
HAL Id: hal-02547797
https://hal.science/hal-02547797v1

Submitted on 20 Apr 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

DMeroon, A Distributed Class-based Causally-Coherent
Data Model — General documentation - Revision 1.64

Christian Queinnec

To cite this version:
Christian Queinnec. DMeroon, A Distributed Class-based Causally-Coherent Data Model — General
documentation - Revision 1.64. [Research Report] lip6.1998.039, LIP6. 1998. �hal-02547797�

https://hal.science/hal-02547797v1
https://hal.archives-ouvertes.fr

DMeroonA Distributed Class-based Causally-Coherent Data Model{ General documentation { Revision: 1.64 {Christian QueinnecUniversit�e Paris 6 | Pierre et Marie CurieLIP6, 4 place Jussieu, 75252 Paris CedexFrance { Ml: Christian.Queinnec@lip6.fr
DMeroon provides a data model above a coherently distributed shared memory. DMeroon allows multipleusers to statically or dynamically create new classes hierarchically organized, to dynamically instantiatethese classes and, to dynamically and coherently share the resulting instances over a network. DMeroonautomatically takes care of representation and alignment, marshaling and unmarshaling objects, migratingand sharing objects, local and global garbage collections.This document describes DMeroon, its philosophy of design, its architecture and principles of implemen-tation, and its bindings with various languages. It also presents some internal details within DMeroon orsome applications above DMeroon.This document tries to present the overlines of DMeroon, in places, it describes features which are notimplemented, in some other places there are implemented features that are not documented. I packed it upin order for interested people to get an idea and, perhaps, induce them to pursue my e�ort or de�nitivelyconvince me of its little value. I have a lot of lectures to prepare for the following months and will not beable to devote much time to DMeroon.

Contents
1 Introduction to DMeroon 71.1 About this document . 81.2 About DMeroon . 81.3 Frequently Asked Questions . 91.4 Acknowledgments . 92 Fundamental data model 112.1 Types of �elds . 122.2 Access to �elds . 142.3 Distributed aspects . 152.3.1 Clocks . 162.4 Sites . 162.5 Class-based model . 182.5.1 Main prede�ned classes . 182.6 Abstract API . 212.6.1 Initialization . 212.6.2 Class . 222.6.3 Fields . 222.6.4 Allocation . 232.6.5 Site . 232.6.6 Clock . 232.6.7 Communication . 232.6.8 Equality . 242.6.9 Ubiquity . 252.6.10 DMeroon as a server . 252.6.11 Miscellaneous . 253 C binding 273.1 Functions . 273.2 Global variables . 363.3 Contexts . 373.4 Error codes . 383.5 Static generation of classes . 383.6 Tutorial examples . 383.6.1 Dynamic creation . 403.6.2 Static de�nition . 403.6.3 Recursive class . 411

2 CONTENTS4 Scheme binding 434.1 Functions . 434.2 Variables . 484.3 Libraries . 494.3.1 Tools . 494.3.2 DMeroonet . 504.4 Scheme peculiarities . 524.4.1 Bigloo . 525 DMeroonScript binding 555.1 Programs . 555.2 Constants . 555.3 Access to �eld . 565.4 Commands . 565.4.1 Basic commands . 575.4.2 Vocabulary commands . 575.4.3 Stack commands . 585.4.4 Boolean commands . 595.4.5 Arithmetic commands . 595.4.6 Meta commands . 605.4.7 Miscellaneous commands . 615.5 DMeroon API . 625.5.1 Debugging command . 635.6 Use . 645.7 DMeroonScript API . 645.7.1 Explicit evaluation . 675.8 Development environment . 685.9 Examples . 686 Icslas binding 71Appendices 73A DMeroon source �les 75A.1 Structures of �les . 75A.1.1 The TOP/DMeroon/c/ directory . 76A.2 Rebuilding DMeroon . 78A.3 Other �les . 78A.3.1 C . 78A.3.2 Bigloo . 78A.4 Binding DMeroon . 79A.4.1 The dmxxx.h header . 79A.4.2 The dmxxx.c �le . 81A.4.3 The xxx.mkf �le . 81A.5 Writing code for DMeroon . 82B Object internal representations 83B.1 Local object . 83B.1.1 Uninitialized . 84B.1.2 Local sharable . 84B.1.3 Local copyable . 84B.1.4 Semi-externalized . 84B.1.5 Externalized . 85

CONTENTS 3B.2 Remote . 86B.2.1 Reexported . 87B.3 Site . 87B.4 Class . 88B.5 Miscellaneous . 88B.6 Properties . 88B.6.1 Object . 88B.6.2 Entry item . 89B.6.3 Exit item . 90C Protocols 91C.1 Existing protocols . 92C.2 Adding protocols . 92C.3 Some classes . 93C.4 The DMeroon inner protocol . 94C.4.1 Ubiquitous objects . 95C.4.2 Stack-related commands . 95C.4.3 Useful commands . 96C.4.4 Speci�c commands . 98C.4.5 Technical commands . 99C.5 Object-based protocol . 100C.6 DMeroon and http . 100C.6.1 The http protocol . 101C.6.2 Publishing informations . 101D Driving DMeroon servers 103D.1 Measuring the progress of a remote process . 103D.2 Distributed X cut bu�er . 103

4 CONTENTS

List of Figures1.1 DMeroon overview . 82.1 DMeroon instance example . 112.2 A remote pointer . 152.3 Locally cached remote object . 162.4 Object monitored by a clock with an up to date replica . 172.5 Object monitored by a clock with an obsolete replica . 175.1 A Site displayed in html . 655.2 A mutable object displayed in html . 65A.1 Layers and relationship between �les . 75A.2 Objects in C, Bigloo and Icslas . 80B.1 States of local objects . 83B.2 Local uninitialized object . 84B.3 Semi-externalized object . 84B.4 Externalized object . 86B.5 Exit item with absent class and absent clock . 87B.6 Reexported Exit item . 88

5

6 LIST OF FIGURES

Chapter 1Introduction to DMeroonDMeroon was conceived with many di�erent goals in mind: portability with respect to hardware andlanguages, expressiveness, dynamicity, coherency, reusability, self-description etc. DMeroon is the datalayer of a distributed language, named Icslas, which is still under progress. Nevertheless DMeroon hasbeen carefully designed so it can also be used, independently of Icslas, for various purposes:� as a class-based system,� as a marshaling engine,� as a message passing layer,� as a distributed shared memory.DMeroon is based on a number of research results and o�ers unique features:1. language design [Que93],DMeroon o�ers a class-based system with regular or indexed �elds without inheritance restriction.Objects can be shared if remotely referenced but still retain their identity.2. object-oriented self-description [QC88, Que90].Objects are described by their classes and classes are objects as well. Most of the implementationof DMeroon can be freely inspected programmatically. The object system is distributed and sup-ports multi-users working together i.e., dynamically creating new classes and dynamically exchanginginstances of them.3. shared data coherency [Que94a, Que94b],Mutation of remotely shared mutable objects is coherently i.e., causally propagated to sites cachingcopies of these objects through a lazy invalidation protocol. DMeroon supports the notion of remotepointer i.e., a �eld of type reference may refer to any kind of DMeroon object independently of itslocation.4. marshaling engine [Que97b],Marshaling objects is considered as a compilation process, the resulting stream of bytes is then con-sidered as a program which is interpreted by a deserialization interpreter. The exchange protocol istherefore speci�ed as a language and, most often, many di�erent strategies of compilation exist; for allof them the unmarshaling interpreter remains constant.5. garbage collection design [LQP92],Remotely shared data are managed with a reference counter. Useless objects or classes automaticallydisappear, cycles of garbage are also recycled via another GC technique.7

8 CHAPTER 1. INTRODUCTION TO DMEROONDMeroonmay be used for very di�erent purposes, see �gure 1.1, as well with various languages for whicha binding exists (Scheme (Bigloo, Scheme!C, OScheme, SCM, . . .), C, Emacs, Tcl, all under progress).� First, you may use DMeroon, stand alone, in a single process i.e., as a single site, just to take bene�tof its library of classes and objects. You may de�ne your own classes, instantiate them, read or modify�elds within these objects. You may also describe or access C structured values with DMeroon classes.Garbage collection is active if possible. You may inspect or modify DMeroon objects via the HTTPprotocol and thus control the parameters of your application in the spirit of Paws1. You may alsoextend the DMeroon server to support additional protocols.� Second, you can start multiple sites (i.e., processes on possibly di�erent machines) and let DMeroonbe the marshaling/unmarshaling engine. You then copy structured values from site to site. Regularunstructured values such as messages i.e., sequences of bytes, may also be exchanged if represented byinstances of String.� Third, your application may be supported by the shared distributed memory provided by DMeroon,you may then use shared objects. Examples of such applications are the distributed managementof DMeroon sources, distributing computations (farming) upon a synchronizing memory, archivingstructured and complex data for a variety of processes.� Fourth, DMeroon may be the unifying framework that hosts, on a variety of sites, a variety ofapplications allowing you and your colleagues to cooperate above a coherent memory.program.clibdmeroon0.afor CDMeroonprivatememory
otherprogram.clibdmeroon.afor CDMeroonsharedmemory

interactiveinterpreterlibdmeroon.afor SchemeDMeroonsharedmemory http client
Figure 1.1: DMeroon overview1.1 About this documentThis document is a pot-pourri around DMeroon. It �rst describes the generic aspects of DMeroon thendetails its current bindings (with C and Scheme). Additional appendices describe some �ner points of theimplementation (as students keep asking me!).Implementation note: Warning! This document is under construction as recalled in somesections. I also sometimes comment �ner points inside implementation notes such as this one.1.2 About DMeroonDMeroon is freely accessible under Gnu Library General Public License version 2. All remarks, bugs,patches, extensions, stories etc. are to be mailed to:Christian.Queinnec@lip6.frOnline fresh information is available from:1http://zenon.inria.fr:8003/koala/phk/k-web/intro.html

1.3. FREQUENTLY ASKED QUESTIONS 9http://www-spi.lip6.fr/~queinnec/WWW/DMeroon.htmlAdditional questions may be addressed to:DMeroon@spi.lip6.frTo subscribe to this unmoderated mailing list, send a mail to:DMeroon-request@spi.lip6.frInsults are left to the following mailing list if one cares to create it:DMeroon-haters@to.appear.somewhereFinally, an ever-changing DMeroon server is sometimes reachable at:http://youpou.lip6.fr:56423/1.3 Frequently Asked Questions<< Section under construction >>� what means DMeroon?The name DMeroon stands for \DistributedMeroon" whereMeroon is the name of an object systemfor Scheme. Informations on Meroon is available on:http://www-spi.lip6.fr/~queinnec/WWW/Meroon.htmlMeroon's own FAQ tells us that the name Meroon was the name of my son's teddy bear.� How about PVM?DMeroon is di�erent from PVM for at least two reasons: DMeroon provides you a distributed sharedmemory and structured objects with pointers. Conversely PVM o�ers task control, host management whereasDMeroon only deals with data. Due to its youth, it is not ported as PVM is.� How about Corba or ILU?DMeroon is di�erent from Corba and ILU: it does not provide multiple inheritance of interfaces norremote method invocation. It o�ers you automatic coherency for shared mutable objects, source code andextensibility due to the self-description of the implementation. However, it might be interesting to let DMe-roon understands the IIOP protocol. Corba o�ers pointers to remote interfaces whereas DMeroon o�ersreal mobile objects.� How about Java?DMeroon is di�erent from Java: it o�ers you indexed �elds allowing multiple values to be packedtogether (so they are not split apart when marshaled), it o�ers a distributed shared memory and automaticcoherency. With Java RMI, a remote object is represented by a stub implementing some interface, the classof the local stub and the class of the remote object are not comparable whereas in DMeroon they arethe same. Moreover in Java, the stub and the server object are compelled to inherit from special classes,this is needless in DMeroon. DMeroon also o�ers handling C values (unsigned int for instance) with Csemantics.1.4 AcknowledgmentsJing Wang wrote the �rst version of the http protocol part that allows to modify mutable �elds of objects.Jean-Michel Inglebert contributed with dmClient a tool to write and debug DMeroonScript programs.

10 CHAPTER 1. INTRODUCTION TO DMEROON

Chapter 2Fundamental data modelA DMeroon object is an ordered contiguous sequence of �elds, see �gure 2.1. Fields may be regular (mono-�eld) or indexed (poly-�eld). A regular �eld holds a single value while an indexed �eld holds an orderedsequence of values whose number of elements is determined at instance creation time (currently this numberis stored right before these values). This uniform model allows to represent all mundane data structuressuch as records, vectors, strings with full inheritance ability1.The object shown on �gure 2.1 starts with two regular �elds, followed by an indexed �eld, itself followedby a regular �eld. As in C, a DMeroon reference refers the �rst byte of its content. DMeroon also storesa reference to the class of the object as well as a reference to its proxy (a DMeroon object containing allthe information needed to manage distribution) in a pre�xed header which itself may be pre�xed by thestandard header required by the binding language if any (see �gure A.2, page 80).
DMeroon reference �rst (mono-)�eldsecond (mono-)�eldsize of third (poly-)�eld�rst value of third (poly-)�eldsecond value of third (poly-)�eld. . .last value of third (poly-)�eldfourth (mono-)�eld. . . other mono- or poly- �elds . . .

malloc headerand/ortype headerclassproxy

Figure 2.1: DMeroon instance example1Never dreamt of a colored string ? That is, from an implementation point of view: a repetition of characters followed by acolor. 11

12 CHAPTER 2. FUNDAMENTAL DATA MODEL2.1 Types of �eldsAll �elds have a precise type as shown in table 2.1. These types have sizes and alignment constraints thatdepend on the site (the hardware running DMeroon) and on the C compiler used to compile the DMeroonlibrary. The sizes mentioned in the table are the usual ones. Every implementation of DMeroon mustimplement all these basic types with their associated range but, on a particular site, some �elds may bebigger than indicated to implement the correct range of values.Implementation note: For any machine I know, these sizes are the real sizes.Every DMeroon type has an associated class with a single �eld, the value �eld, of that type. Hencenat1 is associated to class Nat1, etc. These classes are used in the implementation of DMeroon and maybe used or re�ned by interested users, see table 2.3.For every C structure that has an equivalent DMeroon class, the layout of the structure and the layoutof the class are the same (same order of �elds, same sizes, same alignment constraints). The DMeroonmodel is richer since it allows indexed �elds, it is also poorer since C o�ers bounded arrays that are currentlynot part of the DMeroon model.Implementation note: C structures are subsumed by DMeroon classes at the exception ofarrays. For instance, char s[5] is currently not supported in DMeroon, you must use insteadan indexed �eld or �ve contiguous regular �elds.Some basic types deserve special explanation.� Signed integer types have a symmetric range to be free of one-complement or two-complement encod-ings. Implementation note: XDR then Corba adhere to two-complement, I may change onthat point.� The reference type is used to hold a pointer to another DMeroon instance. The referenced instancecan be local to the current site or remote without any semantical di�erences.Implementation note: A reference to a DMeroon instance is the address of the �rstbyte of its �rst �eld. This makes easy to allocate C structures with DMeroon allocationfunctions and to handle them as C or DMeroon objects. For languages in which objects aredescribed by the address of the �rst word of their header (Bigloo for instance), pointers haveto be translated back and forth between DMeroon and the binding language. See �gure A.2for some implementation schemes.� The data type can be used to record any non-DMeroon information that �ts in the size of a pointerto a local C datum i.e., a void* value. Such local information can be a �le descriptor, a Schemevalue, an EBCDIC character, etc. You may transmit such a �eld, without DMeroon blessing, that is,DMeroon does not ensure you anything on the size or on the representation of the transmitted �eld.However if you use homogeneous machines, you may try.� The code type is similar but may hold the address of a C function. The same lack of DMeroonblessing holds of course. You may try it if you are sure that your functions are linked with similaraddresses on di�erent machines.� The \netnat*" types are similar to their \nat*" counterpart except that these natural numbers arestored in \network order". Some data structures, generally related to network structures (sockaddr infor instance), impose this encoding, it is therefore useful and less painful to let DMeroon managesthis encoding for you. That is, you never have to use \netnat*" numbers only their equivalent \nat*"numbers.

2.1. TYPES OF FIELDS 13
index name size meaning(bytes)0 nought 0 not instantiable1 nat1 1 natural (unsigned) number from 0 to 2561 � 12 nat2 2 natural (unsigned) number from 0 to 2562 � 13 nat3 4 natural (unsigned) number from 0 to 2564 � 14 nat4 8 natural (unsigned) number from 0 to 2568 � 15 reference 4 or 8 pointer to a DMeroon instance6 data 4 or 8 non-DMeroon information (the size of a void* C variable)7 code 4 or 8 address of a C function8 int1 1 (signed) small integer from �2561=2 + 1 to 2561=2� 19 int2 2 (signed) small integer from �2562=2 + 1 to 2562=2� 110 int3 4 (signed) small integer from �2564=2 + 1 to 2564=2� 111 int4 8 (signed) small integer from �2568=2 + 1 to 2568=2� 112 char1 1 ISO Latin1 character13 netnat2 2 natural (unsigned) number from 0 to 2562 � 1 in network order14 netnat3 4 natural (unsigned) number from 0 to 2564 � 1 in network order15 unicode 2 not yet implemented16 float1 4 IEEE
oating point number with 32 bits17 float2 8 IEEE
oating point number with 64 bits18 float3 16 IEEE
oating point number with 128 bits19 offset 4 internally needed by DMeroon20 date 8 date following Unix convention21 key 16 internally needed by DMeroon22 class-options 4 internally needed by DMeroon23 field-options 4 internally needed by DMeroon24 port-options 4 internally needed by DMeroon25 site-options 4 internally needed by DMeroon26 external-options 4 internally needed by DMeroon27 context-options 4 internally needed by DMeroon28{63 reserved by DMeroononeoneTable 2.1: DMeroon primitive types

14 CHAPTER 2. FUNDAMENTAL DATA MODEL� The *4" types are not necessarily usable everywhere since they often occupy eight bytes and not allhardware are able to add or divide 8bytes entities. It is nevertheless possible to migrate objects withsuch �elds from site to site, but you may not have, in some language binding, the possibility to manage(i.e., read or write) these 8bytes entities. Nevertheless these types exist and are prede�ned.� The float3 type is not implemented everywhere due to the lack of a common representation. It wasinitially intended for long double of C but, unfortunately, their size may be 8 (sparc-bsd), 10 (ieee80bits), 12 (linux) or 16 (sparc-solaris) bytes.Implementation note: Types are encoded with a single byte. This leaves around 200 typesfree for future extension. If you plan to introduce new statically prede�ned types, rememberthat you will not be able to communicate with servers lacking them. However if your addi-tional types are valuable, make others share them! Future releases of DMeroon will probablyuse more prede�ned types for internal usage that is why some bytes are reserved.� The key is an internal DMeroon type used to name objects that are to be known via the network. Akey quali�es a single object and is never reused. It is di�cult to forge meaningful keys ex nihilo, thisallows to protect hidden remote objects from being discovered.Implementation note: Currently, a key is composed of the IP number of the DMeroonserver where it was allocated, of the portnumber used by this server, of the date of creation,of the value of a 16bits cyclic counter and, �nally, of 32bits randomly computed. I may adoptthe DCE naming scheme some day.2.2 Access to �eldsAny DMeroon instance can deliver the content of its regular �elds. Given an additional index i, it can alsoreturn the content of the i-th value of an indexed �eld. Of course, it is not possible to access a �eld thatdoes not exist in an instance and, for indexed �elds, indexes are checked to be within the range de�ned bythe instance. Mutable �elds can be altered with the same limitations. Indexed �elds can return the numberof values they hold on a per-instance basis.The precise way to access, inquire or modify a �eld in a DMeroon instance depends on which bindinglanguage is used with DMeroon: see, for instance, the C binding (chapter 3) or the Scheme binding (chapter4). However access should always be performed via the appropriate functions to ensure the consistency andthe safety of DMeroon space and to give time to DMeroon to serve http requests or to manage, i.e.,garbage collect, the memory.A �eld is quali�ed by some options that conditionalize the access, see table 2.2. These options may befreely combined. By default, �elds are not mutable, not volatile, not local and not secret.kind meaningmutable The �eld can be modi�ed through the API.volatile The content of the �eld may evolve spontaneously.local Never marshal the content of this �eld, its meaning is only local.secret The �eld cannot be read.Table 2.2: DMeroon �eld optionsDMeroon prevents the mutation of immutable �elds. Only mutable �elds may be written. By default,�elds are immutable.A volatile �eld cannot be cached: it must be read every time it is accessed. Even if the user cannotmodify it i.e., the �eld is immutable, its content may evolve. Volatile �elds are often used by the DMeroonimplementation to allow the inspection of immutable but evolving values.

2.3. DISTRIBUTED ASPECTS 15A local �eld cannot be read outside of the current site: it only has a local meaning. By default, �eldsare not local. Local �elds are handy for �elds of the data or code type and may also be used to keep �eldssecret.A secret �eld cannot be read at all. It is probably not very interesting to be volatile at the same time.This option is handy for some internal �elds reserved to the implementation.A �eld of type reference is always restricted to only refer to instances (whether direct or indirect) of agiven class. The root of all classes that is, Object, allows for all DMeroon objects.2.3 Distributed aspectsDMeroon manages the DMeroon space which is the union of all DMeroon objects. Within a process,the user space is the complement of the DMeroon space: values of data and code �elds usually refer to theuser space. It is possible to perform computations in the user space then to copy results in the DMeroonspace to share them or exchange them with the marshaling/unmarshaling capacity of DMeroon.A reference to a DMeroon object from the user space always refers to an instance such as the oneshown on �gure 2.1. This is an invariant maintained by DMeroon: the user of the API never sees internalDMeroon objects (such as Entry or Exit items).
an object. an ExitSite1

an Entry
another object.

Site2

Figure 2.2: A remote pointerThe content of a �eld of type reference may be null or not. If non-null then it refers to a DMeroonobject. It is possible to merge its own DMeroon space with other DMeroon spaces if they are availablevia the network. When merged, referenced objects may belong to one or another site without semanticaldi�erences: users do not need to be aware of distribution but for speed. If the referenced object is local, thereference is represented by a regular pointer; if the referenced object is not local, then a remote pointer isused instead as shown on �gure 2.2.When a �eld of type reference is read, the DMeroon object which is referred to is brought locally i.e.,is cached and a reference onto it is returned to the user (see �gure 2.3). The cached object is also knownas a replica. A coherency protocol is run by DMeroon to ensure the consistency of the cached replica withrespect to communications between sites. Access to DMeroon objects should only be done through theDMeroon API in order to maintain the consistency. This is costly with respect to direct access with o�setsas in C but allows DMeroon to garbage collect its space, maintain consistency, serve requests and the like.DMeroon allows you to send references onto objects towards remote sites. Then all information exchangesbetween sites (if represented by objects) are noticed by DMeroon so it may ensure coherency.Reading a �eld of a cached object may be e�cient under certain circumstances (not volatile, validlycached). Writing a �eld always implies sending a message to the site that owns the original object asking

16 CHAPTER 2. FUNDAMENTAL DATA MODEL
an object. an Exitcached object.Site1

an Entry
an original object.

Site2

Figure 2.3: Locally cached remote objectthat site to perform the mutation. These details are fortunately hidden for the users.2.3.1 ClocksA shared mutable object is monitored by a clock, an instance of the prede�ned class Clock. When such anobject is mutated, its clock is incremented. Whenever sites exchange messages, they lazily propagate theclocks they are aware of i.e., their clocks and others.When an object is cached on a site, its associated clock is also cached. Moreover, the exit item associatedto the object memorizes the time when the cached object was read. For instance, on �gure 2.4, the replicawas read at time 14.Before a replica is read, its associated clock is checked not to have changed since the replica was fetched.On �gure 2.4, Site1 is not aware of any change on this clock so the replica is not obsolete. Had a messagebeen sent from Site2 recently, then Site1 would have advanced the clock to 15 thus making obsolete thereplica (see �gure 2.5). When the replica is out of date, a request for a fresher copy will be sent (thiswill authorize Site2 to advance its (cached) clocks with respect to Site1). This is the essence of the lazyinvalidation protocol described in [Que94a].There is a trade-o� between the number of clocks to propagate and the number of objects that aresimultaneously invalidated because they are monitored by the same clock. DMeroon allows you to choosethe right grain: you may create clocks (or even subclass the Clock class) and associate them to objects ona per-object basis.All entry items have a reference counter counting the number of remote pointers referencing an object.This allows for a simple garbage collector. A more elaborated marking GC is run by DMeroon to take careof useless distributed cycles.2.4 SitesA site corresponds to a single address space (usually a process in Unix parlance). Sites may be connectedto form a bigger DMeroon space.When a DMeroon object is allocated on a site, it is owned by this very site. If the object is motile, itmay migrate that is, be owned by another site. The site that owns an object serializes the mutations thatare applied on this object. It is possible to know which site owns an object.An object is local to a site if it owned by this site, otherwise the object is remote and associated to anExit item i.e., remotely pointed. An object is present if local or cached. An object is absent if remote and

2.4. SITES 17

a mutable object.
Site2a Clock15

Site1read at 14a cached mutable object. a cached clock14

Figure 2.4: Object monitored by a clock with an up to date replica

a mutable object.
Site2a Clock15

Site1read at 14a cached mutable object. a cached clock15

Figure 2.5: Object monitored by a clock with an obsolete replica

18 CHAPTER 2. FUNDAMENTAL DATA MODELnot cached i.e., not associated to a replica on the current site. A replica is valid or, a remote object is validlycached if its associated clock is not known to be out of date as perceived by the current site (see �gure 2.5).Sites are rei�ed into instances of the immutable Site class. These objects may be read to discover theproperties of the site. A site has an information �eld that holds values that are said to be published i.e.,readable by any one in possession of a reference onto that site object.2.5 Class-based modelAny DMeroon instance belongs to a particular class, the class of which it is a direct instance. Classes arerelated by inheritance. As MeroonV3 or Java, DMeroon is a single inheritance class-based model. Whena class A inherits from a class B, all the �elds of B are also �elds of A with the same properties. Thereforewhen a class is de�ned only the additional �elds it introduces are mentioned.DMeroon prede�nes a hierarchy of classes, most of them can be subclassed at will without restriction.The actual core hierarchy is shown on �gure 2.3 where indentation means \subclass of", for instance Type isa direct subclass of Object, DMeroonType is a subclass of Type and therefore an indirect subclass of Object.The implementation ofDMeroon ensures that the is-a-subclass check (when comparing two classes) or the is-an-instance check is always performed in constant time. Furthermore, in the current implementation ofDMe-roon, all prede�ned classes are statically allocated and not dynamically created i.e., they are ubiquitous.Classes may be customized with some options. These are:� non-subclassable: it is not possible to create a subclass of such a class (but prede�ned sub-classesmay exist).� immotile: instances of that class cannot be migrated i.e., change their owning site (they may beshared i.e., remotely pointed instead).� non-instantiable characterizes a class that cannot be instantiated (this is reserved for some internalclasses of DMeroon).� mutable: instances of such a class have at least one mutable �eld. This option is deduced from theoptions of the �elds.� volatile: instances of such a class have at least one volatile �eld. This option is deduced from theoptions of the �elds.� copyable: instances of such a class are, by default, copied rather than shared when communicatedfrom one site to another one.� sharable: instances of such a class are, by default, shared rather than copied when communicatedfrom one site to another one.2.5.1 Main prede�ned classesOnly the core classes are de�ned here. Many more useful classes also exist and will be described elsewherein particular those of the Icslas language.Object [Class]This class is the root of the inheritance tree. All classes inherit from Object therefore all objects are(direct or indirect) instances of Object. The Object class has no �eld. The Object class is itself an instanceof Class.

2.5. CLASS-BASED MODEL 19Object the root of all classesTypeCType types of the C support languageDMeroonType DMeroon portable typesClassFieldString repetition of char1MutableVector mutable vector of DMeroon referencesImmutableVector immutable vector of DMeroon references...ClockHashtableBoundedStackImmutableLinkImmutablePair immutable dotted pairs �a la LispQueueLinkSymbol immutable symbols �a la LispBoolean Booleans as in SmalltalkTrue #t as in SchemeFalse #f as in SchemeImmutableByteVectorNull nil as in Lisp...Site the class of the current siteDictionary dictionary node, see appendix C.6Value Classes for all DMeroon types as in JavaNumberExactNumberSignedNumberInt1Int2Int3Int4UnsignedNumber Classes for unsigned numbers (not as in Java)Nat1Nat2Nat3Nat4InexactNumberFloat1Float2Float3 not always presentChar1NetNat2 Nat2 in network-orderNetNat3 Nat3 in network-orderData reference to non-DMeroon valuesCode reference to C functionsReference reference to a DMeroon objectDate portable date...Context used for bindingsFacts asynchronous facts reported by DMeroonTable 2.3: Hierarchy of prede�ned classes

20 CHAPTER 2. FUNDAMENTAL DATA MODELClass [Class]options a sequence of bits encoded as a class-optionsuper an indexed sequence of reference to the superclassesfield an indexed sequence of instances of Fieldname a repetition of charactersThis class describes the structure of classes. All classes are direct or indirect instances of Class, partic-ularly Object and Class according to the ObjVlisp model [Coi87]: Class inherits from Object, Object isan instance of Class and so is Class itself.The options �eld describes some properties of the class such as its immutability or motility etc. This �eldis reserved for DMeroon's usage. An instance of an immotile class cannot migrate from a site to anotherone: it is nailed down to the site where it was created. An immotile instance may be copied or remotelyreferenced hence shared. A non-subclassable class cannot be sub-classed. An immutable class imposes itsimmutability to all its �elds.The indexed super �eld refers in order to the super-classes. Object is the super-class of index 0, the lastsuper-class is the class itself.The indexed field �eld refers to instances of Field describing the �elds of the class.Field [Class]options a sequence of bits encoded as a field-optionsintroducing a reference to the class that introduced the �eldreferring a reference to the class the values should be instance ofoffset an indexed sequence of offsetname a repetition of charactersThis class describes how to access �elds within instances. A �eld descriptor encapsulates all the infor-mation needed to access or introspect such a �eld in an instance of such a class.The options �eld describes some properties of the �eld such as its immutability etc. This �eld is reservedfor DMeroon's usage.The introducing �eld refers to the Class instance that introduced that �eld i.e., the class from whichthis �eld is inherited.When the �eld holds reference(s), the referring �eld contains the class the referred values should be(direct or indirect) instances of. This �eld is useless for other DMeroon types.The indexed offset �eld (a kind of nat3) contains raw numbers encoding the type of the value of the�eld, the type of the repetition factor if any and how to access this(these) value(s).Type [Class]index a nat1 index characterizing this typealignment a nat1 number constraining the allocationsize a nat2 size (in bytes)repsize a nat2 size (in bytes)name a repetition of charactersThis class describes the implementation of a DMeroon type. All DMeroon types are characterizedby an index, a small natural number. Conversely, this index allows to retrieve the associated type. Thealignment �eld expresses the constraints of the hardware (as understood by the C compiler) to record a

2.6. ABSTRACT API 21value of that type. Values of that type have a length of size bytes per se and a length of repsize (that issize plus some padding) when repeated (as in an array of that type).Two sorts of types exist: C types and DMeroon portable types, they are described by special subclassesof Type: the CType and DMeroonType classes. C types describe the implementation and are initialized bythe C compiler used to compile DMeroon. DMeroon portable types have a �eld telling which C type isused to implement them. Reciprocally, C types have a �eld telling which DMeroon type might implementthem. C types are only used by the implementation and are not to be seen by normal users.String [Class]character a (nat3-indexed repetition of charactersThis class describes immutable strings.Symbol [Class]character a (nat3-indexed repetition of charactersThis class describes symbols la Lisp also known as unique strings in Java parlance. Two di�erent symbolsdi�er at least by a character or the number of characters they have. Symbols are immutable.2.6 Abstract APIThis section summarizes the abstract primitives o�ered by DMeroon. Of course, their exact interfacedepends on the binding language. All details are not included here, the precise documentation should bereferred to.Primitives are sorted by level on table 2.4. Level 0 corresponds to primitives that may run on a single site,level 1 are for simple distributed primitives while level 2 corresponds to more complex primitives. Primitivesof level 0 are generally immediate i.e., non blocking, while others may require communication with remotesites and therefore are non immediate.Implementation note: Currently, level 2 primitives are still in a
ux.DMeroon functions or variables all have a name starting with the DM pre�x: this pre�x may be longer.Due to the binding language, dash or underscore may be additionally used. When a call is erroneous, theerror is reported in a way that depends on the binding language. Function calls often return some usefuldata in a way that also depends on the binding language.An immediate primitive is a primitive that answers in a bounded time. Primitives that require commu-nication with other sites may take a long time hence are not immediate. It is possible, with some bindings,to bound the duration of a call to such a primitive and to return an error when this duration is exhaustedwithout answer.2.6.1 InitializationBefore using DMeroon, you must initialize it with DM initialize. This function is sometimes implic-itly called but it is harmless to call it again. It returns an object that describes the current site. Bydefault, a DMeroon server is started that listens to a TCP port. The port number is currently de-�ned as the value of the DMEROON SERVING PORT environment variable or, by default, as the value of theDM DMEROON FAVORITE PORT cpp variable which is currently:#define DM_DMEROON_FAVORITE_PORT 56423

22 CHAPTER 2. FUNDAMENTAL DATA MODELLevel Functionality0 initialize DMeroon library0 check whether an instance is an instance of a class0 return the direct class of an instance0 get the content of a regular �eld within an object0 get the content of a indexed �eld within an object0 get the length of a indexed �eld within an object0 set the content of a regular �eld within an object0 set the content of a indexed �eld within an object0 instantiate a class0 declare the end of the initialization of an object0 create a subclass0 get the site that owns the object2 set the site that owns the object (i.e., migrate the object)2 set the clock associated to a mutable object0 get the clock associated to a mutable object1 connect the current site to a remote site1 send to another site a reference onto an object1 receive a reference2 check whether two pointers refer to a same objectTable 2.4: DMeroon primitives2.6.2 ClassA DMeroon instance has a single class of which it is a direct instance of. This class may be obtained withDM class of. Inversely, it is possible to check with DM is a whether an object is an instance of a givenclass. Once a class is obtained, a direct or indirect instance of Class, its �elds may be read, for instance,to get its super-classes. Additionally, the DM is a subclass predicate allows to compare classes in subclassrelationship.2.6.3 FieldsFields may be read or written depending on their mutability characteristics. DM field value takes an object,a �eld descriptor (i.e., one of the �elds of its class) and returns the content of the given �eld. If the �eldis indexed then DM indexed field value takes an object, a �eld descriptor and an index and returns thecontent of the indexed �eld at that index. Indexes are checked to be valid for the given object. It is possibleto discover the length of an indexed �eld with DM indexed field length given an object and an indexed�eld descriptor. Indexes are zero-based.A mutable �eld may be written with DM set field value that takes an object, a �eld descriptor and avalue. A mutable indexed �eld may be written with DM set indexed field value that takes an additionalindex. For that last primitive, pay attention to the order of the arguments: an indexed �eld is alwaysfollowed by an index number; in a mutation, the new value always appears last.As shown on �gure 2.1, an indexed �eld is represented by a repetition pre�xed by its length (�a la Pascalstrings). The encoding of the length is explicitly chosen when the class is created: it may be any of the`nat* " types. This type as well as the type of the value stored in a �eld may be obtained through the �elddescriptor via the DM field types function.Accessing a (possibly indexed) �eld of a local object is simple: reading is allowed if the �eld is not secret,writing is allowed if the �eld is mutable. Accessing a (possibly indexed) �eld of a remote object is subjectto the same restrictions, however, to read a volatile �eld involves sending a request to the owner of theobject, but to read a local �eld is always local. Writing a local �eld of a (probably remote) object is alwaysa local operation, in the other cases, writing a �eld of a remote object involves sending a request to perform

2.6. ABSTRACT API 23that remote mutation. Note that reading immutable non volatile �elds of a present object is always a local,therefore fast, operation.2.6.4 AllocationAn object may be allocated with the DM allocate function that takes a class and some allocation parametersto specify the length of the indexed �elds. For example, a String is a class with a single indexed �eld of typechar1, the repetition factor is a nat3 to allow for large strings of characters. The allocation of a Stringrequires one nat3 value to be able to compute the size of the instance to allocate. Once an instance isallocated, the sizes of its indexed �elds cannot be modi�ed.The allocation primitive is not part, stricto sensu, of DMeroon but must be provided by the bindinglanguage. It is often implemented with help of Hans Boehm's Garbage Collector2. A binding with CMM[AF94] is under study.After an object is allocated, it must be initialized. All its �elds are considered as readable or writablewithout the constraints required by the �elds but only until the object is declared initialized. Once declaredinitialized, objects' �elds acquire their de�nite characteristics, in particular, an immutable �eld is immutable.Two kinds of initializers exist: DM set sharable and DM set copyable. If an object is declared sharable,then it may be shared i.e., remotely referred to from another site. If an object is declared copyable then,if sent to another site, it will be copied and not shared. The remote copy will no longer be linked with thecopied original object: no consistency between the two objects then exists. This is a built-in remote-cloningoperation.A third initializer exists: DM set initialized which initializes objects according to the default behaviorof their class (copyable or sharable).Once an object is initialized, it cannot be re-initialized di�erently: DM is initialized allows to checkwhether an object is initialized as well as how it was initialized i.e., sharable or copyable.Even if classes are normal objects of class Class, they are not created with DM allocate but withDM create subclass that takes a class and the description of a �eld and creates a new subclass containingthat additional �eld. Once created the class is initialized and ready for use.2.6.5 SiteAn object is always managed by the site that owns it (by default the site where the object was allocated).The DM site of takes an object and returns the site that owns it. To migrate an object means to change thesite that manages it. This may be performed by the DM set site of function that takes an object and a site.This also impacts the associated clock since it must always be a neighbor of the object i.e., an object ownedby the same site. This function belongs to level 2 and is not useful for lower levels that ignore distribution.A site may merge its DMeroon space with the DMeroon space of another site by opening a connectionbetween them. The DM connect function takes the name of an host machine and a TCP port number andreturns a reference onto the remote site object corresponding to that DMeroon server.2.6.6 ClockA mutable object must be associated to an instance of Clock if remotely shared. Such a clock is incrementedany time the object is mutated. A clock may monitor multiple objects. When a site sends some informationto another site, it also transmit the clocks it is aware of. A cached object may only be read if the clock thatmonitors it is not out of date. The clock associated to an object may be retrieved with DM clock of.When a clock is incremented, this invalidates all the cached objects associated to that clock. It is possibleto specify which clock monitors which object with DM set clock of.2.6.7 CommunicationA site may send a reference, onto one of the objects it knows of, to another remote site. DM send takes anobject and a site and creates on that site a remote reference onto that object. There is no restriction on the2http://reality.sgi.com/employees/boehm mti/gc.html

24 CHAPTER 2. FUNDAMENTAL DATA MODELobject provided it is a DMeroon object.A site may receive a reference onto an object with DM receive. The object may then be ignored, accessed,modi�ed etc. The object may convey information representing a message, a request etc.These functions belong to level 1.If DMeroon is used as a library then you must leave it time to manage its space, serve requests, performgarbage collection, ensure consistency, etc. This depends also on whether you use DMeroon in a sequentialor multi-threaded framework. If you use DMeroon in a sequential framework then the easiest way is to callDM serve with some duration from time to time. Another possibility is to call DM receive with a durationof zero seconds; this also allows to empty the queue of already received objects (even if ignoring them). Ina multi-threaded framework, a thread might be devoted to DMeroon.Even if you do not plan to receive objects, you must empty the queue of received objects that may containinstances of the Fact class used to report asynchronous anomalies or other interesting facts such as new sitesrequesting a connection.DMeroon requires the presence of an event loop to process incoming requests. The properties of thisevent loop depends on the precise way DMeroon is bound to your application.� If you have a sequential binding, then any time you invoke a function of the DMeroon API then theDMeroon event loop will run while waiting for the requests needed to process your call. This meansthat DMeroon must respect a stack discipline: if, while processing your call, DMeroon receives arequest from the network, then your call will be delayed until the network is satis�ed.� You may have a coroutine binding, at that time, your application is on top of the DMeroon eventloop. Any time you invoke a function of the DMeroon API, the current thread of control (technicallya continuation) is suspended, control returns to the event loop until it is appropriate to resume yourcall with the answer. In this mode, incoming requests are processed within their own coroutine.This is a coroutine mode where only one thread of control is active: when DMeroon runs, yourapplication don't. The problem with coroutines is that passing control is explicit: a malicious threadmay keep control for ever.� You may have a multi-thread binding where DMeroon runs in its own thread as well as incomingrequests. A thread, that calls the DMeroon API and requires a remote request to be satis�ed, issuspended and rei�ed into a DMeroon request object. When free, the DMeroon thread will handleit and resume after completion the waiting thread. In this binding, only one DMeroon thread mayact upon the DMeroon data structures.This binding is still to be written.The sequential binding is portable but less interesting than the coroutine binding which is the preferredone. Note that, with these two bindings, your application and the DMeroon event loop have di�erentpositions:� In the sequential binding, you call DM serve or DM receive any time your application waits for someevents from the network.� In the coroutine binding, your application is above theDMeroon event loop: the DM install receiverAPI function tells DMeroon which function of your application must be run any time an object isreceived. With this binding, your application is triggered via a call-back function applied on everyreceived object.2.6.8 EqualityWhen objects migrate, it may be di�cult to know if they are the same or not. The DM eq predicate comparestwo objects and return true if they are the same.

2.6. ABSTRACT API 252.6.9 UbiquitySome objects are ubiquitous i.e., local to all sites since they incarnate universal concepts. Prede�ned classes,DMeroon types as well as some constants (true, false) are ubiquitous. Even if DMeroon types are ubiqui-tous, they may have di�erent implementation (a reference may have a size of 4 or 8). However it is neverpossible to compare two di�erent representations of a same ubiquitous object.2.6.10 DMeroon as a serverA DMeroon server listens for incoming connections and analyzes the �rst received bytes to determine theused protocol.� If the request starts with GET (that is, the letters G, E and T) then this is supposed to start an httprequest. These requests represent a compact encoding of an DMeroonScript program. The DMe-roonScript programming language allows to call nearly all functions of the DMeroon API. Theserequests may be conveniently be emitted from any HTTP client such as Netscape or IExplorer.� If the request starts with DMeroonScript then the next characters represent a multi-line DMe-roonScript program to be interpreted. The DMeroonScript programming language is describedin chapter 5.� If the �rst letters are DMeroon then the connection is understood as a DMeroon connection. This isthe binary protocol used to marshal objects, see C.4.It is possible to dynamically add new protocols to the list of recognized protocols: see appendix C formore details.2.6.11 MiscellaneousMany other functions exist in the implementation: read the source code and win the \best DMeroonundocumented feature" challenge!

26 CHAPTER 2. FUNDAMENTAL DATA MODEL

Chapter 3C bindingThis chapter describes how DMeroon and C cohabits. This binding has been designed to be systematicand thread-safe.3.1 FunctionsThe functions of the DMeroon API are all pre�xed with DMeroon , they may perform a lot of checks toensure the validity of their arguments. Unsafer functions also exist but are hidden in the implementation.All API functions return a status. A status of zero (known as DME SUCCESS) means that everything wentcorrectly; a non-zero status indicates the kind of problem that occurred. Other statuses exist (describedin the dmerr.h �le) and have a name pre�xed by DME . Error statuses are used to represent synchronousproblems. Asynchronous problems (for instance, receiving unmarshable bytes from a TCP connection)cannot be reported this way to the user, they are instead rei�ed into a Fact instance and received as if aremote object. It is the duty of the user to DM receive these objects not to encumber memory. Anothermethod is to install, with DM install receiver, a function to process any incoming object.All API functions take as �rst argument an instance of the Context class i.e., the DM Context structurein C. Such an instance contains a number of �elds to control DMeroon behavior, see Section 3.3.All DMeroon prede�ned classes without indexed �elds have a related C structure whose name is thename of the class pre�xed by DM .When an API function has to return a result, it must be given an address where to store this result as aside-e�ect: this allows to be allocation-safe. Addresses of results appear as second and successive argumentsif more than one result is expected (as in DM field types). The content of these addresses is meaningfulonly if the API function returns DME SUCCESS. It is sometimes possible to give a null pointer instead of a anaddress to ignore a result. This case is
agged with a /* or NULL */ comment in the prototypes below.As a convention for the prototypes of the DMeroon API, a variable whose name is immediately pre�xedwith a star indicates that it is an \out" variable that will be �lled during the invocation of the function.Without a leading star, the variable is an \in" variable only. See, for instance, the DMeroon class offunction below that takes an object and returns its class.DM_ErrorCode [Level 0]DMeroon_initialize (DM_Context* context,DM_Site* *returned_site /* or NULL */)Initializes the DMeroon library. This call must be performed before any other call to the DMeroonlibrary otherwise unde�ned behavior may arise. The Site instance describing the current DMeroon space,i.e., the current site, is returned. It is useless but safe to call this function more than once: it always returns27

28 CHAPTER 3. C BINDINGthe current site. This is an immediate primitive. It is possible to give NULL for the returned site if notinterested in it.Implementation note: The following signature might be better since it allows to return afresh Contexts any time it is called. This is far easier to get the �rst Context this way:
DM_ErrorCode [Level 0]DMeroon_initialize (DM_Context* context, /* or NULL */DM_Context* *returned_context, /* or NULL */DM_Site* *returned_site /* or NULL */)
DM_ErrorCode [Level 0]DMeroon_class_of (DM_Context* context,DM_Class* *returned_class,DM_Object* object)Returns the most speci�c class of an object that is, the class of which this object is a direct instance of.This is an immediate primitive.DM_ErrorCode [Level 0]DMeroon_is_a (DM_Context* context,DM_c_boolean *returned_boolean,DM_Object* object,DM_Class* class)Checks whether an object is a direct or an indirect instance of a class. This is an immediate primitive.The returned boolean conforms to C practice: 0 means false, other values mean true.DM_ErrorCode [Level 0]DMeroon_is_a_subclass (DM_Context* context,DM_c_boolean *returned_boolean,DM_Class* subclass,DM_Class* class)Checks whether a class is equal to or a subclass of another one. This is an immediate primitive. Thereturned boolean conforms to C practice: 0 means false, other values mean true.

3.1. FUNCTIONS 29DM_ErrorCode [Level 0]DMeroon_field_value (DM_Context* context,t *returned_value,DM_DMeroonType* *returned_type, /* or NULL */DM_Object* object,DM_Field* field)Returns the content of a regular �eld of an object. This primitive may block (for instance, when readinga volatile or mutable �eld of a remote object). returned value is the address of a cell of type t where tmust be the type of the read �eld. This adequation may not be statically checked in C so this is an unsafeprimitive. To help decoding the returned value, this primitive also returns the type of the read �eld that is,the DMeroon type corresponding to t. It is possible to give NULL for the returned type if not interested in.DM_ErrorCode [Level 0]DMeroon_indexed_field_value (DM_Context* context,t *returned_value,DM_DMeroonType* *returned_type, /* or NULL */DM_Object* objectDM_Field* field,DM_nat3 index)Returns the content of the index'th value of an indexed �eld from an object. This primitive may block(for instance, when reading a volatile or mutable �eld of a remote object). The index is speci�ed as a nat3number even if it corresponds to a nat1, nat2 or nat4 number. Indexes are therefore restricted to be inferiorto 232. Indexes are checked to be valid within the object. returned value is the address of a cell of typet where t must be the type of the read �eld. This adequation may not be statically checked in C so thisis an unsafe primitive. To help decoding the returned value, this primitive also return the type of the read�eld that is, the DMeroon type corresponding to t. It is possible to give NULL for the returned type if notinterested in.DM_ErrorCode [Level 0]DMeroon_indexed_field_length (DM_Context* context,t *returned_value,DM_DMeroonType* *returned_type, /* or NULL */DM_Object* object,DM_Field* field)Returns the length of an indexed �eld. This is an immediate primitive. tmust be the type of the repetitionfactor of the indexed �eld that is, a nat1, nat2, nat3 or nat4 natural number. To help decoding the returnedvalue, this primitive also return the type of the read �eld that is, the DMeroon type corresponding to t. Itis possible to give NULL for the returned type if not interested in.

30 CHAPTER 3. C BINDINGDM_ErrorCode [Level 0]DMeroon_set_field_value (DM_Context* context,t *returned_previous_value, /* or NULL */DM_Object* object,DM_Field* field,t* new_value)Atomically changes the content of a regular �eld of an object and returns the previous content ofthat �eld. This primitive may block (for instance, when writing a mutable �eld of a remote object).returned previous value and new value are the addresses of cells of type t where t must be the typeof the written �eld. This adequation may not be statically checked in C so this is an unsafe primitive. Whena reference is written, it is checked (as far as possible) to be the address of a DMeroon object. It is possibleto give NULL for the returned previous value if not interested in. If t is the DMeroon reference type thenthe new value must be an instance of the class speci�ed in the referring �eld of field.The new value and returned previous value addresses must be di�erent.DM_ErrorCode [Level 0]DMeroon_set_indexed_field_value (DM_Context* context,t *returned_previous_value, /* or NULL */DM_Object* object,DM_Field* field,DM_nat3 index,t * new_value)Atomically changes the content of the index'th value of an indexed �eld of an object and returns itsprevious value. This primitive may block (for instance, when writing a mutable �eld of a remote object).The variables returned previous value and new value hold the addresses of cells of type t where t mustbe the type of the written �eld. This adequation may not be statically checked in C so this is an unsafeprimitive. When a reference is written, it is checked (as far as possible) to be the address of a DMeroonobject. It is possible to give NULL for the returned previous value if not interested in. If t is the DMeroonreference type then the new value must be an instance of the class speci�ed in the referring �eld offield.returned previous value and new value must be di�erent addresses.DM_ErrorCode [Level 0]DMeroon_field_types (DM_Context* context,DM_DMeroonType* *returned_item_type, /* or NULL */DM_DMeroonType* *returned_repetition_type, /* or NULL */DM_Field* field)Returns the type of a �eld as well as its repetition type if indexed. It is possible to give NULL for any ofthe two returned types when not interested by the results. If a �eld is not indexed, then DM nought type isreturned for the repetition type (the nought type is characterized by a zero index).

3.1. FUNCTIONS 31DM_ErrorCode [Level 0]DMeroon_allocate (DM_Context* context,DM_Object* *returned_object,DM_Class* class,DM_nat3 number_of_sizes,... DM_nat3 size, ...)Allocates an instance of a class with the speci�ed sizes for the indexed �elds. This is an immediateprimitive. There must be as many sizes as there are indexed �elds in the class. Sizes are given as nat3numbers even if they correspond to nat1 or nat2 or nat4 numbers but, in that case, their value must be inthe correct range compatible with nat1 or nat2 numbers. Indexes are therefore restricted to be inferior to232. Due to the C limit of 32 arguments in a function call, the number of indexed �elds is restricted to beless than 32; although the exact limit is fuzzy, it is probably greater than 27. The content of the object isinitially �lled with zeroes. If the object does not have any indexed �eld then the number of sizes argumentis equal to zero and no other size follow it.DM_ErrorCode [Level 0]DMeroon_set_sharable (DM_Context* context,DM_Object* object)Declares to DMeroon that an object is completely initialized and may now be shared over the network.This is an immediate primitive. Once an object is initialized, it cannot be re-initialized di�erently. Whenan object is sharable, a reference onto it may be sent to another site, see �gure 2.2. When an object isinitialized, accessing a �eld is constrained by the options of its �eld descriptor.DM_ErrorCode [Level 0]DMeroon_set_copyable (DM_Context* context,DM_Object* object)Declares to DMeroon that an object is completely initialized and may now be copied over the network.A copyable object is never remotely shared, it is copied instead: there is no longer any link between theoriginal and the copy. This is an immediate primitive. Once an object is initialized, it cannot be re-initializeddi�erently. When an object is initialized, accessing a �eld is constrained by the options of its �eld descriptor.DM_ErrorCode [Level 0]DMeroon_set_initialized (DM_Context* context,DM_Object* object)Declares to DMeroon that an object is completely initialized. The object will be sharable or copyabledepending on its class. By default, classes are created with the sharable option. This is an immediateprimitive. Once an object is initialized, it cannot be re-initialized di�erently. When an object is initialized,accessing a �eld is constrained by the options of its �eld descriptor.

32 CHAPTER 3. C BINDINGDM_ErrorCode [Level 0]DMeroon_is_initialized (DM_Context* context,DM_nat3 *returned_result,DM_Object* object)Checks whether an object is initialized (sharable or copyable) or not. The returned result conformsto C practice: 0 means false, other values mean true. However the result is more informative as it tellswhether the object is sharable or copyable. Results are then, respectively, DM OBJECT IS SHARABLE orDM OBJECT IS COPYABLE. This is an immediate primitive.DM_ErrorCode [Level 0]DMeroon_create_subclass (DM_Context* context,DM_Class* *returned_class,DM_Class* superclass,char* class_name,DM_class_options class_options,char* field_name,DM_field_options field_options,DM_DMeroonType* repetition_type,DM_DMeroonType* item_type,DM_Class* referring_class /* or NULL */)This primitive creates a new class with a name and some class options, that adds one additional �eld tothe super class. The �eld is speci�ed with a name and some �eld options. One must also specify its typeand whether it is indexed or not. If the type is the reference type then the class, the values should beinstance of, must be given. This primitive may block.Possible class options belong to the DM class options type. They are summarized in table 3.1. Someof these options apply to the class (this is the case of DM CLASS IS VOLATILE or DM CLASS IS MUTABLE),other options apply on instances (this is the case of DM CLASS IS IMMOTILE and DM CLASS IS COPYABLE).Still other options are only used within DMeroon implementation.name meaningDM CLASS DEFAULT OPTIONS Instances are motile, immutable, sharable, non-volatile.DM CLASS IS IMMOTILE The class is immotile. Its instances cannot be migrated.DM CLASS IS COPYABLE The class is copyable. Its instances cannot be shared unless theyare initialized with DM set sharable.DM CLASS IS NOT SUBCLASSABLE The class cannot be subclassed.DM CLASS IS VOLATILE The class is volatile: at least one �elds is volatile.DM CLASS IS MUTABLE The class is mutable: at least one �eld is mutable.DM CLASS IS NOT INSTANTIABLE The class cannot be instantiated.Table 3.1: Class optionsPossible �eld options belong to the DM field options type. They are summarized in table 3.2.Implementation note: Should o�er a new type of �eld: guarded �eld. A guarded �eldsomewhat extends secret �elds. To be read, a correct password must appear in the current context.The comparison is of course done only on the owning site. Such �elds are like portals. Should

3.1. FUNCTIONS 33name meaningDM FIELD DEFAULT OPTIONS The �eld is immutable, non volatile, non local and non secret.DM FIELD IS MUTABLE The �eld is mutable, the user may modify it.DM FIELD IS VOLATILE The �eld is volatile, its value may evolve spontaneously.DM FIELD IS LOCAL The �eld is local, its content is never marshaled.DM FIELD IS SECRET The �eld is secret, its content cannot be read.Table 3.2: Field optionsthink to how to have more than one password in the context. The context must also be passedfrom site to site when emitting requests.I also consider adding the DM FIELD IS RESIZABLE option. This complicates the coherency pro-tocol but makes users' life far easier. Of course, a resizable �eld should be mutable.The previous primitive may only de�ne additional �elds one by one (this is needed to keep the prototypeof the C function static) but this increases considerably the depth of the tree of classes. That's why there isanother primitive to create classes.DM_ErrorCode [Level 0]DMeroon_smash_class (DM_Context* context,DM_Class* *returned_class,DM_Class* class,char* class_name,DM_class_options class_options,DM_nat3 level)This primitive returns a new class with a name and some class options. This new class has exactly thesame �elds the given class has but only a shortened sequence of super-classes i.e., level superclasses less. Thisprimitive may block. This primitive is used with the previous one to create a direct subclass with multiple�elds.For instance, to create a direct subclass of A with two additional �elds, say x and y, you �rst create B asA+ x, then C as B + y. C has the required �elds but has, as super-classes A, B whereas only A is wanted.To remove the B super-class, we smash one level of super-classes from C and obtain D as A+ x+ y. The xand y �elds are assumed to have been introduced by D.DM_ErrorCode [Level 0]DMeroon_site_of (DM_Context* context,DM_Site* *returned_site,DM_Object* object)Returns the site that owns the object. This primitive may block. The current site may be obtained withDM initialize. Ubiquitous objects always have the current site as site.

34 CHAPTER 3. C BINDINGDM_ErrorCode [Level 2 | NOT YET IMPLEMENTED]DMeroon_set_site_of (DM_Context* context,DM_Site* *returned_previous_site,DM_Object* object,DM_Site* new_site)Changes the site that owns an object and returns the previous owner; this is also called \migration".The object must be motile otherwise its owner cannot be altered and the object cannot move out of thesite where it had been created (this does not prevent the object to be copied or shared that is, remotelyreferenced). This primitive may block. This primitive has an impact on the monitoring clock if any.DM_ErrorCode [Level 0]DMeroon_clock_of (DM_Context* context,DM_Clock* *returned_clock,DM_Object* object)Returns the instance of Clock that monitors a mutable object. This is an immediate primitive. If theobject is immutable or not initialized or not monitored then DM NULL is returned instead. When creatinga remote reference onto a mutable object which is not monitored, the general clock of the current site isassumed to monitor it by default.DM_ErrorCode [Level 2 | NOT FULLY IMPLEMENTED]DMeroon_set_clock_of (DM_Context* context,DM_Clock* *returned_previous_clock,DM_Object* object,DM_Clock* clock)Sets or changes the clock monitoring a mutable object and returns the previous clock if there was one orDM NULL. The object may be not initialized. The new clock must be a neighbor of the object that is, ownedby the same site. This primitive may block.DM_ErrorCode [Level 1]DMeroon_connect (DM_Context* context,DM_Site* *returned_site,char* hostname,DM_nat2 port_number,char* passwd)Connects the current site to the given remote site. This primitive may block. It returns a reference ontothe remote site object. The hostname may be the human-readable name of a machine or an IP number indot notation. The port number must be a regular natural number (do not specify it in network order (don'tcare if you do not know what is network order, just give a number)).Implementation note: Should probably think again to this password stu�. Would be better touse SSL to protect communications.

3.1. FUNCTIONS 35DM_ErrorCode [Level 1]DMeroon_send (DM_Context* context,DM_Object* object,DM_Site* site)Sends the reference onto an object to a site. This primitive may block.Implementation note: The reference is immediately marshaled in an OutBuffer that will be
ushed when the Connection will allow it. The reference will be unmarshaled in a queue of arrivedobjects. Therefore when returning from DMeroon send there is no guarantee that the reference isobtained by the intended site.DM_ErrorCode [Level 1]DMeroon_receive (DM_Context* context,DM_Object* *returned_object,DM_nat3 duration)Receives an object. This primitive blocks at most duration seconds. If no object is received duringthis time then it returns the DME TIMEOUT error code. DMeroon signals asynchronous errors by reify-ing them into instances of Fact. These Facts may be normally received. This primitive is exclusive ofDMeroon install receiver.DM_ErrorCode [Level 1]DMeroon_install_receiver (DM_Context* context,void(* handler)(DM_Context*, DM_Object*))This primitive is exclusive of DMeroon receive. The DMeroon install receiver function tells DMe-roon to invoke a given function on every incoming object. The context received by the handler functionis the one given to DMeroon install receiver. By default, the receiver function accumulates incomingobjects in a �eld of the current site from which they may be extracted using DMeroon receive.DM_ErrorCode [Level 0]DMeroon_serve (DM_Context* context,DM_nat3 duration)This primitive yields control to DMeroon for at least duration seconds. Zero seconds is a possibleduration in which case, pending requests are handled if already present. This allows DMeroon to handleincoming requests and manage its local space. If a receiver function is installed, then any incoming object willbe automatically submitted to that receiver function, otherwise, you must DMeroon receive these objectsexplicitly after returning from DMeroon serve.Implementation note: As a kind of answer to the need for interfaces, I consider addingvirtual �elds.

36 CHAPTER 3. C BINDING
VirtualField [Class]name a repetition of characters...A virtual �eld allows to gather instances of Field (or VirtualField) in order to provide an uni�ed accessto many unrelated instances of unrelated classes. For instance, I imagine the name virtual �eld that allowsaccess the name �eld of Class, Field, Site, Type, etc. To get the name of instances of any of these classes,you may just use the regular DMeroon field value function with the virtual �eld instead of the appropriateinstance of Field. The appropriate �eld will be automatically chosen in the set of �elds contained in thevirtual �eld. Virtual �elds are similar to generic functions la CLOS (note: I will probably introduce thediscrimination mechanism directly so it can be used in other places, for instance, to implement genericfunctions.)VirtualField instances are immutable. They have a name for introspection. They may be extended toincorporate new �elds with the DMeroon extend virtual field function.3.2 Global variablesIn order to instrospect DMeroon objects, you need at hand the prede�ned classes, their associated �eldsas well as the DMeroon portable types. They are all accessible via specialized macros (available fromthe dmeroon.h header �le). The case is signi�cant: Classes have a capitalized name, Fields are written inlower-case, and components are separated with underscores.The �les that are mentioned below are relative to the TOP directory where the source �les are. More onthese �les in appendix A.DM_ReferenceToClass(name) [Level 0]This macro takes the name of a class and returns a DMeroon reference onto a prede�ned Class, thereturned value has DM Class* type for C. Most prede�ned class names appear in table 2.3 however they allappear in the TOP/DMeroon/c/dmstruct.dm �le.DM_ReferenceToFieldOfClass(�eld-name, class-name) [Level 0]This macro takes the name of a �eld and the name of a class and returns a DMeroon reference onto aprede�ned instance of Field; the returned value has DM Field* type for C. Some �elds were mentioned insection 2.5.1 otherwise they all appear in the TOP/DMeroon/c/dmstruct.dm �le.DM_ReferenceToDMeroonType(name) [Level 0]This macro takes the name of a DMeroon portable type and returns a DMeroon reference onto aprede�ned instance of DMeroonType; the returned value has DM DMeroonType* type for C. DMeroon typesare listed in table 2.1.

3.3. CONTEXTS 373.3 Contexts << Section under construction >>Contexts control many aspects of DMeroon behavior. Where alternate behaviors are possible, they maybe speci�ed by the user by toggling some options of the context. When calling the DMeroon API, a contextshould be given if the user has peculiar needs. If no context is given, a default one is cloned after the defaultcontext held in a �eld of the current site. Binding languages may customize this default context.Contexts are threaded throughout DMeroon innards, there is (nearly) always a current context every-where. The context contains options that may be trigger to toggle various behaviors. Whenever an exceptionoccurs, rei�ed by an error code, the context provides a handler that will be invoked to manage this exception.The handler may be customized to take bene�t of the support language.A context is an instance of class Context which contains the following �elds:Context [Class]handler a C function to handle exceptionsoptions a sequence of bits encoded as a context-optionserrcode the last DMeroon error codefile the name of the �le of the last error (a C string)line the line number within that �leerrnumber the last errno code (not portable)previous previous context (for debug purpose)continuation where to go in case of errorerrstream where to report errorsThese �elds are local and volatile. They are mainly used by the implementation to report errors. These�elds are not reset when a DMeroon API function is called. The errstream �eld contains the port wherewarnings or errors are reported, the exact meaning of the port depends on the binding language. For C andUn*x, stdout and stderr are legal values; Scheme ports are also legal for Bigloo.The �rst �eld designates the function to handle the exception. This function must have the followingprototype:void (*handler)(DM_Context* context,DM_ErrorCode errcode,char* __FILE__,unsigned long __LINE__)The third and fourth arguments show the birth place of the exception. The second argument is the errorcode (see section later). The �rst argument is the current context where additional information may befound (such as the value of errno) set by various system calls. By default, this function is the DM abortfunction that noti�es the problem then escape to a safer place as indicated in the continuation �eld (ajmpbuf for C, a real continuation for Scheme).The following options are legal:DM CONTEXT CHECK DMEROON Forces DMeroon to check every object received as argu-ment to be a DMeroon object.DM CONTEXT CHECK CLASS Forces DMeroon to check every object received as argu-ment to be an instance of the appropriate class.DM DONT INITIALIZE When DMeroon allocates an object, this object is by de-fault initialized. When set, DMeroon leaves them unini-tialized so it is up to the user to make them sharable orcopyable.

38 CHAPTER 3. C BINDINGThere are other hidden options that make it is possible, in case of anomalies, to force DMeroon tolongjmp to a given position or to call an internal debugger.3.4 Error codes << Section under construction >>Hundreds of error codes exist. They are detailed in the TOP/DMeroon/c/dmerr.h �le.3.5 Static generation of classesIf you consider de�ning classes and writing C code around these classes (for instance, to contribute newcode to DMeroon), you may want to use static classes and their associated C structs to avoid creatingthese classes dynamically. This is contrary to the spirit of DMeroon but you may require these classes tobe immutable, volatile, local and immotile so you can safely hack them on the current site. There exists acompiler that takes the de�nition of these classes and produces the appropriate C �les.The current compiler is written in Scheme, its name is dm2ch which is the name of a shell script (fromTOP/DMeroon/Commands) that must be run in the TARGET directory (the directory were all �les are com-piled, see again appendix A). This compiler is used by DMeroon itself for its own bootstrap.dm2ch �le other-�les. . . [Command]The �rst �le contains the classes to be compiled. These classes may inherit from other classes whichare not to be compiled but which must be known at compilation-time (the DMeroon classes, for instance,which are de�ned in the TOP/DMeroon/c/dmstruct.dm �le, see appendix A). These classes should appearin the other �les mentioned in the command line.The compiler produces two �les: a �le.c and a �le.h de�ning the DMeroon representation of the desiredclasses. The �le.h �le contains the equivalent C structs and can be included in your C code. The C �lemust be compiled and linked to your code: it only contains static data and no code at all. You may refer tothese classes and their �elds with the macros of section 3.2.Classes are de�ned (as in MeroonV3) that is, as Sexpressions:(define-class classname superclassname [Scheme macro]((�eldname �eld-options)...)class-options)Classes are named shortly i.e., as Object, QueueLink, etc. DMeroon types are also named shortly i.e.,as nat3, char1, etc. All �elds must have a name and be quali�ed by some options as described in table 3.3.The class itself may be quali�ed by some options as described in table 3.4.The compiler will warn you if it cannot generate a C struct that emulates a DMeroon class. This maybe the case if you have a class with �elds following an indexed �eld.3.6 Tutorial examples<< Section under construction >>

3.6. TUTORIAL EXAMPLES 39
option meaning:type DMeroonType This option is mandatory. The type of the �eld mustbe one of the DMeroon types of �gure 2.1.:indexing-type DMeroonType By default, a �eld is not indexed. Mentioning:indexing-type requires to specify a type amongnat1, nat2, nat3 and nat4.:refer class-name This option is only meaningful for the referencetype. It speci�es the class of referred objects. De-fault is :refer Object.:mutable The �eld is mutable. No option means that the �eldis immutable.:local The �eld is local.:volatile The �eld is volatile.:secret The �eld cannot be read.Table 3.3: Field options

option meaning:immotile By default classes are motile. This option preventsinstances of that class to migrate.:mutable At least one �eld is mutable. This option is auto-matically set.:volatile at least one �eld is volatile. This option is automat-ically set.:copyable instances of this class are, by default, copied ratherthan shared.:uninstantiable this class cannot be instantiated.:unsubclassable this class cannot be subclassed.Table 3.4: Class options

40 CHAPTER 3. C BINDING3.6.1 Dynamic creationHere is how you may de�ne the class Point. We extend Object with the two �elds x and y, then we smashthe resulting class o� a level. To lessen the size of the example and although this is highly incorrect, errorcodes are not checked!DM_Class *point_class, *px, *py;(void)DMeroon_create_subclass(ctx, &px, DM_ReferenceToClass(Object),"no name", DM_CLASS_DEFAULT_OPTIONS,"x", DM_FIELD_IS_MUTABLE,DM_ReferenceToDMeroonType(nought),DM_ReferenceToDMeroonType(int3),DM_NULL);(void)DMeroon_create_subclass(ctx, &py, px,"no name", DM_CLASS_DEFAULT_OPTIONS,"y", DM_FIELD_IS_MUTABLE,DM_ReferenceToDMeroonType(nought),DM_ReferenceToDMeroonType(int3),DM_NULL);(void)DMeroon_smash_class(ctx, &point_class, py, "Point",DM_CLASS_DEFAULT_OPTIONS, 1);Now the Point class is the value of the point class variable. Its �rst �eld may be obtained as follows(and similarly for the second �eld):DM_Field *point_x_field;(void)DMeroon_indexed_field_value(ctx, &point_x_field, DM_NULL,point_class,DM_ReferenceToFieldOfClass(field, Class),0);Once the class is created, an instance may be created, �lled and initialized like that:DM_Object* pt;DM_int3 ix = -12345;(void) DMeroon_allocate(ctx, &pt, point_class, 0);(void) DMeroon_set_field_value(ctx, NULL, pt, point_x_field, &ix);(void) DMeroon_set_initialized(ctx, pt);3.6.2 Static de�nitionThis is far more simple and may even be made inline with DMeroon bound with Scheme. First, create a�le containing the de�nition of the Point class.;;;This is �le Point.dm(define-class Point Object((x :type int3 :mutable)(y :type int3 :mutable)))Second, compile this �le with the dm2ch compiler. The command is (it is not necessary to mentionTOP/DMeroon/c/dmstruct.dm since Point only inherits from the (empty) Object class):dm2ch Point.dmThis compilation produces the Point.h and Point.c �les. You then have to compile them with yourfavorite C compiler and to link the resulting Point.o �le to your application. You may take advantage ofthis class in your other �les and refer to the class or its �elds writing (the C type of these constructions isgiven in a pre�xed comment):#include "Point.h" /* Don't forget this inclusion! *//* DM_Class* */ DM_ReferenceToClass(Point)

3.6. TUTORIAL EXAMPLES 41/* DM_Field* */ DM_ReferenceToFieldOfClass(x, Point)/* DM_Field* */ DM_ReferenceToFieldOfClass(y, Point)3.6.3 Recursive classWe now want to create a subclass of Point, say LinkedPoint, with an additional �eld which is a referenceonto an instance of LinkedPoint. << Section under construction >>

42 CHAPTER 3. C BINDING

Chapter 4Scheme bindingThis chapter describes how DMeroon and Scheme cohabit. This binding has been designed to be Scheme-friendly: errors are reported via exceptions when the particular Scheme dialect allows it; results are returnedby function calls. This is a far more natural and user-friendly interface compared to the C binding.Implementation note: This binding worked with Bigloo 1.8. It looks like working with apre-alpha release of Bigloo 1.9d. It does not work with the current distribution of Bigloo.When accessing objects, DMeroon o�ers an interface not too dissimilar to Meroon [Que93].All API names to be used from Scheme are pre�xed with DM-. They are implemented by global variablesor C functions (pre�xed with DMscm and de�ned in the TOP/DMeroon/c/dmscm.c �le). They use a set ofmacros to convert C values to Scheme values back and forth. This set of macros respect the usual conventionsof Scheme implementations for value representation. Technically, this layer uses the C binding layer. It hasbeen used to bind DMeroon with Bigloo, OScheme and PicoLisp. Scheme values are automatically coercedinto DMeroon values back and forth according to table 4.1. Range checks are also performed.Scheme type DMeroon typeinteger nat1 nat2 nat3 nat4 int1 int2 int3 int4 netnat2 netnat3
oat float1 float2 float3DMeroon object referencevalue datacharacter char1Table 4.1: Scheme{DMeroon coercionsHere are the conventions that are used below. A capitalized name such as Object or Class means a valuethat is an instance of the given class. The word value means any Scheme value whereas boolean means only#t or #f. Natural numbers i.e., positive integers are represented by words such as length or index. Thesewords are sometimes pre�xed by new- or old- to disambiguate some of their occurrences. Scheme strings areenclosed within double quotes with a description of their content.4.1 Functions(DM-initialize!) : Site [Level 0]43

44 CHAPTER 4. SCHEME BINDINGThis primitive returns the current site (this object is also the value of the DM-site variable). TheDMeroon library is already initialized by the implementation. This primitive is immediate.(DM-is-object? value) : boolean [Level 0]Checks whether a Scheme value is a DMeroon object or not. This is an immediate primitive.(DM-class-of Object) : Class [Level 0]Returns the most speci�c class of an object that is, the class of which this object is a direct instance of.This is an immediate primitive.(DM-is-a? Object Class) : boolean [Level 0]Checks whether an object is an instance of a class. This is an immediate primitive.(DM-is-a-subclass? Class Class) : boolean [Level 0]Checks whether the �rst argument is equal to or a subclass of the second argument. This is an immediateprimitive.(DM-field-value Object Field) : value [Level 0]Returns the content of a regular �eld of an object. This primitive may block (for instance, when readinga volatile or mutable �eld of a remote object). The value is automatically coerced into a Scheme valueaccording to table 4.1.(DM-indexed-field-value Object Field index) : value [Level 0]Returns the content of the index'th value of an indexed �eld of an object. This primitive may block (forinstance, when reading a volatile or mutable �eld of a remote object). The value is automatically coercedinto a Scheme value if possible.(DM-indexed-field-length Object Field) : length [Level 0]

4.1. FUNCTIONS 45Returns the length of an indexed �eld. This is an immediate primitive.(DM-set-field-value! Object Field new-value) : old-value [Level 0]Atomically changes the content of a regular �eld of an object and returns the previous content of that�eld. Values are coerced back and forth between DMeroon and Scheme according to table 4.1. Thisprimitive may block (for instance, when writing a mutable �eld of a remote object). When a reference iswritten, it is checked (as far as it is possible) to be the address of a DMeroon object of an appropriateclass.(DM-set-indexed-field-value! Object Field index new-value) : old-value [Level 0]Atomically changes the content of the index'th value of an indexed �eld of an object and returns itsprevious value. Values are coerced back and forth between DMeroon and Scheme according to table 4.1.This primitive may block (for instance, when writing a mutable �eld of a remote object). When a referenceis written, it is checked (as far as it is possible) to be the address of a DMeroon object of an appropriateclass.Pay attention to the order of the arguments. The index always follow the �eld (since it is an indexed�eld) and the value is always given last.(DM-field-item-type Field) : DMeroonType [Level 0]Returns the type of a value stored in a Field (whether indexed or not). This is an immediate primitive.(DM-field-repetition-type Field) : DMeroonType [Level 0]Returns the type of the repetition factor of a Field. If the Field is not indexed then DM-nought-type isreturned instead. This is an immediate primitive.(DM-allocate Class sizes. . .) : Object [Level 0]Allocates an instance of a class with the speci�ed sizes for the indexed �elds. This is an immediateprimitive. There must be as many sizes as there are indexed �elds in the class. The content of the object isinitialized with zeroes.(DM-set-sharable! Object) : the Object itself [Level 0]

46 CHAPTER 4. SCHEME BINDINGDeclares to DMeroon that an object is completely initialized and may be shared over the network. Thisis an immediate primitive.(DM-set-copyable! Object) : the Object itself [Level 0]Declares to DMeroon that an object is completely initialized and may be copied over the network. Thisis an immediate primitive.(DM-set-initialized! Object) : the Object itself [Level 0]Declares to DMeroon that an object is completely initialized. It will be shared or copied depending onits class. This is an immediate primitive.(DM-is-initialized? Object) : boolean [Level 0]Returns true or false whether the object is initialized (sharable or copyable) or not. In fact, the resultwhen true is more informative, 1 is returned when the object is sharable while 2 is returned if the object iscopyable. Once initialized, an object cannot be re-initialized di�erently.(DM-create-subclass Class "class name" class-options [Level 0]"�eld name" �eld-optionsDMeroonType DMeroonType Class) : ClassThis primitive creates a new class with a name and some class options. The newly de�ned class adds oneadditional �eld to its super class. The �eld is speci�ed with a name and some �eld options. One should alsospecify its type and whether it is indexed or not. If the type of the �eld is the DMeroon reference typethen the �nal argument, a class, speci�es the class the values must be instance of. This primitive may block.Class-options are represented by integers with the C encoding. They are summarized on table 4.2. Addthese values to specify more than one.code C name meaning0 DM CLASS DEFAULT OPTIONS Instances are motile, immutable, sharable, non-volatile.1 DM CLASS IS MUTABLE The class is mutable: all �elds are mutable.2 DM CLASS IS IMMOTILE The class is immotile. Its instances cannot be mi-grated.8 DM CLASS IS VOLATILE The class is volatile: all �elds are volatile.64 DM CLASS IS NOT SUBCLASSABLE The class cannot be subclassed.128 DM CLASS IS COPYABLE The class is copyable. Its instances cannot be sharedunless initialized with DM set sharable.256 DM CLASS IS NOT INSTANTIABLE The class cannot be instantiated.Table 4.2: Class options

4.1. FUNCTIONS 47Field-options are similarly represented as shown on table 4.3. Add these values to specify more than one.code C name meaning0 DM FIELD DEFAULT OPTIONS The �eld is immutable, non volatile and non local.1 DM FIELD IS MUTABLE The �eld is mutable.2 DM FIELD IS VOLATILE The �eld is volatile.4 DM FIELD IS LOCAL The �eld is local.16 DM FIELD IS SECRET The �eld is secret.Table 4.3: Field options
(DM-smash-class Class "class name" class-options level) : Class [Level 0]This primitive returns a new class with a name and some class options. This new class has �elds similarto the given class but it has level superclasses less. This primitive may block. This primitive is used with theprevious one to allow to create a direct subclass with multiple �elds. However, classes may be more easilycreated with the DM-define-class macro (see Section 4.3.2).(DM-site-of Object) : Site [Level 0]Returns the site that owns the object. This is an immediate primitive.(DM-set-site-of! Object new-Site) : old-Site [Level 2 | NOT YET IMPLEMENTED]Changes the site that owns an object and returns the previous owner; this is also called "migration". Theobject must be motile otherwise its owner cannot be altered and the object cannot move from the site whereit had been created (this does not prevent the object to be copied or shared that is, remotely referenced).This primitive may block. This primitive impacts the monitoring clock if any.(DM-clock-of Object) : #f or Clock [Level 0]Returns the clock monitoring a mutable object. This is an immediate primitive. If the object is immutableor not monitored by a clock then #f is returned instead.(DM-set-clock-of! Object new-Clock) : old-Clock [Level 2 | NOT YET IMPLEMENTED]Changes the clock associated to a mutable object and returns the previous clock. The new clock mustbe a neighbor of the object that is, owned by the same site. This primitive may block.

48 CHAPTER 4. SCHEME BINDING(DM-connect "host name or IP number" port-number "password") : Site [Level 1]Connects the current DMeroon space with a remote one. The remote DMeroon space is speci�ed byan hostname and a port number. The hostname may also be an IP number written in dot notation.(DM-send Object Site) : the Object itself [Level 1]Sends a reference onto an object to a site. This primitive may block.(DM-receive duration) : #f or an Object [Level 1]Receives an object. This primitive blocks at most duration seconds. If no object is received then itreturns false. This function may only be used while the DM-handler-object variable is false.(DM-handler-object Object) : #f [Level 1]If this variable is false i.e., #f then incoming objects are accumulated then received using DM-receive.If this variable is not false, then its value must be a unary function that will be applied on every incomingobject. In this case, one must not call DM-receive.(DM-serve duration) : bolean [Level 0]This primitive yields control to DMeroon for at least duration seconds. Zero seconds is a possibleduration in which case, pending requests are handled if already present. This allows DMeroon to handleincoming requests and manage its local space.4.2 VariablesThe current site is the value of the DM-site variable.A number of global variables allow to access prede�ned classes. Their name start with DM- and end with-class. These are, for instance, DM-Object-class, DM-Class-class, DM-Field-class, DM-Type-class,DM-String-class, etc.To allow an easy access to instances of prede�ned classes, �elds of prede�ned classes are also prede�ned.Their name begin with DM-, the name of the introducing class, a dash, the name of the �eld and is followed by-field. These are, for instance, DM-Class-name-field, DM-Class-super-field, DM-Class-field-field,etc.DMeroon types are also de�ned under a name ending with -type. These are, for instance, DM-nou-ght-type, DM-nat1-type, DM-nat2-type, DM-nat3-type, etc.

4.3. LIBRARIES 494.3 LibrariesThe Scheme binding de�nes additional useful functions. These �les may be dynamically loaded or compiledand linked.4.3.1 ToolsSome useful functions are de�ned in the TOP/DMeroon/dmlib.scm �le. Among them is an iterator on objects:DM iterate, a coercer into Scheme strings, a function to display details of DMeroon objects, functions toconvert Scheme values into DMeroon objects back and forth, etc.(DM-iterate Object by-item by-length by-indexed-item) : unspeci�ed [Scheme function](by-item Object Field DMeroonType) : unspeci�ed(by-length Object Field DMeroonType DMeroonType) : unspeci�ed(by-indexed-item Object Field DMeroonType index) : unspeci�edIterate sequentially on all the non-secret values contained in an object (but the secret ones) and applyappropriate functions on these values. The by-item function is applied on every regular non-secret �eld, theby-length function is applied on every non-secret indexed �eld, the by-indexed-item function is applied onevery value of every non-secret indexed �eld.(DM->string Object [Field]) : String [Scheme function]This function takes an instance of the String class and coerces it into a Scheme string. Used with twoarguments: an object and an additional instance of the Field class corresponding to a repetition of char1,it coerces the �eld into a Scheme string. For example, obtaining the name of the current site may be writtenas: (DM->string DM-site DM-Site-name-field)Implementation note: A common error is to confuse Scheme and DMeroon values, espe-cially strings and instances of String. Use the DM->string or DM<-sexpr functions!(DM-describe Object [output-port]) : unspeci�ed [Scheme function]This function prints a detailed description of an object onto a Scheme output port (by default onto thecurrent output port). Only the �rst level of the object is printed, use the next function to recursively displayan object. This function is implemented with DM-iterate.(DM-describe-all Object [output-port]) : unspeci�ed [Scheme function]

50 CHAPTER 4. SCHEME BINDINGThis function prints a detailed description of an object onto a Scheme output port (by default ontothe current output port), it also recursively prints the detailed description of referenced objects. Cycles ofobjects are handled. This function is implemented with DM-iterate.(DM<-sexpr value [handler]) [Scheme function]This function converts a Scheme value into a DMeroon object. The empty list, booleans, symbols,characters, vectors, pairs, strings, integers and
oats are converted. Other types of values (procedures forinstance) are given to the handler, their translation is left to the de�nition of the handler. The defaulthandler raises an error. Sharing is not respected by this simple-minded converter but DMeroon objects areleft as they are.(DM->sexpr value [handler]) [Scheme function]This function converts a DMeroon object into a Scheme value. The empty list, booleans, symbols,characters, vectors, pairs, numbers and strings are converted. If a DMeroon object is not converted thenit is given to the handler which, by default, raises an error. Sharing is not respected by this simple-mindedconverter.(DM-publish! Object "name" ...) : unspeci�ed [Scheme function]This function publishes a DMeroon object i.e., incorporates it in an instance of the Dictionary class inthe o�spring of the site object (more precisely via the information �eld of the current site). The pathnameleading to this object is indicated in the following arguments of the DM-publish! function. By default, everyvalue published by the user is in the user dictionary.Published objects can be inspected with an URL formed after their pathname.(DM-retrieve "name" ...) : Object or #t [Scheme function]This function retrieves the DMeroon object that is published under the given pathname. If that objectdoes not exist then #f is returned instead.To store my �rst name, I can say:(DM-publish! (DM<-string "Queinnec") "name" "first")It can now be retrieved with:(DM-retrieve "name" "first")4.3.2 DMeroonetThe TOP/DMeroon/dmeroonet.scm �le de�nes a light object system, above DMeroon, in the spirit ofMer-oonV3.The DMeroonet object system is very simple to use: only three macros are de�ned: one to de�ne classes(this macro is almost similar to the define-class macro described in Section 3.5). DMeroonet providesdistributed generic functions i.e., generic functions whose methods may be located on di�erent sites [Que97a].

4.3. LIBRARIES 51(DM-define-class class-name super-class [Scheme macro](�eld-name �eld-options)[class-options])This macro de�nes a class with a name (a symbol), a super-class (an evaluated expression that mustyield a class), some �elds and, possibly, some class options. Class options are described in table 3.4. A �eldstarts with a name (a symbol) followed by �eld options as described in table 3.3.For example, here is the de�nition of the Point class (note the di�erence with the de�nition of Section3.6.2):;;;This is �le Point.dm(DM-define-class Point DM-Object-class((x :type int3 :mutable)(y :type int3 :mutable)))(DM-generic (name variables-speci�cation) [Scheme macro][default body])This macro de�nes an anonymous generic function. The variables-speci�cation speci�es the variablesof the function as well as which variables are discriminating. A discriminating variable appears betweenparentheses. The values of the discriminating variables allow to choose the appropriate method. By default,the default behavior of a generic function is speci�ed by the default body. In particular, if applied on Schemevalues rather than DMeroon values, the default body is applied. The generic function itself is a DMeroonobject value of the name; the default body may be recursive and use this anonymous generic function withthe name variable.(DM-method (name variables-speci�cation) [Scheme macro][body])This macro de�nes a method for a generic function. The generic function may be referred to with thename variable. The variables-speci�cation speci�es the variables of the function as well as which variablesare discriminating. Of course, this must be congruent with the generic function(s) to which this methodwill be added. A discriminating variable appears between parentheses accompanied by an expression whosevalue is the class on which the method will be triggered.(DM-add-methods generic-function method. . .) [Scheme function]This function allows to add multiple methods to a generic function. It returns a new generic functionsimilar to the previous one except that it understands new behaviors.

52 CHAPTER 4. SCHEME BINDING(DM-invoke generic-function value. . .) [Scheme function]This function invokes a generic function on some arguments. The arguments that correspond to discrim-inating variables allow to choose the appropriate method which is then applied on these arguments.(call-next-method) [Method macro]This macro can only appear in a method de�nition. It allows to call the super method on the samearguments.(call-former-method value. . .) [Method macro]This macro can only appear in a method de�nition. It allows to refer to the method that would havebeen triggered in the generic function that was enriched by DM-add-methods.4.4 Scheme peculiaritiesThe above documentation describes the general binding ofDMeroon with a generic Scheme implementation.Often it is possible to bind it better. This section describes these additions.4.4.1 BiglooThe binding of DMeroon with Bigloo 1.8 brings some additional features.1. the display function is extended to recognize DMeroon objects. They are printed as#<DMeroon:reference>where reference is a DMeroon reference (and not a Bigloo address).2. if Bigloo waits when reading a �le or the input terminal then the interpreter will take advantage ofthat situation to serve incoming DMeroon requests. DMeroon uses Bigloo's continuations to createor, suspend or, resume coroutines. With DM-handle-object, any incoming object is processed in itsown coroutine.3. a new protocol is recognized: the SchemeScript protocol which allows to receive Sexpressions toevaluate via the DMeroon server. These Sexpressions are evaluated in the global environment of theinterpreter. The displayed result is sent back to the client and the connection is closed. A SchemeScriptmessage ends with a sequence of four characters which are the NUL, NUL, CR and LF characters inthat order.To use that protocol, you may use the schemescript command de�ned in the TOP/DMeroon/Com-mands/schemescript.prl �le.schemescript.prl [host[:port] [�le]] [Command]

4.4. SCHEME PECULIARITIES 53This command sends the content of the given �le (or the standard input if absent) to the DMeroonserver speci�ed by host:port. It prints the returned result but does not report errors (they are reported viathe standard error output of Bigloo).

54 CHAPTER 4. SCHEME BINDING

Chapter 5DMeroonScript bindingThis chapter describes the DMeroonScript language and its binding with DMeroon. This language hadbeen de�ned to test the DMeroon API and to write simple URLs to access DMeroon objects, it thenevolved into a speci�c language. DMeroonScript is a tiny language that can easily be extended by theuser (with DMeroonScript de�nitions) or by the implementor (in C). This language may be used to writesimple single-line URLs to access DMeroon objects or quite complex multi-line programs to perform someactions on them. All the functionalities of DMeroon API may be put to work with the DMeroonScriptlanguage.DMeroonScript is a stack-based, Forth-like language with a post-�x syntax. Constants are pushedonto the stack when processed. Other words correspond to commands whose de�nition is recorded in alinked list of vocabularies (instances of UrlEnv). Commands pop their arguments out of the stack and pushtheir results. The stack only contains DMeroon objects.DMeroonScript uses HTML to display its results so it is better to use it from an http client. TheDMeroon interpret API function also allows to submit DMeroonScript programs.When an DMeroonScript is erroneous, its execution stops and an error message is returned (in html)and the content of the stack is displayed as well. When an DMeroonScript program stops normally, thestack should be empty; if the stack contains a single value, it is displayed. If the stack contains more than asingle value, an error message is returned.The empty DMeroonScript program triggers the display of an help message.An DMeroonScript program is evaluated with a stack holding DMeroon objects and an environmentmapping variables to DMeroon objects. An DMeroonScript is formed of a succession of constants orcommands separated by spaces (or tabulations or newlines) or by slashes (this eases writing URLs).5.1 ProgramsA program is a possibly empty sequence of lines. Comments start with the hash sign and end up with theend of the line. Lines are made of tokens that is constants (i.e., literals) or commands. Commands are namedas C identi�ers, they start with a letter or an underscore and may contain a number of letters, underscoresor digits. Succeeding commands that may be confused should be separated with whitespace, tabulations,newlines (LF or CR) or slashes.Within DMeroon, programs are represented by an instance of class String. A NUL character of codezero ends the representation of a program even if it is not the last character.5.2 ConstantsConstants may be numbers, strings or characters. They are pushed onto the stack as soon as recognized.Numbers are only positive. They may be written in decimal form or in octal form, if pre�xed with 0 orin hexadecimal form, if pre�xed with 0x or 0X. Numbers are converted into instances of the Nat3 class.55

56 CHAPTER 5. DMEROONSCRIPT BINDINGStrings are enclosed with ". Characters within a string (and mainly " and \) may be protected by \.Strings may also be speci�ed if surrounded by matching f and g. Quite often, this is used to denote anexecutable piece of code to submit to the eval command. Strings are converted into instances of the Stringclass.Characters are enclosed within '. They are converted into instances of the Char1 class.When created, a constant is initialized as copyable (unless the DM CONTEXT DONT INITIALIZE Contextoption is set).ExamplesThe following program pushes onto the stack an instance of Char1, two instances of Strings and threeinstances of Nat3:'Q'"This is a \"string\"."{This is { another } string}12345 017 0xCafeBabe5.3 Access to �eldThe content of the �eld of a DMeroon object may be extracted via the dot notation followed by the nameof the �eld (speci�ed directly and not as a string). The content of an indexed �eld may be extracted via thedot notation followed by the name of the �eld (speci�ed directly and not as a string) su�xed by an indexbetween square brackets. The result must always be a DMeroon object, this implies that the �eld musthave type reference.An error is signaled if an index appears and the �eld is not indexed. An error is signaled if the �eld isindexed and no index appears. An error is signaled if the �eld is secret.Implementation note: Indexes are no longer implemented. In the past, a �eld such as anat1, when read, was automatically rei�ed into a Nat1 instance. The reciprocal conversion wasautomatically done at writing-time. Should I reintroduce these features ?ExamplesFor instance, if the current site is on top of the stack then its information �eld is read by the .informationcommand; this value replaces the site on top of the stack.thesite # get the current site onto the stack.information # the DMeroon dictionary.rest # get the 'user' dictionaryAfter removing all the previous comments, this little program may be equivalently written as:/thesite/.information/.rest/After the evaluation of either one of these two programs, the stack contains a single object: an instanceof Dictionary.5.4 CommandsA word that cannot be parsed as a constant or an access command (i.e., the name of a �eld pre�xed witha dot) is a command whose de�nition has to be found in the current vocabulary. If the command is notde�ned, the DMeroonScript program is erroneous and stopped.Commands are explained in this Section with the following notations: The stack is displayed with itstop to the right, then the command is shown followed by the resulting stack (with still its top to the right).Uninteresting parts of the stack are elided with The class of the arguments is represented by the nameof their class.

5.4. COMMANDS 575.4.1 Basic commandsThe basic vocabulary of the DMeroonScript language provides the commands that are used by the htmldisplay mechanism of DMeroon objects. These are: thesite, byteprint, fancyprint entry and modify.... thesite ! ... Site [DMeroonScript commands]... Object byteprint ! Object fancyprint ! ...The thesite command pushes the current site on top of the stack. The fancyprint command pops anobject out of the stack and displays its content in html in a fancy form while byteprint displays its contentin bytes (again in html form). These commands do not push anything in result. The byteprint commanddisplays a result that is implementation-dependent. There is an additional print directive.... Nat3 Nat3 Nat3 Nat3 entry ! ... Entry [DMeroonScript command]The entry command pops four numbers out of the stack and pushes the Entry instance that has a keyformed with these four numbers. Keys include a random part making the forgery of keys at least di�cult.... String Object modify ! ... Object [DMeroonScript command]The modify command allows to perform, on an object, a series of modi�cations encoded in a string.When an object has some mutable �elds, these �elds are displayed within an html form that when sent backto the DMeroon server with the Modify! button, triggers a POST request. A POST request is handledsimilarly to a GET request except that the content of the POST request, a string of name=value&. . . pairs,is turned into an instance of the String class and is pre-pushed in the stack before the evaluation of theDMeroonScript program. This command allows to modify many �elds at once.Implementation note: This command knows how to modify all types of non-indexed �eldsbut reference �eld.5.4.2 Vocabulary commandsThe set of possible commands is held in a linked list of instances of UrlEnv i.e., vocabularies. When de�neda command is recorded into the topmost vocabulary. It is not possible to rede�ned a command but it ispossible to push a new empty vocabulary, to use another vocabulary or to pop the current vocabulary.The evaluation starts with an empty vocabulary followed by the prede�ned vocabulary containing all thecommands described in this chapter.... begin ! ... [DMeroonScript commands]... end ! UrlEnv use ! UrlEnv ...

58 CHAPTER 5. DMEROONSCRIPT BINDINGThe begin command creates a new empty vocabulary and insert it in topmost position in the list ofvocabularies. The end command reverses this e�ect and pops the current vocabulary. The use commandallows to change entirely the linked list of vocabularies, it returns the previous vocabulary.The current vocabulary may be obtained via the reifying state command.... Object String define ! ... [DMeroonScript command]The define command binds a name and an object in the current environment. This implicitly creates anew command with that name that, when invoked, returns the associated object.... String String defcommand ! ... [DMeroonScript command]The defcommand command binds a name and a string. When the command is invoked, the associatedstring is evaluated instead.ExamplesTo be in an empty vocabulary with nothing at all de�ned is simple but problematic since there is no meansto return to a regular situation: this is a dead-end:"UrlEnv" 2 allocate use popThe print command consumes the top of the stack. It is a simple matter to de�ne a new command,named idprint, that avoids this behavior that is, that prints the top of the stack and leaves the stackunchanged. For instance,{ dup print} "idprint" define1 idprint eval # Test idprintRather than using eval explicitly, we may de�ne an equivalent command and write:{ dup print} "idprint" defcommand2 idprint # Another testHere is a small DMeroonScript program that rolls the three objects on top of the stack. This is anextended swap command whose name is inspired from Forth similar command.{ begin"top" define # pop top and name it top"subtop" define # pop subtop and name it subtop"subsubtop" define # pop subsubtop and name it subsubtopsubtop top subsubtop # push all three of them in a different orderend} "roll" defcommand"1" "2" "3" roll # Stack contains 1 3 2 (from top)This example is safer than the two previous ones since the arguments of the roll command are createdin a local vocabulary which is only used during the computation of the roll command. The name top maybe used again safely.5.4.3 Stack commandsThese are Forth-like commands:

5.4. COMMANDS 59... Object dup ! ... Object Object [DMeroonScript commands]... Object1 Object2 swap ! ... Object2 Object1... Object pop ! ...These commands manage the stack. dup duplicates the top of the stack, swap swaps the two objects atthe top of the stack while pop removes the top of the stack.5.4.4 Boolean commandsThese are the commands dealing with boolean and, chie
y, the alternative construction.... false ! ... Boolean [DMeroonScript commands]... true ! ... Boolean... Object1 Object2 == ! ... Boolean... Object not ! ... Boolean... Objectelse Objectthen Object if !These are the commands dealing with logical values. The true, resp. false, command pushes true,resp. false, onto the stack. True and false are prede�ned instance of classes True and False, subclasses ofBoolean. The == command compares two objects and return the true or false boolean DMeroon objects.True is produced if the two compared objects are just the same physical object however, comparing twoNat3 numbers or two Strings yields true if they have same content. The not command returns true if giventhe boolean false and returns false for all other DMeroon objects. The if command pops out an objectand two other objects known as then and else. If the object is false else is pushed otherwise then is pushedinstead. Note that, in DMeroonScript, all values are equivalent to true but the false object which is theonly one of its kind.... null ! ... Object [DMeroonScript commands]The null command pushes DM NULL i.e., the empty reference which belongs to any class.ExamplesThis command allows to pop a stack until �nding a null value. This null value is consumed. This functionis erroneous if the stack does not contain a null value.{ begin # Open a new vocabulary"x" define # Name the argument{pop-until-null} {} x null == if evalend # Close the local vocabulary} "pop-until-null" defcommand{1} null 2 3 4 5 true pop-until-null # Just leaves 1 on the stack5.4.5 Arithmetic commandsThe arithmetic operations exist as well. They are spelled in full letters and the only problem is to rememberhow not commutative operations take their arguments.

60 CHAPTER 5. DMEROONSCRIPT BINDING... Nat3 Nat3 plus ! ... Nat3 [DMeroonScript commands]... Nat3 Nat3 minus ! ... Nat3... Nat3 Nat3 times ! ... Nat3... Nat3 Nat3 quotient ! ... Nat3... Nat3 Nat3 modulo ! ... Nat3There are also the other arithmetic comparators. Remember they are not commutative so pay attentionto the order of the arguments. A quick rule is that you have to write as in a mirror.... Nat3 Nat3 le ! ... Boolean [DMeroonScript commands]... Nat3 Nat3 lt ! ... Boolean... Nat3 Nat3 ge ! ... Boolean... Nat3 Nat3 gt ! ... Boolean... Nat3 Nat3 ne ! ... BooleanExamplesHere is the best-seller factorial example:{ begin"n" define # Name the argument#"DEBUG: n= " print n print ", " print # Print argument{n 1 n minus factorial times} 1 1 n le if evalend} "factorial" defcommand5 factorial print5.4.6 Meta commandsThere are two meta-commands. The eval command allows to evaluate a string while state rei�es thecurrent state of the DMeroonScript machine.... String eval ! [DMeroonScript command]The eval command pops out a string and evaluates it. The evaluation of the string does not yield resultsper se, rather it may alter the stack and the current environment.... state ! ... UrlState [DMeroonScript command]The state command rei�es the full state of the evaluation into an instance of UrlState. Such an objectappears in the message emitted in case of errors.

5.4. COMMANDS 61... dumpstack ! ... [DMeroonScript command]... Nat3 exit !To view the stack, one may print it with dumpstack (but you may alternately interactively inspect it withthe state command). If you want to abort immediately the evaluation of a DMeroonScript program, usethe exit command and tell it the error code you want to raise (or zero if this is an abrupt but normal end).... Site go ! ... Site [DMeroonScript command]The go command allows to migrate computations from one site to another. The site where the compu-tation should go is popped out of the stack, the current site is pushed instead and the whole state of themachine is copied and resumed on the intended site. The new site may return to the original site if usingthe top of its stack.5.4.7 Miscellaneous commandsThese are the left-over commands.... Object print ! ... [DMeroonScript command]The print command pops an object out of the stack and tries to display its content into a short,comprehensible, human-readable form. Instances of the abstract classes Value (mainly for numbers) andString are recognized and printed specially.... String String extract ! ... String [DMeroonScript command]The POST request pushes its body, a string of name=value&. . . pairs. The extract command allows toextract a value associated to a name from that string. The value is turned into an instance of String. Thiscommand may be used to extract the value of a given �eld from a string.... Entry fetch ! ... Object [DMeroonScript command]The fetch command caches or updates locally the object associated to an Entry.... Clock tick ! ... [DMeroonScript command]

62 CHAPTER 5. DMEROONSCRIPT BINDINGThe tick command pops and increments a local Clock.5.5 DMeroon APIThere exist commands to invoke the functions of the DMeroon API. The arguments popped from the stackare in the order of the variables of the corresponding function of the API.... Object classof ! ... Class [DMeroonScript commands]... Object siteof ! ... Site... Object clockof ! ... ClockThe classof command pops an object out of the stack and pushes its class instead. Similarly the siteofcommand pushes the site that owns the object and clockof pushes the associated clock (that is, NULL if noclock is associated).... String class ! ... Class [DMeroonScript command]... String type ! ... DMeroonType... Class String field ! ... Field... String Nat3 site ! ... SiteThe class command pops a name and pushes back the prede�ned class with that name. An error issignalled if no prede�ned class with that name exists. The type command pops a name and pushes backthe prede�ned DMeroon type with that name. An error is signalled if no prede�ned type with that nameexists. The field command pops a name and a class and pushes the Field descriptor with that name fromthat class. An error is signalled if no �eld with that name exists. The site command pops an hostnameand a port number and returns the appropriate DMeroon instance of Site if it exists.... Class Nat3. . . allocate ! ... Object [DMeroonScript command]... Object clone ! ... ObjectThe allocate command pops sizes (i.e., numbers) out of the stack until �nding a class. It then allocatesand pushes an instance of that class with the given sizes.The clone command pops an object out of the stack, clones it and pushes the result back onto the stack.... Object setsharable ! ... [DMeroonScript commands]... Object setcopyable ! ...These commands pops an object and makes it sharable or copyable.

5.5. DMEROON API 63... Object Site setsiteof ! ... [DMeroonScript commands]... Object Clock setclockof ! ...These commands allow to change the site owning an object or the clock monitoring an object.... Stringhostname Nat3 Stringpassword connect ! ... Site [DMeroonScript command]The connect command connects the current site with another site speci�ed by the name of its host, itsportnumber and the password to use.... Site Object send ! ... [DMeroonScript commands]... receive ! ... Object BooleanThe send command sends the reference of an object towards a given site. The receive command returnsa boolean telling if an object has been received accompanied by the object if the boolean is true. When theboolean is false, the following object is meaningless.... Object Field xlenth ! ... Nat3 [DMeroonScript commands]... Object Field get ! ... Object... Object Field Nat3 xget ! ... Object... Object Field Object set ! ... Object... Object Field Nat3 Object xset ! ... ObjectThese commands allow to read the length of an indexed �eld or the content of a regular or indexed �eldor to modify a regular or indexed �eld. They are restricted to �elds of type reference. You may modify�elds with other type with the modify command.... Class String Nat3 Nat3 smashclass ! ... Class [DMeroonScript commands]... Class String Nat3 String Nat3 Type Type Class createsubclass ! ... ClassThe createsubclass command pops all the arguments needed to create a class. The smashclasscommand pops all the arguments needed to smash a class a number of levels.5.5.1 Debugging commandThe DMeroonScript language allows to debug applications through HTTP and unsafe additional com-mands.

64 CHAPTER 5. DMEROONSCRIPT BINDING... Nat3 address ! ... Object [DMeroonScript command]The address command pops out a number and pushes the DMeroon object whose DMeroon referenceis equal to this address. The word address is misleading since the number is the DMeroon reference notthe address of the object viewed from the binding language.... Object proxyof ! ... External [DMeroonScript command]This command returns the proxy of a DMeroon object. It must only be used for debugging since theseobjects are normally hidden from the user.... Nat3 setdebuglevel ! ... Nat3 [DMeroonScript command]This command allows to change the debug level of the DMeroon server. Zero means terse, highernumbers increase verbosity. This command returns the previous debug level. This command is meaninglessif the server is compiled without the cpp variable DM DEBUG de�ned.5.6 UseDMeroonScript is used to inspect DMeroon values with an http client. If your DMeroon server runson your local machine then the initial URL is:http://localhost:56423/This URL gives access to some general information and provides a link to allow the inspection of the siteobject. This URL is:http://localhost:56423/thesite/fancyprintFrom this, one can follow references that correspond to URLs looking like:http://localhost:56423/0x000a67dc/0x6353e384/0x3448a335/0x1f91cd56/entry.objectThis kind of URL speci�es an object externalized with a given key.When an object is displayed (see �gure 5.1), a banner tells which DMeroon server was the source ofthe answer. The object is preceded by a sentence specifying its main characteristics such as immutableor mutable, local or remote, sharable or copyable or uninitialized, obsolete or up-to-date; its class is alsomentioned and it is possible to see the bytes representing the object if you are an hex fan1. The �elds ofthe object are then displayed in order starting with the name of the �eld, its type, its length if indexed andfollowed by its content. If a �eld is mutable, then it is possible to modify it directly in your http client andpress the Modify! button (see �gure 5.2).5.7 DMeroonScript APIIt is possible to run DMeroonScript programs from the binding language. The DMeroonScript lan-guage may easily be extended in C with new commands. Here follows the API to extend, in C, the DMe-roonScript language.The DMeroonScript machine has a state, an instance of the UrlState class.1des sixties, comme disait Serge Gainsbourg.

5.7. DMEROONSCRIPT API 65

Figure 5.1: A Site displayed in html

Figure 5.2: A mutable object displayed in html

66 CHAPTER 5. DMEROONSCRIPT BINDINGUrlState [Class]previous another UrlStatescript the DMeroonScript program (a String)pc the program counter (a nat3 number)stack the stack (a BoundedStack)environment the vocabulary of commands (an UrlEnv)errcode the last error codeThis class de�nes the various components of the state of the DMeroonScript machine. Objects arepushed onto the stack and the stack is extended when needed. The program counter is an index into the script(a String). To invoke the eval command in the DMeroonScript creates a new state for this evaluation.When the evaluation is over, the old state is restaured. Commands are looked for in the environment, alinked list of hash-tables containing instances of UrlActions.UrlAction [Class]behavior a pointer to a C functioninternal a DMeroon object or NULLname a nat1-sequence of char1argument a nat1-sequence of ClassesAn UrlAction records an DMeroonScript command. It has a name, is implemented by a C functionwith a precise signature. The arguments of that command must be DMeroon objects only and must havethe class speci�ed in the indexed argument �eld. The internal �eld holds any DMeroon value that may beneeded by the command. This �eld is used, for instance, by the define and defcommand DMeroonScriptcommand and may also be used to mimic closures.The UrlAction class may, of course, be subclassed.The C function that implements an UrlAction command must have the following prototype:DM_UrlState* behavior ([UrlAction behavior]DM_Context *context,DM_UrlAction *self,DM_UrlState *state,void *output_port,DM_Object *arg0, /* references only */...)This behavior function receives the current context, the UrlAction describing it (so it may fetch theinternal value for instance), the state of the DMeroonScript machine (with its stack for instance), theoutput port where to print (or NULL if no printing is needed) and as many variables as there are arguments.The DMeroonScript machine takes care of invoking behaviors with the correct number and classes ofarguments. A command may take from 0 to 8 arguments. A command return the new state of the machine.The only di�culty is to remember how are mapped arguments from the stack to variables of the behavior:they are mapped as represented in the previous de�nitions. If a command has three arguments, the last oneis at the top of the stack (this is to simulate how stacks are displayed in this chapter).

5.7. DMEROONSCRIPT API 67ExampleHere is the code of the setdebuglevel command:static DM_UrlState*DM_setdebuglevel_command (DM_Context *context,DM_UrlAction *self,DM_UrlState *state,void *output_port,DM_Nat3 *arg0){ DM_Nat3 *result = DM_Allocate0(context, Nat3);result->value = DM_TheCurrentSite()->debug_level;if (context && DM_HasNotOption(context, DM_CONTEXT_DONT_INITIALIZE)) {DM_SetCopyable(context, result);}DM_TheCurrentSite()->debug_level = arg0->value;DM_push_object_in_bounded_stack(context,(DM_Object*)(result),&(state->stack));state->errcode = DME_SUCCESS;return state;}5.7.1 Explicit evaluationTo run an DMeroonScript program is simple. Just give a C string containing the DMeroonScriptprogram and a number of objects that will form the initial stack (�rst object is the �rst pushed onto thestack). These objects must be DMeroon objects, they are pre�xed by their number. The �nal stateof the DMeroonScript machine is returned so the results may be popped out of the �nal stack. TheDMeroonScript machine is run in mute mode: nothing is printed.DM_ErrorCode [Level 0]DMeroon_interpret (DM_Context* context,DM_UrlState* *urlstate,char* urlprogram,DM_nat3 nobjects,DM_Object* object, ...)The previous function is implemented on top of the following one which is less usable as it stands butmore accurate since it represents the current DMeroonScript interpreter.DM_UrlState* [Level 0]DM_interpret_url_script (DM_Context* context,DM_UrlState* urlstate,void* output_port /* or NULL */)

68 CHAPTER 5. DMEROONSCRIPT BINDINGThis function runs an DMeroonScript machine with an initial state. When the DMeroonScriptmachine terminates, its �nal state may be accessed to discover the objects that are pushed in its stack.The interpretation stops as soon as an error occurs. Printing may occur via the port mentioned as thirdargument; NULL prevents printing.ExamplesIt is sometimes interesting to combine two accesses but not to force the intermediate object to be fetchedon the current site. Here is a way to achieve that:errcode = DM_site_of(context, &other_site, o);/* Check error code */errcode = DM_interpret(context, &urlstate,"go swap .field1 .field2 swap go",2, o, other_site);/* Check error code */... urlstate->stack->item[0] /* is the result. */ ...The computation is migrated onto the owning site of the o object, o.field1 is made present on that siteand o.field1.field2 is returned onto the original site.5.8 Development environmentYou may use the TOP/DMeroon/Commands/urlscript command to submit clearer, longer, multi-lined DMe-roonScript programs from any shell command interpreter.urlscript [hostname[:port]] [�le] [Command]This command establishes a connection to the speci�ed DMeroon server and sends it the speci�ed �leusing the DMeroonScript protocol. If no �le is mentioned, the standard input is accumulated (until anend-of-�le) before being sent. Shell variables are substituted with their values before being sent to the server.The server answers with html which is delivered onto the standard output of the urlscript command. The�nal errorcode returned by the DMeroonScript program becomes the return code of the command. Filescontaining DMeroonScript programs have .dms as extension.An excellent tool, named dmClient, allows you to really easily edit and submitDMeroonScript requeststo a DMeroon server. Jean-Michel Inglebert is the author of dmClient. dmClient may be operated fromany JavaScript-enabled http client. Point your favorite browser to TOP/Contrib/dmClient/dmClient.htmpage to play with.There also exists an Emacs mode to edit DMeroonScript programs. Two variables may be set tospecify the DMeroon server you want to send the content of the current bu�er. The result is viewedwith Emacs thanks to the marvellous w3 package from William Perry2. This Emacs mode appears in theTOP/Emacs/DMeroonScript.el �le. Documentation appears in its header.5.9 ExamplesThis is a one-liner to increment the general clock of a site. It displays the string \Attention" followed by thecurrent clock, increments the clock and redisplays it (in a fancy way i.e., with a \tick" button). The scriptends by printing \Done." Here it is:"Attention"/print/thesite.clock/dup/tick/fancyprint/"Done."/print2ftp://ftp.cs.indiana.edu/pub/elisp/w3

5.9. EXAMPLES 69This is a bigger example of an DMeroonScript program that records the string DMeroon is great!in a dictionary named queinnec which is grafted in the user dictionary.# Get the ``user'' dictionary.thesite.information.rest "user_dictionary" define# Create a new dictionary (with the right size)."Dictionary" class 9 allocate "new_dictionary" define# Initialize the ``name'' field."name=queinnec" new_dictionary modify pop# Initialize the ``value'' and ``rest'' fields.new_dictionary dup classof "value" field "DMeroon is great!" set popnew_dictionary dup classof "rest" field user_dictionary.rest set pop# Finish the initialization and makes the dictionary sharable.new_dictionary setsharable# Hook the new dictionary after the ``user'' dictionary.user_dictionary dup classof "rest" field new_dictionary set pop# Report correct execution."Done" print

70 CHAPTER 5. DMEROONSCRIPT BINDING

Chapter 6Icslas bindingThis chapter describes a binding initiated some years ago with a concurrent, distributed extension to theScheme language: the Icslas language. The Icslas language is powered by a byte-code interpreter, acompiler exists (written in Scheme) for the Scheme subset of Icslas. The byte-code machine and thecompiler are enhanced versions from the ones described in [Que96].All Icslas values are represented as DMeroon objects. Entities necessary for the byte-code machinesuch as lexical environments, global environments and continuations are as well represented by DMeroonobjects thus allowing their migration.Implementation note: Unfortunately, I had no time to pursue that e�ort since 1996.

71

72 CHAPTER 6. ICSLAS BINDING

Bibliography[AF94] G. Attardi and T. Flagella. A customizable memory management framework. In Proceedings of the USENIXC++ Conference, Cambridge, Massachussetts, 1994.[Coi87] Pierre Cointe. The ObjVlisp kernel: a re
exive architecture to de�ne a uniform object oriented system.In P. Maes and D. Nardi, editors, Workshop on MetaLevel Architectures and Re
ection, Alghiero, Sardinia(Italy), October 1987. North Holland.[LQP92] Bernard Lang, Christian Queinnec, and Jos�e Piquer. Garbage collecting the world. In POPL '92 {Nineteenth Annual ACM symposium on Principles of Programming Languages, pages 39{50, Albuquerque(New Mexico, USA), January 1992.[Piq91] Jos�e Miguel Piquer. Indirect reference counting: A distributed garbage collection algorithm. In PARLE'91 { Parallel Architectures and Languages Europe, pages 150{165. Lecture Notes in Computer Science 505,Springer-Verlag, June 1991.[QC88] Christian Queinnec and Pierre Cointe. An open-ended Data Representation Model for Eu-Lisp. In LFP '88{ ACM Symposium on Lisp and Functional Programming, pages 298{308, Snowbird (Utah, USA), 1988.[Que90] Christian Queinnec. A Framework for Data Aggregates. In Pierre Cointe, Philippe Gautron, and ChristianQueinnec, editors, Actes des JFLA 90 { Journ�ees Francophones des Langages Applicatifs, pages 21{32, LaRochelle (France), January 1990. Revue Bigre+Globule 69.[Que91] Christian Queinnec. Meroon: A small, e�cient and enhanced object system. Technical ReportLIX.RR.92.14, �Ecole Polytechnique, Palaiseau Cedex, France, November 1991.[Que93] Christian Queinnec. Designing meroon v3. In Christian Rathke, J�urgen Kopp, Hubertus Hohl, and HarryBretthauer, editors, Object-Oriented Programming in Lisp: Languages and Applications. A Report on theECOOP'93 Workshop, number 788, Sankt Augustin (Germany), September 1993.[Que94a] Christian Queinnec. Locality, causality and continuations. In LFP '94 { ACM Symposium on Lisp andFunctional Programming, pages 91{102, Orlando (Florida, USA), June 1994. ACM Press.[Que94b] Christian Queinnec. Sharing mutable objects and controlling groups of tasks in a concurrent and distributedlanguage. In Takayasu Ito and Akinori Yonezawa, editors, Proceedings of the Workshop on Theory andPractice of Parallel Programming (TPPP'94), Lecture Notes in Computer Science 907, pages 70{93, Sendai(Japan), November 1994. Springer-Verlag.[Que96] Christian Queinnec. Lisp in Small Pieces. Cambridge University Press, 1996.[Que97a] Christian Queinnec. Distributed generic functions. In Jean-Paul Bahsoun, Takanobu Baba, and Jean-Pierre Briot, editors, Second France-Japan workshop on Object-Based Parallel and Distributed Computing| OBPDC '97, Toulouse (France), October 1997.[Que97b] Christian Queinnec. S�erialisation{d�es�erialisation en DMeroon. In Omar Ra�q, editor, NOTERE97 |Colloque international sur les NOuvelles TEchnologies de la R�Epartition, pages 333{346, Pau (France),November 1997. �Editions TASC.[WS90] Larry Wall and Randal L Schwartz. Programming perl. O'Reilly & Associates, Inc., 1990.
73

74 BIBLIOGRAPHY

Appendix ADMeroon source �lesThis chapter gives some insight on the sources of DMeroon, this might be useful (i) when adapting DMe-roon to another language, (ii) when porting to another Operating System or language, (iii) for curiouspeople.There are many possible dimensions for customization or modularization of DMeroon, Figure A.1 tryto place the various �les with respect to layers, modules and relationship between them.

netdmnetdmsched support languagedmprtcl dmzlibdmrdobj,dmwrobjdmreqstdmreq dmkerndmstruct,dmtypes,dmsitedmgif,dmhtml dmnewapidmactDMeroonScript user dmscmScheme userC user

Figure A.1: Layers and relationship between �lesA.1 Structures of �lesThe top directory of the distribution is named icslas (perhaps su�xed with a version number). Let TOPbe this directory. Under TOP may be found various README �les and other administrative �les.When you rebuild the DMeroon library for a given language, the compilation takes place in anotherdirectory, the TARGET directory. Once DMeroon is rebuilt for a given language, the obtained libraryshould not be used with another language. It is nevertheless possible to rebuild DMeroon concurrently forall languages for which a binding exists.The TOP directory contains a number of sub-directories.� The DMeroon directory contains the �les that are independent of any binding languages. This directoryalso contains a number of sub-directories. 75

76 APPENDIX A. DMEROON SOURCE FILES{ The c directory contains the C �les.{ The Commands contains shell or Perl scripts.{ The Doc directory contains the current documentation and some other related research papers.{ The Test directory contains DMeroonScript test programs as well as other tests written inScheme.� The C directory de�nes C as a binding language and so is the Bigloo directory. Former bindings werestudied but are no longer maintained, these are OScheme, Pico. XXX contains template for bindings.� The Bootstrap isdirectory used by the maintainers of DMeroon to regenerate some �les belongingto DMeroon distribution (i.e., tarballs).� The Commands directory contains (shell or Perl) scripts and so is DMeroon/Commands.� The Others directory contains Scheme code from other authors while Library contains Scheme codebelonging to the Icslas runtime library.� The config directory populated with various Imake�les. These parts are combined using imake toform the complete Make�le in the TARGET directory. This process is pretty complex and plenty ofbells and whistles may parameterize it.� The Contrib directory contains DMeroon-fans contributed code.The TOP directory also contains some interesting �les such as | the top Imakefile (which was carefullywritten to be usable as a regular Make�le), | the ChangeLog �le of the Icslas project, | various README�les.A.1.1 The TOP /DMeroon/c/ directoryThe DMeroon library is made of a number of C �les populating the TOP /DMeroon/c directory. Each C �lehas an associated .h �le de�ning the prototypes of the exported variables or functions but, to allow an easyuse of the DMeroon system, you only have to include the dmeroon.h header �le which, in turn, includes allthe specialized header �les such as dmstruct.h, dmkern.h, etc. The dm.h header �le is also automaticallyincluded. This �le is a little peculiar since it de�nes macros that are used in all these other header �les.The dmeroon.h header �le also recursively includes two specialized header �les. The �rst header, dmos.h,contains all the dependencies with respect to the Operating System (it tries to automatically discover theoperating system).The second header �le (also automatically included) describes the peculiarities of the binding language:this is TOP/Bigloo/dmbgl.h for Bigloo, TOP /C/dmc.h for C, TOP/OScheme/dmoscheme.h for OScheme, etc.When DMeroon is bound with some language, it requires access to speci�c routines of the runtime of thislanguage to help DMeroon manage its space or comply with the conventions of data representations so thatDMeroon objects look like normal objects. This header �le is often complemented by some code adding tothe runtime of DMeroon. For instance, for C, DMeroon uses Boehm's Garbage Collector.Names are rather systematic and I hope easily decipherable. Except for the DM pre�x they all have,variables and functions have lower-case names (made of underscore separated words). Functional macrosnames are made of JointTogetherCapitalizedWords while data macro names are written, as usual, inUPPER CASE.Most of the data structures required by DMeroon are statically allocated so loading DMeroon is asnap. All these �les end with an initializing routine for the initializations that cannot be static. Whencompiled with the appropriate debug level, many checks are performed in these initialization routines.Nearly all functions have a Context instance as �rst argument, even internal functions. This allows tocon�ne errors or to parameterize certain behaviors.Documentation may be automatically extracted from these �les to form html pages that may be browsedby your favorite html client. To get them, run make regenerate.documentation in the TARGET directory.The html pages will appear in TARGET/WWW. and the

A.1. STRUCTURES OF FILES 77Basic �lesTOP/DMeroon/c/dmstruct.dm | This important �le de�nes all the C structures that are used by DMe-roon. All these structures are also DMeroon classes and so may be inspected as regular DMeroon objectsthus satisfying introspective re
exivity. This �le has a Scheme syntax (in fact a Meroon syntax) and isautomatically turned into a dmstruct.c and a dmstruct.h �les with help of the dm2ch compiler.TOP/DMeroon/c/dmeroon.h | This is the header �le that recursively includes what is necessary tocompile C �les using DMeroon resources. Not very big by itself but rather complex.TOP/DMeroon/c/dm.h|An enormous header �le, far less readable than dmeroon.h and far more complex(only for die-hards). It de�nes many of the internal macros that are used throughout the code of DMeroon.TOP/DMeroon/c/dmos.h| This �le contains the dependencies with respect to Operating Systems. Cur-rently these are all UN*X-based and appropriate for SUN4 bsd, SUN4 solaris, DEC Alpha, DEC Ultrix,Sony News, PC Linux. The selection of the right OS is automatic but I plan to use autoconf some time.TOP/DMeroon/c/dmerr.h | This header �le de�nes the zillions error codes detected by DMeroonaccompanied with some explanations.TOP/DMeroon/c/dmid.h| The current version of DMeroon.TOP/DMeroon/c/dmsizes.h | This �le de�nes how DMeroon types are mapped onto C types (i.e.,nat3 is often an unsigned int). The current mapping is universal with respect to the previously men-tioned Operating Systems but you may have to change it if DMeroon detects a mis�t. DMeroon checkscompatibility when initialized (see dmtypes.c initialization) and, in case of disagreement, displays the ap-propriate size and alignment constraints to help you. Some examples of sizes and alignments are kept in theTOP/DMeroon/c/HINTS �le.Core �lesFrom now on, the remaining parts are composed of a .h and .c �les. They are classed in alphabetical order.TOP/DMeroon/c/dmact.c| This �le de�nes the DMeroonScript language.TOP/DMeroon/c/dmcache.c| This �le de�nes the utilitary functions to manage caches when marshal-ing/unmarshaling objects.TOP/DMeroon/c/dmcomm.c | This �le de�nes the management of Entry and Exit items that supportthe remote pointer mechanism.TOP/DMeroon/c/dmdbg.c| This �le de�nes some debug utilities for DMeroon. They are rather usefulwhen porting DMeroon but not after.TOP/DMeroon/c/dmextr.c| This �le de�nes extra libraries for users' comfort (in C).TOP/DMeroon/c/dmgif.c| This �le de�nes some icons.TOP/DMeroon/c/dmhash.c| This �le de�nes the basic machinery for hashtables. Pay attention, search-ing is done via a macro, not by a function (for typing reason).TOP/DMeroon/c/dmhtml.c | This �le de�nes the HTML server which allow to inspect DMeroon in-stances from any http clients.TOP/DMeroon/c/dmkern.c| This contains the functions that constitutes the basic DMeroon memorymodel i.e., how to access �elds within an object, whether an object is local or not, initialized or not, how toincrement a clock, to clone an object, to create new classes. This �le also contains some prede�ned DMe-roon constant objects that are used throughout the implementation such as nil, true, false, uninitialized.These constants and functions are not part of the API.TOP/DMeroon/c/dmlib.c | This �le is there to hold functions lacking from some Operating Systems(you know the kind of things such as strstr, bad memcpy etc.). It is also used to mask some di�erences suchas putenv versus setenv that cannot be resolved in dmos.h.TOP/DMeroon/c/dmnet.c| This �le de�nes the TCP/IP related parts of DMeroon. It allows to listenfor connections, to �ll/
ush bu�ers, to send/receive messages.TOP/DMeroon/c/dmnewapi.c| This �le de�nes the API for the C language.TOP/DMeroon/c/dmprint.c | This �le de�nes a series of C functions to print every prede�ned DMe-roon type. This is mainly used for debug and html generation.TOP/DMeroon/c/dmprtcl.c | This �le de�nes how protocols used on TCP connections are recognizedand handled.

78 APPENDIX A. DMEROON SOURCE FILESTOP/DMeroon/c/dmrdobj.c| This �le de�nes how to decode sequences of bytes into DMeroon objectsover TCP connections. This is viewed as a kind of bytecode interpreter implementing a stack-orientedmachine.TOP/DMeroon/c/dmreq.c| This �le manages requests queues and their answers.TOP/DMeroon/c/dmreqst.c| This �le de�nes functions that manage distribution at low level. It checksfor locality, handle communication requests.TOP/DMeroon/c/dmsched.c|This �le de�nes the DMeroon event loop. It actually implements variousvariations. DMeroon may be run in a unique process, in a thread, or from Scheme (where threads areencoded as continuations).TOP/DMeroon/c/dmscm.c| This is the generic interface for Scheme. It translates the C API into a setof functions more amenable to be used from a Scheme implementation.TOP/DMeroon/c/dmsite.c | This �le de�nes the original Site object which is the root of DMeroonself-description.TOP/DMeroon/c/dmtypes.c| This �le checks whether DMeroon types are well mapped onto C types,it also dynamically associates DMeroon types to the appropriate C read/write functions.TOP/DMeroon/c/dmwrobj.c| This �le de�nes how to encode DMeroon objects over TCP connections.This encoding is viewed as a compilation for the decoding machine. As for compilers, many di�erentencodings are possible, that's why this �le has been more heavily changed than the dmrdobj.c �le.A.2 Rebuilding DMeroonRebuilding DMeroon is performed in the TARGET directory. First, this TARGET directory is createdthen, it is populated with a lot of �les: a generated Makefile, some config �les memorizing pathnames invarious formats (shell, make�le or Scheme). Appropriate �les from TOP are copied. Whenever possible, �lesare linked rather than copied. Eventually make world is performed in the TARGET directory and shouldyield a fully operational DMeroon server for a given language.Running make from the TOP directory will ask interactively some questions. The �rst question is whatto build: answer d for DMeroon. The second question concerns the binding language: answer c for C or bfor Bigloo. The script will try to identify the sort of machine it is running on, will create and populate theTARGET directory then will propose to rebuild DMeroon. Answer y then and wait.A.3 Other �lesOther �les are required to adapt DMeroon to a particular language. The binding is detailed in ChapterA.4.A.3.1 CThe binding with C requires some additional �les that are located in the TOP/C directory. These are:TOP/C/dmc.h | TOP/C/dmc.c | These are the binding �les. They explain how to map DMeroonvalues in C values. DMeroon needs a GC, two are possible: Boehm's GC or no GC at all (with the latter,the server will crash after saturating the swap space).TOP/C/server.h | TOP/C/server.c | This �le implements a very simple DMeroon server. It hasseveral options, described in table A.1, that may be speci�ed as arguments to the command.There is also a TOP/config/c.mkf �le that describes how to regenerate DMeroon for C. This �le alsocontains some stand-alone tests.A.3.2 BiglooThe binding with Bigloo requires some additional �les that are located in the TOP/Bigloo directory. Theseare:TOP/Bigloo/dmbgl.h| TOP/Bigloo/dmbgl.c| These are the binding �les. They explain how to mapDMeroon values in Bigloo values.

A.4. BINDING DMEROON 79Option Meaning-banner Prints a banner.-verbose displays some information.-linger duration The server will �nish after duration seconds of in-activity. Used as last option, the duration may beelided to mean in�nity.Table A.1: Options of the rudimentary C serverTOP/Bigloo/dm.bgl | This �le (written in Scheme) is a Bigloo module de�ning the DMeroon serverabove Bigloo.TOP/Bigloo/main*.bgl| These are the main Bigloo modules that start the server.TOP/Bigloo/dmwriter.h | TOP/Bigloo/dmports.h | These are �les helping to patch �les of thedistribution of Bigloo.There is also the TOP/config/bigloo.mkf �le that describes how to regenerate and how to test DMe-roon for Bigloo.A.4 Binding DMeroonDMeroon is currently bound to C and to Bigloo (a Scheme dialect). It was bound to OScheme (anotherdialect of Scheme) and Pico (still another dialect of Scheme). These last bindings are to be updated. It isenvisioned to bind DMeroon with Caml, C++, Emacs, Java, Linux kernel, Tcl, etc.The sources of DMeroon are parameterized with respect to the support language i.e., the languagewith which it is bound. In e�ect, DMeroon statically allocates all its prede�ned classes, �elds, types aswell as the site object and therefore needs to statically know the format of the objects as imposed by thebinding language. DMeroon objects look like objects of the binding language that is, DMeroon objectsare embedded into native objects of the support language.DMeroon also has to manage its memory space i.e., allocate and free objects, it uses the GC of thesupport language otherwise DMeroon brings its own GC. All these parameters are speci�ed by macros andfunctions that are required to compile DMeroon sources. This means that a DMeroon library compiledfor one support language can probably not be used by other support languages.To bind DMeroon with some xxx language is supported by at least three �les.� TOP/Xxx/dmxxx.h containing macros and prototypes,� TOP/Xxx/dmxxx.c containing runtime functions or objects,� TOP/config/xxx.mkf is the Make�le to compile the port.These three �les are often built altogether since they are highly inter-related. You may take a look atthese �les for Bigloo, C or Icslas.A.4.1 The dmxxx.h headerFirst prevent double inclusion to save cpp time. Then include any header �le that are required for the xxxsupport language.De�ne DM SUPPORT LANGUAGE to be a string with the name of the support language, something like "xxx".This string will appear in the support �eld of the site object as a String instance.DM MALLOC should be the name of the routine that allocates objects for the binding language. As C'smalloc, this routine takes the number of bytes to allocate and returns a pointer onto the allocated object.See the DM allocate function in the dmxxx.c �le below.The di�cult part is how to embed DMeroon objects within xxx objects. Often objects in xxx havea particular header pre�xing the content (with respect to xxx) of the object. This content consists of the

80 APPENDIX A. DMEROON SOURCE FILESDMeroon header followed by the content (with respect to DMeroon) of the associated �elds, see �gure2.1. It is important not to confuse the three views of the same object, an object may be referenced by apointer in xxx, another one in DMeroon, and a third one if considered by DM malloc.Figure A.2 shows that, in C, pointers designate the �rst byte of the content of the object. Class andproxy are accessed backwards from this pointer. To be able to recognize DMeroon objects, we use a tagand to respect alignment constraint some padding is added. The low-level DM MALLOC returns a pointer onthe �rst byte of the object i.e., its tag.Bigloo objects are handled via the address of the Bigloo tag that is , the address returned by DM MALLOC.Some padding is then added for alignment constraint. DMeroon can be recognized with a speci�c Biglootag.Icslas just uses DMeroon representation and adds nothing to it.tagpaddingclassproxycontent
malloc pointerC pointerDMeroon pointer

Bigloo tagpaddingclassproxycontent
malloc pointerBigloo pointerDMeroon pointer classproxycontentmalloc pointerDMeroon pointerIcslas pointerFigure A.2: Objects in C, Bigloo and IcslasViewed from DM MALLOC, the pre�x of aDMeroon object is described by the following universal structure,taken from the TOP/DMeroon/c/dm.h �le:typedef struct DMeroon_object {DM_SupportPrefix()DM_DMeroonPrefix();} DMeroon_object;You must therefore de�ne, from the DM MALLOC point of view, the DM SupportPrefix macro describingthe structure of the object and the DM SupportPrefixInitializationmacro that initializes this structure.This latter macro receives the name and the exact type of the object to be initialized so the initializationmay use this information (to record the size of the object for instance).You must then de�ne how to recognize a DMeroon instance among the values handled by the xxxsupport language. You may also de�ne this macro to be always true if you like to live dangerously. This isthe DM IsDMeroonInstance macro which takes a pointer, viewed from xxx, onto an xxx value, and whichreturns a C boolean.Another macro performs the same task, DM IsObject, but this one takes a DMeroon reference (insteadof a pointer onto an xxx value) and returns a C boolean. Since a NULL value is a legal DMeroon pointer,this macro should take care of this fact.To be able to switch from the DMeroon world to the xxx world and back, two fundamental macros areDM ToSupport that takes a DMeroon reference and returns an xxx pointer, and DM FromSupport that takesan xxx pointer and returns a DMeroon reference. In the source �les of DMeroon, a variable pre�xed bywrapped holds a value of the support language.The DM SupportPointer macro de�nes the type of a pointer onto an xxx value. A pointer onto a DMe-roon object has the DM Object* type. A pointer onto an object viewed from DM MALLOC has type void*.Don't confuse them!The glue to bind DMeroon may require some initialization code, the function to call is mentioned bythe DM INITIALIZE macro.Finally, the DM RaiseException macro must be de�ned, it receives an errorcode and has to take care ofhandling that situation. It may signal a recoverable exception if the binding language supports it, it maylongjmp in C to a safer context, it may print the error code and aborts the process.This is the end of the minimal binding.

A.4. BINDING DMEROON 81The dmscm layerIf you bind DMeroon to a language with runtime types such as Scheme or maybe Java, then you may usethe dmscm layer that insulates you more from gory details. This layer is a new API above the one described inchapter 3 o�ering facilities more like the ones of chapter 4. Values of the support language are automaticallyconverted into their appropriate representation in DMeroon back and forth. You'll have to de�ne additionalmacros describing this situation.A.4.2 The dmxxx.c �leThis �le contains the runtime functions that are necessary to glue DMeroon with the xxx support language.Some functions must be de�ned since they are required by DMeroon: this is the case of the DM alloca-te bare instance, the DM print char star and the DM INITIALIZE functions.All allocations performed by DMeroon are done via a single function named DM allocate bare ins-tance. This function has the following prototype:DM_Object*DM_allocate_bare_instance (DM_Context *context,DM_Class *class,DM_nat3 size)Given a class and a size in bytes, it should allocate an xxx value able to contain a DMeroon object of agiven size (in bytes). The function should return a DMeroon reference onto the freshly allocated object (orabort if the allocation cannot be performed). The object must be correctly initialized with respect to thexxx support language. It will be initialized with respect to DMeroon point of view by other DMeroonroutines shortly after. Pay attention to alignment, the �rst byte referenced by the DMeroon pointer shouldrespect the most stringent alignment constraint imposed by the hardware or compiler1. DMeroon performssome sanity checks to detect such things.All values are printed by DMeroon using the DM print char star function. Its prototype is:voidDM_print_char_star (DM_Context* context,char* string,DM_nat3 len,DM_SupportPointer wrapped_port)The second argument is a C string to print, the third if not zero is the number of characters to print outof the string. If the third argument is zero then the whole C string is printed up to its end i.e., up to a NULcharacter. The fourth argument is an xxx value representing the output stream where to print. Dependingon the xxx language, this argument may be very di�erent things: a C stream, a C �le descriptor, a Schemeport, etc.The last function that must be present is the function mentioned by the DM INITIALIZE macro. Thisfunction, often named DM xxx initialize, performs some checks and initializes the binding.A.4.3 The xxx.mkf �leThis �le is the Imake�le describing how to regenerate DMeroon with the xxx support language. Mostoften the xxx.mkf �le complements the all.mkf �le which de�nes how to regenerate a generic DMeroonexecutable.1On my home machine, gcc aligns long doubles on 8-bytes boundaries while the hardware only requires 4-bytes alignment.

82 APPENDIX A. DMEROON SOURCE FILESA.5 Writing code for DMeroonIf you ever want to add code to DMeroon, you must follow some rules. This set is far from complete butwill be enriched as I remember them.� Indent your code (I personally use the default indent style of Emacs). Don't use long lines i.e., biggerthan 78 characters.� Try to be portable. Check portability on at least another computer system.� Mark temporary lines with a TEMP comment; mark future code to be written with a FUTUREcomment (accompanied by a short description).� Every bug, if corrected, must lead to a comment and to a test in some test suite.� Try to use the facilities of the autodoc utility (that builds html pages from source �les).� Wrap test or sanity code within DM DebugAtLevel directives.� Compile with all the possible warning options and never leave a warning appear. The -Wall optionfor gcc is recommended.� Declare external functions in file.h and de�ne them in file.c. Add these �les to the global Makefilearchitecture.� Be very cautious about allocations:{ don't use mutable global data structures, try to be thread-safe.{ don't call malloc, use DMeroon objects instead,{ better, try to stack allocate these DMeroon objects,{ don't let bounded data structures limit your algorithms.� Respect naming conventions for identi�ers. Names are rather systematic and I hope easily decipher-able. Except for the DM pre�x they all have, variables and functions have lower-case names (made ofunderscore separated words). Functional macros names are made of JointTogetherCapitalizedWordswhile data macro names are written, as usual, in UPPER CASE.� DMeroon puts a high emphasis on self-description and parameterization. Use DMeroon objects forthat goal.

Appendix BObject internal representationsThis appendix describes the various implementation states DMeroon objects may have. This is a rathertechnical chapter but is of great help for me.Viewed from a site, a DMeroon object may be local or remote. Local means that the current site ownsit. A remote object is always associated with an Exit item. Again viewed from a site, an object is eitherpresent (i.e., local or remote but cached) or absent (that is remote and not cached). Moreover when a remoteobject is present, it may be validly cached or obsolete i.e., its cache is up to date or out of date.Viewed from users, the objects they have pointers on are always present. They never can access proxiesi.e., entry or exit items.Some constants are used to encode these states. Constants in DMeroon are instances of the Constantclass, a direct subclass of Object.B.1 Local objectWhen an object is allocated, DMeroon allocate returns it in the uninitialized state. The class of an allocatedobject is always present and so is its owning site since this is the current site. An object stays in this state untilbeing initialized, semi-externalized or externalized, see the state diagram in Figure B.1 (some uninterestingstates are omitted from this Figure).
uninitialized

localinitialized
semi-externalized externalized

Figure B.1: States of local objectsImplementation note: The constants that are used to mark these states have historical namesand will probably be changed. These representations were choosen to lessen memory consumption:a local object costs two additional references (and maybe some padding) compared to C (whichdoes not require any overhead). This cost increases when objects are externalized.83

84 APPENDIX B. OBJECT INTERNAL REPRESENTATIONSThe class �eld of the DMeroon header always contains a reference to a present class which the objectis a direct instance of.B.1.1 UninitializedA local uninitialized object has as proxy the uninitialized constant, see �gure B.2. Allocation returnsDMeroon objects in this state. proxyclass uninitialized
Figure B.2: Local uninitialized objectB.1.2 Local sharableWhen an unitialized object is declared sharable, then its proxy becomes the nil constant.B.1.3 Local copyableWhen an uninitialized object is declared copyable, then its proxy becomes the true constant.B.1.4 Semi-externalizedIf a local object is to be monitored by a clock (via DM set clock of) then it must be semi-externalized (sincethe clock can only be held in a �eld of an Entry item), see �gure B.3 (in this �gure, the dotted squares showsthe details of the �elds of the Entry item). To be semi-externalized means that the object has an Entry itemas proxy. In this state, the object is still unknown from remote sites. To be semi-externalized has no relationwith its initialized state: the object may still be declared initialized, sharable or copyable (the di�erence isthat these properties are now recorded as options in the associated entry item).

proxyclass
key = 0refcountoptionsclockEntry item clock

Figure B.3: Semi-externalized objectEntry items are, for the implementation, regular DMeroon objects, instances of the Entry class de�nedas follows. An externalized or semi-externalized object has an instance of Entry as proxy, this proxy pointsback to the (semi-)externalized object via the object �eld. That is,

B.1. LOCAL OBJECT 85The class of a semi-externalized object is always semi-externalized or externalized. The owning site of asemi-externalized object is always semi-externalized or externalized.Entry [Class]number a unique key identifying the objectcounter a reference counter (for GC)options some options describing the Entry itemobject the object the entry item stands forclock its associated Clock if anyWhen an object is semi-externalized, an Entry item is allocated and becomes the proxy of the object.The key (i.e., the number under which the object will be known from the network) of the Entry item is nullbut the clock �eld is set to hold the monitoring clock. The Entry item is itself an immotile DMeroonobject which is in the uninitialized state and will be left in that state all its lifetime. Recall that Entry itemsare never seen by the user.If the object was copyable before becoming semi-externalized then the options �eld of the Entry item hasthe DM ENTRY IS COPYABLE option set. If the object was sharable instead before becoming semi-externalizedthen the same option is unset. If the object was uninitialized then the previous option has no meaning butthe DM ENTRY IS UNINITIALIZED option is set instead.If a semi-externalized object is made copyable then the DM ENTRY IS UNINITIALIZED option is unsetand the DM ENTRY IS COPYABLE option is set. If a semi-externalized object is made sharable then theDM ENTRY IS UNINITIALIZED option is unset and the DM ENTRY IS COPYABLE option is unset. A semi-externalized object is uninitialized when the DM ENTRY IS UNINITIALIZED option of its Entry item is set.A direct instance of Entry with a null key corresponds to a semi-externalized object.B.1.5 ExternalizedAn object is externalized when it needs to be known from other sites either because it is reachable fromanother object displayed in html for an http client (that may want to follow the link i.e., the reference), orbecause a reference onto the object was sent to another site. When externalized, an object has, as proxy, anEntry item with the same set of options as in the semi-externalized state. Additionally the Entry item (i)gets a non null key, (ii) is registered in the hashtable holding all Entry items, (iii) its reference counter isinitialized with zero.When externalized, a mutable object must be monitored by a Clock. By default and if not explicitlyspeci�ed, this Clock is the general Clock of the current site (held in the clock �eld of the site). If theobject is immutable then the clock �eld is set to DM NULL. An object may be externalized without beingsemi-externalized �rst and without even being initialized.When an object is externalized, its class is also externalized as well as its owning site.Any time a reference onto a DMeroon object is sent, its reference counter is incremented; however thereference counter is not incremented when a html link is sent. When a site detects that it does not needany longer a reference, it discards it and sends a decrement message to the associated reference counter.When the reference counter reaches zero, the Entry item may be reclaimed since no DMeroon site needsits associated object. After the Entry item is reclaimed, the object itself may be reclaimed if locally useless.When an object is externalized, a key is generated for it. The key is unique and will never be reusedanywhere, anytime (the key is based on the IP and port numbers of the server, the current date, a regularlyincremented counter and two random bytes to make the forgery of keys at least di�cult). When an objectis migrated i.e., is owned by a di�erent site than its birth site, it keeps its key.A direct instance of Entry with a non null key corresponds to an externalized object. The referencecounter may be zero or strictly positive. Zero means that no site knows it, however the object had beenexternalized for the sake of some http client.

86 APPENDIX B. OBJECT INTERNAL REPRESENTATIONS
proxyclass

key 6= 0refcountoptionsclockEntry item clockor DM NULLEntriesHashtablekey
Figure B.4: Externalized objectB.2 RemoteOnly the unmarshaling routines can create remote references. An Exit item is a big data structure containingenough information to fetch the content of the remote object, to know its associated class, clock or site, toperform non-local GC. When a remote object is present i.e., locally cached, it looks like a local object exceptthat its proxy is an Exit item. Intermediate states exist to cope with dynamically created classes whoseinstances are sent before their class.When an object is remote, it is only remotely referenced, as in �gure 2.2, by an Exit item. Rememberthat outside of the API, users never see Exit items. When a reference onto an object is sent, the object isexternalized on its owning site and an Exit item is created on the receiving site, see Figure B.5 for the mostcomplex case.The Exit class inherits from the Entry class thus an Exit item may be externalized (as an Entry item)and be known from other sites. The Exit class is de�ned as follows:Exit [Class]number a unique key identifying the original objectcounter a reference counter (for GC)options some options describing the Exit itemobject DM NULL or a replicaclock the associated Clock if any or DM NULL (if immutable) or an Exit if absentclass the class of the remote object or an Exit if absenttime the time when the replica was fetchedfrom the site from which we got the Exit item (maybe unusable)owner the site owning the remote object (maybe unusable)next used internallyWhen a site unmarshals an Exit item, it tries to pre-fetch asynchronously the class and the clock of theremote object if they were unmarshaled as remote pointers. Therefore the class �eld is either a pointer toa present instance of Class or a pointer to an Exit item leading to a remote class. Once the class is present,the current site tries to pre-fetch asynchronously its clock. Therefore the clock �eld is either DM NULL ifthe object is immutable, a present instance of Clock or a pointer to an Exit item leading to a remote clock.The content of the site �eld is always an instance of Site, this site is always registered in the hashtable ofknown sites (but the site may be in the unusable state).Only when the content of the class and clock �elds are present, the remote object can be fetched to

B.3. SITE 87
Exit Exit ExitSite2ExitsHashtablekey siteclockclass Site SitesHashtable IP.port

Entry EntrySite1
key 6= 0refcountoptionsclock

clockproxyclassoriginal object a ClassFigure B.5: Exit item with absent class and absent clockform a local replica of the remote object. This replica is reachable via the object �eld of the Exit item andhas as proxy the Exit item. DMeroon tries to shortcut pointers to the Exit item into direct pointers to thereplica, see �gure 2.3.DMeroon may, for GC reasons, reverts a pointer to a replica into a pointer to the associated Exit itemand then reclaims the replica. To fetch again the replica will be automatically redone if needed. If an Exititem has a locally cached replica then this replica has this Exit item as proxy.When a replica is present, its class and clock are always present. The converse may not be true.B.2.1 ReexportedAn Exit item may be marshaled towards a site in which case, the part of the Exit item which is inheritedfrom the Entry class is �lled (except the key which is already set): the reference counter is initialized to zero(it counts the number of times the Exit item is reexported [Piq91]) but the object �eld of the Exit itemmay be null since a replica does not need to be present nor its class or clock. See �gure B.6.B.3 SiteSites are handled particularly. All sites objects are reachable from a hashtable of locally known sites. Sitesare lazily propagated between DMeroon servers. A site instance may be usable or not, but its fundamental�elds (i.e., IP number, port and date of creation) are always up to date. A usable site is a site whose contentmay be read, for that, a usable site must be validly cached and has , as proxy, an Exit item (whose owner�eld is that very site). A site without Exit item as proxy is not usable. However normal users (outside theAPI) never see that internal state. A special option DM SITE IS USABLE identi�es that state.Only the unmarshaling command DM SITE COMMAND can create instances of Site, an uninstantiable class.Such a site is not initialized and only its fundamental �elds are correct i.e., its address, port, date �eldsand additionally, perhaps, the route �eld. It is possible to send objects to sites for which no Connection is

88 APPENDIX B. OBJECT INTERNAL REPRESENTATIONSEntry
siteclassclockobjectExit a present Clock, an Exit or, DM NULLa present Class (maybe not usable) or, an Exita present Site (maybe not usable)DM NULL or a replicaSite Figure B.6: Reexported Exit itemopen. The route �eld refers to a third site from which the current site heard of the site and which acts as acommunication relay. It is also possible to open a more direct Connection. When a site is usable, or it hasa opened Connection in its connection �eld or it has a relay site in its route �eld.B.4 ClassFor a class to be usable, it must be present, its superclasses must be usable and all its �elds must be present.Users outside the API cannot perceive that state. This state is identi�ed by the DM CLASS IS USABLEoption; this option is reset when a class is transmitted. A site that receives a class tries to prefetch missingcomponents to ensure its usability.B.5 MiscellaneousOut of the API, users only have pointers onto present (and usable for classes and sites) objects. They neversee Entry or Exit items. These objects may be out of date but to read them will force DMeroon to refreshthem.Inside the API, a reference may be to a present object or to an Exit item. The Exit item may beassociated to a replica or not, this replica may be valid or not. Before a replica may be brought locally, theclass of the object must be present, as well as its clock if mutable. The �elds of Entry or Exit item shouldbe considered with great care since classes or sites may be unusable.B.6 PropertiesThese data structures are complex and respect some invariants. This Section is intended to be useful forimplementors, it describes the same representational invariants bottom-up i.e., starting from the implemen-tation.We will use the following terminology. A proxy is an entry or exit item. An object is a regular DMeroonvalue that is not a proxy. Pay attention that exit items are, from the implementational standpoint, indirectinstances of Entry; however when we say that something is an entry item, we exclude the exit item case.The user of the DMeroon API can only see present objects. An implementor may see objects or proxies.Objects and proxies are always handled via pointers so when we say an object, we imply a reference to anobject.B.6.1 ObjectAn object is always present, its class is always present. Its proxy may be:

B.6. PROPERTIES 89� the uninitialized constant meaning that the object is uninitialized,� the nil constant meaning that the object is uninitialized but declared sharable,� the true constant meaning that the object is uninitialized but declared copyable,� an exit item meaning that the object is remote but locally cached. The object then appears in theobject �eld of the exit item. The exit item is registered in the exits hashtable of the current site, theclass �eld of the exit item refers to a present class (?). The site �eld of the exit item contains apresent site.� an entry item meaning that the object is either:{ semi-externalized if the key of its entry item is zero then the entry item is not registered in theentries hashtable of the current site. If a clock had been explicitly associated to the object thenit is held in the clock �eld of the entry item.{ externalized if the key of its entry item is non zero. The entry item is registered in the entrieshashtable, its reference counter tells how many times the object was marshaled to other sites.In both cases, the class is also at least semi-externalized and so is the current site. The object maystill be uninitialized or sharable or copyable: this is speci�ed by bits in the option �eld of the entryitem.Two special cases exist for classes and sites.ClassA remote but present class may have non present �elds. The DMeroon library tries to fetch as soon aspossible remote �elds of present classes. When the class has the USABLE option set then its �elds are allpresent. The user may only see usable classes and therefore can only allocate objects with usable classes.SiteThe current site is a regular object, remote sites are special. When a site heard of a remote site, an instanceof Site is allocated and �lled with the basic information (IP, port number) and stored in the sites table ofthe current site. If it needs to, the DMeroon library fetches the content of the site and sets its USABLEoption on. The user may only see usable sites.B.6.2 Entry itemAn entry item (a direct instance of the Entry class) always has an object in its object �eld which in turnhas the entry item in its proxy �eld. The class of the object and its owning site (the current site) are presentand externalized. The key of the entry item may be zero if the object is only semi-externalized or non-zero ifthe object is externalized. In this latter case, the entry item appears in the entries hashtable of the currentsite.The object the entry item stands for may be uninitialized or sharable or copyable. If the object is sharablethen it is monitored by a clock (held in the clock �eld of the entry item. The object may be uninitializedand already associated to a clock.The object may be known from other sites if externalized. A reference counter of zero is a sure signthat the object was displayed in html for some http client. An entry item with a null reference counter andassociated to no clock or to the general clock of the site may be recycled by the GC.

90 APPENDIX B. OBJECT INTERNAL REPRESENTATIONSB.6.3 Exit itemAn exit item stands for a remote object. An exit item appears in the exits hashtable of the current site. Thesite �eld of the exit item refers to a site which is present but not necessarily usable.The object may be cached or not. If the remote object is cached then its object �eld holds a presentobject i.e., a replica of the remote object. The replica has the same structural information the remote objecthas: same class, same length for indexed �elds. In this case, the class �eld of the exit item refers to apresent class.The exit item may be re-exported in which case, it is registered as well in the entries hashtable of thecurrent site. The exit item may be locally cached or not.If the remote object is not cached, the object �eld of the exit item is NULL, the class �eld may be apresent class or an exit item leading to a remote class.

Appendix CProtocolsWhen started, DMeroon acts as a server, listening to a port and waiting for incoming connections. Whena connection is opened, the �rst characters are scanned to determine which protocol they obey. Currently,a DMeroon server recognizes (i) the GET and POST requests of the HTTP protocol, (ii) the DMe-roonScript protocol (extending the two �rst protocols), (iii) the DMeroon protocol which is used toexchange binary-encoded DMeroon requests between DMeroon sites.This chapter describes protocols and shows how DMeroon servers may be extended to handle newprotocols. It requires some understanding of DMeroon implementation and prede�ned classes as theyappear in the TOP /DMeroon/c/dmstruct.dm �le. Warning! not all details are present here, read the sourcesand chie
y the TOP/DMeroon/c/dmprtcl.c �le!The DMeroon implementation uses only DMeroon objects, this allows to debug parts of DMeroonwith DMeroon itself. When DMeroon is initialized, it normally listens to a TCP port whose port num-ber is speci�ed by the environment variable DMEROON SERVING PORT. If this variable is not set, then thevalue of the DM DMEROON FAVORITE PORT cpp variable is used that is, the very well-known port 56423. IfDMEROON SERVING PORT is the zero number then no Server is created and DMeroon will not serve any re-quests. In the numerous cases where a server is created, an instance of the Server class rei�es this situation.When a connection is detected, an instance of the Connection class is created. This instance containstwo bu�ers to hold bytes to emit or bytes received via the connection. The bu�er for incoming bytes is aninstance of the InBuffer class, the other is an instance of the OutBuffer class.When enough characters are received to form a line, i.e., a sequence of bytes terminated by a newlinecharacter, then the �rst characters are scanned to determine which protocol may be used to handle theconnection. To this end, a connection instance has a �eld (the \protocol" �eld) initially �lled with theequivalent �eld of the current site object. This �eld is a linked list of instances of the Protocol class. TheProtocol class is de�ned hereafter:Protocol [Class]next next protocol to tryhandler a C functionname a nat1-indexed �eld of char1A protocol is de�ned with a name (the sequence of characters that triggers this protocol) and a handler (apointer to a local C function to handle the connection). Each protocol name is tried in turn and comparedagainst the �rst incoming characters. If no protocol is recognized, the connection is immediately closed.When a protocol is recognized, the associated handler is invoked, with the current context, on the incomingbu�er.When a protocol is recognized, it is its duty to consume the incoming characters. The associated handleris stored in the \handler" �eld of the connection. This is used for instance by the DMeroon protocol to handle91

92 APPENDIX C. PROTOCOLSnew incoming requests. The handler returns a C boolean telling whether the request has been handled or not.Therefore, to return DM FALSE means that, while the �rst line (with the letters determining the protocol) ispresent, the rest of the request is still not present. In this case, the whole process will be retried later whenthe connection receives additional characters: this allows a protocol to wait until the entire request is presentin an InBuffer. It is up to the protocol to decide when the request is complete. For instance, DMeroonpre�xes messages with their lengths while the SchemeScript protocol for Bigloo waits for a sequence ofNUL NUL CR LF. While bu�ers are bounded, DMeroon ensures that the whole request is held in a singleinstance of the InBuffer class.When the handler returns DM TRUE, it must have consumed the characters of the request, it thus has tomodify the 'index' �eld of the incoming bu�er.The order of protocols is signi�cant since they are tried in turn. Of course, a protocol triggered by a nullstring catches everything.C.1 Existing protocolsBesides the three main protocols that is, HTTP, DMeroonScript and DMeroon, there also exist othersmall specialized protocols. They are currently useless but serve as examples.The # protocol swallows empty lines or lines starting with a sharp sign or a white space. This protocoldoes not answer anything but after the line is swallowed, it starts again to determine which protocol to useto handle the remaining characters. This is the comment protocol.The help protocol just answers the identi�cation of the DMeroon site then closes the connection. Onemay write ? instead of help.A third protocol is the error which prints the rest of the line on the standard error output of DMeroon.It does not close the connection.The GET protocol answers http requests in html form. The produced html pages may trigger a POSTprotocol to mutate objects. The %dd convention may be used for these two protocols. It allows to hidecharacters under their ASCII code.The GET protocol is also used to serve the /robots.txt �le (to prevent compliant robots to explore aDMeroon server) and the /icons/dmeroon.gif icon �les (to illuminate the html pages generated by theDMeroon server).The DMeroon protocol is a byte-oriented communication protocol that allows DMeroon servers to ex-change values. See the paper (in French) called \s�erialisation|d�es�erialisation en DMeroon" for details.After entering the DMeroon protocol, the connection is used in inner DMeroon protocol, see chapter C.4.The Scheme binding with Bigloo o�ers another protocol, the SchemeScript protocol which waits for astring containing an Sexpression to evaluate. The result is sent back to the client that sent the expressionthen the connection is closed. The expression is evaluated with Bigloo's eval function in the global sharedenvironment. This is a dangerous but powerful protocol de�ned in the TOP/Bigloo/dmbgl.c �le that canbe used with the TOP/DMeroon/Commands/schemescript.prl command.The use of the last protocols may be restricted with a password. This password may be speci�edat runtime by the DMEROON PASSWORD environment variable or at compilation time by the DMEROON ADD-ITIONAL PASSWORD cpp variable. The principle is very simple, the name of the protocol is su�xed with thisstring of characters. Passwords are currently limited to 64 characters by the DMEROON ADDITIONAL PASS-WORD LENGTH cpp variable. The password is immediately concatenated to the name of the protocol: payattention to leading spaces.Implementation note: Reading the pgp man page, I realized how unsafe is the DMEROON PASS-WORD environment variable. This will be improved in some future. Uses of passwords make, atleast di�cult, connections to DMeroon servers protected by di�erent passwords.C.2 Adding protocolsNew protocols may be added dynamically. You clearly are an expert if you use this function!

C.3. SOME CLASSES 93
DM_Protocol* [Internal]DM_add_protocol (DM_Context* context,char* string,DM_c_boolean (*handler)(DM_Context*, DM_InBuffer*))This primitive de�nes a new protocol to be recognized by the current site. All new connections will knowthis new protocol but already opened ones will not. This protocol will be tried �rst so it can mask existingprotocols with longer names but same pre�x (you may alternatively directly hack the 'protocol' �eld ofthe current site). The handler must return the C boolean DM TRUE if it consumes the request or DM FALSEif the request is not entirely present. At that time, when the connection receives additional characters thenDMeroon will call again the handler function. It is possible for the handler to extract from the InBufferinstance, the associated Port, OutBuffer and other related values.When the handler is called, the 'index' �eld of the InBuffer designates the �rst character to be handled.Since the handler is called, the �rst line is present in the bu�er i.e., there is a LF character somewhere afterthis index. The bu�er may be used up to the 'maximum' �eld which designates the �rst character which isnot part of the bu�er.If you want to register a protocol that must be protected by the password of the DMeroon server then,you have to use this function instead:
DM_Protocol* [Internal]DM_add_restricted_protocol(DM_Context* context,char* string,DM_c_boolean (*handler)(DM_Context*, DM_InBuffer*))
C.3 Some classesThere are many classes used in the message layer. Two sites may exchange message through a Connection.Except for a short time while a Connection is being initialized, the site �eld may be not usable.

94 APPENDIX C. PROTOCOLSConnection [Class]number the portnumber or �le descriptoroptions options... TCP stu�last_read last date an InBuffer was readlast_write last date an OutBuffer was
ushedreception the associated InBufferemission the current associated OutBufferemitqueue the �rst OutBuffer to
ushclocker the last time, the bu�er was
ushedsite the site at the other end of the connectionprotocol the list of protocols that may be usedhandler the function to handle the protocolpassword the password to useThe most important parts of a Connection are the bu�ers to consume and produce. When a messagearrives, it is always recorded in a single InBuffer.InBuffer [Class]port the associated Connectioncache a BoundedStack acting as a stack/cacheindex the next character to readmaximum the �rst character not to readamount the total number of characters acquired by the Connectionbyte the charactersWhen marshaling an object, the OutBuffer may be full, a new OutBuffer is then allocated and linkedin the next �eld. Since there is the possibility to abort a message while composing it, multiple OutBuffersmay stand in memory.OutBuffer [Class]port the associated Connectioncache a BoundedStack acting as a stack/cachemark mark the beginning of a messageindex the next character to writemaximum the �rst character not to writeamount the total number of characters
ushed by the Connectionnext the next outBufferbyte the charactersC.4 The DMeroon inner protocolThis section describes the DMeroon protocol i.e., the language used by DMeroon servers to serialize ordeserialize objects. The serialization is viewed as a compilation into bytecodes towards the deserializer wichacts as a bytecode interpreter. There is usually more than one way to serialize some data, the serializer may

C.4. THE DMEROON INNER PROTOCOL 95choose to be eager (and pre-send i.e., push values) or to be lazy (and let the receiver pull the missing values).The deserializer is the interpreter of a value-oriented stack-based pre�x language. The stack may as well bemanaged as a cache. Each Connection has separate associated caches for reading and writing.The DMeroon protocol is triggered by the DMeroon word, then the connection is turned into the innerDMeroon protocol. In this inner protocol, messages are exchanged. A message corresponds to a sequenceof bytes that will be deserialized into a single object. The content of reference �elds may also be pre-sent.Commands are encoded by a single byte and may be followed by arguments. In addition to the commandsdescribed below, the commands corresponding to the characters CR, LF and SP are ignored. Comments arealso skipped: they start with a sharp character and end with the �rst following CR or LF. These conventionsallows to comment a byte-stream, for instance, to use the #! convention of Unix.There are a number of invariants to respect when marshaling objects: the most important one is thatit is not possible to unmarshal an object if its class is not usable withing the receiver. This is why, whensending objects, only a remote pointer is created. Before asking for the content of an object, the receiverask for its class (and also its clock). Objects are then pulled rather than pushed. However you may pre-sendthese objects if you are sure that the receiver knows their class or if you use the LIMIT command.The following notations are used below: object, clock, class etc. means that an instance of that class isexpected. DMeroon types such as nat1, or class-options may also appear.C.4.1 Ubiquitous objectsThese commands return ubiquitous objects i.e., objects that are local to every site (even if di�erentlyimplemented).NIL [unmarshaling commands]TRUEFALSEUNINITIALIZEDNULLThe �rst niladic commands that is, NIL, TRUE, FALSE, UNINITIALIZED and NULL, just transmits a simpleubiquitous object. Ubiquitous objects are mainly used by the implementation (or by the Scheme binding);although they exist on every site they are considered equal. The site of an ubiquitous object as obtainedwith DM-site-of is always the current site. NULL allows to transmit the null reference i.e., a reference thatdoes not lead to any DMeroon object.PREDEFINED-CLASS nat1 [unmarshaling commands]PREDEFINED-TYPE nat1PREDEFINED-FIELD nat1 nat1The PREDEFINED-CLASS command takes a nat1 as argument and returns the prede�ned class with thatindex among the set of prede�ned classes. Such a class is an ubiquitous object even if its representationvaries from site to site. The TYPE command takes a nat1 and returns the DMeroon type with that index(see table 2.1). Such a type is an ubiquitous object even if its representation varies from site to site. ThePREDEFINED-FIELD i j command returns the ith �eld of the jth prede�ned class.C.4.2 Stack-related commandsThese commands deal with the stack, they may take an additional argument. The stack is a regular stackif managed from the top, it is considered as a cache if managed from the bottom. Technically, a Tcp

96 APPENDIX C. PROTOCOLSConnection between two sites is associated to four stack/caches | two per communication way. When theemitter changes its stack/cache, it encodes the command that will modify accordingly the stack/cache of thereceiver.Implementation note: I may separate some time stacks from caches.POP [unmarshaling commands]SWAP objectDUP objectRESET objectPUSH objectThe commands POP, SWAP, DUP and RESET manage the stack/cache of the deserializer. First, there is astack which is accessed with the usual functions. It is possible to extract or replace values from this stackwith an index counted from the top of the stack or from the bottom of the cache. RESET totally clears thecache. SWAP swaps the top of the stack with the element right under it, the subtop of the stack (of course,the stack must have at least two elements). DUP duplicates the top of the stack i.e., it pushes the object onthe top of the stack in the stack (of course, the stack must contain at least one object). The three previouscommands do not return a DMeroon object per se, they just perform the required action then read theobject that follows and return it.POP returns the object standing on the top of the stack as well as it removes it from the stack. PUSHreads its argument, pushes it onto the stack, then it returns that object as value. Stacks are automaticallyextended whenever needed.REFER-WITH-NAT1 nat1 [unmarshaling commands]REFER-WITH-NAT2 nat2REFER-WITH-NAT3 nat3The commmand REFER-WITH-NAT1 (resp. REFER-WITH-NAT2 or REFER-WITH-NAT3) takes a nat1 (resp.a nat2 or nat3) argument and returns the object cached at that position counted from the bottom of thecache. The cache must be large enough for this index to be legal (in particular less than the stack pointer).INSERT-WITH-NAT1 nat1 object [unmarshaling commands]INSERT-WITH-NAT2 nat2 objectINSERT-WITH-NAT3 nat3 objectThese commands take an index and an object, insert the object in the cache at the given position (countedfrom the bottom of the cache) and return this object. The cache must be large enough for this index to belegal (in particular less than the stack pointer).C.4.3 Useful commands

C.4. THE DMEROON INNER PROTOCOL 97EMITTING-SITE [unmarshaling commands]RECEIVING-SITECommands EMITTING-SITE and RECEIVING-SITE are shortcuts that encode the two sites standing atboth ends of a TCP connection. These sites are known after a brief handshake that takes place immediatelyafter the Connection is opened. This handshake or bootstrap of the Connection has to be specially donesince it must warm up the inner DMeroon protocol and proceed to the exchange of site objects.SET-COPYABLE object [unmarshaling commands]SET-SHARABLE objectSET-COPYABLE (resp. SET-SHARABLE) takes a DMeroon object as argument and initializes it to becopyable (resp. sharable), it returns that initialized object. These commands are often needed after theALLOCATE command.CLASS class-options class [unmarshaling commands]FIELD �eldSYMBOL symbolCLASS takes some class-options and a class as arguments, it returns this very class. Non-prede�ned classesmust be pre�xed by this command to be usable on a remote site. A class must be usable before you may useit to allocate instances. A class is usable when all its super-classes and all its �elds are present and usable.FIELD takes a �eld as argument and returns it. Non-prede�ned �elds must be pre�xed by this commandto be usable on a remote site.SYMBOL takes a symbol as argument, interns it in the local hashtable of symbols (so two symbols withthe same name are the same), and returns it as value.RECEIVE-REQUEST request [unmarshaling commands]RECEIVE-ANSWER answerThe two commands RECEIVE-REQUEST and RECEIVE-ANSWER take a DMeroon object as argument andreturn it as value. RECEIVE-REQUEST (resp. RECEIVE-ANSWER) enqueues the object which must be an instanceof Request (resp. Answer) in the list of pending requests (resp. answers). These requests or answers will behandled after the deserialization of the current message.Implementation note: This is to avoid simple deadlocks when a site has to unmarshal amessage and requires, for it, another message from the same site.PROG1 object object [unmarshaling commands]PROG2 object object

98 APPENDIX C. PROTOCOLSThe PROG1 (resp. PROG2) command takes two objects as arguments and returns the �rst (resp. thesecond) of them.LIMIT nat3 object [unmarshaling command]This command returns its second argument but ensures that its encoding is exactly nat3 bytes (this sizeincludes the representation of the nat3 number itself up to the last byte of the object). Moreover, if an erroroccurs while unmarshaling the object, the error is caught and NULL is returned instead. This command isoften used to pre-send values whose classes may be unknown from the receiver.C.4.4 Speci�c commandsThese are commands that create objects, remote pointers, etc.ALLOCATE class sizes. . . [unmarshaling command]This command takes as �rst argument a class followed by nat* sizes. It allocates and returns an instanceof the class whose indexed �elds are determined by the given sizes. For instance, to allocate a String of 3characters, you may write (8 is supposed to be the index of the String prede�ned class):ALLOCATE (PREDEFINED-CLASS 8) 3The parentheses that appear above are cosmetic only, they group commands to ease reading.The class that appears as �rst argument must be usable. Note that it is not required to specify thenumber of sizes since this may be deduced from the class.FILL object content. . . [unmarshaling command]This command takes an object as argument, �lls it with the serialized content and �nally returns it. Thecontent is made of the concatenation of the serialized �elds. For instance, to �ll the previously mentionedString of three characters, one may write:FILL (ALLOCATE (PREDEFINED-CLASS 8) 3) F o oThe parentheses that appear above are cosmetic only, they group commands to ease reading.EMITTER-REFERENCE key external-options class clock [unmarshaling command]The EMITTER-REFERENCE command creates a remote pointer onto an object owned by the emitting site.The key is the number that names the associated Entry item or a reexported Exit item. The class maybe encoded as a remote pointer itself, the receiving site will fetch it in order to be able to locally cachesuch a remote object. If the object is mutable, then the clock is encoded or remotely pointed. If the objectis immutable then DM NULL is sent instead. The entire command returns an Exit item or the associatedreplica if already present. The external-options allows to specify whether the object is copyable, sharable,or uninitialized.

C.4. THE DMEROON INNER PROTOCOL 99RECEIVER-REFERENCE key [unmarshaling command]The RECEIVER-REFERENCE command returns the object held by the receiving site externalized with thatkey.REMOTE-REFERENCE key external-options class clock site [unmarshaling command]The REMOTE-REFERENCE command creates a remote pointer onto an object owned by a remote site. Thekey is the unique number that names the original object on its birth site. The class may be encoded asa remote pointer itself, the receiving site will fetch it in order to make it locally usable. If the object ismutable, then the clock is encoded or remotely pointed. If the object is immutable then DM NULL is sentinstead. The site argument is the site that owns the object. The entire command returns an Exit item orthe associated object if already present.CACHE object exit [unmarshaling command]This command reads an object and an Exit item, it associates the object to the Exit item and returns theobject. This allows, for instance, to pre-send an object in hope it will be useful to the receiver. Somethinglike cache (limit ...) exit.Of course, the object must not be already associated to an Exit item and the Exit item must not bealready associated to an object.SITE IPnumber portnumber date site-name-length [unmarshaling command]The SITE command returns a Site instance describing the site watching a given port on a given host(speci�ed by its IP number). The SITE command is the only command that can create instances of Site(this class is uninstantiable by the user). Most often the site is in the not usable state. The site is notcontacted and no Connection is opened to it (use DMeroon connect for that). The server is also identi�edby its birth date (to cope with servers' restart). Since the Site class contains an indexed �eld to hold itshost-name, its length is also given.C.4.5 Technical commandsThese commands are internally used by DMeroon.DECREMENT key object [unmarshaling command]This command reads a key and decrements the reference counter of the associated Entry item. The Entryitem will be reclaimed if the reference counter reaches zero. Eventually the command then reads and returnsthe object that follows.

100 APPENDIX C. PROTOCOLSUPDATE-CLOCK clock nat4 object [unmarshaling command]This command is used to mention that the clock appearing as �rst argument has at least the next nat4value. Eventually the command reads and returns the object that follows.DEFINE-EMITTER site key [unmarshaling commands]This command is used while bootstrapping a Connection. When a Connection is opened, the requestingSite signals itself with the DEFINE-EMITTER command followed by an encoding of the site and followed againwith its key. This allows to build on the receiver site, the Site instance and its associated proxy.Instances of Site pass through various peculiar states, see appendix B.C.5 Object-based protocolThe DMeroon inner protocol speci�es the exchange language. When it is possible to exchange objects, itis possible to make DMeroon servers cooperate exchanging structured requests. A request is an instanceof the Request class. Often, requests are answered by instances of Answer, a sub-class of Request.There are several types of requests:� SCR for SiteConnectionRequest. This request is only used to bootstrap a connection. The connectingsite sends such a request which is answered by a SiteConnectionAnswer (aka SCA).� OSR for ObjectSendRequest. When sending a remote reference towards a site, this request is used.There is no associated answer.� OFR for ObjectFetchRequest. This request is sent when a site wants to refresh a replica. It isanswered by an instance of ObjectFetchAnswer (aka OFA).� OMR for ObjectMutationRequest. This request is send to the owner site of an object so it can mutatea regular �eld of this object. It is answered by an ObjectMutationAnswer (aka OFA) that returns theformer value of the mutated �eld.� OIMR for ObjectIndexedMutationRequest. This request is send to the owner site of an object so itcan mutate an indexed �eld of this object. It is answered by an ObjectIndexedMutationAnswer (akaOIMA) that returns the former value of the mutated �eld.<< Section under construction >>C.6 DMeroon and httpNormally, DMeroon starts an http server. You may invoke it to inspect the site object of DMeroon (if,of course, su�cient time is given to the server to watch for the incoming requests). The default URL is:http://localhost:56423. The rest is self-explanatory and clickable as soon as your favorite http client(xmosaic, Netscape, IExplorer etc.) can open this URL.The site object is the most prominent object of DMeroon. It allows to inquire the exact de�nitionsof DMeroon types, the prede�ned classes and the published information. The site object contains a\information" �eld containing instances of Dictionary, a sort of multi-Association-list containing whatevervalues exported from this site. Currently there are more than a hundred published values. The publishedinformation is publicly available since any user that connects to this site may read the site object and inquireits published information.

C.6. DMEROON AND HTTP 101<< Section under construction >>C.6.1 The http protocolThis protocol is triggered by the GET keyword followed by an DMeroonScript request. This request ismade of words separated by slashes. It may use the %dd convention to encode some characters with theirASCII code. The default URL is:http://localhost:56423/helpIn fact a whole language exists to write these URLs. This is a small stack-oriented language, the DMe-roonScript language (see chapter 5, that allows to call all the API functions.C.6.2 Publishing informationsThe site object, whose class is Site, exports all its content and in particular an immutable �eld namedinformation whose content is a multi-A-list to which you may add your own values. The objects that arereachable from this information �eld is said to be published.As seen from table C.1, there are initially two dictionaries. The user dictionary is empty and reservedfor users, the DMeroon dictionary is reserved for DMeroon and holds values describing the implementation.DMeroon The own DMeroon dictionarysite the site object itselfclasses the Vector of prede�ned classesconstants a subdictionary listing some constantsniltrue...types the Vector of prede�ned types...user a dictionary free for usersTable C.1: Prede�ned published informationsThe Dictionary class is de�ned as:Dictionary [Class]rest a mutable reference to another dictionary or NULLvalue a mutable reference to a DMeroon instancename a repetition of charactersPublished informations are gathered in nodes from class Dictionary. A Dictionary is somewhat similarto an Alist node. The rest and value �elds are mutable. The value �eld can of course refer to a Dictionaryinstance justifying the multi-A-list term.Published objects are known by pathname describing the path to follow through dictionaries to reachthese objects. It is not recommended to use names with spaces, dots and slashes, since pathnames areoften written as sequences of names separated by slashes, dots or spaces. The easiest way to populate thesedictionaries i.e., to publish information is to use the Scheme binding, see 4.Implementation note: An http client is not really part of DMeroon space since it is con-nectionless. An html page may have some links towards DMeroon objects. These links may bebroken if the DMeroon server disappears meanwhile.

102 APPENDIX C. PROTOCOLS

Appendix DDriving DMeroon serversThis chapter describes some applications using the DMeroonScript language to drive DMeroon servers.D.1 Measuring the progress of a remote process<< Section under construction >>Suppose you started a process on a remote machine that produces lines of results that are furtherprocessed. Suppose this process to be very long and to require days and days for its completion: youprobably have to stop the rlogin connection you used to start it and then you can no longer observe itsoutput. A simple solution to measure whether the process makes some progress is to �lter the output with admtee command. This command records the last �ltered lines in a DMeroon object. You can then inspectthat object with any http client from your o�ce, your home or even from Mars.Implementation note: The dislocate utility, from Don Libes, command seems to be similar.The dmtee has the following syntax:dmtee.prl [-n] [host[:port] [pathname]] [Command]This command creates a connection to the DMeroon server mentioned in the argument host:port or,localhost:56423 by default. This DMeroon should of course be running! Then it creates a mutablevector of size n (by default, 5) keeping the last n lines. This object is published with pathname as name or/user/$USER/$$ by default.This object can be inquired with the following URL:http://host:port/pathnameTo return to our introductory example, suppose your command was originally solve | verify >file,then you just have to transform it into solve | dmtee | verify >file to bene�t of this new facility.dmtee is a simple Perl script [WS90] using the DMeroonScript language to drive a DMeroon server.It appears in TOP/DMeroon/Commands/dmtee.prl �le.D.2 Distributed X cut bu�erOne day, working on a workstation near Luc Moreau, he asked me for a bibliographical reference, I highlightthe text in my favorite Emacs and started to move the selection before realizing that there was no way topaste it on Luc's screen. I then use E-mail. This application allows di�erent users to share X selections. Itis written in Tcl and uses the DMeroonScript language.103

104 APPENDIX D. DRIVING DMEROON SERVERS<< Section under construction >>

