristics, in particular, an immutable field is immutable.
Two kinds of initializers exist: DM_set_sharable and DM_set_copyable. If an object is declared sharable,
then it may be shared i.e., remotely referred to from another site. If an object is declared copyable then,
if sent to another site, it will be copied and not shared. The remote copy will no longer be linked with the
copied original object: no consistency between the two objects then exists. This is a built-in remote-cloning
operation.

A third initializer exists: DM_set_initialized which initializes objects according to the default behavior
of their class (copyable or sharable).

Once an object is initialized, it cannot be re-initialized differently: DM_is_initialized allows to check
whether an object is initialized as well as how it was initialized i.e., sharable or copyable.

Even if classes are normal objects of class Class, they are not created with DM_allocate but with
DM_create_subclass that takes a class and the description of a field and creates a new subclass containing
that additional field. Once created the class is initialized and ready for use.

2.6.5 Site

An object is always managed by the site that owns it (by default the site where the object was allocated).
The DM_site_of takes an object and returns the site that owns it. To migrate an object means to change the
site that manages it. This may be performed by the DM_set_site_of function that takes an object and a site.
This also impacts the associated clock since it must always be a neighbor of the object i.e., an object owned
by the same site. This function belongs to level 2 and is not useful for lower levels that ignore distribution.

A site may merge its DMEROON space with the DMEROON space of another site by opening a connection
between them. The DM_connect function takes the name of an host machine and a TCP port number and
returns a reference onto the remote site object corresponding to that DMEROON server.

2.6.6 Clock

A mutable object must be associated to an instance of Clock if remotely shared. Such a clock is incremented
any time the object is mutated. A clock may monitor multiple objects. When a site sends some information
to another site, it also transmit the clocks it is aware of. A cached object may only be read if the clock that
monitors it is not out of date. The clock associated to an object may be retrieved with DM_clock_of.

When a clock is incremented, this invalidates all the cached objects associated to that clock. It is possible
to specify which clock monitors which object with DM_set_clock_of.

2.6.7 Communication

A site may send a reference, onto one of the objects it knows of, to another remote site. DM_send takes an
object and a site and creates on that site a remote reference onto that object. There is no restriction on the

2http://reality.sgi.com/employees/boehm_mti/gc.html

24 CHAPTER 2. FUNDAMENTAL DATA MODEL

object provided it is a DMEROON object.

A site may receive a reference onto an object with DM_receive. The object may then be ignored, accessed,
modified etc. The object may convey information representing a message, a request etc.

These functions belong to level 1.

If DMEROON is used as a library then you must leave it time to manage its space, serve requests, perform
garbage collection, ensure consistency, etc. This depends also on whether you use DM EROON in a sequential
or multi-threaded framework. If you use DMEROON in a sequential framework then the easiest way is to call
DM_serve with some duration from time to time. Another possibility is to call DM_receive with a duration
of zero seconds; this also allows to empty the queue of already received objects (even if ignoring them). In
a multi-threaded framework, a thread might be devoted to DMEROON.

Even if you do not plan to receive objects, you must empty the queue of received objects that may contain
instances of the Fact class used to report asynchronous anomalies or other interesting facts such as new sites
requesting a connection.

DMEROON requires the presence of an event loop to process incoming requests. The properties of this
event loop depends on the precise way DMEROON is bound to your application.

e If you have a sequential binding, then any time you invoke a function of the DMEROON API then the
DMEROON event loop will run while waiting for the requests needed to process your call. This means
that DMEROON must respect a stack discipline: if, while processing your call, DMEROON receives a
request from the network, then your call will be delayed until the network is satisfied.

e You may have a coroutine binding, at that time, your application is on top of the DMEROON event
loop. Any time you invoke a function of the DMEROON API, the current thread of control (technically
a continuation) is suspended, control returns to the event loop until it is appropriate to resume your
call with the answer. In this mode, incoming requests are processed within their own coroutine.

This is a coroutine mode where only one thread of control is active: when DMEROON runs, your
application don’t. The problem with coroutines is that passing control is explicit: a malicious thread
may keep control for ever.

e You may have a multi-thread binding where DMEROON runs in its own thread as well as incoming
requests. A thread, that calls the DMEROON API and requires a remote request to be satisfied, is
suspended and reified into a DMEROON request object. When free, the DMEROON thread will handle
it and resume after completion the waiting thread. In this binding, only one DMEROON thread may
act upon the DMEROON data structures.

This binding is still to be written.

The sequential binding is portable but less interesting than the coroutine binding which is the preferred
one. Note that, with these two bindings, your application and the DMEROON event loop have different
positions:

e In the sequential binding, you call DM_serve or DM_receive any time your application waits for some
events from the network.

e In the coroutine binding, your application is above the DMEROON event loop: the DM_install receiver
API function tells DMEROON which function of your application must be run any time an object is
received. With this binding, your application is triggered via a call-back function applied on every
received object.

2.6.8 Equality

When objects migrate, it may be difficult to know if they are the same or not. The DM_eq predicate compares
two objects and return true if they are the same.

2.6. ABSTRACT API 25

2.6.9 Ubiquity

Some objects are ubiquitous i.e., local to all sites since they incarnate universal concepts. Predefined classes,
DMEROON types as well as some constants (true, false) are ubiquitous. Even if DMEROON types are ubiqui-
tous, they may have different implementation (a reference may have a size of 4 or 8). However it is never
possible to compare two different representations of a same ubiquitous object.

2.6.10 DMEROON as a server

A DMEROON server listens for incoming connections and analyzes the first received bytes to determine the
used protocol.

o If the request starts with GET (that is, the letters G, E and T) then this is supposed to start an http
request. These requests represent a compact encoding of an DMEROONSCRIPT program. The DME-
ROONSCRIPT programming language allows to call nearly all functions of the DMEROON API. These
requests may be conveniently be emitted from any HTTP client such as Netscape or IExplorer.

e If the request starts with DMeroonScript then the next characters represent a multi-line DME-
ROONSCRIPT program to be interpreted. The DMEROONSCRIPT programming language is described
in chapter 5.

e If the first letters are DMeroon then the connection is understood as a DMEROON connection. This is
the binary protocol used to marshal objects, see C.4.

It is possible to dynamically add new protocols to the list of recognized protocols: see appendix C for
more details.

2.6.11 Miscellaneous

Many other functions exist in the implementation: read the source code and win the “best DMEROON
undocumented feature” challenge!

26

CHAPTER 2. FUNDAMENTAL DATA MODEL

Chapter 3

C binding

This chapter describes how DMEROON and C cohabits. This binding has been designed to be systematic
and thread-safe.

3.1 Functions

The functions of the DMEROON API are all prefixed with DMeroon_, they may perform a lot of checks to
ensure the validity of their arguments. Unsafer functions also exist but are hidden in the implementation.

All API functions return a status. A status of zero (known as DME_SUCCESS) means that everything went
correctly; a non-zero status indicates the kind of problem that occurred. Other statuses exist (described
in the dmerr.h file) and have a name prefixed by DME_. Error statuses are used to represent synchronous
problems. Asynchronous problems (for instance, receiving unmarshable bytes from a TCP connection)
cannot be reported this way to the user, they are instead reified into a Fact instance and received as if a
remote object. It is the duty of the user to DM_receive these objects not to encumber memory. Another
method is to install, with DM_install_receiver, a function to process any incoming object.

All API functions take as first argument an instance of the Context class i.e., the DM_Context structure
in C. Such an instance contains a number of fields to control DMEROON behavior, see Section 3.3.

All DMEROON predefined classes without indexed fields have a related C structure whose name is the
name of the class prefixed by DM_.

When an API function has to return a result, it must be given an address where to store this result as a
side-effect: this allows to be allocation-safe. Addresses of results appear as second and successive arguments
if more than one result is expected (as in DM_field_types). The content of these addresses is meaningful
only if the API function returns DME_SUCCESS. It is sometimes possible to give a null pointer instead of a an
address to ignore a result. This case is flagged with a /* or NULL */ comment in the prototypes below.

As a convention for the prototypes of the DMEROON API, a variable whose name is immediately prefixed
with a star indicates that it is an “out” variable that will be filled during the invocation of the function.
Without a leading star, the variable is an “in” variable only. See, for instance, the DMeroon_class_of
function below that takes an object and returns its class.

DM_ErrorCode [Level 0]
DMeroon_initialize (DM_Context* context,
DM_Sitex* xreturned_site /* or NULL */)

Initializes the DMEROON library. This call must be performed before any other call to the DMEROON
library otherwise undefined behavior may arise. The Site instance describing the current DMEROON space,
i.e., the current site, is returned. It is useless but safe to call this function more than once: it always returns

27

28 CHAPTER 3. C BINDING

the current site. This is an immediate primitive. It is possible to give NULL for the returned site if not
interested in it.

Implementation note: The following signature might be better since it allows to return a
fresh Contexts any time it is called. This is far easier to get the first Context this way:

DM_ErrorCode [Level 0]
DMeroon_initialize (DM_Context* context, /* or NULL x*/

DM_Context* *returned_context, /* or NULL */

DM_Sitex* xreturned_site /* or NULL */)
DM_ErrorCode [Level 0]

DMeroon_class_of (DM_Context* context,
DM_Class* *returned_class,
DM_Object* object)

Returns the most specific class of an object that is, the class of which this object is a direct instance of.
This is an immediate primitive.

DM_ErrorCode [Level 0]
DMeroon_is_a (DM_Context* context,

DM_c_boolean *returned_boolean,

DM_Object* object,

DM_Class* class)

Checks whether an object is a direct or an indirect instance of a class. This is an immediate primitive.
The returned boolean conforms to C practice: 0 means false, other values mean true.

DM_ErrorCode [Level 0]
DMeroon_is_a_subclass (DM_Context* context,

DM_c_boolean *returned_boolean,

DM_Class* subclass,

DM_Class* class)

Checks whether a class is equal to or a subclass of another one. This is an immediate primitive. The
returned boolean conforms to C practice: 0 means false, other values mean true.

3.1. FUNCTIONS 29

DM_ErrorCode [Level 0]
DMeroon_field_value (DM_Contextx* context,

t *returned_value,

DM_DMeroonType* *returned_type, /* or NULL */

DM_Objectx* object,

DM_Field* field)

Returns the content of a regular field of an object. This primitive may block (for instance, when reading
a volatile or mutable field of a remote object). returned value is the address of a cell of type ¢ where ¢
must be the type of the read field. This adequation may not be statically checked in C so this is an unsafe
primitive. To help decoding the returned value, this primitive also returns the type of the read field that is,
the DMEROON type corresponding to ¢. It is possible to give NULL for the returned type if not interested in.

DM_ErrorCode [Level 0]
DMeroon_indexed_field_value (DM_Contextx* context,

t *returned_value,

DM_DMeroonType* *returned_type, /* or NULL */

DM_0Objectx* object

DM_Fieldx* field,

DM_nat3 index)

Returns the content of the index’th value of an indexed field from an object. This primitive may block
(for instance, when reading a volatile or mutable field of a remote object). The index is specified as a nat3
number even if it corresponds to a natl, nat2 or nat4 number. Indexes are therefore restricted to be inferior
to 232. Indexes are checked to be valid within the object. returned_value is the address of a cell of type
t where t must be the type of the read field. This adequation may not be statically checked in C so this
is an unsafe primitive. To help decoding the returned value, this primitive also return the type of the read
field that is, the DMEROON type corresponding to ¢. It is possible to give NULL for the returned type if not
interested in.

DM_ErrorCode [Level 0]
DMeroon_indexed_field_length (DM_Context* context,

t *returned_value,

DM_DMeroonType* *returned_type, /* or NULL */

DM_0Objectx* object,

DM_Fieldx field)

Returns the length of an indexed field. This is an immediate primitive. ¢ must be the type of the repetition
factor of the indexed field that is, a nat1, nat2, nat3 or nat4 natural number. To help decoding the returned
value, this primitive also return the type of the read field that is, the DMEROON type corresponding to t. It
is possible to give NULL for the returned type if not interested in.

30 CHAPTER 3. C BINDING

DM_ErrorCode [Level 0]
DMeroon_set_field_value (DM_Context* context,

t *returned_previous_value, /* or NULL */

DM_Object* object,

DM_Field* field,

t* new_value)

Atomically changes the content of a regular field of an object and returns the previous content of
that field. This primitive may block (for instance, when writing a mutable field of a remote object).
returned previous_value and new_value are the addresses of cells of type ¢t where ¢ must be the type
of the written field. This adequation may not be statically checked in C so this is an unsafe primitive. When
a reference is written, it is checked (as far as possible) to be the address of a DMEROON object. It is possible
to give NULL for the returned previous value if not interested in. If ¢ is the DMEROON reference type then
the new_value must be an instance of the class specified in the referring field of field.

The new_value and returned _previous_value addresses must be different.

DM_ErrorCode [Level 0]
DMeroon_set_indexed_field_value (DM_Context* context,
t *returned_previous_value, /* or NULL */
DM_Object* object,
DM_Field* field,
DM_nat3 index,
t* new_value)

Atomically changes the content of the index’th value of an indexed field of an object and returns its
previous value. This primitive may block (for instance, when writing a mutable field of a remote object).
The variables returned previous_value and new_value hold the addresses of cells of type ¢ where ¢ must
be the type of the written field. This adequation may not be statically checked in C so this is an unsafe
primitive. When a reference is written, it is checked (as far as possible) to be the address of a DMEROON
object. It is possible to give NULL for the returned previous value if not interested in. If ¢ is the DMEROON
reference type then the new_value must be an instance of the class specified in the referring field of
field.

returned previous_value and new_value must be different addresses.

DM_ErrorCode [Level 0]
DMeroon_field_types (DM_Context* context,
DM_DMeroonType* *returned_item_type, /* or NULL */
DM_DMeroonType* *returned_repetition_type, /* or NULL */
DM_Fieldx* field)

Returns the type of a field as well as its repetition type if indexed. It is possible to give NULL for any of
the two returned types when not interested by the results. If a field is not indexed, then DM_nought_type is
returned for the repetition type (the nought type is characterized by a zero index).

3.1. FUNCTIONS 31

DM_ErrorCode [Level 0]
DMeroon_allocate (DM_Context* context,
DM_Object* x*returned_object,
DM_Classx* class,
DM_nat3 number_of_sizes,
. DM_nat3 size, ...)

Allocates an instance of a class with the specified sizes for the indexed fields. This is an immediate
primitive. There must be as many sizes as there are indexed fields in the class. Sizes are given as nat3
numbers even if they correspond to natl or nat2 or nat4 numbers but, in that case, their value must be in
the correct range compatible with nat1 or nat2 numbers. Indexes are therefore restricted to be inferior to
232, Due to the C limit of 32 arguments in a function call, the number of indexed fields is restricted to be
less than 32; although the exact limit is fuzzy, it is probably greater than 27. The content of the object is
initially filled with zeroes. If the object does not have any indexed field then the number_of_sizes argument
is equal to zero and no other size follow it.

DM_ErrorCode [Level 0]
DMeroon_set_sharable (DM_Context* context,
DM_Object* object)

Declares to DMEROON that an object is completely initialized and may now be shared over the network.
This is an immediate primitive. Once an object is initialized, it cannot be re-initialized differently. When
an object is sharable, a reference onto it may be sent to another site, see figure 2.2. When an object is
initialized, accessing a field is constrained by the options of its field descriptor.

DM_ErrorCode [Level 0]
DMeroon_set_copyable (DM_Context* context,
DM_Object* object)

Declares to DMEROON that an object is completely initialized and may now be copied over the network.
A copyable object is never remotely shared, it is copied instead: there is no longer any link between the
original and the copy. This is an immediate primitive. Once an object is initialized, it cannot be re-initialized
differently. When an object is initialized, accessing a field is constrained by the options of its field descriptor.

DM_ErrorCode [Level 0]
DMeroon_set_initialized (DM_Context* context,
DM_0Object* object)

Declares to DMEROON that an object is completely initialized. The object will be sharable or copyable
depending on its class. By default, classes are created with the sharable option. This is an immediate
primitive. Once an object is initialized, it cannot be re-initialized differently. When an object is initialized,
accessing a field is constrained by the options of its field descriptor.

32 CHAPTER 3. C BINDING

DM_ErrorCode [Level 0]
DMeroon_is_initialized (DM_Context* context,

DM_nat3 *returned_result,

DM_0Object* object)

Checks whether an object is initialized (sharable or copyable) or not. The returned result conforms
to C practice: 0 means false, other values mean true. However the result is more informative as it tells
whether the object is sharable or copyable. Results are then, respectively, DM_OBJECT_IS_SHARABLE or
DM_OBJECT_IS_COPYABLE. This is an immediate primitive.

DM_ErrorCode [Level 0]
DMeroon_create_subclass (DM_Context* context,

DM_Classx* *returned_class,

DM_Class* superclass,

charx class_name,

DM_class_options class_options,

charx* field_name,

DM_field_options field_optioms,
DM_DMeroonType* repetition_type,
DM_DMeroonType* item_type,

DM_Class* referring_class /* or NULL */

This primitive creates a new class with a name and some class options, that adds one additional field to
the super class. The field is specified with a name and some field options. One must also specify its type
and whether it is indexed or not. If the type is the reference type then the class, the values should be
instance of, must be given. This primitive may block.

Possible class options belong to the DM_class_options type. They are summarized in table 3.1. Some
of these options apply to the class (this is the case of DM_CLASS_IS_VOLATILE or DM_CLASS_IS_MUTABLE),
other options apply on instances (this is the case of DM_CLASS_IS_IMMOTILE and DM_CLASS_IS_COPYABLE).
Still other options are only used within DMEROON implementation.

name meaning

DM_CLASS DEFAULT_OPTIONS Instances are motile, immutable, sharable, non-volatile.
DM_CLASS_IS_IMMQOTILE The class is immotile. Its instances cannot be migrated.
DM_CLASS_IS_COPYABLE The class is copyable. Its instances cannot be shared unless they

are initialized with DM_set_sharable.
DM_CLASS_IS_NOT_SUBCLASSABLE | The class cannot be subclassed.
DM_CLASS_IS_VOLATILE The class is volatile: at least one fields is volatile.
DM_CLASS_IS_MUTABLE The class is mutable: at least one field is mutable.
DM_CLASS_IS_NOT_INSTANTIABLE | The class cannot be instantiated.

Table 3.1: Class options

Possible field options belong to the DM_field options type. They are summarized in table 3.2.

Implementation note: Should offer a new type of field: guarded field. A guarded field
somewhat extends secret fields. To be read, a correct password must appear in the current context.
The comparison is of course done only on the owning site. Such fields are like portals. Should

3.1. FUNCTIONS 33

name meaning

DM_FIELD DEFAULT_OPTIONS | The field is immutable, non volatile, non local and non secret.
DM_FIELD_IS_MUTABLE The field is mutable, the user may modify it.
DM_FIELD_IS_VOLATILE The field is volatile, its value may evolve spontaneously.
DM_FIELD_IS_LOCAL The field is local, its content is never marshaled.
DM_FIELD_IS_SECRET The field is secret, its content cannot be read.

Table 3.2: Field options

think to how to have more than one password in the context. The context must also be passed
from site to site when emitting requests.

I also consider adding the DM_FIELD_IS_RESIZABLE option. This complicates the coherency pro-
tocol but makes users’ life far easier. Of course, a resizable field should be mutable.

The previous primitive may only define additional fields one by one (this is needed to keep the prototype
of the C function static) but this increases considerably the depth of the tree of classes. That’s why there is
another primitive to create classes.

DM_ErrorCode [Level 0]
DMeroon_smash_class (DM_Context* context,

DM_Classx* *returned_class,

DM_Class* class,

charx* class_name,

DM_class_options class_options,

DM_nat3 level)

This primitive returns a new class with a name and some class options. This new class has exactly the
same fields the given class has but only a shortened sequence of super-classes i.e., level superclasses less. This
primitive may block. This primitive is used with the previous one to create a direct subclass with multiple
fields.

For instance, to create a direct subclass of A with two additional fields, say « and y, you first create B as
A+ x, then C as B + y. C has the required fields but has, as super-classes A, B whereas only A is wanted.
To remove the B super-class, we smash one level of super-classes from C' and obtain D as A+ +y. The x
and y fields are assumed to have been introduced by D.

DM_ErrorCode [Level 0]
DMeroon_site_of (DM_Context* context,

DM_Sitex *returned_site,

DM_Object* object)

Returns the site that owns the object. This primitive may block. The current site may be obtained with
DM_initialize. Ubiquitous objects always have the current site as site.

34 CHAPTER 3. C BINDING

DM_ErrorCode [Level 2 — NOT YET IMPLEMENTED)]
DMeroon_set_site_of (DM_Context* context,

DM_Sitex* *returned_previous_site,

DM_Object* object,

DM_Sitex* new_site)

Changes the site that owns an object and returns the previous owner; this is also called “migration”.
The object must be motile otherwise its owner cannot be altered and the object cannot move out of the
site where it had been created (this does not prevent the object to be copied or shared that is, remotely
referenced). This primitive may block. This primitive has an impact on the monitoring clock if any.

DM_ErrorCode [Level 0]
DMeroon_clock_of (DM_Context* context,

DM_Clockx* *returned_clock,

DM_Object* object)

Returns the instance of Clock that monitors a mutable object. This is an immediate primitive. If the
object is immutable or not initialized or not monitored then DM_NULL is returned instead. When creating
a remote reference onto a mutable object which is not monitored, the general clock of the current site is
assumed to monitor it by default.

DM_ErrorCode [Level 2 — NOT FULLY IMPLEMENTED)]
DMeroon_set_clock_of (DM_Context* context,

DM_Clock* *returned_previous_clock,

DM_Object* object,

DM_Clock* clock)

Sets or changes the clock monitoring a mutable object and returns the previous clock if there was one or
DM_NULL. The object may be not initialized. The new clock must be a neighbor of the object that is, owned
by the same site. This primitive may block.

DM_ErrorCode [Level 1]
DMeroon_connect (DM_Context* context,

DM_Sitex *returned_site,

charx* hostname,

DM_nat2 port_number,

charx* passwd)

Connects the current site to the given remote site. This primitive may block. It returns a reference onto
the remote site object. The hostname may be the human-readable name of a machine or an IP number in
dot notation. The port number must be a regular natural number (do not specify it in network order (don’t
care if you do not know what is network order, just give a number)).

Implementation note: Should probably think again to this password stuff. Would be better to
use SSL to protect communications.

3.1. FUNCTIONS 35

DM_ErrorCode [Level 1]
DMeroon_send (DM_Context* context,

DM_Object* object,

DM_Sitex* site)

Sends the reference onto an object to a site. This primitive may block.

Implementation note: The reference is immediately marshaled in an OutBuffer that will be
flushed when the Connection will allow it. The reference will be unmarshaled in a queue of arrived
objects. Therefore when returning from DMeroon_send there is no guarantee that the reference is
obtained by the intended site.

DM_ErrorCode [Level 1]
DMeroon_receive (DM_Context* context,

DM_Object* x*returned_object,

DM_nat3 duration)

Receives an object. This primitive blocks at most duration seconds. If no object is received during
this time then it returns the DME_TIMEOUT error code. DMEROON signals asynchronous errors by reify-
ing them into instances of Fact. These Facts may be normally received. This primitive is exclusive of
DMeroon_install receiver.

DM_ErrorCode [Level 1]
DMeroon_install_receiver (DM_Context* context,
void (* handler) (DM_Context*, DM_Object*))

This primitive is exclusive of DMeroon receive. The DMeroon_install _receiver function tells DME-
ROON to invoke a given function on every incoming object. The context received by the handler function
is the one given to DMeroon_install receiver. By default, the receiver function accumulates incoming
objects in a field of the current site from which they may be extracted using DMeroon receive.

DM_ErrorCode [Level 0]
DMeroon_serve (DM_Context* context,
DM_nat3 duration)

This primitive yields control to DMEROON for at least duration seconds. Zero seconds is a possible
duration in which case, pending requests are handled if already present. This allows DMEROON to handle
incoming requests and manage its local space. If a receiver function is installed, then any incoming object will
be automatically submitted to that receiver function, otherwise, you must DMeroon_receive these objects
explicitly after returning from DMeroon_serve.

Implementation note: As a kind of answer to the need for interfaces, I consider adding
virtual fields.

36 CHAPTER 3. C BINDING

VirtualField [Class]
name a repetition of characters

A virtual field allows to gather instances of Field (or VirtualField) in order to provide an unified access
to many unrelated instances of unrelated classes. For instance, I imagine the name virtual field that allows
access the name field of Class, Field, Site, Type, etc. To get the name of instances of any of these classes,
you may just use the reqular DMeroon_field_value function with the virtual field instead of the appropriate
instance of Field. The appropriate field will be automatically chosen in the set of fields contained in the
virtual field. Virtual fields are similar to generic functions la CLOS (note: I will probably introduce the
discrimination mechanism directly so it can be used in other places, for instance, to implement generic
functions.)

VirtualField instances are immutable. They have a name for introspection. They may be extended to
incorporate new fields with the DMeroon_extend_virtual field function.

3.2 Global variables

In order to instrospect DMEROON objects, you need at hand the predefined classes, their associated fields
as well as the DMEROON portable types. They are all accessible via specialized macros (available from
the dmeroon.h header file). The case is significant: Classes have a capitalized name, Fields are written in
lower-case, and components are separated with underscores.

The files that are mentioned below are relative to the TOP directory where the source files are. More on
these files in appendix A.

DM_ReferenceToClass (name) [Level 0]

This macro takes the name of a class and returns a DMEROON reference onto a predefined Class, the
returned value has DM_Class* type for C. Most predefined class names appear in table 2.3 however they all
appear in the TOP/DMeroon/c/dmstruct.dm file.

DM_ReferenceToField0fClass (field-name, class-name) [Level 0]

This macro takes the name of a field and the name of a class and returns a DMEROON reference onto a
predefined instance of Field; the returned value has DM_Field* type for C. Some fields were mentioned in
section 2.5.1 otherwise they all appear in the TOP/DMeroon/c/dmstruct.dm file.

DM_ReferenceToDMeroonType (name) [Level 0]

This macro takes the name of a DMEROON portable type and returns a DMEROON reference onto a
predefined instance of DMeroonType; the returned value has DM_DMeroonType* type for C. DMEROON types
are listed in table 2.1.

3.3. CONTEXTS 37

3.3 Contexts

<< Section under construction >>

Contexts control many aspects of DMEROON behavior. Where alternate behaviors are possible, they may
be specified by the user by toggling some options of the context. When calling the DMEROON API, a context
should be given if the user has peculiar needs. If no context is given, a default one is cloned after the default
context held in a field of the current site. Binding languages may customize this default context.

Contexts are threaded throughout DMEROON innards, there is (nearly) always a current context every-
where. The context contains options that may be trigger to toggle various behaviors. Whenever an exception
occurs, reified by an error code, the context provides a handler that will be invoked to manage this exception.
The handler may be customized to take benefit of the support language.

A context is an instance of class Context which contains the following fields:

Context [Class]
handler a C function to handle exceptions
options a sequence of bits encoded as a context-options
errcode the last DMEROON error code
file the name of the file of the last error (a C string)
line the line number within that file
errnumber the last errno code (not portable)
previous previous context (for debug purpose)
continuation where to go in case of error
errstream where to report errors

These fields are local and volatile. They are mainly used by the implementation to report errors. These
fields are not reset when a DMEROON API function is called. The errstream field contains the port where
warnings or errors are reported, the exact meaning of the port depends on the binding language. For C and
Un*x, stdout and stderr are legal values; Scheme ports are also legal for Bigloo.

The first field designates the function to handle the exception. This function must have the following
prototype:

void (*handler) (DM_Context* context,
DM_ErrorCode errcode,
charx __FILE__,
unsigned long __LINE__)

The third and fourth arguments show the birth place of the exception. The second argument is the error
code (see section later). The first argument is the current context where additional information may be
found (such as the value of errno) set by various system calls. By default, this function is the DM_abort
function that notifies the problem then escape to a safer place as indicated in the continuation field (a
jmpbuf for C, a real continuation for Scheme).

The following options are legal:

DM_CONTEXT_CHECK DMEROON Forces DMEROON to check every object received as argu-
ment to be a DMEROON object.

DM_CONTEXT_CHECK_CLASS Forces DMEROON to check every object received as argu-
ment to be an instance of the appropriate class.

DM_DONT_INITIALIZE When DMEROON allocates an object, this object is by de-
fault initialized. When set, DMEROON leaves them unini-
tialized so it is up to the user to make them sharable or
copyable.

38 CHAPTER 3. C BINDING

There are other hidden options that make it is possible, in case of anomalies, to force DMEROON to
longjmp to a given position or to call an internal debugger.

3.4 Error codes
<< Section under construction >>

Hundreds of error codes exist. They are detailed in the TOP/DMeroon/c/dmerr.h file.

3.5 Static generation of classes

If you consider defining classes and writing C code around these classes (for instance, to contribute new
code to DMEROON), you may want to use static classes and their associated C structs to avoid creating
these classes dynamically. This is contrary to the spirit of DMEROON but you may require these classes to
be immutable, volatile, local and immotile so you can safely hack them on the current site. There exists a
compiler that takes the definition of these classes and produces the appropriate C files.

The current compiler is written in Scheme, its name is dm2ch which is the name of a shell script (from
TOP /DMeroon/Commands) that must be run in the TARGET directory (the directory were all files are com-
piled, see again appendix A). This compiler is used by DMEROON itself for its own bootstrap.

dm2ch file other-files. .. [Command]

The first file contains the classes to be compiled. These classes may inherit from other classes which
are not to be compiled but which must be known at compilation-time (the DMEROON classes, for instance,
which are defined in the TOP/DMeroon/c/dmstruct.dm file, see appendix A). These classes should appear
in the other files mentioned in the command line.

The compiler produces two files: a file. c and a file.h defining the DM EROON representation of the desired
classes. The file.h file contains the equivalent C structs and can be included in your C code. The C file
must be compiled and linked to your code: it only contains static data and no code at all. You may refer to
these classes and their fields with the macros of section 3.2.

Classes are defined (as in MEROONV3) that is, as Sexpressions:

(define-class classname superclassname [Scheme macro]
((fieldname field-options)
)

class-options)

Classes are named shortly i.e., as Object, QueueLink, etc. DMEROON types are also named shortly i.e.,
as nat3, charl, etc. All fields must have a name and be qualified by some options as described in table 3.3.

The class itself may be qualified by some options as described in table 3.4.

The compiler will warn you if it cannot generate a C struct that emulates a DMEROON class. This may
be the case if you have a class with fields following an indexed field.

3.6 Tutorial examples

<< Section under construction >>

3.6. TUTORIAL EXAMPLES

option

meaning

:type DMeroon Type

:indexing-type DMeroonType

:refer class-name

This option is mandatory. The type of the field must
be one of the DMEROON types of figure 2.1.

By default, a field is not indexed. Mentioning
:indexing-type requires to specify a type among
natl, nat2, nat3 and nat4.

This option is only meaningful for the reference
type. It specifies the class of referred objects. De-
fault is :refer Object.

:mutable The field is mutable. No option means that the field
is immutable.
:local The field is local.
:volatile The field is volatile.
:secret The field cannot be read.
Table 3.3: Field options
option meaning
:immotile By default classes are motile. This option prevents
instances of that class to migrate.
:mutable At least one field is mutable. This option is auto-
matically set.
:volatile at least one field is volatile. This option is automat-
ically set.
:copyable instances of this class are, by default, copied rather
than shared.
:uninstantiable | this class cannot be instantiated.
:unsubclassable | this class cannot be subclassed.

Table 3.4: Class options

39

40 CHAPTER 3. C BINDING

3.6.1 Dynamic creation

Here is how you may define the class Point. We extend Object with the two fields x and y, then we smash
the resulting class off a level. To lessen the size of the example and although this is highly incorrect, error
codes are not checked!

DM_Class *point_class, *px, *py;
(void)DMeroon_create_subclass(ctx, &px, DM_ReferenceToClass(Object),
"no name", DM_CLASS_DEFAULT_OPTIONS,
"x", DM_FIELD_IS_MUTABLE,
DM_ReferenceToDMeroonType (nought) ,
DM_ReferenceToDMeroonType (int3),
DM_NULL);
(void)DMeroon_create_subclass(ctx, &py, px,
"no name", DM_CLASS_DEFAULT_OPTIONS,
"y", DM_FIELD_IS_MUTABLE,
DM_ReferenceToDMeroonType (nought) ,
DM_ReferenceToDMeroonType (int3),
DM_NULL);
(void)DMeroon_smash_class(ctx, &point_class, py, "Point",
DM_CLASS_DEFAULT_OPTIONS, 1);

Now the Point class is the value of the point_class variable. Its first field may be obtained as follows
(and similarly for the second field):

DM_Field *point_x_field;
(void)DMeroon_indexed_field_value(ctx, &point_x_field, DM_NULL,
point_class,
DM_ReferenceToField0fClass(field, Class),
0);
Once the class is created, an instance may be created, filled and initialized like that:
DM_Object* pt;
DM_int3 ix = -12345;
(void) DMeroon_allocate(ctx, &pt, point_class, 0);
(void) DMeroon_set_field_value(ctx, NULL, pt, point_x_field, &ix);
(void) DMeroon_set_initialized(ctx, pt);

3.6.2 Static definition

This is far more simple and may even be made inline with DMEROON bound with Scheme. First, create a
file containing the definition of the Point class.
;53 This is file Point.dm
(define-class Point Object
((x :type int3 :mutable)
(y :type int3 :mutable)))

Second, compile this file with the dm2ch compiler. The command is (it is not necessary to mention
TOP /DMeroon/c/dmstruct .dm since Point only inherits from the (empty) Object class):

dm2ch Point.dm

This compilation produces the Point.h and Point.c files. You then have to compile them with your
favorite C compiler and to link the resulting Point.o file to your application. You may take advantage of
this class in your other files and refer to the class or its fields writing (the C type of these constructions is
given in a prefixed comment):

#include "Point.h" /% Don’t forget this inclusion! */
/* DM_Class* */ DM_ReferenceToClass (Point)

3.6. TUTORIAL EXAMPLES 41

/* DM_Fieldx* */ DM_ReferenceToField0fClass(x, Point)
/* DM_Fieldx */ DM_ReferenceToField0fClass (y, Point)

3.6.3 Recursive class

We now want to create a subclass of Point, say LinkedPoint, with an additional field which is a reference
onto an instance of LinkedPoint.

<< Section under construction >>

42

CHAPTER 3. C BINDING

Chapter 4

Scheme binding

This chapter describes how DMEROON and Scheme cohabit. This binding has been designed to be Scheme-
friendly: errors are reported via exceptions when the particular Scheme dialect allows it; results are returned
by function calls. This is a far more natural and user-friendly interface compared to the C binding.

Implementation note: This binding worked with Bigloo 1.8. It looks like working with a
pre-alpha release of Bigloo 1.9d. It does not work with the current distribution of Bigloo.

When accessing objects, DMEROON offers an interface not too dissimilar to MEROON [Que93].

All API names to be used from Scheme are prefixed with DM-. They are implemented by global variables
or C functions (prefixed with DMscm_ and defined in the TOP/DMeroon/c/dmscm.c file). They use a set of
macros to convert C values to Scheme values back and forth. This set of macros respect the usual conventions
of Scheme implementations for value representation. Technically, this layer uses the C binding layer. It has
been used to bind DMEROON with Bigloo, OScheme and PicoLisp. Scheme values are automatically coerced
into DMEROON values back and forth according to table 4.1. Range checks are also performed.

Scheme type DMEROON type

integer natl nat2 nat3 nat4 intl int2 int3 int4 netnat2 netnat3
float floatl float2 float3

DMEROON object | reference

value data

character charl

Table 4.1: Scheme-DMEROON coercions

Here are the conventions that are used below. A capitalized name such as Object or Class means a value
that is an instance of the given class. The word value means any Scheme value whereas boolean means only
#t or #f. Natural numbers i.e., positive integers are represented by words such as length or index. These
words are sometimes prefixed by new- or old- to disambiguate some of their occurrences. Scheme strings are
enclosed within double quotes with a description of their content.

4.1 Functions

(DM-initialize!) : Site [Level 0]

43

44 CHAPTER 4. SCHEME BINDING

This primitive returns the current site (this object is also the value of the DM-site variable). The
DMEROON library is already initialized by the implementation. This primitive is immediate.

(DM-is-object? walue) : boolean [Level 0]

Checks whether a Scheme value is a DMEROON object or not. This is an immediate primitive.

(DM-class-of Object) : Class [Level 0]

Returns the most specific class of an object that is, the class of which this object is a direct instance of.
This is an immediate primitive.

(DM-is-a? Object Class) : boolean [Level 0]

Checks whether an object is an instance of a class. This is an immediate primitive.

(DM-is-a-subclass? Class Class) : boolean [Level 0]

Checks whether the first argument is equal to or a subclass of the second argument. This is an immediate
primitive.

(DM-field-value Object Field) : wvalue [Level 0]

Returns the content of a regular field of an object. This primitive may block (for instance, when reading
a volatile or mutable field of a remote object). The value is automatically coerced into a Scheme value
according to table 4.1.

(DM-indexed-field-value Object Field index) : wvalue [Level 0]

Returns the content of the index’th value of an indexed field of an object. This primitive may block (for
instance, when reading a volatile or mutable field of a remote object). The value is automatically coerced
into a Scheme value if possible.

(DM-indexed-field-length Object Field) : length [Level 0]

4.1. FUNCTIONS 45

Returns the length of an indexed field. This is an immediate primitive.

(DM-set-field-value! Object Field new-value) : old-value [Level 0]

Atomically changes the content of a regular field of an object and returns the previous content of that
field. Values are coerced back and forth between DMEROON and Scheme according to table 4.1. This
primitive may block (for instance, when writing a mutable field of a remote object). When a reference is
written, it is checked (as far as it is possible) to be the address of a DMEROON object of an appropriate
class.

(DM-set-indexed-field-value! Object Field indexr new-value) : old-value [Level 0]

Atomically changes the content of the index’th value of an indexed field of an object and returns its
previous value. Values are coerced back and forth between DMEROON and Scheme according to table 4.1.
This primitive may block (for instance, when writing a mutable field of a remote object). When a reference
is written, it is checked (as far as it is possible) to be the address of a DMEROON object of an appropriate
class.

Pay attention to the order of the arguments. The index always follow the field (since it is an indexed
field) and the value is always given last.

(DM-field-item-type Field) : DMeroonType [Level 0]

Returns the type of a value stored in a Field (whether indexed or not). This is an immediate primitive.

(DM-field-repetition-type Field) : DMeroonType [Level 0]

Returns the type of the repetition factor of a Field. If the Field is not indexed then DM-nought-type is
returned instead. This is an immediate primitive.

(DM-allocate Class sizes...) : Object [Level 0]

Allocates an instance of a class with the specified sizes for the indexed fields. This is an immediate
primitive. There must be as many sizes as there are indexed fields in the class. The content of the object is
initialized with zeroes.

(DM-set-sharable! Object) : the Object itself [Level 0]

46 CHAPTER 4. SCHEME BINDING

Declares to DMEROON that an object is completely initialized and may be shared over the network. This
is an immediate primitive.

(DM-set-copyable! Object) : the Object itself [Level 0]

Declares to DMEROON that an object is completely initialized and may be copied over the network. This
is an immediate primitive.

(DM-set-initialized! Object) : the Object itself [Level 0]

Declares to DMEROON that an object is completely initialized. It will be shared or copied depending on
its class. This is an immediate primitive.

(DM-is-initialized? Object) : boolean [Level 0]

Returns true or false whether the object is initialized (sharable or copyable) or not. In fact, the result
when true is more informative, 1 is returned when the object is sharable while 2 is returned if the object is
copyable. Once initialized, an object cannot be re-initialized differently.

(DM-create-subclass Class "class name" class-options [Level 0]
"field name" field-options
DMeroonType DMeroonType Class) : Class

This primitive creates a new class with a name and some class options. The newly defined class adds one
additional field to its super class. The field is specified with a name and some field options. One should also
specify its type and whether it is indexed or not. If the type of the field is the DMEROON reference type
then the final argument, a class, specifies the class the values must be instance of. This primitive may block.

Class-options are represented by integers with the C encoding. They are summarized on table 4.2. Add
these values to specify more than one.

code | C name meaning

0 DM_CLASS DEFAULT_OPTIONS Instances are motile, immutable, sharable, non-
volatile.

1 DM_CLASS_IS_MUTABLE The class is mutable: all fields are mutable.

2 DM_CLASS_IS_IMMOTILE The class is immotile. Its instances cannot be mi-
grated.

8 DM_CLASS_IS_VOLATILE The class is volatile: all fields are volatile.

64 DM_CLASS_IS_NOT_SUBCLASSABLE | The class cannot be subclassed.

128 DM_CLASS_IS_COPYABLE The class is copyable. Its instances cannot be shared
unless initialized with DM_set_sharable.

256 DM_CLASS_IS_NOT_INSTANTIABLE | The class cannot be instantiated.

Table 4.2: Class options

4.1. FUNCTIONS 47

Field-options are similarly represented as shown on table 4.3. Add these values to specify more than one.

code | C name meaning

0 DM_FIELD DEFAULT_OPTIONS | The field is immutable, non volatile and non local.
1 DM_FIELD_IS_MUTABLE The field is mutable.

2 DM_FIELD_IS_VOLATILE The field is volatile.

4 DM_FIELD_IS_LOCAL The field is local.

16 DM_FIELD_IS_SECRET The field is secret.

Table 4.3: Field options

(DM-smash-class Class "class name" class-options level) : Class [Level 0]

This primitive returns a new class with a name and some class options. This new class has fields similar
to the given class but it has level superclasses less. This primitive may block. This primitive is used with the
previous one to allow to create a direct subclass with multiple fields. However, classes may be more easily
created with the DM-define-class macro (see Section 4.3.2).

(DM-site-of Object) : Site [Level 0]

Returns the site that owns the object. This is an immediate primitive.

(DM-set-site-of! Object new-Site) : old-Site [Level 2 — NOT YET IMPLEMENTED]

Changes the site that owns an object and returns the previous owner; this is also called ”migration”. The
object must be motile otherwise its owner cannot be altered and the object cannot move from the site where
it had been created (this does not prevent the object to be copied or shared that is, remotely referenced).
This primitive may block. This primitive impacts the monitoring clock if any.

(DM-clock-of Object) : #f or Clock [Level 0]

Returns the clock monitoring a mutable object. This is an immediate primitive. If the object is immutable
or not monitored by a clock then #f is returned instead.

(DM-set-clock-of! Object new-Clock) : old-Clock [Level 2 — NOT YET IMPLEMENTED)]

Changes the clock associated to a mutable object and returns the previous clock. The new clock must
be a neighbor of the object that is, owned by the same site. This primitive may block.

48 CHAPTER 4. SCHEME BINDING

(DM-connect "host name or IP number" port-number "password") : Site [Level 1]

Connects the current DMEROON space with a remote one. The remote DMEROON space is specified by
an hostname and a port number. The hostname may also be an IP number written in dot notation.

(DM-send Object Site) : the Object itself [Level 1]

Sends a reference onto an object to a site. This primitive may block.

(DM-receive duration) : #f or an Object [Level 1]

Receives an object. This primitive blocks at most duration seconds. If no object is received then it
returns false. This function may only be used while the DM-handler-object variable is false.

(DM-handler-object Object) : #f [Level 1]

If this variable is false i.e., #f then incoming objects are accumulated then received using DM-receive.
If this variable is not false, then its value must be a unary function that will be applied on every incoming
object. In this case, one must not call DM-receive.

(DM-serve duration) : bolean [Level 0]

This primitive yields control to DMEROON for at least duration seconds. Zero seconds is a possible
duration in which case, pending requests are handled if already present. This allows DMEROON to handle
incoming requests and manage its local space.

4.2 Variables

The current site is the value of the DM-site variable.

A number of global variables allow to access predefined classes. Their name start with DM- and end with
-class. These are, for instance, DM-Object-class, DM-Class-class, DM-Field-class, DM-Type-class,
DM-String-class, etc.

To allow an easy access to instances of predefined classes, fields of predefined classes are also predefined.
Their name begin with DM-, the name of the introducing class, a dash, the name of the field and is followed by
-field. These are, for instance, DM-Class-name-field, DM-Class-super-field, DM-Class-field-field,
etc.

DMeroon types are also defined under a name ending with -type. These are, for instance, DM-nou-
ght-type, DM-natl-type, DM-nat2-type, DM-nat3-type, etc.

4.3. LIBRARIES 49

4.3 Libraries

The Scheme binding defines additional useful functions. These files may be dynamically loaded or compiled
and linked.

4.3.1 Tools

Some useful functions are defined in the TOP /DMeroon/dmlib.scmfile. Among them is an iterator on objects:
DM_iterate, a coercer into Scheme strings, a function to display details of DMEROON objects, functions to
convert Scheme values into DMEROON objects back and forth, etc.

(DM-iterate Object by-item by-length by-indezed-item) : unspecified [Scheme function]
(by-item Object Field DMeroonType) : unspecified
(by-length Object Field DMeroonType DMeroonType) : unspecified
(by-indexed-item Object Field DMeroonType index) : wunspecified

Iterate sequentially on all the non-secret values contained in an object (but the secret ones) and apply
appropriate functions on these values. The by-item function is applied on every regular non-secret field, the
by-length function is applied on every non-secret indexed field, the by-indexed-itern function is applied on
every value of every non-secret indexed field.

(DM->string Object [Field |) : String [Scheme function]

This function takes an instance of the String class and coerces it into a Scheme string. Used with two
arguments: an object and an additional instance of the Field class corresponding to a repetition of charl,
it coerces the field into a Scheme string. For example, obtaining the name of the current site may be written
as:

(DM->string DM-site DM-Site-name-field)

Implementation note: A common error is to confuse Scheme and DMEROON wvalues, espe-
cially strings and instances of String. Use the DM->string or DM<-sexpr functions/

(DM-describe Object [output-port |) : wunspecified [Scheme function]

This function prints a detailed description of an object onto a Scheme output port (by default onto the
current output port). Ounly the first level of the object is printed, use the next function to recursively display
an object. This function is implemented with DM-iterate.

(DM-describe-all Object [output-port |) : unspecified [Scheme function]

a0 CHAPTER 4. SCHEME BINDING

This function prints a detailed description of an object onto a Scheme output port (by default onto
the current output port), it also recursively prints the detailed description of referenced objects. Cycles of
objects are handled. This function is implemented with DM-iterate.

(DM<-sexpr wvalue [handler) [Scheme function]

This function converts a Scheme value into a DMEROON object. The empty list, booleans, symbols,
characters, vectors, pairs, strings, integers and floats are converted. Other types of values (procedures for
instance) are given to the handler, their translation is left to the definition of the handler. The default
handler raises an error. Sharing is not respected by this simple-minded converter but DMEROON objects are
left as they are.

(DM->sexpr wvalue [handler) [Scheme function]

This function converts a DMEROON object into a Scheme value. The empty list, booleans, symbols,
characters, vectors, pairs, numbers and strings are converted. If a DMEROON object is not converted then
it is given to the handler which, by default, raises an error. Sharing is not respected by this simple-minded
converter.

(DM-publish! Object "name" ...) : unspecified [Scheme function]

This function publishes a DMEROON object i.e., incorporates it in an instance of the Dictionary class in
the offspring of the site object (more precisely via the information field of the current site). The pathname
leading to this object is indicated in the following arguments of the DM-publish! function. By default, every
value published by the user is in the user dictionary.

Published objects can be inspected with an URL formed after their pathname.

(DM-retrieve "name" ...) : Object or #t [Scheme function]

This function retrieves the DMEROON object that is published under the given pathname. If that object
does not exist then #f is returned instead.
To store my first name, I can say:
(DM-publish! (DM<-string "Queinnec") "name" "first")
It can now be retrieved with:

(DM-retrieve "name" "first")

4.3.2 DMEROONet

The TOP/DMeroon/dmeroonet.scmfile defines a light object system, above DMEROON, in the spirit of MER-
OONV3.

The DMEROONet object system is very simple to use: only three macros are defined: one to define classes
(this macro is almost similar to the define-class macro described in Section 3.5). DMEROONet provides
distributed generic functions i.e., generic functions whose methods may be located on different sites [Que97al.

4.3. LIBRARIES o1

(DM-define-class class-name super-class [Scheme macro]
(field-name field-options)
[class-options |)

This macro defines a class with a name (a symbol), a super-class (an evaluated expression that must
yield a class), some fields and, possibly, some class options. Class options are described in table 3.4. A field
starts with a name (a symbol) followed by field options as described in table 3.3.

For example, here is the definition of the Point class (note the difference with the definition of Section
3.6.2):

;53 This is file Point.dm

(DM-define-class Point DM-Object-class
((x :type int3 :mutable)
(y :type int3 :mutable)))

(DM-generic (name wvariables-specification) [Scheme macro]
[default body |)

This macro defines an anonymous generic function. The wvariables-specification specifies the variables
of the function as well as which variables are discriminating. A discriminating variable appears between
parentheses. The values of the discriminating variables allow to choose the appropriate method. By default,
the default behavior of a generic function is specified by the default body. In particular, if applied on Scheme
values rather than DMEROON values, the default body is applied. The generic function itself is a DMEROON
object value of the name; the default body may be recursive and use this anonymous generic function with
the name variable.

(DM-method (name variables-specification) [Scheme macro]

[body |)

This macro defines a method for a generic function. The generic function may be referred to with the
name variable. The variables-specification specifies the variables of the function as well as which variables
are discriminating. Of course, this must be congruent with the generic function(s) to which this method
will be added. A discriminating variable appears between parentheses accompanied by an expression whose
value is the class on which the method will be triggered.

(DM-add-methods generic-function method. . .) [Scheme function]

This function allows to add multiple methods to a generic function. It returns a new generic function
similar to the previous one except that it understands new behaviors.

92 CHAPTER 4. SCHEME BINDING

(DM-invoke generic-function value...) [Scheme function]

This function invokes a generic function on some arguments. The arguments that correspond to discrim-
inating variables allow to choose the appropriate method which is then applied on these arguments.

(call-next-method) [Method macro]

This macro can only appear in a method definition. It allows to call the super method on the same
arguments.

(call-former-method wvalue...) [Method macro]

This macro can only appear in a method definition. It allows to refer to the method that would have
been triggered in the generic function that was enriched by DM-add-methods.

4.4 Scheme peculiarities

The above documentation describes the general binding of DM EROON with a generic Scheme implementation.
Often it is possible to bind it better. This section describes these additions.

4.4.1 Bigloo
The binding of DMEROON with Bigloo 1.8 brings some additional features.
1. the display function is extended to recognize DMEROON objects. They are printed as
#<DMeroon: reference>
where reference is a DMEROON reference (and not a Bigloo address).

2. if Bigloo waits when reading a file or the input terminal then the interpreter will take advantage of
that situation to serve incoming DMEROON requests. DMEROON uses Bigloo’s continuations to create
or, suspend or, resume coroutines. With DM-handle-object, any incoming object is processed in its
own coroutine.

3. a new protocol is recognized: the SchemeScript protocol which allows to receive Sexpressions to
evaluate via the DMEROON server. These Sexpressions are evaluated in the global environment of the
interpreter. The displayed result is sent back to the client and the connection is closed. A SchemeScript
message ends with a sequence of four characters which are the NUL, NUL, CR and LF characters in
that order.

To use that protocol, you may use the schemescript command defined in the TOP/DMeroon/Com—
mands/schemescript.prl file.

schemescript.prl [host[:port] [file]] [Command]

4.4. SCHEME PECULIARITIES 93

This command sends the content of the given file (or the standard input if absent) to the DMEROON
server specified by host:port. It prints the returned result but does not report errors (they are reported via
the standard error output of Bigloo).

o4

CHAPTER 4. SCHEME BINDING

Chapter 5

DMEROONSCRIPT binding

This chapter describes the DMEROONSCRIPT language and its binding with DMEROON. This language had
been defined to test the DMEROON API and to write simple URLs to access DMEROON objects, it then
evolved into a specific language. DMEROONSCRIPT is a tiny language that can easily be extended by the
user (with DMEROONSCRIPT definitions) or by the implementor (in C). This language may be used to write
simple single-line URLs to access DMEROON objects or quite complex multi-line programs to perform some
actions on them. All the functionalities of DMEROON API may be put to work with the DMEROONSCRIPT
language.

DMEROONSCRIPT is a stack-based, Forth-like language with a post-fix syntax. Constants are pushed
onto the stack when processed. Other words correspond to commands whose definition is recorded in a
linked list of vocabularies (instances of UrlEnv). Commands pop their arguments out of the stack and push
their results. The stack only contains DMEROON objects.

DMEROONSCRIPT uses HTML to display its results so it is better to use it from an http client. The
DMeroon_interpret API function also allows to submit DMEROONSCRIPT programs.

When an DMEROONSCRIPT is erroneous, its execution stops and an error message is returned (in html)
and the content of the stack is displayed as well. When an DMEROONSCRIPT program stops normally, the
stack should be empty; if the stack contains a single value, it is displayed. If the stack contains more than a
single value, an error message is returned.

The empty DMEROONSCRIPT program triggers the display of an help message.

An DMEROONSCRIPT program is evaluated with a stack holding DMEROON objects and an environment
mapping variables to DMEROON objects. An DMEROONSCRIPT is formed of a succession of constants or
commands separated by spaces (or tabulations or newlines) or by slashes (this eases writing URLSs).

5.1 Programs

A program is a possibly empty sequence of lines. Comments start with the hash sign and end up with the
end of the line. Lines are made of tokens that is constants (i.e., literals) or commands. Commands are named
as C identifiers, they start with a letter or an underscore and may contain a number of letters, underscores
or digits. Succeeding commands that may be confused should be separated with whitespace, tabulations,
newlines (LF or CR) or slashes.

Within DMEROON, programs are represented by an instance of class String. A NUL character of code
zero ends the representation of a program even if it is not the last character.

5.2 Constants

Constants may be numbers, strings or characters. They are pushed onto the stack as soon as recognized.
Numbers are only positive. They may be written in decimal form or in octal form, if prefixed with 0 or
in hexadecimal form, if prefixed with 0x or 0X. Numbers are converted into instances of the Nat3 class.

35

26 CHAPTER 5. DMEROONSCRIPT BINDING

Strings are enclosed with ". Characters within a string (and mainly " and \) may be protected by \.
Strings may also be specified if surrounded by matching { and }. Quite often, this is used to denote an
executable piece of code to submit to the eval command. Strings are converted into instances of the String
class.

Characters are enclosed within ’. They are converted into instances of the Char1 class.

When created, a constant is initialized as copyable (unless the DM_CONTEXT DONT_INITIALIZE Context
option is set).

Examples

The following program pushes onto the stack an instance of Charl, two instances of Strings and three
instances of Nat3:
7Q7
"This is a \"string\"."
{This is { another } string}
12345 017 OxCafeBabe

5.3 Access to field

The content of the field of a DMEROON object may be extracted via the dot notation followed by the name
of the field (specified directly and not as a string). The content of an indexed field may be extracted via the
dot notation followed by the name of the field (specified directly and not as a string) suffixed by an index
between square brackets. The result must always be a DMEROON object, this implies that the field must
have type reference.

An error is signaled if an index appears and the field is not indexed. An error is signaled if the field is
indexed and no index appears. An error is signaled if the field is secret.

Implementation note: Indeves are no longer implemented. In the past, a field such as a
natl, when read, was automatically reified into a Natl instance. The reciprocal conversion was
automatically done at writing-time. Should I reintroduce these features ?

Examples

For instance, if the current site is on top of the stack then its information field is read by the .information
command; this value replaces the site on top of the stack.

thesite # get the current site onto the stack
.information # the DMeroon dictionary
.rest # get the ’user’ dictiomary

After removing all the previous comments, this little program may be equivalently written as:
/thesite/.information/.rest/

After the evaluation of either one of these two programs, the stack contains a single object: an instance
of Dictionary.

5.4 Commands

A word that cannot be parsed as a constant or an access command (i.e., the name of a field prefixed with
a dot) is a command whose definition has to be found in the current vocabulary. If the command is not
defined, the DMEROONSCRIPT program is erroneous and stopped.

Commands are explained in this Section with the following notations: The stack is displayed with its
top to the right, then the command is shown followed by the resulting stack (with still its top to the right).
Uninteresting parts of the stack are elided with The class of the arguments is represented by the name
of their class.

5.4. COMMANDS a7

5.4.1 Basic commands

The basic vocabulary of the DMEROONSCRIPT language provides the commands that are used by the html
display mechanism of DMEROON objects. These are: thesite, byteprint, fancyprint entry and modify.

. thesite — ... Site [DMEROONSCRIPT commands]
Object byteprint — ...
Object fancyprint — ...

The thesite command pushes the current site on top of the stack. The fancyprint command pops an
object out of the stack and displays its content in html in a fancy form while byteprint displays its content
in bytes (again in html form). These commands do not push anything in result. The byteprint command
displays a result that is implementation-dependent. There is an additional print directive.

. Nat3 Nat3 Nat3 Nat3 entry — ... Entry [DMEROONSCRIPT command)]

The entry command pops four numbers out of the stack and pushes the Entry instance that has a key
formed with these four numbers. Keys include a random part making the forgery of keys at least difficult.

. String Object modify — ... Object [DMEROONSCRIPT command)]

The modify command allows to perform, on an object, a series of modifications encoded in a string.
When an object has some mutable fields, these fields are displayed within an html form that when sent back
to the DMEROON server with the Modify! button, triggers a POST request. A POST request is handled
similarly to a GET request except that the content of the POST request, a string of name=valuek. .. pairs,
is turned into an instance of the String class and is pre-pushed in the stack before the evaluation of the
DMEROONSCRIPT program. This command allows to modify many fields at once.

Implementation note: This command knows how to modify all types of non-indexed fields
but reference field.

5.4.2 Vocabulary commands

The set of possible commands is held in a linked list of instances of UrlEnv i.e., vocabularies. When defined
a command is recorded into the topmost vocabulary. It is not possible to redefined a command but it is
possible to push a new empty vocabulary, to use another vocabulary or to pop the current vocabulary.

The evaluation starts with an empty vocabulary followed by the predefined vocabulary containing all the
commands described in this chapter.

. begin — ... [DMEROONSCRIPT commands]
. end — ...
UrlEnv use — UrlEnv ...

98 CHAPTER 5. DMEROONSCRIPT BINDING

The begin command creates a new empty vocabulary and insert it in topmost position in the list of
vocabularies. The end command reverses this effect and pops the current vocabulary. The use command
allows to change entirely the linked list of vocabularies, it returns the previous vocabulary.

The current vocabulary may be obtained via the reifying state command.

Object String define — ... [DMEROONSCRIPT command)]

The define command binds a name and an object in the current environment. This implicitly creates a
new command with that name that, when invoked, returns the associated object.

. String String defcommand — ... [DMEROONSCRIPT command)]

The defcommand command binds a name and a string. When the command is invoked, the associated
string is evaluated instead.

Examples

To be in an empty vocabulary with nothing at all defined is simple but problematic since there is no means
to return to a regular situation: this is a dead-end:

"UrlEnv" 2 allocate use pop
The print command consumes the top of the stack. It is a simple matter to define a new command,
named idprint, that avoids this behavior that is, that prints the top of the stack and leaves the stack
unchanged. For instance,
{ dup print
} "idprint" define
1 idprint eval # Test idprint
Rather than using eval explicitly, we may define an equivalent command and write:

{ dup print
} "idprint" defcommand
2 idprint # Another test

Here is a small DMEROONSCRIPT program that rolls the three objects on top of the stack. This is an
extended swap command whose name is inspired from Forth similar command.

{ begin
"top" define # pop top and name it top
"subtop" define # pop subtop and name it subtop
"subsubtop" define # pop subsubtop and name it subsubtop
subtop top subsubtop # push all three of them in a different order
end
} "roll" defcommand
mgmom2M v3" roll # Stack contains 1 3 2 (from top)

This example is safer than the two previous ones since the arguments of the roll command are created
in a local vocabulary which is only used during the computation of the roll command. The name top may
be used again safely.

5.4.3 Stack commands

These are Forth-like commands:

5.4. COMMANDS 99

Object dup — ... Object Object [DMEROONSCRIPT commands]
Object; Objects swap — ... Objects Object;
Object pop — ...

These commands manage the stack. dup duplicates the top of the stack, swap swaps the two objects at
the top of the stack while pop removes the top of the stack.

5.4.4 Boolean commands

These are the commands dealing with boolean and, chiefly, the alternative construction.

. false — ... Boolean [DMEROONSCRIPT commands]
. true — ... Boolean

Object; Object, == — ... Boolean

Object not — ... Boolean

Objecterse Objectipen, Object if — ...

These are the commands dealing with logical values. The true, resp. false, command pushes true,
resp. false, onto the stack. True and false are predefined instance of classes True and False, subclasses of
Boolean. The == command compares two objects and return the true or false boolean DMEROON objects.
True is produced if the two compared objects are just the same physical object however, comparing two
Nat3 numbers or two Strings yields true if they have same content. The not command returns true if given
the boolean false and returns false for all other DMEROON objects. The if command pops out an object
and two other objects known as then and else. If the object is false else is pushed otherwise then is pushed
instead. Note that, in DMEROONSCRIPT, all values are equivalent to true but the false object which is the
only one of its kind.

. null — ... Object [DMEROONSCRIPT commands]

The null command pushes DM_NULL i.e., the empty reference which belongs to any class.

Examples

This command allows to pop a stack until finding a null value. This null value is consumed. This function
is erroneous if the stack does not contain a null value.

{ begin # Open a new vocabulary
"x" define # Name the argument
{pop-until-null} {} x null == if eval
end # Close the local vocabulary

} "pop-until-null" defcommand
{1} null 2 3 4 5 true pop-until-null # Just leaves 1 on the stack

5.4.5 Arithmetic commands

The arithmetic operations exist as well. They are spelled in full letters and the only problem is to remember
how not commutative operations take their arguments.

60 CHAPTER 5. DMEROONSCRIPT BINDING

.. Nat3 Nat3 plus — ... Nat3

.. Nat3 Nat8 minus — ... Natd

.. Nat3 Nat8 times — ... Natd

.. Nat3 Nat3 quotient — ... Nat3
. Nat3 Nat3 modulo — ... Nat3

[DMEROONSCRIPT commands)

There are also the other arithmetic comparators. Remember they are not commutative so pay attention
to the order of the arguments. A quick rule is that you have to write as in a mirror.

.. Nat3 Nat3 le — ... Boolean
.. Nat3 Nat3 1t — ... Boolean
.. Nat3 Nat3 ge — ... Boolean
.. Nat3 Nat3 gt — ... Boolean

. Nat3 Nat3 ne — ... Boolean

[DMEROONSCRIPT commands]

Examples

Here is the best-seller factorial example:

{ begin
"n" define
#"DEBUG: n= " print n print ", " print
{n 1 n minus factorial times} 1 1 n le if eval
end

} "factorial" defcommand
5 factorial print

5.4.6 Meta commands

Name the argument
Print argument

There are two meta-commands. The eval command allows to evaluate a string while state reifies the

current state of the DMEROONSCRIPT machine.

. String eval — ...

[DMEROONSCRIPT command)]

The eval command pops out a string and evaluates it. The evaluation of the string does not yield results

per se, rather it may alter the stack and the current environment.

. state — ... UrlState

[DMEROONSCRIPT command)]

The state command reifies the full state of the evaluation into an instance of UrlState. Such an object

appears in the message emitted in case of errors.

5.4. COMMANDS 61

. dumpstack — ... [DMEROONSCRIPT command)]
. Nat3 exit —

To view the stack, one may print it with dumpstack (but you may alternately interactively inspect it with
the state command). If you want to abort immediately the evaluation of a DMEROONSCRIPT program, use
the exit command and tell it the error code you want to raise (or zero if this is an abrupt but normal end).

. Site go = ... Site [DMEROONSCRIPT command)]

The go command allows to migrate computations from one site to another. The site where the compu-
tation should go is popped out of the stack, the current site is pushed instead and the whole state of the
machine is copied and resumed on the intended site. The new site may return to the original site if using
the top of its stack.

5.4.7 Miscellaneous commands

These are the left-over commands.

Object print — ... [DMEROONSCRIPT command)]

The print command pops an object out of the stack and tries to display its content into a short,
comprehensible, human-readable form. Instances of the abstract classes Value (mainly for numbers) and
String are recognized and printed specially.

. String String extract — ... String [DMEROONSCRIPT command]

The POST request pushes its body, a string of name=value&. .. pairs. The extract command allows to
extract a value associated to a name from that string. The value is turned into an instance of String. This
command may be used to extract the value of a given field from a string.

. Entry fetch — ... Object [DMEROONSCRIPT command)]

The fetch command caches or updates locally the object associated to an Entry.

Clock tick — ... [DMEROONSCRIPT command)]

62 CHAPTER 5. DMEROONSCRIPT BINDING

The tick command pops and increments a local Clock.

5.5 DMEROON API

There exist commands to invoke the functions of the DMEROON API. The arguments popped from the stack
are in the order of the variables of the corresponding function of the API.

Object classof — ... Class [DMEROONSCRIPT commands]
Object siteof — ... Site
Object clockof — ... Clock

The classof command pops an object out of the stack and pushes its class instead. Similarly the siteof
command pushes the site that owns the object and clockof pushes the associated clock (that is, NULL if no
clock is associated).

. String class — ... Class [DMEROONSCRIPT command)]
. String type — ... DMeroonType

.. Class String field — ... Field
. String Nat3 site — ... Site

The class command pops a name and pushes back the predefined class with that name. An error is
signalled if no predefined class with that name exists. The type command pops a name and pushes back
the predefined DMEROON type with that name. An error is signalled if no predefined type with that name
exists. The field command pops a name and a class and pushes the Field descriptor with that name from
that class. An error is signalled if no field with that name exists. The site command pops an hostname
and a port number and returns the appropriate DMEROON instance of Site if it exists.

Class Nat3... allocate — ... Object [DMEROONSCRIPT command)]
Object clone — ... Object

The allocate command pops sizes (i.e., numbers) out of the stack until finding a class. It then allocates
and pushes an instance of that class with the given sizes.

The clone command pops an object out of the stack, clones it and pushes the result back onto the stack.

Object setsharable — ... [DMEROONSCRIPT commands)
Object setcopyable — ...

These commands pops an object and makes it sharable or copyable.

5.5. DMEROON API 63

Object Site setsiteof — ... [DMEROONSCRIPT commands]
Object Clock setclockof — ...

These commands allow to change the site owning an object or the clock monitoring an object.

. Stringnostname Nat3 Stringpesswora connect — ... Site [DMEROONSCRIPT command]

The connect command connects the current site with another site specified by the name of its host, its
portnumber and the password to use.

. Site Object send — ... [DMEROONSCRIPT commands]
. receive — ... Object Boolean

The send command sends the reference of an object towards a given site. The receive command returns
a boolean telling if an object has been received accompanied by the object if the boolean is true. When the
boolean is false, the following object is meaningless.

Object Field x1lenth — ... Nat3 [DMEROONSCRIPT commands]
Object Field get — ... Object

Object Field Nat3 xget — ... Object

Object Field Object set — ... Object

Object Field Nat3 Object xset — ... Object

These commands allow to read the length of an indexed field or the content of a regular or indexed field
or to modify a regular or indexed field. They are restricted to fields of type reference. You may modify
fields with other type with the modify command.

Class String Nat3 Nat3 smashclass — ... Class [DMEROONSCRIPT commands]
Class String Nat3 String Nat3 Type Type Class createsubclass — ... Class

The createsubclass command pops all the arguments needed to create a class. The smashclass
command pops all the arguments needed to smash a class a number of levels.

5.5.1 Debugging command

The DMEROONSCRIPT language allows to debug applications through HTTP and unsafe additional com-
mands.

64 CHAPTER 5. DMEROONSCRIPT BINDING

. Nat8 address — ... Object [DMEROONSCRIPT command)]

The address command pops out a number and pushes the DMEROON object whose DMEROON reference
is equal to this address. The word address is misleading since the number is the DMEROON reference not
the address of the object viewed from the binding language.

Object proxyof — ... External [DMEROONSCRIPT command)]

This command returns the proxy of a DMEROON object. It must only be used for debugging since these
objects are normally hidden from the user.

. Nat3 setdebuglevel — ... Nat3 [DMEROONSCRIPT command)]

This command allows to change the debug level of the DMEROON server. Zero means terse, higher
numbers increase verbosity. This command returns the previous debug level. This command is meaningless
if the server is compiled without the cpp variable DM_DEBUG defined.

5.6 Use

DMEROONSCRIPT is used to inspect DMEROON values with an http client. If your DMEROON server runs
on your local machine then the initial URL is:

http://localhost:56423/

This URL gives access to some general information and provides a link to allow the inspection of the site
object. This URL is:

http://localhost:56423/thesite/fancyprint
From this, one can follow references that correspond to URLs looking like:
http://localhost:56423/0x000a67dc/0x6353e384/0x3448a335/0x1£91cd56/entry.object

This kind of URL specifies an object externalized with a given key.

When an object is displayed (see figure 5.1), a banner tells which DMEROON server was the source of
the answer. The object is preceded by a sentence specifying its main characteristics such as immutable
or mutable, local or remote, sharable or copyable or uninitialized, obsolete or up-to-date; its class is also
mentioned and it is possible to see the bytes representing the object if you are an hex fan'. The fields of
the object are then displayed in order starting with the name of the field, its type, its length if indexed and
followed by its content. If a field is mutable, then it is possible to modify it directly in your http client and
press the Modify! button (see figure 5.2).

5.7 DMEROONSCRIPT API

It is possible to run DMEROONSCRIPT programs from the binding language. The DMEROONSCRIPT lan-
guage may easily be extended in C with new commands. Here follows the API to extend, in C, the DME-
ROONSCRIPT language.

The DMEROONSCRIPT machine has a state, an instance of the UrlState class.

Ldes sizties, comme disait Serge Gainsbourg.

5.7 DMEROONSCRIPT API

IB'Lttp 1/ /localhost 156423/ therite/ fancyprint

From DMeroon @lispou.lip6.fr:56423

Imroutable local sharable Dhderoon mstance of predefined class Site. (bytepring)
address{nematd): 132227 8399

port(netmat2): 56423(220.103)

date(date): Sat Oot 18 15:10:23 1997

options (site_options): USABLE WANT3-FACTS

processid(natz): 9000

wversion(floatl): 1.3

versions(reference): (3 YersionString) 0x000267 e/ x6353 e3840 344841 6500797 466

clockreference): (a Clock) 0x000367 de/xb553 6384023448 41660 x36{bazbl
clocker(natd): 1

Figure 5.1: A Site displayed in html

ttp:/fliepon.liph. £r:56423/0:000267de/ 063553

x(natd): %IH

y(ehart)[0.3]:]

Figure 5.2: A mutable object displayed in html

65

66 CHAPTER 5. DMEROONSCRIPT BINDING

UrlState [Class]
previous another UrlState
script the DMEROONSCRIPT program (a String)
pc the program counter (a nat3 number)
stack the stack (a BoundedStack)
environment the vocabulary of commands (an UrlEnv)
errcode the last error code

This class defines the various components of the state of the DMEROONSCRIPT machine. Objects are
pushed onto the stack and the stack is extended when needed. The program counter is an index into the script
(a String). To invoke the eval command in the DMEROONSCRIPT creates a new state for this evaluation.
When the evaluation is over, the old state is restaured. Commands are looked for in the environment, a
linked list of hash-tables containing instances of UrlActions.

UrlAction [Class]
behavior a pointer to a C function
internal a DMEROON object or NULL
name a natl-sequence of charl
argument a natl-sequence of Classes

An UrlAction records an DMEROONSCRIPT command. It has a name, is implemented by a C function
with a precise signature. The arguments of that command must be DMEROON objects only and must have
the class specified in the indexed argument field. The internal field holds any DMEROON value that may be
needed by the command. This field is used, for instance, by the define and defcommand DMEROONSCRIPT
command and may also be used to mimic closures.

The UrlAction class may, of course, be subclassed.

The C function that implements an UrlAction command must have the following prototype:

DM_UrlStatex* behavior ([UrlAction behavior]
DM_Context *context,
DM_UrlAction *self,
DM_UrlState *state,
void *output_port,
DM_Object *xarg0, /* references only */
)

This behavior function receives the current context, the UrlAction describing it (so it may fetch the
internal value for instance), the state of the DMEROONSCRIPT machine (with its stack for instance), the
output port where to print (or NULL if no printing is needed) and as many variables as there are arguments.
The DMEROONSCRIPT machine takes care of invoking behaviors with the correct number and classes of
arguments. A command may take from 0 to 8 arguments. A command return the new state of the machine.

The only difficulty is to remember how are mapped arguments from the stack to variables of the behavior:
they are mapped as represented in the previous definitions. If a command has three arguments, the last one
is at the top of the stack (this is to simulate how stacks are displayed in this chapter).

5.7 DMEROONSCRIPT API 67

Example

Here is the code of the setdebuglevel command:

static DM_UrlStatex*

DM_setdebuglevel _command (DM_Context *context,
DM_UrlAction *self,
DM_UrlState x*state,
void *output_port,
DM_Nat3 xarg0)

DM_Nat3 *result = DM_AllocateO(context, Nat3);

result->value = DM_TheCurrentSite()->debug_level;
if (context && DM_HasNotOption(context, DM_CONTEXT_DONT_INITIALIZE)) {
DM_SetCopyable(context, result);
}
DM_TheCurrentSite()->debug_level = argO->value;
DM_push_object_in_bounded_stack(context,
(DM_0Object*) (result),
&(state->stack));
state->errcode = DME_SUCCESS;
return state;

5.7.1 Explicit evaluation

To run an DMEROONSCRIPT program is simple. Just give a C string containing the DMEROONSCRIPT
program and a number of objects that will form the initial stack (first object is the first pushed onto the
stack). These objects must be DMEROON objects, they are prefixed by their number. The final state
of the DMEROONSCRIPT machine is returned so the results may be popped out of the final stack. The
DMEROONSCRIPT machine is run in mute mode: nothing is printed

DM_ErrorCode [Level 0]
DMeroon_interpret (DM_Context* context,
DM_UrlState* *urlstate,

charx* urlprogram,
DM_nat3 nobjects,
DM_QObject* object, ...)

The previous function is implemented on top of the following one which is less usable as it stands but
more accurate since it represents the current DM EROONSCRIPT interpreter.

DM_UrlStatex [Level 0]
DM_interpret_url_script (DM_Context* context,

DM_UrlState*x urlstate,

voidx output_port /* or NULL x/)

68 CHAPTER 5. DMEROONSCRIPT BINDING

This function runs an DMEROONSCRIPT machine with an initial state. When the DMEROONSCRIPT
machine terminates, its final state may be accessed to discover the objects that are pushed in its stack.
The interpretation stops as soon as an error occurs. Printing may occur via the port mentioned as third
argument; NULL prevents printing.

Examples

It is sometimes interesting to combine two accesses but not to force the intermediate object to be fetched
on the current site. Here is a way to achieve that:

errcode = DM_site_of (context, &other_site, o);
/* Check error code */
errcode = DM_interpret(context, &urlstate,
"go swap .fieldl .field2 swap go",
2, o, other_site);
/* Check error code */
. urlstate->stack->item[0] /* is the result. */ ...

The computation is migrated onto the owning site of the o object, o.field1 is made present on that site
and o.fieldl.field?2 is returned onto the original site.
5.8 Development environment

You may use the TOP /DMeroon/Commands/urlscript command to submit clearer, longer, multi-lined DME-
ROONSCRIPT programs from any shell command interpreter.

urlscript [hostname/:port]] [file] [Command]

This command establishes a connection to the specified DMEROON server and sends it the specified file
using the DMEROONSCRIPT protocol. If no file is mentioned, the standard input is accumulated (until an
end-of-file) before being sent. Shell variables are substituted with their values before being sent to the server.
The server answers with html which is delivered onto the standard output of the urlscript command. The
final errorcode returned by the DMEROONSCRIPT program becomes the return code of the command. Files
containing DMEROONSCRIPT programs have .dms as extension.

An excellent tool, named dmClient, allows you to really easily edit and submit DMEROONSCRIPT requests
to a DMEROON server. Jean-Michel Inglebert is the author of dnClient. dmClient may be operated from
any JavaScript-enabled http client. Point your favorite browser to TOP/Contrib/dmClient/dmClient.htm
page to play with.

There also exists an Emacs mode to edit DMEROONSCRIPT programs. Two variables may be set to
specify the DMEROON server you want to send the content of the current buffer. The result is viewed
with Emacs thanks to the marvellous w3 package from William Perry?. This Emacs mode appears in the
TOP /Emacs/DMEROONSCRIPT. el file. Documentation appears in its header.

5.9 Examples

This is a one-liner to increment the general clock of a site. It displays the string “Attention” followed by the
current clock, increments the clock and redisplays it (in a fancy way i.e., with a “tick” button). The script
ends by printing “Done.” Here it is:

"Attention"/print/thesite.clock/dup/tick/fancyprint/"Done."/print

2ftp://ftp.cs.indiana.edu/pub/elisp/w3

5.9. EXAMPLES 69

This is a bigger example of an DMEROONSCRIPT program that records the string DMeroon is great!
in a dictionary named queinnec which is grafted in the user dictionary.

Get the ‘‘user’’ dictionary.
thesite.information.rest "user_dictionary" define

Create a new dictionary (with the right size).
"Dictionary" class 9 allocate "new_dictionary" define

Initialize the ‘‘name’’ field.
"name=queinnec" new_dictionary modify pop

Initialize the ‘‘value’’ and ‘‘rest’’ fields.
new_dictionary dup classof "value" field "DMeroon is great!" set pop
new_dictionary dup classof "rest" field user_dictionary.rest set pop

Finish the initialization and makes the dictionary sharable.
new_dictionary setsharable

4

Hook the new dictionary after the ‘‘user’’ dictionary.

user_dictionary dup classof "rest" field new_dictionary set pop

Report correct execution.
"Done" print

70

CHAPTER 5. DMEROONSCRIPT BINDING

Chapter 6

ICSLAS binding

This chapter describes a binding initiated some years ago with a concurrent, distributed extension to the
Scheme language: the IcsLAs language. The ICSLAS language is powered by a byte-code interpreter, a
compiler exists (written in Scheme) for the Scheme subset of IcsLAS. The byte-code machine and the
compiler are enhanced versions from the ones described in [Que96].

All IcsLAs values are represented as DMEROON objects. Entities necessary for the byte-code machine
such as lexical environments, global environments and continuations are as well represented by DMEROON
objects thus allowing their migration.

Implementation note: Unfortunately, I had no time to pursue that effort since 1996.

71

72

CHAPTER 6. ICSLAS BINDING

Bibliography

[AF94]

[Coi87]

[LQP92]

[Piq91]

[QCss]

[Que90]

[Que9l]

[Que93]

[Que94a)

[Que94b]

[Que96]
[Que9Ta)

[Que97b]

[WS90]

G. Attardi and T. Flagella. A customizable memory management framework. In Proceedings of the USENIX
C++ Conference, Cambridge, Massachussetts, 1994.

Pierre Cointe. The ObjVlisp kernel: a reflexive architecture to define a uniform object oriented system.
In P. Maes and D. Nardi, editors, Workshop on MetaLevel Architectures and Reflection, Alghiero, Sardinia
(Italy), October 1987. North Holland.

Bernard Lang, Christian Queinnec, and José Piquer. Garbage collecting the world. In POPL 92 -
Nineteenth Annual ACM symposium on Principles of Programming Languages, pages 39-50, Albuquerque
(New Mexico, USA), January 1992.

José Miguel Piquer. Indirect reference counting: A distributed garbage collection algorithm. In PARLE
’91 — Parallel Architectures and Languages Europe, pages 150-165. Lecture Notes in Computer Science 505,
Springer-Verlag, June 1991.

Christian Queinnec and Pierre Cointe. An open-ended Data Representation Model for Eu-Lisp. In LFP 88
— ACM Symposium on Lisp and Functional Programming, pages 298-308, Snowbird (Utah, USA), 1988.

Christian Queinnec. A Framework for Data Aggregates. In Pierre Cointe, Philippe Gautron, and Christian
Queinnec, editors, Actes des JFLA 90 — Journées Francophones des Langages Applicatifs, pages 21-32, La
Rochelle (France), January 1990. Revue Bigre+Globule 69.

Christian Queinnec. MEROON: A small, efficient and enhanced object system. Technical Report
LIX.RR.92.14, Ecole Polytechnique, Palaiseau Cedex, France, November 1991.

Christian Queinnec. Designing MEROON v3. In Christian Rathke, Jirgen Kopp, Hubertus Hohl, and Harry
Bretthauer, editors, Object-Oriented Programming in Lisp: Languages and Applications. A Report on the
ECOOP’93 Workshop, number 788, Sankt Augustin (Germany), September 1993.

Christian Queinnec. Locality, causality and continuations. In LFP 9/ — ACM Symposium on Lisp and
Functional Programming, pages 91-102, Orlando (Florida, USA), June 1994. ACM Press.

Christian Queinnec. Sharing mutable objects and controlling groups of tasks in a concurrent and distributed
language. In Takayasu Ito and Akinori Yonezawa, editors, Proceedings of the Workshop on Theory and
Practice of Parallel Programming (TPPP’9/), Lecture Notes in Computer Science 907, pages 70-93, Sendai
(Japan), November 1994. Springer-Verlag.

Christian Queinnec. Lisp in Small Pieces. Cambridge University Press, 1996.

Christian Queinnec. Distributed generic functions. In Jean-Paul Bahsoun, Takanobu Baba, and Jean-
Pierre Briot, editors, Second France-Japan workshop on Object-Based Parallel and Distributed Computing
— OBPDC ’97, Toulouse (France), October 1997.

Christian Queinnec. Sérialisation—désérialisation en DMEROON. In Omar Rafiq, editor, NOTERE97T —
Colloque international sur les NOuvelles TEchnologies de la REpartition, pages 333-346, Pau (France),
November 1997. Editions TASC.

Larry Wall and Randal L Schwartz. Programming perl. O’Reilly & Associates, Inc., 1990.

73

74

BIBLIOGRAPHY

Appendix A

DMEROON source files

This chapter gives some insight on the sources of DMEROON, this might be useful (i) when adapting DME-
ROON to another language, (i) when porting to another Operating System or language, (%ii) for curious
people.

There are many possible dimensions for customization or modularization of DMEROON, Figure A.1 try
to place the various files with respect to layers, modules and relationship between them.

DMEROONSCRIPT user Scheme user
C user
dmact dmscm
dmnewapi
dmgif ,dmhtml
| | dmstruct,dmtypes,dmsite
: : dmkern
: : dmreq |
| | dmregst |
! ! dmrdobj ,dmwrobj :
dmprtcl dmzlib
dmsched |
dmnet :
net support language !

Figure A.1: Layers and relationship between files

A.1 Structures of files

The top directory of the distribution is named icslas (perhaps suffixed with a version number). Let TOP
be this directory. Under TOP may be found various README files and other administrative files.

When you rebuild the DMEROON library for a given language, the compilation takes place in another
directory, the TARGET directory. Once DMEROON is rebuilt for a given language, the obtained library
should not be used with another language. It is nevertheless possible to rebuild DM EROON concurrently for
all languages for which a binding exists.

The TOP directory contains a number of sub-directories.

e The DMeroon directory contains the files that are independent of any binding languages. This directory
also contains a number of sub-directories.

75

76 APPENDIX A. DMEROON SOURCE FILES

— The c directory contains the C files.
— The Commands contains shell or Perl scripts.

— The Doc directory contains the current documentation and some other related research papers.

The Test directory contains DMEROONSCRIPT test programs as well as other tests written in
Scheme.

e The C directory defines C as a binding language and so is the Bigloo directory. Former bindings were
studied but are no longer maintained, these are 0Scheme, Pico. XXX contains template for bindings.

e The Bootstrap isdirectory used by the maintainers of DMEROON to regenerate some files belonging
to DMEROON distribution (i.e., tarballs).

e The Commands directory contains (shell or Perl) scripts and so is DMeroon/Commands.

e The Others directory contains Scheme code from other authors while Library contains Scheme code
belonging to the ICSLAS runtime library.

e The config directory populated with various Imakefiles. These parts are combined using imake to
form the complete Makefile in the TARGET directory. This process is pretty complex and plenty of
bells and whistles may parameterize it.

e The Contrib directory contains DMEROON-fans contributed code.

The TOP directory also contains some interesting files such as — the top Imakefile (which was carefully
written to be usable as a regular Makefile), — the ChangeLog file of the ICSLAS project, — various README
files.

A.1.1 The TOP/DMeroon/c/ directory

The DMEROON library is made of a number of C files populating the TOP /DMeroon/c directory. Each C file
has an associated .h file defining the prototypes of the exported variables or functions but, to allow an easy
use of the DM EROON system, you only have to include the dmeroon.h header file which, in turn, includes all
the specialized header files such as dmstruct.h, dmkern.h, etc. The dm.h header file is also automatically
included. This file is a little peculiar since it defines macros that are used in all these other header files.
The dmeroon.h header file also recursively includes two specialized header files. The first header, dmos.h,
contains all the dependencies with respect to the Operating System (it tries to automatically discover the
operating system).

The second header file (also automatically included) describes the peculiarities of the binding language:
this is TOP /Bigloo/dmbgl .h for Bigloo, TOP/C/dmc.h for C, TOP/0Scheme/dmoscheme.h for OScheme, etc.
When DMEROON is bound with some language, it requires access to specific routines of the runtime of this
language to help DMEROON manage its space or comply with the conventions of data representations so that
DMEROON objects look like normal objects. This header file is often complemented by some code adding to
the runtime of DMEROON. For instance, for C, DMEROON uses Boehm’s Garbage Collector.

Names are rather systematic and I hope easily decipherable. Except for the DM_ prefix they all have,
variables and functions have lower-case names (made of underscore_separated_words). Functional macros
names are made of JointTogetherCapitalizedWords while data macro names are written, as usual, in
UPPER_CASE.

Most of the data structures required by DMEROON are statically allocated so loading DMEROON is a
snap. All these files end with an initializing routine for the initializations that cannot be static. When
compiled with the appropriate debug level, many checks are performed in these initialization routines.

Nearly all functions have a Context instance as first argument, even internal functions. This allows to
confine errors or to parameterize certain behaviors.

Documentation may be automatically extracted from these files to form html pages that may be browsed
by your favorite html client. To get them, run make regenerate.documentation in the TARGET directory.
The html pages will appear in TARGET /WWW. and the

A.1. STRUCTURES OF FILES 77

Basic files

TOP /DMeroon/c/dmstruct.dm — This important file defines all the C structures that are used by DME-
ROON. All these structures are also DMEROON classes and so may be inspected as regular DMEROON objects
thus satisfying introspective reflexivity. This file has a Scheme syntax (in fact a MEROON syntax) and is
automatically turned into a dmstruct.c and a dmstruct.h files with help of the dm2ch compiler.

TOP /DMeroon/c/dmeroon.h — This is the header file that recursively includes what is necessary to
compile C files using DMEROON resources. Not very big by itself but rather complex.

TOP /DMeroon/c/dm.h— An enormous header file, far less readable than dmeroon.h and far more complex
(only for die-hards). It defines many of the internal macros that are used throughout the code of DMEROON.

TOP /DMeroon/c/dmos.h — This file contains the dependencies with respect to Operating Systems. Cur-
rently these are all UN*X-based and appropriate for SUN4 bsd, SUN4 solaris, DEC Alpha, DEC Ultrix,
Sony News, PC Linux. The selection of the right OS is automatic but I plan to use autoconf some time.

TOP /DMeroon/c/dmerr.h — This header file defines the zillions error codes detected by DMEROON
accompanied with some explanations.

TOP /DMeroon/c/dmid.h — The current version of DMEROON.

TOP /DMeroon/c/dmsizes.h — This file defines how DMEROON types are mapped onto C types (i.e.,
nat3 is often an unsigned int). The current mapping is universal with respect to the previously men-
tioned Operating Systems but you may have to change it if DMEROON detects a misfit. DMEROON checks
compatibility when initialized (see dmtypes.c initialization) and, in case of disagreement, displays the ap-
propriate size and alignment constraints to help you. Some examples of sizes and alignments are kept in the
TOP /DMeroon/c/HINTS file.

Core files

From now on, the remaining parts are composed of a .h and .c files. They are classed in alphabetical order.

TOP /DMeroon/c/dmact.c — This file defines the DMEROONSCRIPT language.

TOP /DMeroon/c/dmcache.c — This file defines the utilitary functions to manage caches when marshal-
ing/unmarshaling objects.

TOP /DMeroon/c/dmcomm.c — This file defines the management of Entry and Exit items that support
the remote pointer mechanism.

TOP /DMeroon/c/dmdbg. c — This file defines some debug utilities for DMEROON. They are rather useful
when porting DMEROON but not after.

TOP /DMeroon/c/dmextr.c — This file defines extra libraries for users’ comfort (in C).

TOP /DMeroon/c/dmgif .c — This file defines some icons.

TOP /DMeroon/c/dmhash.c — This file defines the basic machinery for hashtables. Pay attention, search-
ing is done via a macro, not by a function (for typing reason).

TOP /DMeroon/c/dmhtml.c — This file defines the HTML server which allow to inspect DMEROON in-
stances from any http clients.

TOP /DMeroon/c/dmkern.c — This contains the functions that constitutes the basic DM EROON memory
model i.e., how to access fields within an object, whether an object is local or not, initialized or not, how to
increment a clock, to clone an object, to create new classes. This file also contains some predefined DME-
ROON constant objects that are used throughout the implementation such as nil, true, false, uninitialized.
These constants and functions are not part of the API.

TOP /DMeroon/c/dmlib.c — This file is there to hold functions lacking from some Operating Systems
(you know the kind of things such as strstr, bad memcpy etc.). It is also used to mask some differences such
as putenv versus setenv that cannot be resolved in dmos.h.

TOP /DMeroon/c/dmnet . c — This file defines the TCP/IP related parts of DMEROON. It allows to listen
for connections, to fill/flush buffers, to send/receive messages.

TOP /DMeroon/c/dmnewapi.c — This file defines the API for the C language.

TOP /DMeroon/c/dmprint.c — This file defines a series of C functions to print every predefined DME-
ROON type. This is mainly used for debug and html generation.

TOP /DMeroon/c/dmprtcl.c — This file defines how protocols used on TCP connections are recognized
and handled.

78 APPENDIX A. DMEROON SOURCE FILES

TOP /DMeroon/c/dmrdobj.c — This file defines how to decode sequences of bytes into DMEROON objects
over TCP connections. This is viewed as a kind of bytecode interpreter implementing a stack-oriented
machine.

TOP /DMeroon/c/dmreq.c — This file manages requests queues and their answers.

TOP /DMeroon/c/dmreqgst.c — This file defines functions that manage distribution at low level. It checks
for locality, handle communication requests.

TOP /DMeroon/c/dmsched.c— This file defines the DMEROON event loop. It actually implements various
variations. DMEROON may be run in a unique process, in a thread, or from Scheme (where threads are
encoded as continuations).

TOP /DMeroon/c/dmscm. c — This is the generic interface for Scheme. It translates the C API into a set
of functions more amenable to be used from a Scheme implementation.

TOP /DMeroon/c/dmsite.c — This file defines the original Site object which is the root of DMEROON
self-description.

TOP /DMeroon/c/dmtypes.c — This file checks whether DM EROON types are well mapped onto C types,
it also dynamically associates DMEROON types to the appropriate C read/write functions.

TOP /DMeroon/c/dmwrobj.c — This file defines how to encode DMEROON objects over TCP connections.
This encoding is viewed as a compilation for the decoding machine. As for compilers, many different
encodings are possible, that’s why this file has been more heavily changed than the dmrdobj.c file.

A.2 Rebuilding DMEROON

Rebuilding DMEROON is performed in the TARGET directory. First, this TARGET directory is created
then, it is populated with a lot of files: a generated Makefile, some config files memorizing pathnames in
various formats (shell, makefile or Scheme). Appropriate files from TOP are copied. Whenever possible, files
are linked rather than copied. Eventually make world is performed in the TARGET directory and should
yield a fully operational DMEROON server for a given language.

Running make from the TOP directory will ask interactively some questions. The first question is what
to build: answer d for DMEROON. The second question concerns the binding language: answer ¢ for C or b
for Bigloo. The script will try to identify the sort of machine it is running on, will create and populate the
TARGET directory then will propose to rebuild DMEROON. Answer y then and wait.

A.3 Other files

Other files are required to adapt DMEROON to a particular language. The binding is detailed in Chapter
A4,

A31 C

The binding with C requires some additional files that are located in the TOP/C directory. These are:

TOP/C/dmc.h — TOP/C/dmc.c — These are the binding files. They explain how to map DMEROON
values in C values. DMEROON needs a GC, two are possible: Boehm’s GC or no GC at all (with the latter,
the server will crash after saturating the swap space).

TOP/C/server.h — TOP/C/server.c — This file implements a very simple DMEROON server. It has
several options, described in table A.1, that may be specified as arguments to the command.

There is also a TOP/config/c.mkf file that describes how to regenerate DMEROON for C. This file also
contains some stand-alone tests.

A.3.2 Bigloo

The binding with Bigloo requires some additional files that are located in the TOP/Bigloo directory. These
are:

TOP /Bigloo/dmbgl.h — TOP/Bigloo/dmbgl.c — These are the binding files. They explain how to map
DMEROON values in Bigloo values.

A.4. BINDING DMEROON 79

Option Meaning
-banner Prints a banner.
-verbose displays some information.

-linger duration | The server will finish after duration seconds of in-
activity. Used as last option, the duration may be
elided to mean infinity.

Table A.1: Options of the rudimentary C server

TOP/Bigloo/dm.bgl — This file (written in Scheme) is a Bigloo module defining the DMEROON server
above Bigloo.

TOP/Bigloo/main*.bgl — These are the main Bigloo modules that start the server.

TOP/Bigloo/dmwriter.h — TOP/Bigloo/dmports.h — These are files helping to patch files of the
distribution of Bigloo.

There is also the TOP/config/bigloo.mkf file that describes how to regenerate and how to test DME-
ROON for Bigloo.

A.4 Binding DMEROON

DMEROON is currently bound to C and to Bigloo (a Scheme dialect). It was bound to OScheme (another
dialect of Scheme) and Pico (still another dialect of Scheme). These last bindings are to be updated. It is
envisioned to bind DMEROON with Caml, C+4, Emacs, Java, Linux kernel, Tcl, etc.

The sources of DMEROON are parameterized with respect to the support language i.e., the language
with which it is bound. In effect, DMEROON statically allocates all its predefined classes, fields, types as
well as the site object and therefore needs to statically know the format of the objects as imposed by the
binding language. DMEROON objects look like objects of the binding language that is, DMEROON objects
are embedded into native objects of the support language.

DMEROON also has to manage its memory space i.e., allocate and free objects, it uses the GC of the
support language otherwise DMEROON brings its own GC. All these parameters are specified by macros and
functions that are required to compile DMEROON sources. This means that a DMEROON library compiled
for one support language can probably not be used by other support languages.

To bind DMEROON with some zxx language is supported by at least three files.

e TOP/Xxx/dmzxx.h containing macros and prototypes,
e TOP/Xxx/dmzxx .c containing runtime functions or objects,

e TOP/config/xxx.mkf is the Makefile to compile the port.

These three files are often built altogether since they are highly inter-related. You may take a look at
these files for Bigloo, C or Icslas.

A.4.1 The dmnzzz.h header

First prevent double inclusion to save cpp time. Then include any header file that are required for the zzx
support language.

Define DM_SUPPORT_LANGUAGE to be a string with the name of the support language, something like "zzz".
This string will appear in the support field of the site object as a String instance.

DM_MALLOC should be the name of the routine that allocates objects for the binding language. As C’s
malloc, this routine takes the number of bytes to allocate and returns a pointer onto the allocated object.
See the DM_allocate function in the dmzzz . c file below.

The difficult part is how to embed DMEROON objects within zzxz objects. Often objects in xxx have
a particular header prefixing the content (with respect to xzx) of the object. This content consists of the

80 APPENDIX A. DMEROON SOURCE FILES

DMEROON header followed by the content (with respect to DMEROON) of the associated fields, see figure
2.1. It is important not to confuse the three views of the same object, an object may be referenced by a
pointer in zzx, another one in DMEROON, and a third one if considered by DM_malloc.

Figure A.2 shows that, in C, pointers designate the first byte of the content of the object. Class and
proxy are accessed backwards from this pointer. To be able to recognize DMEROON objects, we use a tag
and to respect alignment constraint some padding is added. The low-level DM_MALLOC returns a pointer on
the first byte of the object i.e., its tag.

Bigloo objects are handled via the address of the Bigloo tag that is , the address returned by DM_MALLOC.
Some padding is then added for alignment constraint. DMEROON can be recognized with a specific Bigloo
tag.

Icslas just uses DMEROON representation and adds nothing to it.

malloc pointer malloc pointer -
> tag - : » Bigloo tag .
- Bigloo pointer - malloc pointer
padding padding » class
class class . proxy
DMEROON pointer

. proxy . proxy - » content

C pointer DMEROON pointer Leslas pointer

— content » content
DMEROON pointer

Figure A.2: Objects in C, Bigloo and Icslas

Viewed from DM_MALLQOC, the prefix of a DMEROON object is described by the following universal structure,
taken from the TOP/DMeroon/c/dm.h file:

typedef struct DMeroon_object {
DM_SupportPrefix()
DM_DMeroonPrefix();

} DMeroon_object;

You must therefore define, from the DM_MALLOC point of view, the DM_SupportPrefix macro describing
the structure of the object and the DM_SupportPrefixInitialization macro that initializes this structure.
This latter macro receives the name and the exact type of the object to be initialized so the initialization
may use this information (to record the size of the object for instance).

You must then define how to recognize a DMEROON instance among the values handled by the zzx
support language. You may also define this macro to be always true if you like to live dangerously. This is
the DM_IsDMeroonInstance macro which takes a pointer, viewed from zzz, onto an xzxz value, and which
returns a C boolean.

Another macro performs the same task, DM_IsObject, but this one takes a DMEROON reference (instead
of a pointer onto an xxzx value) and returns a C boolean. Since a NULL value is a legal DMEROON pointer,
this macro should take care of this fact.

To be able to switch from the DMEROON world to the zzz world and back, two fundamental macros are
DM_ToSupport that takes a DMEROON reference and returns an zzz pointer, and DM_FromSupport that takes
an zzxz pointer and returns a DMEROON reference. In the source files of DMEROON, a variable prefixed by
wrapped_ holds a value of the support language.

The DM_SupportPointer macro defines the type of a pointer onto an zxx value. A pointer onto a DME-
ROON object has the DM_Object* type. A pointer onto an object viewed from DM_MALLOC has type voidx.
Don’t confuse them!

The glue to bind DMEROON may require some initialization code, the function to call is mentioned by
the DM_INITIALIZE macro.

Finally, the DM RaiseException macro must be defined, it receives an errorcode and has to take care of
handling that situation. It may signal a recoverable exception if the binding language supports it, it may
longjmp in C to a safer context, it may print the error code and aborts the process.

This is the end of the minimal binding.

A.4. BINDING DMEROON 81

The dmscm layer

If you bind DMEROON to a language with runtime types such as Scheme or maybe Java, then you may use
the dmscm layer that insulates you more from gory details. This layer is a new API above the one described in
chapter 3 offering facilities more like the ones of chapter 4. Values of the support language are automatically
converted into their appropriate representation in DMEROON back and forth. You’ll have to define additional
macros describing this situation.

A.4.2 The dmzzz.c file

This file contains the runtime functions that are necessary to glue DM EROON with the zzx support language.
Some functions must be defined since they are required by DMEROON: this is the case of the DM_alloca-
te_bare_instance, the DM_print_char _star and the DM_INITIALIZE functions.

All allocations performed by DMEROON are done via a single function named DM_allocate_bare_ins-
tance. This function has the following prototype:

DM_Object*

DM_allocate_bare_instance (DM_Context *context,
DM_Class *class,
DM_nat3 size)

Given a class and a size in bytes, it should allocate an xzx value able to contain a DMEROON object of a
given size (in bytes). The function should return a DMEROON reference onto the freshly allocated object (or
abort if the allocation cannot be performed). The object must be correctly initialized with respect to the
zxzx support language. It will be initialized with respect to DMEROON point of view by other DMEROON
routines shortly after. Pay attention to alignment, the first byte referenced by the DMEROON pointer should
respect the most stringent alignment constraint imposed by the hardware or compiler'. DMEROON performs
some sanity checks to detect such things.

All values are printed by DMEROON using the DM_print_char_star function. Its prototype is:

void

DM_print_char_star (DM_Contextx* context,
charx* string,
DM_nat3 len,

DM_SupportPointer wrapped_port)

The second argument is a C string to print, the third if not zero is the number of characters to print out
of the string. If the third argument is zero then the whole C string is printed up to its end i.e., up to a NUL
character. The fourth argument is an xxx value representing the output stream where to print. Depending
on the xxx language, this argument may be very different things: a C stream, a C file descriptor, a Scheme
port, etc.

The last function that must be present is the function mentioned by the DM_INITIALIZE macro. This
function, often named DM_zzx_initialize, performs some checks and initializes the binding.

A.4.3 The zzx.mkf file

This file is the Imakefile describing how to regenerate DMEROON with the zxx support language. Most
often the zzx.mkf file complements the all.mkf file which defines how to regenerate a generic DMEROON
executable.

1On my home machine, gcc aligns long doubles on 8-bytes boundaries while the hardware only requires 4-bytes alignment.

82 APPENDIX A. DMEROON SOURCE FILES

A.5 Writing code for DMEROON

If you ever want to add code to DMEROON, you must follow some rules. This set is far from complete but
will be enriched as I remember them.

e Indent your code (I personally use the default indent style of Emacs). Don’t use long lines i.e., bigger
than 78 characters.

e Try to be portable. Check portability on at least another computer system.

e Mark temporary lines with a TEMP comment; mark future code to be written with a FUTURE
comment (accompanied by a short description).

e Every bug, if corrected, must lead to a comment and to a test in some test suite.
e Try to use the facilities of the autodoc utility (that builds html pages from source files).
e Wrap test or sanity code within DM_DebugAtLevel directives.

e Compile with all the possible warning options and never leave a warning appear. The -Wall option
for gcc is recommended.

e Declare external functions in file.h and define them in file.c. Add these files to the global Makefile
architecture.

e Be very cautious about allocations:

— don’t use mutable global data structures, try to be thread-safe.
— don’t call malloc, use DMEROON objects instead,
— better, try to stack allocate these DM EROON objects,
— don’t let bounded data structures limit your algorithms.
e Respect naming conventions for identifiers. Names are rather systematic and I hope easily decipher-
able. Except for the DM_ prefix they all have, variables and functions have lower-case names (made of

underscore_separated.words). Functional macros names are made of JointTogetherCapitalizedWords
while data macro names are written, as usual, in UPPER_CASE.

e DMEROON puts a high emphasis on self-description and parameterization. Use DMEROON objects for
that goal.

Appendix B

Object internal representations

This appendix describes the various implementation states DMEROON objects may have. This is a rather
technical chapter but is of great help for me.

Viewed from a site, a DMEROON object may be local or remote. Local means that the current site owns
it. A remote object is always associated with an Exit item. Again viewed from a site, an object is either
present (i.e., local or remote but cached) or absent (that is remote and not cached). Moreover when a remote
object is present, it may be wvalidly cached or obsolete i.e., its cache is up to date or out of date.

Viewed from users, the objects they have pointers on are always present. They never can access proxies
i.e., entry or exit items.

Some constants are used to encode these states. Constants in DMEROON are instances of the Constant
class, a direct subclass of Object.

B.1 Local object

When an object is allocated, DMeroon_allocate returns it in the uninitialized state. The class of an allocated
object is always present and so is its owning site since this is the current site. An object stays in this state until
being initialized, semi-externalized or externalized, see the state diagram in Figure B.1 (some uninteresting

states are omitted from this Figure).
local
initialized

A

T~

- externalized
semi-externalized

Figure B.1: States of local objects

uninitialized

Implementation note: The constants that are used to mark these states have historical names
and will probably be changed. These representations were choosen to lessen memory consumption:
a local object costs two additional references (and maybe some padding) compared to C (which
does not require any overhead). This cost increases when objects are externalized.

83

84 APPENDIX B. OBJECT INTERNAL REPRESENTATIONS

The class field of the DMEROON header always contains a reference to a present class which the object
is a direct instance of.

B.1.1 Uninitialized

A local uninitialized object has as proxy the uninitialized constant, see figure B.2. Allocation returns
DMEROON objects in this state.

i prox k uninitialized
]
F A

Figure B.2: Local uninitialized object

B.1.2 Local sharable

When an unitialized object is declared sharable, then its proxy becomes the nil constant.

B.1.3 Local copyable

When an uninitialized object is declared copyable, then its proxy becomes the true constant.

B.1.4 Semi-externalized

If a local object is to be monitored by a clock (via DM_set_clock_of) then it must be semi-externalized (since
the clock can only be held in a field of an Entry item), see figure B.3 (in this figure, the dotted squares shows
the details of the fields of the Entry item). To be semi-externalized means that the object has an Entry item
as proxy. In this state, the object is still unknown from remote sites. To be semi-externalized has no relation
with its initialized state: the object may still be declared initialized, sharable or copyable (the difference is
that these properties are now recorded as options in the associated entry item).

Entry item

Y

Figure B.3: Semi-externalized object

Entry items are, for the implementation, regular DMEROON objects, instances of the Entry class defined
as follows. An externalized or semi-externalized object has an instance of Entry as proxy, this proxy points
back to the (semi-)externalized object via the object field. That is,

B.1. LOCAL OBJECT 85

The class of a semi-externalized object is always semi-externalized or externalized. The owning site of a
semi-externalized object is always semi-externalized or externalized.

Entry [Class]
number a unique key identifying the object
counter @ reference counter (for GC)
options some options describing the Entry item
object the object the entry item stands for
clock its associated Clock if any

When an object is semi-externalized, an Entry item is allocated and becomes the proxy of the object.
The key (i-e., the number under which the object will be known from the network) of the Entry item is null
but the clock field is set to hold the monitoring clock. The Entry item is itself an immotile DMEROON
object which is in the uninitialized state and will be left in that state all its lifetime. Recall that Entry items
are never seen by the user.

If the object was copyable before becoming semi-externalized then the options field of the Entry item has
the DM_ENTRY_IS_COPYABLE option set. If the object was sharable instead before becoming semi-externalized
then the same option is unset. If the object was uninitialized then the previous option has no meaning but
the DM_ENTRY_IS_UNINITIALIZED option is set instead.

If a semi-externalized object is made copyable then the DM_ENTRY_IS_UNINITIALIZED option is unset
and the DM_ENTRY_IS_COPYABLE option is set. If a semi-externalized object is made sharable then the
DM_ENTRY_IS_UNINITIALIZED option is unset and the DM_ENTRY_IS_COPYABLE option is unset. A semi-
externalized object is uninitialized when the DM_ENTRY_IS_UNINITIALIZED option of its Entry item is set.

A direct instance of Entry with a null key corresponds to a semi-externalized object.

B.1.5 Externalized

An object is externalized when it needs to be known from other sites either because it is reachable from
another object displayed in html for an http client (that may want to follow the link i.e., the reference), or
because a reference onto the object was sent to another site. When externalized, an object has, as proxy, an
Entry item with the same set of options as in the semi-externalized state. Additionally the Entry item (7)
gets a non null key, (ii) is registered in the hashtable holding all Entry items, (i) its reference counter is
initialized with zero.

When externalized, a mutable object must be monitored by a Clock. By default and if not explicitly
specified, this Clock is the general Clock of the current site (held in the clock field of the site). If the
object is immutable then the clock field is set to DM_NULL. An object may be externalized without being
semi-externalized first and without even being initialized.

When an object is externalized, its class is also externalized as well as its owning site.

Any time a reference onto a DMEROON object is sent, its reference counter is incremented; however the
reference counter is not incremented when a html link is sent. When a site detects that it does not need
any longer a reference, it discards it and sends a decrement message to the associated reference counter.
When the reference counter reaches zero, the Entry item may be reclaimed since no DMEROON site needs
its associated object. After the Entry item is reclaimed, the object itself may be reclaimed if locally useless.

When an object is externalized, a key is generated for it. The key is unique and will never be reused
anywhere, anytime (the key is based on the IP and port numbers of the server, the current date, a regularly
incremented counter and two random bytes to make the forgery of keys at least difficult). When an object
is migrated i.e., is owned by a different site than its birth site, it keeps its key.

A direct instance of Entry with a non null key corresponds to an externalized object. The reference
counter may be zero or strictly positive. Zero means that no site knows it, however the object had been
externalized for the sake of some http client.

86 APPENDIX B. OBJECT INTERNAL REPRESENTATIONS

i key #0
\refcount
' - options
key Entries Entl;y ltem clock or DM _NULL
Hashtable
© proxy |
i class

Figure B.4: Externalized object

B.2 Remote

Ounly the unmarshaling routines can create remote references. An Exit item is a big data structure containing
enough information to fetch the content of the remote object, to know its associated class, clock or site, to
perform non-local GC. When a remote object is present i.e., locally cached, it looks like a local object except
that its proxy is an Exit item. Intermediate states exist to cope with dynamically created classes whose
instances are sent before their class.

When an object is remote, it is only remotely referenced, as in figure 2.2, by an Exit item. Remember
that outside of the API, users never see Exit items. When a reference onto an object is sent, the object is
externalized on its owning site and an Exit item is created on the receiving site, see Figure B.5 for the most
complex case.

The Exit class inherits from the Entry class thus an Exit item may be externalized (as an Entry item)
and be known from other sites. The Exit class is defined as follows:

Exit [Class]
number a unique key identifying the original object
counter a reference counter (for GC)
options some options describing the Exit item
object DM_NULL or a replica

clock the associated Clock if any or DM_NULL (if immutable) or an Exit if absent
class the class of the remote object or an Exit if absent

time the time when the replica was fetched

from the site from which we got the Exit item (maybe unusable)

owner the site owning the remote object (maybe unusable)

next used internally

When a site unmarshals an Exit item, it tries to pre-fetch asynchronously the class and the clock of the
remote object if they were unmarshaled as remote pointers. Therefore the class field is either a pointer to
a present instance of Class or a pointer to an Exit item leading to a remote class. Once the class is present,
the current site tries to pre-fetch asynchronously its clock. Therefore the clock field is either DM_NULL if
the object is immutable, a present instance of Clock or a pointer to an Exit item leading to a remote clock.
The content of the site field is always an instance of Site, this site is always registered in the hashtable of
known sites (but the site may be in the unusable state).

Only when the content of the class and clock fields are present, the remote object can be fetched to

B.3. SITE 87

Sites IP.port
Hashtable

key Exits
Hashtable

Site2 : '
TR - N

a Class

Y

Figure B.5: Exit item with absent class and absent clock

form a local replica of the remote object. This replica is reachable via the object field of the Exit item and
has as proxy the Exit item. DMEROON tries to shortcut pointers to the Exit item into direct pointers to the
replica, see figure 2.3.

DMEROON may, for GC reasons, reverts a pointer to a replica into a pointer to the associated Exit item
and then reclaims the replica. To fetch again the replica will be automatically redone if needed. If an Exit
item has a locally cached replica then this replica has this Exit item as proxy.

When a replica is present, its class and clock are always present. The converse may not be true.

B.2.1 Reexported

An Exit item may be marshaled towards a site in which case, the part of the Exit item which is inherited
from the Entry class is filled (except the key which is already set): the reference counter is initialized to zero
(it counts the number of times the Exit item is reexported [Pig91]) but the object field of the Exit item
may be null since a replica does not need to be present nor its class or clock. See figure B.6.

B.3 Site

Sites are handled particularly. All sites objects are reachable from a hashtable of locally known sites. Sites
are lazily propagated between DMEROON servers. A site instance may be usable or not, but its fundamental
fields (i.e., IP number, port and date of creation) are always up to date. A usable site is a site whose content
may be read, for that, a usable site must be validly cached and has , as proxy, an Exit item (whose owner
field is that very site). A site without Exit item as proxy is not usable. However normal users (outside the
API) never see that internal state. A special option DM_SITE_IS_USABLE identifies that state.

Only the unmarshaling command DM_SITE_COMMAND can create instances of Site, an uninstantiable class.
Such a site is not initialized and only its fundamental fields are correct i.e., its address, port, date fields
and additionally, perhaps, the route field. It is possible to send objects to sites for which no Connection is

88 APPENDIX B. OBJECT INTERNAL REPRESENTATIONS

Entry

Figure B.6: Reexported Exit item

open. The route field refers to a third site from which the current site heard of the site and which acts as a
communication relay. It is also possible to open a more direct Connection. When a site is usable, or it has
a opened Connection in its connection field or it has a relay site in its route field.

B.4 Class

For a class to be usable, it must be present, its superclasses must be usable and all its fields must be present.
Users outside the API cannot perceive that state. This state is identified by the DM_CLASS_IS_USABLE
option; this option is reset when a class is transmitted. A site that receives a class tries to prefetch missing
components to ensure its usability.

B.5 Miscellaneous

Out of the API, users only have pointers onto present (and usable for classes and sites) objects. They never
see Entry or Exit items. These objects may be out of date but to read them will force DMEROON to refresh
them.

Inside the API, a reference may be to a present object or to an Exit item. The Exit item may be
associated to a replica or not, this replica may be valid or not. Before a replica may be brought locally, the
class of the object must be present, as well as its clock if mutable. The fields of Entry or Exit item should
be considered with great care since classes or sites may be unusable.

B.6 Properties

These data structures are complex and respect some invariants. This Section is intended to be useful for
implementors, it describes the same representational invariants bottom-up i.e., starting from the implemen-
tation.

We will use the following terminology. A proxy is an entry or exit item. An object is a regular DMEROON
value that is not a proxy. Pay attention that exit items are, from the implementational standpoint, indirect
instances of Entry; however when we say that something is an entry item, we exclude the exit item case.

The user of the DMEROON API can only see present objects. An implementor may see objects or proxies.
Objects and proxies are always handled via pointers so when we say an object, we imply a reference to an
object.

B.6.1 Object

An object is always present, its class is always present. Its proxy may be:

B.6. PROPERTIES 89

the uninitialized constant meaning that the object is uninitialized,

the nil constant meaning that the object is uninitialized but declared sharable,

the true constant meaning that the object is uninitialized but declared copyable,

an exit item meaning that the object is remote but locally cached. The object then appears in the
object field of the exit item. The exit item is registered in the exits hashtable of the current site, the
class field of the exit item refers to a present class (7). The site field of the exit item contains a
present site.

e an entry item meaning that the object is either:

— semi-externalized if the key of its entry item is zero then the entry item is not registered in the
entries hashtable of the current site. If a clock had been explicitly associated to the object then
it is held in the clock field of the entry item.

— externalized if the key of its entry item is non zero. The entry item is registered in the entries
hashtable, its reference counter tells how many times the object was marshaled to other sites.

In both cases, the class is also at least semi-externalized and so is the current site. The object may
still be uninitialized or sharable or copyable: this is specified by bits in the option field of the entry
item.

Two special cases exist for classes and sites.

Class

A remote but present class may have non present fields. The DMEROON library tries to fetch as soon as
possible remote fields of present classes. When the class has the USABLE option set then its fields are all
present. The user may only see usable classes and therefore can only allocate objects with usable classes.

Site

The current site is a regular object, remote sites are special. When a site heard of a remote site, an instance
of Site is allocated and filled with the basic information (IP, port number) and stored in the sites table of
the current site. If it needs to, the DMEROON library fetches the content of the site and sets its USABLE
option on. The user may only see usable sites.

B.6.2 Entry item

An entry item (a direct instance of the Entry class) always has an object in its object field which in turn
has the entry item in its proxy field. The class of the object and its owning site (the current site) are present
and externalized. The key of the entry item may be zero if the object is only semi-externalized or non-zero if
the object is externalized. In this latter case, the entry item appears in the entries hashtable of the current
site.

The object the entry item stands for may be uninitialized or sharable or copyable. If the object is sharable
then it is monitored by a clock (held in the clock field of the entry item. The object may be uninitialized
and already associated to a clock.

The object may be known from other sites if externalized. A reference counter of zero is a sure sign
that the object was displayed in html for some http client. An entry item with a null reference counter and
associated to no clock or to the general clock of the site may be recycled by the GC.

90 APPENDIX B. OBJECT INTERNAL REPRESENTATIONS

B.6.3 Exit item

An exit item stands for a remote object. An exit item appears in the exits hashtable of the current site. The
site field of the exit item refers to a site which is present but not necessarily usable.

The object may be cached or not. If the remote object is cached then its object field holds a present
object i.e., a replica of the remote object. The replica has the same structural information the remote object
has: same class, same length for indexed fields. In this case, the class field of the exit item refers to a
present class.

The exit item may be re-exported in which case, it is registered as well in the entries hashtable of the
current site. The exit item may be locally cached or not.

If the remote object is not cached, the object field of the exit item is NULL, the class field may be a
present class or an exit item leading to a remote class.

Appendix C

Protocols

When started, DMEROON acts as a server, listening to a port and waiting for incoming connections. When
a connection is opened, the first characters are scanned to determine which protocol they obey. Currently,
a DMEROON server recognizes (i) the GET and POST requests of the HTTP protocol, (ii) the DME-
ROONSCRIPT protocol (extending the two first protocols), (#i) the DMeroon protocol which is used to
exchange binary-encoded DMEROON requests between DMEROON sites.

This chapter describes protocols and shows how DMEROON servers may be extended to handle new
protocols. It requires some understanding of DMEROON implementation and predefined classes as they
appear in the TOP /DMeroon/c/dmstruct.dm file. Warning! not all details are present here, read the sources
and chiefly the TOP /DMeroon/c/dmprtcl.c file!

The DMEROON implementation uses only DMEROON objects, this allows to debug parts of DMEROON
with DMEROON itself. When DMEROON is initialized, it normally listens to a TCP port whose port num-
ber is specified by the environment variable DMEROON_SERVING_PORT. If this variable is not set, then the
value of the DM_DMEROON_FAVORITE PORT cpp variable is used that is, the very well-known port 56423. If
DMEROON_SERVING_PORT is the zero number then no Server is created and DMEROON will not serve any re-
quests. In the numerous cases where a server is created, an instance of the Server class reifies this situation.

When a connection is detected, an instance of the Connection class is created. This instance contains
two buffers to hold bytes to emit or bytes received via the connection. The buffer for incoming bytes is an
instance of the InBuffer class, the other is an instance of the QutBuffer class.

When enough characters are received to form a line, i.e., a sequence of bytes terminated by a newline
character, then the first characters are scanned to determine which protocol may be used to handle the
connection. To this end, a connection instance has a field (the “protocol” field) initially filled with the
equivalent field of the current site object. This field is a linked list of instances of the Protocol class. The
Protocol class is defined hereafter:

Protocol [Class]
next next protocol to try
handler a C function
name a natl-indezxed field of charl

A protocol is defined with a name (the sequence of characters that triggers this protocol) and a handler (a
pointer to a local C function to handle the connection). Each protocol name is tried in turn and compared
against the first incoming characters. If no protocol is recognized, the connection is immediately closed.
When a protocol is recognized, the associated handler is invoked, with the current context, on the incoming
buffer.

When a protocol is recognized, it is its duty to consume the incoming characters. The associated handler
is stored in the “handler” field of the connection. This is used for instance by the DMeroon protocol to handle

91

92 APPENDIX C. PROTOCOLS

new incoming requests. The handler returns a C boolean telling whether the request has been handled or not.
Therefore, to return DM_FALSE means that, while the first line (with the letters determining the protocol) is
present, the rest of the request is still not present. In this case, the whole process will be retried later when
the connection receives additional characters: this allows a protocol to wait until the entire request is present
in an InBuffer. It is up to the protocol to decide when the request is complete. For instance, DMEROON
prefixes messages with their lengths while the SchemeScript protocol for Bigloo waits for a sequence of
NUL NUL CR LF. While buffers are bounded, DMEROON ensures that the whole request is held in a single
instance of the InBuffer class.

When the handler returns DM_TRUE, it must have consumed the characters of the request, it thus has to
modify the ’index’ field of the incoming buffer.

The order of protocols is significant since they are tried in turn. Of course, a protocol triggered by a null
string catches everything.

C.1 Existing protocols

Besides the three main protocols that is, HTTP, DMEROONSCRIPT and DMEROON, there also exist other
small specialized protocols. They are currently useless but serve as examples.

The # protocol swallows empty lines or lines starting with a sharp sign or a white space. This protocol
does not answer anything but after the line is swallowed, it starts again to determine which protocol to use
to handle the remaining characters. This is the comment protocol.

The help protocol just answers the identification of the DMEROON site then closes the connection. One
may write 7 instead of help.

A third protocol is the error which prints the rest of the line on the standard error output of DMEROON.
It does not close the connection.

The GET protocol answers http requests in html form. The produced html pages may trigger a POST
protocol to mutate objects. The %dd convention may be used for these two protocols. It allows to hide
characters under their ASCII code.

The GET protocol is also used to serve the /robots.txt file (to prevent compliant robots to explore a
DMEROON server) and the /icons/dmeroon.gif icon files (to illuminate the html pages generated by the
DMEROON server).

The DMeroon protocol is a byte-oriented communication protocol that allows DMEROON servers to ex-
change values. See the paper (in French) called “sérialisation—désérialisation en DMEROON” for details.
After entering the DMeroon protocol, the connection is used in inner DMEROON protocol, see chapter C.4.

The Scheme binding with Bigloo offers another protocol, the SchemeScript protocol which waits for a
string containing an Sexpression to evaluate. The result is sent back to the client that sent the expression
then the connection is closed. The expression is evaluated with Bigloo’s eval function in the global shared
environment. This is a dangerous but powerful protocol defined in the TOP/Bigloo/dmbgl.c file that can
be used with the TOP/DMeroon/Commands/schemescript.prl command.

The use of the last protocols may be restricted with a password. This password may be specified
at runtime by the DMEROON_PASSWORD environment variable or at compilation time by the DMEROON_ADD-
ITIONAL_PASSWORD cpp variable. The principle is very simple, the name of the protocol is suffixed with this
string of characters. Passwords are currently limited to 64 characters by the DMEROON_ADDITIONAL PASS-
WORD_LENGTH cpp variable. The password is immediately concatenated to the name of the protocol: pay
attention to leading spaces.

Implementation note: Reading the pgp man page, I realized how unsafe is the DIEROON_PASS—
WORD environment variable. This will be improved in some future. Uses of passwords make, at
least difficult, connections to DMEROON servers protected by different passwords.

C.2 Adding protocols

New protocols may be added dynamically. You clearly are an expert if you use this function!

C.3. SOME CLASSES 93

DM_Protocolx [Internal]
DM_add_protocol (DM_Context* context,

charx string,

DM_c_boolean (*handler) (DM_Context*, DM_InBufferx*))

This primitive defines a new protocol to be recognized by the current site. All new connections will know
this new protocol but already opened ones will not. This protocol will be tried first so it can mask existing
protocols with longer names but same prefix (you may alternatively directly hack the 'protocol’ field of
the current site). The handler must return the C boolean DM_TRUE if it consumes the request or DM_FALSE
if the request is not entirely present. At that time, when the connection receives additional characters then
DMEROON will call again the handler function. It is possible for the handler to extract from the InBuffer
instance, the associated Port, OutBuffer and other related values.

When the handler is called, the ’index’ field of the InBuffer designates the first character to be handled.
Since the handler is called, the first line is present in the buffer i.e., there is a LF character somewhere after
this index. The buffer may be used up to the 'maximum’ field which designates the first character which is
not part of the buffer.

If you want to register a protocol that must be protected by the password of the DMEROON server then,
you have to use this function instead:

DM_Protocolx [Internal]
DM_add_restricted_protocol

(DM_Context* context,

charx string,

DM_c_boolean (*handler) (DM_Context*, DM_InBufferx*))

C.3 Some classes

There are many classes used in the message layer. Two sites may exchange message through a Connection.
Except for a short time while a Connection is being initialized, the site field may be not usable.

94 APPENDIX C. PROTOCOLS
Connection [Class]
number the portnumber or file descriptor
options options
TCP stuff

last_read
last_write
reception
emission
emitqueue
clocker
site
protocol
handler
password

last date an InBuffer was read

last date an OutBuffer was flushed

the associated InBuffer

the current associated OutBuffer

the first OutBuffer to flush

the last time, the buffer was flushed

the site at the other end of the connection
the list of protocols that may be used

the function to handle the protocol

the password to use

The most important parts of a Connection are the buffers to consume and produce. When a message

arrives, it is al

ways recorded in a single InBuffer.

InBuffer
port
cache
index
maximum
amount
byte

[Class]
the associated Connection
a BoundedStack acting as a stack/cache
the next character to read
the first character not to read
the total number of characters acquired by the Connection
the characters

When marshaling an object, the OutBuffer may be full, a new QutBuffer is then allocated and linked
in the next field. Since there is the possibility to abort a message while composing it, multiple OutBuffers
may stand in memory.

QutBuffer
port
cache
mark
index
maximum
amount
next
byte

[Class]
the associated Connection
a BoundedStack acting as a stack/cache
mark the beginning of a message
the next character to write
the first character not to write
the total number of characters flushed by the Connection
the next outBuffer
the characters

C.4 The DMEROON inner protocol

This section describes the DMEROON protocol i.e., the language used by DMEROON servers to serialize or
deserialize objects. The serialization is viewed as a compilation into bytecodes towards the deserializer wich
acts as a bytecode interpreter. There is usually more than one way to serialize some data, the serializer may

C.4. THE DMEROON INNER PROTOCOL 95

choose to be eager (and pre-send i.e., push values) or to be lazy (and let the receiver pull the missing values).
The deserializer is the interpreter of a value-oriented stack-based prefix language. The stack may as well be
managed as a cache. Each Connection has separate associated caches for reading and writing.

The DMEROON protocol is triggered by the DMeroon word, then the connection is turned into the inner
DMEROON protocol. In this inner protocol, messages are exchanged. A message corresponds to a sequence
of bytes that will be deserialized into a single object. The content of reference fields may also be pre-sent.

Commands are encoded by a single byte and may be followed by arguments. In addition to the commands
described below, the commands corresponding to the characters CR, LF and SP are ignored. Comments are
also skipped: they start with a sharp character and end with the first following CR or LF. These conventions
allows to comment a byte-stream, for instance, to use the #! convention of Unix.

There are a number of invariants to respect when marshaling objects: the most important one is that
it is not possible to unmarshal an object if its class is not usable withing the receiver. This is why, when
sending objects, only a remote pointer is created. Before asking for the content of an object, the receiver
ask for its class (and also its clock). Objects are then pulled rather than pushed. However you may pre-send
these objects if you are sure that the receiver knows their class or if you use the LIMIT command.

The following notations are used below: object, clock, class etc. means that an instance of that class is
expected. DMEROON types such as natl, or class-options may also appear.

C.4.1 Ubiquitous objects

These commands return ubiquitous objects i.e., objects that are local to every site (even if differently
implemented).

NIL [unmarshaling commands]
TRUE

FALSE

UNINITIALIZED

NULL

The first niladic commands that is, NIL, TRUE, FALSE, UNINITIALIZED and NULL, just transmits a simple
ubiquitous object. Ubiquitous objects are mainly used by the implementation (or by the Scheme binding);
although they exist on every site they are considered equal. The site of an ubiquitous object as obtained
with DM-site-of is always the current site. NULL allows to transmit the null reference i.e., a reference that
does not lead to any DMEROON object.

PREDEFINED-CLASS nat! [unmarshaling commands]
PREDEFINED-TYPE natl
PREDEFINED-FIELD natl natl

The PREDEFINED-CLASS command takes a nat! as argument and returns the predefined class with that
index among the set of predefined classes. Such a class is an ubiquitous object even if its representation
varies from site to site. The TYPE command takes a matl and returns the DMEROON type with that index
(see table 2.1). Such a type is an ubiquitous object even if its representation varies from site to site. The
PREDEFINED-FIELD 7 j command returns the ith field of the jth predefined class.

C.4.2 Stack-related commands

These commands deal with the stack, they may take an additional argument. The stack is a regular stack
if managed from the top, it is considered as a cache if managed from the bottom. Technically, a Tcp

96 APPENDIX C. PROTOCOLS

Connection between two sites is associated to four stack/caches — two per communication way. When the
emitter changes its stack/cache, it encodes the command that will modify accordingly the stack/cache of the
receiver.

Implementation note: [may separate some time stacks from caches.

POP [unmarshaling commands]
SWAP object
DUP object

RESET object
PUSH object

The commands POP, SWAP, DUP and RESET manage the stack/cache of the deserializer. First, there is a
stack which is accessed with the usual functions. It is possible to extract or replace values from this stack
with an index counted from the top of the stack or from the bottom of the cache. RESET totally clears the
cache. SWAP swaps the top of the stack with the element right under it, the subtop of the stack (of course,
the stack must have at least two elements). DUP duplicates the top of the stack i.e., it pushes the object on
the top of the stack in the stack (of course, the stack must contain at least one object). The three previous
commands do not return a DMEROON object per se, they just perform the required action then read the
object that follows and return it.

POP returns the object standing on the top of the stack as well as it removes it from the stack. PUSH
reads its argument, pushes it onto the stack, then it returns that object as value. Stacks are automatically
extended whenever needed.

REFER-WITH-NAT1 natl [unmarshaling commands]
REFER-WITH-NAT2 nat2
REFER-WITH-NAT3 nat3

The commmand REFER-WITH-NAT1 (resp. REFER-WITH-NAT2 or REFER—WITH—NATS) takes a natl! (resp.
a nat2 or natl) argument and returns the object cached at that position counted from the bottom of the
cache. The cache must be large enough for this index to be legal (in particular less than the stack pointer).

INSERT-WITH-NAT1 nat! object [unmarshaling commands]
INSERT-WITH-NAT2 nat2 object
INSERT-WITH-NAT3 nat3 object

These commands take an index and an object, insert the object in the cache at the given position (counted
from the bottom of the cache) and return this object. The cache must be large enough for this index to be
legal (in particular less than the stack pointer).

C.4.3 Useful commands

C.4. THE DMEROON INNER PROTOCOL 97

EMITTING-SITE [unmarshaling commands]
RECEIVING-SITE

Commands EMITTING-SITE and RECEIVING-SITE are shortcuts that encode the two sites standing at
both ends of a TCP connection. These sites are known after a brief handshake that takes place immediately
after the Connection is opened. This handshake or bootstrap of the Connection has to be specially done
since it must warm up the inner DMEROON protocol and proceed to the exchange of site objects.

SET-COPYABLE object [unmarshaling commands]
SET-SHARABLE object

SET-COPYABLE (resp. SET-SHARABLE) takes a DMEROON object as argument and initializes it to be
copyable (resp. sharable), it returns that initialized object. These commands are often needed after the
ALLOCATE command.

CLASS class-options class [unmarshaling commands]
FIELD field
SYMBOL symbol

CLASS takes some class-options and a class as arguments, it returns this very class. Non-predefined classes
must be prefixed by this command to be usable on a remote site. A class must be usable before you may use
it to allocate instances. A class is usable when all its super-classes and all its fields are present and usable.

FIELD takes a field as argument and returns it. Non-predefined fields must be prefixed by this command
to be usable on a remote site.

SYMBOL takes a symbol as argument, interns it in the local hashtable of symbols (so two symbols with
the same name are the same), and returns it as value.

RECEIVE-REQUEST request [unmarshaling commands]
RECEIVE-ANSWER answer

The two commands RECEIVE-REQUEST and RECEIVE-ANSWER take a DMEROON object as argument and
return it as value. RECEIVE-REQUEST (resp. RECEIVE-ANSWER) enqueues the object which must be an instance
of Request (resp. Answer) in the list of pending requests (resp. answers). These requests or answers will be
handled after the deserialization of the current message.

Implementation note: This is to avoid simple deadlocks when a site has to unmarshal a
message and requires, for it, another message from the same site.

PROG1 object object [unmarshaling commands]
PROG2 object object

98 APPENDIX C. PROTOCOLS

The PROG1 (resp. PROG2) command takes two objects as arguments and returns the first (resp. the
second) of them.

LIMIT nat3 object [unmarshaling command)]

This command returns its second argument but ensures that its encoding is exactly nat8 bytes (this size
includes the representation of the nat? number itself up to the last byte of the object). Moreover, if an error
occurs while unmarshaling the object, the error is caught and NULL is returned instead. This command is
often used to pre-send values whose classes may be unknown from the receiver.

C.4.4 Specific commands

These are commands that create objects, remote pointers, etc.

ALLOCATE class sizes. .. [unmarshaling command)

This command takes as first argument a class followed by nat* sizes. It allocates and returns an instance
of the class whose indexed fields are determined by the given sizes. For instance, to allocate a String of 3
characters, you may write (8 is supposed to be the index of the String predefined class):

ALLOCATE (PREDEFINED-CLASS 8) 3

The parentheses that appear above are cosmetic only, they group commands to ease reading.
The class that appears as first argument must be usable. Note that it is not required to specify the
number of sizes since this may be deduced from the class.

FILL object content... [unmarshaling command)

This command takes an object as argument, fills it with the serialized content and finally returns it. The
content is made of the concatenation of the serialized fields. For instance, to fill the previously mentioned
String of three characters, one may write:

FILL (ALLOCATE (PREDEFINED-CLASS 8) 3) F o o

The parentheses that appear above are cosmetic only, they group commands to ease reading.

EMITTER-REFERENCE key external-options class clock [unmarshaling command)

The EMITTER-REFERENCE command creates a remote pointer onto an object owned by the emitting site.
The key is the number that names the associated Entry item or a reexported Exit item. The class may
be encoded as a remote pointer itself, the receiving site will fetch it in order to be able to locally cache
such a remote object. If the object is mutable, then the clock is encoded or remotely pointed. If the object
is immutable then DM_NULL is sent instead. The entire command returns an Exit item or the associated
replica if already present. The external-options allows to specify whether the object is copyable, sharable,
or uninitialized.

C.4. THE DMEROON INNER PROTOCOL 99

RECEIVER-REFERENCE key [unmarshaling command]

The RECEIVER-REFERENCE command returns the object held by the receiving site externalized with that
key.

REMOTE-REFERENCE key external-options class clock site [unmarshaling command)

The REMOTE-REFERENCE command creates a remote pointer onto an object owned by a remote site. The
key is the unique number that names the original object on its birth site. The class may be encoded as
a remote pointer itself, the receiving site will fetch it in order to make it locally usable. If the object is
mutable, then the clock is encoded or remotely pointed. If the object is immutable then DM_NULL is sent
instead. The site argument is the site that owns the object. The entire command returns an Exit item or
the associated object if already present.

CACHE object exit [unmarshaling command)

This command reads an object and an Exit item, it associates the object to the Exit item and returns the
object. This allows, for instance, to pre-send an object in hope it will be useful to the receiver. Something
like cache (limit ...) ezit.

Of course, the object must not be already associated to an Exit item and the Exit item must not be
already associated to an object.

SITE IPnumber portnumber date site-name-length [unmarshaling command)

The SITE command returns a Site instance describing the site watching a given port on a given host
(specified by its IP number). The SITE command is the only command that can create instances of Site
(this class is uninstantiable by the user). Most often the site is in the not usable state. The site is not
contacted and no Connection is opened to it (use DMeroon_connect for that). The server is also identified
by its birth date (to cope with servers’ restart). Since the Site class contains an indexed field to hold its
host-name, its length is also given.

C.4.5 Technical commands

These commands are internally used by DMEROON.

DECREMENT key object [unmarshaling command)

This command reads a key and decrements the reference counter of the associated Entry item. The Entry
item will be reclaimed if the reference counter reaches zero. Eventually the command then reads and returns
the object that follows.

100 APPENDIX C. PROTOCOLS

UPDATE-CLOCK clock nat4 object [unmarshaling command)]

This command is used to mention that the clock appearing as first argument has at least the next nat4
value. Eventually the command reads and returns the object that follows.

DEFINE-EMITTER site key [unmarshaling commands]

This command is used while bootstrapping a Connection. When a Connection is opened, the requesting
Site signals itself with the DEFINE-EMITTER command followed by an encoding of the site and followed again
with its key. This allows to build on the receiver site, the Site instance and its associated proxy.

Instances of Site pass through various peculiar states, see appendix B.

C.5 Object-based protocol

The DMEROON inner protocol specifies the exchange language. When it is possible to exchange objects, it
is possible to make DMEROON servers cooperate exchanging structured requests. A request is an instance
of the Request class. Often, requests are answered by instances of Answer, a sub-class of Request.

There are several types of requests:

e SCR for SiteConnectionRequest. This request is only used to bootstrap a connection. The connecting
site sends such a request which is answered by a SiteConnectionAnswer (aka SCA).

e OSR for ObjectSendRequest. When sending a remote reference towards a site, this request is used.
There is no associated answer.

e OFR for ObjectFetchRequest. This request is sent when a site wants to refresh a replica. It is
answered by an instance of ObjectFetchAnswer (aka OFA).

e OMR for ObjectMutationRequest. This request is send to the owner site of an object so it can mutate
a regular field of this object. It is answered by an ObjectMutationAnswer (aka OFA) that returns the
former value of the mutated field.

e OIMR for ObjectIndexedMutationRequest. This request is send to the owner site of an object so it
can mutate an indexed field of this object. It is answered by an ObjectIndexedMutationAnswer (aka
OIMA) that returns the former value of the mutated field.

<< Section under construction >>

C.6 DMEROON and http

Normally, DMEROON starts an http server. You may invoke it to inspect the site object of DMEROON (if,
of course, sufficient time is given to the server to watch for the incoming requests). The default URL is:
http://localhost:56423. The rest is self-explanatory and clickable as soon as your favorite http client
(xmosaic, Netscape, IExplorer etc.) can open this URL.

The site object is the most prominent object of DMEROON. It allows to inquire the exact definitions
of DMEROON types, the predefined classes and the published information. The site object contains a
“information” field containing instances of Dictionary, a sort of multi-Association-list containing whatever
values exported from this site. Currently there are more than a hundred published values. The published
information is publicly available since any user that connects to this site may read the site object and inquire
its published information.

C.6. DMEROON AND HTTP 101
<< Section under construction >>

C.6.1 The http protocol

This protocol is triggered by the GET keyword followed by an DMEROONSCRIPT request. This request is
made of words separated by slashes. It may use the %dd convention to encode some characters with their
ASCII code. The default URL is:

http://localhost:56423/help

In fact a whole language exists to write these URLs. This is a small stack-oriented language, the DME-
ROONSCRIPT language (see chapter 5, that allows to call all the API functions.

C.6.2 Publishing informations

The site object, whose class is Site, exports all its content and in particular an immutable field named
information whose content is a multi-A-list to which you may add your own values. The objects that are
reachable from this information field is said to be published.

As seen from table C.1, there are initially two dictionaries. The user dictionary is empty and reserved
for users, the DMeroon dictionary is reserved for DMEROON and holds values describing the implementation.

DMeroon The own DMEROON dictionary
site the site object itself
classes the Vector of predefined classes
constants a subdictionary listing some constants
nil
true
types the Vector of predefined types
user a dictionary free for users

Table C.1: Predefined published informations

The Dictionary class is defined as:

Dictionary [Class]
rest a mutable reference to another dictionary or NULL
value a mutable reference to a DMEROON instance
name a repetition of characters

Published informations are gathered in nodes from class Dictionary. A Dictionary is somewhat similar
to an Alist node. The rest and value fields are mutable. The value field can of course refer to a Dictionary
instance justifying the multi-A-list term.

Published objects are known by pathname describing the path to follow through dictionaries to reach
these objects. It is not recommended to use names with spaces, dots and slashes, since pathnames are
often written as sequences of names separated by slashes, dots or spaces. The easiest way to populate these
dictionaries i.e., to publish information is to use the Scheme binding, see 4.

Implementation note: An hitp client is not really part of DMEROON space since it is con-
nectionless. An html page may have some links towards DMEROON objects. These links may be
broken if the DMEROON server disappears meanwhile.

102 APPENDIX C. PROTOCOLS

Appendix D

Driving DMEROON servers

This chapter describes some applications using the DMEROONSCRIPT language to drive DMEROON servers.

D.1 Measuring the progress of a remote process

<< Section under construction >>

Suppose you started a process on a remote machine that produces lines of results that are further
processed. Suppose this process to be very long and to require days and days for its completion: you
probably have to stop the rlogin connection you used to start it and then you can no longer observe its
output. A simple solution to measure whether the process makes some progress is to filter the output with a
dmtee command. This command records the last filtered lines in a DMEROON object. You can then inspect
that object with any http client from your office, your home or even from Mars.

Implementation note: The dislocate utility, from Don Libes, command seems to be similar.

The dmtee has the following syntax:

dmtee.prl [-n] [host[:port] [pathname]] [Command]

This command creates a connection to the DMEROON server mentioned in the argument host:port or,
localhost:56423 by default. This DMEROON should of course be running! Then it creates a mutable
vector of size n (by default, 5) keeping the last n lines. This object is published with pathname as name or
/user/$USER/$$ by default.

This object can be inquired with the following URL:

http://host: port/ pathname

To return to our introductory example, suppose your command was originally solve | verify >file,
then you just have to transform it into solve | dmtee | verify >file to benefit of this new facility.

dmtee is a simple Perl script [WS90] using the DMEROONSCRIPT language to drive a DMEROON server.
It appears in TOP/DMeroon/Commands/dmtee.prl file.

D.2 Distributed X cut buffer

One day, working on a workstation near Luc Moreau, he asked me for a bibliographical reference, I highlight
the text in my favorite Emacs and started to move the selection before realizing that there was no way to
paste it on Luc’s screen. I then use E-mail. This application allows different users to share X selections. It
is written in Tcl and uses the DM EROONSCRIPT language.

103

104 APPENDIX D. DRIVING DMEROON SERVERS

<< Section under construction >>

