
HAL Id: hal-02547779
https://hal.science/hal-02547779

Submitted on 20 Apr 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

FrameKit, an Ada Framework for a Fast Implementation
of CASE Environments

Fabrice Kordon, Jean-Luc Mounier

To cite this version:
Fabrice Kordon, Jean-Luc Mounier. FrameKit, an Ada Framework for a Fast Implementation of CASE
Environments. [Research Report] lip6.1998.034, LIP6. 1998. �hal-02547779�

https://hal.science/hal-02547779
https://hal.archives-ouvertes.fr

FrameKit, an Ada Framework for a Fast Implementation of CASE Environments

Fabrice Kordon & Jean-Luc Mounier,
LIP6-SRC

Université P.&M. Curie
4 place Jussieu, 75252 Paris Cedex 05, France

E-mail:

Fabrice.Kordon@lip6.fr, Jean-Luc.Mounier@lip6.fr

Abstract :

 Software engineering methodologies rely on
various and complex graphical representations and are
more useful when associated to CASE (Computer Aided
Software Engineering) tools designed to take care of cons-
traints that have to be respected. Now, CASE tools gave
way to CASE environments (a set of tools that have a
strong coherence in their us). This concept provides enhan-
ced solutions for software reusability while the environ-
ment may be adapted to a specific understanding of a
design methodology.
This paper describes FrameKit, an Ada based framework
dedicated to the quick implementation of CASE environ-
ments. We summarize first the concepts implemented in
FrameKit and illustrate them using a detailed example of
a simple tool implementation and integration.

Key word:

Generic CASE, Software platform, Tool integra-
tion, Software Engineering, quick implementation

1. Introduction

Software engineering methodologies rely on various and
complex graphical representations such as SA-RT, OMT,
UML etc. They are more useful when associated to CASE
(Computer Aided Software Engineering) tools designed to
take care of constraints that have to be respected. Such tools
help engineers and facilitate the promotion of such metho-
dologies.

Now, CASE tools gave way to CASE environments
which may be adapted to a specific understanding of a de-
sign methodology. A CASE environment can be defined as
follows

[17]

 : it is a set of tools that have a strong coherence
in their use. This concept provides enhanced solutions for
software reusability. CASE environment are built on a plat-
form that allows tool plugging. Communication and coope-
ration between tools must subsequently be investigated.

The implementation of CASE environments is a com-
plex task because they need various functions like a graphi-
cal user interface, database facilities and, of course, the
operations that are related to the methodology they imple-
ment (compilation of specifications, animation/simulation
of specifications, code generation from specification, etc.).

Even early platforms offer solutions for tool reuse and
cooperation. One of the first one, APSE

[2]

 is mostly data
oriented and dedicated to Ada development. ESF

[6]

 and
HP-Softbench

[8]

 suggest a communication oriented archi-
tecture. ISTAR

[4]

 proposes a strong “process orientation”
based on a contract concept defining inputs, outputs and
constraints. Then, some standards like ECMA

[5]

 and then
CORBA

[15]

 provide a complete architecture model that
identifies required services and considers discrete dimen-
sions of cooperation between tools and a hosting platform

(usually data, control and presentation).
Experimentation over large projects have outlined the

difficulty to maintain such environment, especially when
tools come from various origin. In a project like Ptolemy

[16]

, the software basis for the project have largely changed
in order to ease maintenance as well as new development.
Such work (in particular, the Tycho interface system

[9]

)
take into account the definition of evolutionary interfaces
between major components.

This paper describes FrameKit

[10, 11]

, a framework de-
dicated to the quick implementation of CASE environ-
ments. FrameKit is parameterized in order to provide a
framework for the customization of CASE environments
dedicated to a given method (Figure 1). FrameKit is mostly
integrated in Ada (a small amount of C is used for the inter-
face with Unix) and provides enhanced Ada Application
Program Interfaces (API) to operate a light but efficient
customization procedure.

Figure 1 :

From a Generic CASE to a dedicated one.

We present first the main lines of the FrameKit architec-
ture (Section 2.). Then, we present principles of tool design
and implementation and illustrate with a detailed example
how the Ada API implement these principles.

2. Overview of the FrameKit Architecture

2.1. Structure of a CASE environment

A CASE environment is composed of several cooperati-
ve components :

• a

platform

 having communication and data storage
capabilities;

• a set of

tools

 driven by the platform. Each one is an
independent software which can run out of the environ-
ment and offers functions that may enrich it.
To achieve this enrichment, a procedure called

integra-
tion

 has been defined. We distinguish two types of tool
integration : a

priori

 and

a posteriori

.
• the

a posteriori

 integration : involved tools are already
designed; source files may not be available.
The a priori integration concern tools that are especially

designed to run in a CASE environment. It does not raise
any major problem while the selected implementation tech-

Customizing
information

Generic CASE

Dedicated CASE+

niques and standards are considered at the implementation
stage. Platform functionalities are usually used the best
way, especially when APIs (Application Program Interfa-
ce) are available.

The a posteriori integration concerns already designed
tools (some times, source files may not be available) to be
integrated in a CASE environment. It requires an adaptation
of the imported software. The complexity of such an opera-
tion depends on several criteria regarding modularity and
portability of the tool : these aspects concern both its func-
tionalities and its relation with the execution environment
(file system, operating system...).

According to

[18]

, the integration procedure must take
into consideration five integration axis :

•

Platform

: tools must run on a platform giving a trans-
parent access to heterogeneous machines and to the ope-
rating system.

•

Presentation

: the user interface must be homogeneous
for any tool. Window managers and look and feel style
guides are useful.

•

Data

: tools have to exchange and share data.
•

Control

 : tools have to cooperate, notifying events to
others tools. They may also need services provided by
others ones.

•

Process

: the main goal of an environment is to support
development processes. Thus, it is of interest to define a
technique to describe such processes.
However, the definition of these five axis are quite theo-

retical. It is difficult to manage them all properly. In Frame-
Kit, we have chosen to reduce them to three :

• Presentation axis and basic aspects of process functions
are grouped in a

User Interface axis

,
• Some of the Data axis defined in

[18]

 are covered by

the
Data management

 axis ,
• Platform axis and basic control functions are grouped
together in an

Environment axis

.
As a guide to both types of integration, we introduce the

following notions :

Formalism

,

model

 and

Service

. A For-
malism describes representation rules of a knowledge do-
main. A model is the description of a given knowledge
using a formalism; it is a «document» composed with ob-
jects defined in the formalism. A service is a tool function
that correspond to operations in a design methodology. Ser-
vices are related to a set of formalisms (i.e. the operation
has a signification for these formalisms) and thus, can be
applied on models issued form these formalisms.

The formalism notion is more related to the User Inter-
face axis. Model notion is associated to both User Interface
and data management axis. The service notion is strongly
connected to the environment axis.

2.2. User Interface

In FrameKit, presentation and display of services are
strongly constrained. Both types of functions are supported
by Macao

[13]

, a polymorphic editor able to manipulate
models after the corresponding formalism description. It
provides a unified look and feel for both the manipulation
of models and access to the services integrated in FrameKit.

The construction of a new formalism does not imply any
recompilation of Macao. All the required information is de-
fined in an external file that expresses possibilities of the
formalism. Of course, Macao deals with syntactical aspect

only, semantical ones are a convention between the user
and the tool.

In FrameKit, description of formalisms is object-orien-
ted. This allows an easy management and updating of for-
malisms. Each class in the formalism is either a node or an
edge (interconnecting nodes) and contains a set of labels
(string values, digits...) that characterizes instances of the
object. Additional information (how it looks, is it a link to
a «sub-level» when the formalism is hierarchic, etc.) must
also be provided to fully describe the formalism.

Figure 2 :

Link between formalisms and model in Macao.

Figure 2 illustrates the relation between a formalism
description and related models. Classes declared in the for-
malism are described in the tool palette (top of Figure 2).
Users can select one of them and create instances in the mo-
del (a model object) in a window that contains a model des-
cription (bottom left in Figure 2). It is then possible to edit
labels related to this objects and declared in the correspon-
ding class description.

Figure 3 :

Structure of a hierarchical formalism.

Formalisms may be composed when they are hierarchi-
cal. In that case, some nodes are associated to another for-
malism. These nodes (called «boxes») can be «opened» to
display its content in a new page. Models are thus com-

tool palette
selected object

model window

label window

model
object

Upper page

Inner page

Hierarchical model

graph of the full description

2.a

2.b

representation of the box

representation of
the upper page

representationf of
the inner page

posed of pages; each page is a part of the model.
Figure 3 shows how it works. In Figure 3.a, an node in a

page is associated to another page. The description of the
model structure (Figure 3.b) is an oriented graph in which,
nodes represent pages and, edges links between a box and a
page. So, hierarchical graphical descriptions are described
using a set of (flat) formalisms.

2.3. Data management

The data management axis deals with both data storage
in a repository and data representation. To cooperate, tools
use intermediate files to exchange data. However, they are
usually not designed for data exchange with foreign softwa-
re. Data translations must be performed : some integration
techniques rely on the addition of a software layer called
driver

[1]

 or capsule

[7, 17]

. For communication, the use of
an internal Data Definition Language (DDL) makes this
translation process easier and supports heterogeneity
between tools (for example, the use of discrete program-
ming language).

A common DDL, implemented at the platform level,
provides an indirect but standardized communication
between tools allowing an easy maintenance of the tool set.
Adding or modifying a tool needs only to update one inter-
face between the tool and the platform. Tool maintenance
is performed apart from the host platform. The tool evolu-
tion is hidden by the communication driver.

Tools need to store persistent data which may be shared.
The environment has to provide a set of functions to mana-
ge such data. When the number of shared files grows, the
use of a shared object database is the most interesting solu-
tion

[12]

. However, this solution is heavy to implement and
we propose a simplified model that is suitable for building
a simple platform like FrameKit.

FrameKit provides a model for both large grained and
fine grained data :

• Large grained data are information components like
models, results or any other information managed by
tools (libraries, preferences etc.). FrameKit proposes
discrete types of large grained data and store them using
sample repository functions;

• Fine grained data are fine information components like
element in the model (nodes, edges, their relations and
their labels). Fined grained elements dare stored using
elementary messages.

2.3.1. Large grained data

Large grained data are information components like mo-
dels, results or any other information managed by tools (li-
braries, preferences etc.)

FrameKit types large grained data using tool-defined
keys and behaviors. Tool-defined keys are keywords used
to find out an information in the FrameKit repository. The
platform uses this information but does not have any
knowledge of the corresponding semantics. Three types of
data behavior correspond to three persistency approaches :

•

model-associated

 data concern all the information asso-
ciated to a model. It is useful to properly handle version
management : when a model changes, associated results
become obsolete and should be deleted and recomputed
if needed. Such data are stored with the model descrip-
tion in a cell stamped by its last modification date. The

cell is destroyed when the model is updated;
•

user-associated

 data concern all the information related
to a user (preferences, information potentially shared by
models...). This information remains reachable until the
user is deleted;

•

global data

 concern all the information related to a
CASE environment. It is stored in cells that may be
associated to a tool, a formalism or to the platform itself
(administration data only). Data last as long as the entity
(tool, formalism or platform).
To implement these discrete behavior, a proper use of di-

rectories is sufficient. Global data is stored in a directory
potentially shared by all users and tools. user associated
data is stored in a user associated directory. Finally, model-
associated data is located in a directory that last as long as
the model does not change.

2.3.2. Fine grained data

Fine grained data are fine information components. To
ease both their storage and handling, FrameKit implements
a message based approach. Each element in the model (no-
des, edges, their relations and their labels) are stored using
elementary messages

Messages describe elementary actions like «create a new
node numbered n

1

 having class N», «associate nodes n

1

and
n

2

 by means of a connector c

1

 from class C», «associate a
textual label named A and having value X to node n

1

» etc.
This description technique is generic because it works re-
gardless any knowledge of the corresponding formalism.
the name of classes are defined using strings and instances
of classes are named using integers.

Figure 4 :

OrientedGraph model and its corresponding
internal description.

Example 1:

Let us consider a small model defined using the ele-
mentary formalism OrientedGraph (Figure 4).
Its definition is transported using simple messages that carry
out syntactic aspects only. Instruction CN create a new ins-
tance of the referenced class. CA instanciates a new connec-
tor of the referenced class. CT affects a value to labels on
arcs or nodes. Please note that object instances are named
using a unique object identifier provided by Macao (here,
node labeled a has id 2). Tool have to use this identifier to
access objects.
FO is used to identify the formalism and VM the version of
this formalism. This information is used for check by tools
only.

This mechanisms relies on ASCII information only,
which is a way to solve most portability problems as well
as exploitation of data by programs running on discrete tar-
get architectures without having to use XDR mechanisms.
In fact, in FrameKit, all data are stored in ASCII format.

b

c

a

2

FO(13:OrientedGraph)
VM(2,6,12)
CN(4:node,4)
CT(4:name,4,1:b)
CN(4:node,3)
CT(4:name,3,1:c)
CN(4:node,2)
CT(4:name,2,1:a)
CA(3:arc,5,2,4)
CA(3:arc,6,2,3)
CA(3:arc,7,3,4)
CT(9:valuation,7,1:2)

2.4. Environment

The environment axis supports the following points :
• association of an Operating System «command line» to
a service (i.e. a given compiler is associated to the ser-
vice compile and is invoked a given way);

• encapsulation of the Operating System functions like
program invocation, program communication, naviga-
tion through the repository system etc.;

• definition of a diffusion model to facilitate installation
and evolution of the environment.
The first point is strongly related to the management of

services. It is the set of low-level mechanisms required to
support services as they appear to the user.

The second point is important to support tool integration
as well as tool implementation. It should be properly imple-
mented in the APIs used to program in such an environ-
ment. Of course, a level of abstraction is necessary in order
to enforce portability. This is important for multi-platform
implementation and diffusion.

For example, in FrameKit, we have implemented the fol-
lowing functions :

• A high level communication model has been defined :
several implementation are proposed (some may have
restrictions). Then, any software component able to sup-
port one of these implementations should be easily inte-
grated in FrameKit;

• A high level transmission of information by means of
messages is built on top of the communication model,
like the Macao widget-like mechanisms to manage inte-
raction with users;

• A repository offers storage services. This repository
hides File system related mechanisms (file naming sys-
tem...).

Figure 5 :

Example of the diffusion model.

The third point is also important because it proposes a
framework for the evolution of the environment. The diffu-
sion approach we propose rely on

kits

. A kit is an elemen-
tary installation component that contains elements to be
installed by a specific administration tool. There should be
four types of kits :

• Platform kits contain executable and data of the envi-
ronment (administration tools, communication libraries
etc.),

• Formalism kits contain all the definition of a new for-
malism in an installed environment;

• Tool kits contain information to install new tool and its
associated set of services (executable files, initial data
etc.);

• Custom kits for local upgrade of any element (platform
executable, tool executable etc.); it enable the construc-
tion of patches that fixes bugs of a previous distribution.

Example 2:

Figure 5 proposes an instanciation of the diffusion
model we propose. Let us imagine that a software enginee-
ring environment is being developed in discrete places. Such
a diffusion strategy enables :
- a distributed upgrade of kits (developers only upgrade kits

they are responsible of),
- a custom installation by clients (each client picks up what

he needs).

3. Implementing Tools to Customize
FrameKit

3.1. Structure of a tool designed for FrameKit

To hide target architecture related mechanisms (and
meet platform integration), all presentation, data, control
axis should be implemented and available for applications
by means of Application Program Interfaces (API).

Thus, tool designed to run in the target environment take
benefits from these APIs. To meet this requirement, three
API corresponding to the three axis presented in
Section 2.1. The algorithmic part of the program should be
disconnected from the environment and relate with it only
by means of the APIs (Figure 6).

Figure 6 :

Architecture of a tool designed to run in the software
environment (a priori integration).

All implementation in FrameKit follow this strategy and
even then «main» program of applications is a part of the
FrameKit libraries. This enable to always correctly initiali-
ze all required resources to operate the three API’s and call
the «tool main program» without having to change initiali-
zation directives over the FrameKit versions. Only a new
binding with APIs libraries is required. This strategy is also
used for administration tools (that uses standard API but are
considered as a part of the platform) as well as platform
programs.

3.2. A posteriori integration in FrameKit

Tools to be a posteriori integrated in the type of environ-
ment should be disconnectable from their user interface.
Discrete techniques could be considered according to the
set of available information developers provide on their
software.

If source code is available, it is possible to adapt it to fit
the API described in the previous section. Then, the result
is similar to an a priori integration. However, it should be

Tool 1

Tool 2

FrameKit client

•••

archi_1

Development site 1

all_archi

archi_2

Development site 2 Development site 3

archi_1 archi_2

archi_1

Platform Formalism
Data management

Tool
algorithms

E
nvironm

entU
se

r I
nt

er
fac

e

avoided for tools for which implementation is not control-
led by the integration team : the integration work has to be
done when a new version is released.

Figure 7 :

Possible architectures of a posteriori
integrated tools.

If only executable file is available (plus information
about exchange formats), it is possible to drive the tool by
means of a specifically implemented process (Figure 7.a).
The environment only knows about this process which ar-
chitecture is the one defined in Figure 6. The driver and the
tool communicates by means of any mechanism encapsula-
ted in the environment (see environment axis).

If tool libraries are provided (plus description of data
structure), they can be directly linked to a driver to make a
unique executable file (Figure 7.b).

In both cases, the driver translate information in the re-
quired format and then, translate back results for display by
means of the user interface.

3.3. Application on a toy example

So, for both tool construction or tool integration, the im-
plementation work is reduced to write an application using
the standard FrameKit API. We propose to detail the Ada
based way to implement a new tool in FrameKit.

We first describe the tool to be implemented and then
describe its implementation. Source code fully provided,
separated by explanation and comments. Some execution
screen shots are provided to illustrate how the FrameKit en-
vironment behaves according to the corresponding stimula-
tions.

3.3.1. Presentation of the example

Let us consider the Graph formalism. This formalism
describe graphs and is composed with :

• a "node" class,
• a "edge" connector,
• a "arc" connector.

both connectors can relate nodes between them. Two la-
bels are associated to these formalism objects (nodes, edges
and arcs) : "name" and "value". Five global labels
("author(s)", "version", "information", "project" and "title")
provide information about the model. Figure 8 shows how
Graphs are managed by the Macao User Interface : nodes
are represented by a circle, edges appear as a line and arcs
look like an arrow. The formalism description takes about
fifteen minutes, which is definitely shorter than designing a
new graphical interface.

The tool we want to build has to check if there is a con-
nector between two nodes designated by the user. The tool
has a verbose option that ask for the user name (in order to

provide him with a more convivial answer). There are two
ways to invoke it :

platform mode

tool_example

<framekit_config_param>

 [-verbose]

standalone mode

tool_example -s [-verbose] obj_id1 obj_id2

Figure 8 :

The graph formalism and a model.

Two additional parameters are required in standalone
mode because the tool runs without user interface. These
parameters supply the application with Macao object iden-
tifiers.

3.3.2. The generic main provided by FrameKit

As mentioned in Section 3.1. applications’ main pro-
gram is a part of the FrameKit libraries. It is a generic Ada
procedure for which the following generic parameters have
to be provided :

•

TRACE_FILE_NAME

 is a string used to generate the trace
file name (if traces are displayed in the application),

•

IS_STANDALONE_SUPPORTED

 is a boolean that indicates
if the tool can be executed in standalone mode,

•

MAIN_ALGORITHM

 is a reference to the main procedure
of the application,

•

TOOL_NAME

 is the tool name in the FrameKit environ-
ment,

•

TOOL_VERSION

 is the tool version in the FrameKit envi-
ronment,

•

TOOL_COPYRIGHT

 is a tool copyright automatically dis-
played at launch,

•

KIT_NAME

 is the name of the kit in which the tool will be
integrated (used in the distribution procedure),

•

ON_LINE_HELP

 is a one line help displayed when the
tool crashes (i.e. a non FrameKit exception is raised),

•

FK_INTERRUPTION_FROM_IU_INIT_HANDLER_SYSTEM

is a reference to the procedure that initialize the inter-
ruption handler manager,

•

FK_INTERRUPTION_FROM_IU_HANDLER

 is a reference to
the procedure to invoke when an interruption is provo-
ked from Macao.
A default value is associated to the three last parameters.

They are respectively : the "no help available" string and
two procedures that do nothing (it is then assumed that the
service will be declared as non-interruptible).

The Generic environment

process that

tool

(only an executables

driver tool

driver part (specific

tool libraries

a
files are provided)

drives the tool implementation)

b

Graph’s tool palette

model
window

3.3.3. Implementation of interruption handlers

Let us now define a package for managing execution in-
terruptions. The package specification is provided herafter :

with

 FK_STRINGS, FK_API_DATA_MANAGEMENT;

use

 FK_STRINGS, FK_API_DATA_MANAGEMENT;

package

 TOOL_EXAMPLE_HANDLER

is

-- The type that defines possible actions supported by the

-- interrupt handler.
 type HANDLER_OPERATIONS is
 (DEFAULT, -- nothing
 DISPLAY_MESSAGE); -- display of a message
 -- New primitive that allows a tool designer to change the
 -- action to perform at interrupt.
 procedure SET_HANDLER_TREATMENT
 (WHAT_TO_DO : in HANDLER_OPERATIONS);
 -- Primitives required if interruptions are supported
 procedure SET_HANDLER;
 procedure INTERRUPT_HANDLER
 (TOOL_NAME : in STRING);
end TOOL_EXAMPLE_HANDLER;

The type HANDLER_OPERATIONS is useful when discrete
interruption treatments should be handled by the tool accor-
ding to the current execution phase (for example, when the
same program provides several services). The
SET_HANDLER procedure set treatment to default and
SET_HANDLER_TREATMENT (not required) allows to change
the current treatment. We provide below the body associa-
ted to INTERRUPT_HANDLER.
procedure INTERRUPT_HANDLER
 (TOOL_NAME : in STRING) is
begin
 case REMIND_TREATMENT_TO_DO is
 when DEFAULT =>
 null ; -- we do nothing;
 when DISPLAY_MESSAGE =>
 FK_PUT_MSG (MESSAGE => "Canceled",
 HISTORIC => TRUE);
 end case ;
end INTERRUPT_HANDLER;

In that procedure, REMIND_TREATMENT_TO_DO is a glo-
bal variable of package TOOL_EXAMPLE_HANDLER that select
the current treatment to process by INTERRUPT_HANDLER.
The primitive FK_PUT_MSG is a part of the FrameKit API
and displays a message either on the current terminal (stan-
dalone mode) or in the Macao historic window.

3.3.4. Programming the tool

We now illustrate, using the implementation of the tool,
the use of the API primitives to manipulate the FrameKit
environment. Basically, any tool has to use the three major
standard API : FK_API_DATA_MANAGEMENT handles the
Data Management axis, FK_API_USER_INTERFACE that
handles supports the User Interface axis and
FK_API_ENVIRONMENT_COMMUNICATION supports the Envi-
ronment axis (as they are both presented in Section 2.1.).
There are also numerous available standard tools available
(multi-language message management, lists, tree, etc.).
with FK_API_DATA_MANAGEMENT,
 FK_API_ENVIRONMENT_COMMUNICATION,
 FK_API_USER_INTERFACE,
 TOOL_EXAMPLE_HANDLER,
 CHAINES_VARIABLES;
use FK_API_DATA_MANAGEMENT,
 FK_API_ENVIRONMENT_COMMUNICATION,
 FK_API_USER_INTERFACE,
 TOOL_EXAMPLE_HANDLER,
 CHAINES_VARIABLES;
procedure TOOL_EXAMPLE_BODY is
 -- Local variables to be used in the example

 VERBOSE_MODE : BOOLEAN := FALSE;
 CRT_ARG : POSITIVE := 1; -- counting args
 SELECTED_NODE_1: FK_OBJECT_IDENTIFIER;
 SELECTED_NODE_2: FK_OBJECT_IDENTIFIER;
 NAME : VSTRING := TO_VSTRING ("user");
 MODEL : FK_MODEL_DESCRIPTION;
 PAGE : FK_PAGE_DESCRIPTION;

An automatic trace system can be enabled and disabled
automatically using respectively FK_ENABLE_TRACE and
FK_DISABLE_TRACE procedures. There are numerous trace
classes defined for the platform and a set of trace classes
available for tool design (in this example, KFK_TRACE_MAIN
is used). The FK_PUT_IN_TRACE procedure is the one that
display traces for a given trace class. Traces are strings
written into a file automatically created at first need, accor-
ding to the information provided in the TRACE_FILE_NAME
generic main parameter (see Section 3.3.2.).

Two procedures allow to access command line argument
transparently (e.g. without having to consider that platform
parameters may be inserted before tool parameters) :
FK_ARG_COUNT and FK_ARG_VALUE that behaves like well
known Unix argc and argv .
begin -- for TOOL_EXAMPLE_BODY
 FK_ENABLE_TRACE (KFK_TRACE_MAIN);
 for I in 0 .. FK_ARG_COUNT - 1 loop
 FK_PUT_IN_TRACE (KFK_TRACE_MAIN,
 S => "argument number" &
 INTEGER'IMAGE (I) & ASCII.HT &
 "= """ & FK_ARG_VALUE (I) & """");
 end loop ;
 -- The environment is now correctly set and the exception
 -- handler is operational with a default action. Let us check
 -- parameters
 if FK_ARG_COUNT > CRT_ARG then
 if FK_ARG_VALUE (CRT_ARG) = "-verbose" then
 VERBOSE_MODE := TRUE;
 CRT_ARG := CRT_ARG + 1;
 elsif FK_IS_IN_FRAME_KIT then
 -- in FrameKit, "-verbose" is the only parameter
 FK_PUT_ERROR (MESSAGE => """" &
 FK_ARG_VALUE (CRT_ARG) &
 """: bad parameter (FrameKit mode)",
 EMPHASIS => FALSE);
 -- to signal a problem
 raise FK_PROCESSED_WITH_PROBLEM;
 end if ;
 end if ;

The tool we design requires to work on designated ob-
jects. These objects are provided by the Macao user Inter-
face, we have thus to consider two discrete ways to extract
them : using the standard API when the tool runs under Fra-
meKit and via the command line when the tool runs in stan-
dalone mode (this function cannot be emulated).

The FK_IS_MODE_STANDALONE function allows us to
know in which mode we are running. Then, objects identi-
fiers are converted from the values extracted in the com-
mand-line. If less than two parameters are provided, then an
error is displayed using the FK_PUT_ERROR_MESSAGE primi-
tive and the exception FK_PROCESSED_WITH_PROBLEM is
raised. This exception is a communication standard in Fra-
meKit to provokes a premature exit. This exception is cau-
ght at the main level and information is provided to the
environment to signal that execution was aborted.
 -- Get designated objects (on the command line in standalone,
 -- using FrameKit otherwise)
 if FK_IS_MODE_STANDALONE then
 -- we run in standalone mode
 if FK_ARG_COUNT >= CRT_ARG + 1 then
 begin
 SELECTED_NODE_1 :=
 FK_STRING_TO_OBJECT_ID

 (FK_ARG_VALUE (CRT_ARG));
 SELECTED_NODE_2 :=
 FK_STRING_TO_OBJECT_ID
 (FK_ARG_VALUE (CRT_ARG + 1));
 exception
 when CONSTRAINT_ERROR =>
 FK_PUT_ERROR (MESSAGE =>
 "Big argument problem",
 EMPHASIS => FALSE);
 raise FK_PROCESSED_WITH_PROBLEM;
 end ;
 else
 -- two nodes should be identified
 FK_PUT_ERROR (MESSAGE =>
 "Two objects required",
 EMPHASIS => FALSE);
 raise FK_PROCESSED_WITH_PROBLEM;
 end if ;
 else

In FrameKit mode, it is simpler because designated ob-
ject identifiers are directly provided using the
FK_GET_A_DESIGNATED_OBJECT primitive. Tests are also
simpler because Macao forbid the service execution as long
as no object is designated. We thus only have to check that
at least two objects have been transmitted (information pro-
vided by FK_GET_NUMBER_OF_DESIGNATED_OBJECTS).
 -- running in standalone mode, Macao does not invoke
 -- the service if no object is selected
 if FK_GET_NUMBER_OF_DESIGNATED_OBJECTS < 2
 then
 FK_PUT_ERROR (MESSAGE =>
 "Two objects requires",
 EMPHASIS => FALSE);
 raise FK_PROCESSED_WITH_PROBLEM;
 elsif FK_GET_NUMBER_OF_DESIGNATED_OBJECTS
 > 2 then
 FK_PUT_WARNING (MESSAGE =>
 "extra objets are discarded",
 EMPHASIS => FALSE);
 end if ;
 SELECTED_NODE_1 :=
 FK_GET_A_DESIGNATED_OBJECT (1);
 SELECTED_NODE_2 :=
 FK_GET_A_DESIGNATED_OBJECT (2);
 end if ;

At that stage, the we can work on the model. Let us no-
tice that interruption is checked periodically to reduce the
hypothesises on the compiler implementation (it causes an
I/O in the FrameKit software bus). It is also a way to set
when interruptions can be supported by the tool. Here, we
consider that the tool enter in a phase for which the
display_message treatment is associated to interruptions.
 -- check for interruption signal
 FK_CHECK_FOR_USER_INTERRUPTION;
 -- let us consider that we provide a message when execution
 -- is canceled
 SET_HANDLER_TREATMENT
 (WHAT_TO_DO => DISPLAY_MESSAGE);

The verbose mode introduced in our example provides a
good illustration of user interaction. The primitive
FK_GET_A_LINE ask for a one line text via the User Interfa-
ce (a specific dialog window is created to input the line).
Other primitives allow to handle multi-line texts, item se-
lection within a list and standard dialog boxes. All I/O in
FrameKit are handled by the User interface. Tools activate
these functions using vidget like messages. In standalone
mode, an ASCII emulation is provided.
 -- preparation of verbose mode
 if VERBOSE_MODE then
 declare
 CONTINUE : BOOLEAN;
 begin
 -- Get the user name

 FK_GET_A_LINE (MSG =>
 "Please give me your name",
 RESULT => NAME,
 NO_CANCEL => CONTINUE,
 TITLE => "Demand");
 if not CONTINUE then
 -- user has clicked on CANCEL. We retaure the default
 -- value
 NAME := NAME;
 end if ;
 end ;
 end if ;

Models are stored in FrameKit by means of elementary
messages, as described in Section 2.3.2. These messages
are handled via an API in order to avoid a direct manipula-
tion of these messages. Acquisition of the description is
performed via the FK_ACQUIRE_MODEL_FROM_DISK primiti-
ve. Then , the user may access separately to pages (in this
example, there is only one root page because the formalism
is flat). When a page description is loaded, access to objects
is performed either one by one (via their position) or using
their internal identifier.

When an object description is extracted, three primitives
allow to get information :

• FK_GET_ENTITY_INFORMATION provides all information
on the object : its class, its type (is it a node or a connec-
tor) and its identifier,

• FK_GET_ARC_ENDS is dedicated to connectors descrip-
tion and provides the Macao identifier for the two con-
nected arcs,

• FK_GET_ATTRIBUTE_VALUE (not invoked in our exam-
ple) provides the value associated to a label as a string
list.
In the source code below, we check if designated object

are of the appropriate class (the user has to select nodes).
 -- acquire model (flat = one page only)
 FK_ACQUIRE_MODEL_FROM_DISK (MODEL);
 FK_GET_ROOT_PAGE (MODEL, PAGE);
 -- acquire object description and check objects validity
 declare
 DSC_OBJ : FK_LST_CAMI_MSG;
 NODE_CLASS : VSTRING;
 ENT_TYP : FK_OBJECT_CLASSIFICATION;
 ENT_ID : FK_OBJECT_IDENTIFIER;
 begin
 DSC_OBJ := FK_GET_OBJ_DESC
 (PAGE_DESC => PAGE,
 ID_OBJ => SELECTED_NODE_1);
 FK_GET_ENTITY_INFORMATION
 (FULL_DSC => DSC_OBJ,
 ENTITY_CLASS => NODE_CLASS,
 ENTITY_TYP => ENT_TYP,
 ENTITY_ID => ENT_ID);
 if ENT_TYP /= KFK_NODE and then
 TO_STRING (NODE_CLASS) /= "node" then
 FK_PUT_ERROR (MESSAGE =>
 "First object is not a node",
 EMPHASIS => FALSE);
 raise FK_PROCESSED_WITH_PROBLEM;
 end if ;
 DSC_OBJ := FK_GET_OBJ_DESC
 (PAGE_DESC => PAGE,
 ID_OBJ => SELECTED_NODE_2);
 FK_GET_ENTITY_INFORMATION
 (FULL_DSC => DSC_OBJ,
 ENTITY_CLASS => NODE_CLASS,
 ENTITY_TYP => ENT_TYP,
 ENTITY_ID => ENT_ID);
 if ENT_TYP /= KFK_NODE and then
 TO_STRING (NODE_CLASS) /= "node" then
 FK_PUT_ERROR (MESSAGE =>
 "Second object is not a node",
 EMPHASIS => FALSE);

 raise FK_PROCESSED_WITH_PROBLEM;
 end if ;
 end ;

In the source code below, we parse all connectors in the
description and check their ends. Function
FK_GET_NB_CONNECTORS returns the number of connectors
located in a page (there is a similar function for nodes). Pri-
mitive FK_GET_CONNECTOR_N_DSC extract the Nth connec-
tor description.

Note that primitive FK_PUT_MSG used when connector
search has been sucessful displays a message associated to
the object. In fact, objects will be designated in the User In-
terface when the message appear.
 -- Searching for the arc that relates these two nodes
 declare
 ARCS : NATURAL :=
 FK_GET_NB_CONNECTORS (PAGE);
 DSC_ARC : FK_LST_CAMI_MSG;
 STARTN, ENDN : FK_OBJECT_IDENTIFIER;
 ARC_CLASS : VSTRING;
 ENT_TYP : FK_OBJECT_CLASSIFICATION;
 ARC_ID : FK_OBJECT_IDENTIFIER;
 FOUND : BOOLEAN := FALSE;
 begin
 while ARCS > 0 loop
 DSC_ARC := FK_GET_CONNECTOR_N_DSC
 (PAGE_DESC => PAGE, POS => ARCS);
 FK_GET_ARC_ENDS (DSC_ARC, STARTN, ENDN);
 if (STARTN = SELECTED_NODE_1 and
 ENDN = SELECTED_NODE_2) or
 (ENDN = SELECTED_NODE_1 and
 STARTN = SELECTED_NODE_2) then
 -- We found it, display of results
 FK_GET_ENTITY_INFORMATION
 (FULL_DSC => DSC_ARC,
 ENTITY_CLASS => ARC_CLASS,
 ENTITY_TYP => ENT_TYP,
 ENTITY_ID => ARC_ID);
 FK_PUT_MSG (MESSAGE => "Message for "&
 TO_STRING (NAME) &
 ": this arc (type " &
 TO_STRING (ARC_CLASS) & ")
 relates designated objects",
 NUM_OBJ => ARC_ID);
 FOUND := TRUE;
 exit ; -- useless to visit other nodes
 end if ;
 ARCS := ARCS - 1;
 FK_CHECK_FOR_USER_INTERRUPTION;
 end loop ;
 if not FOUND then
 -- No arc have been found
 FK_PUT_MSG (MESSAGE =>
 "Message for "& TO_STRING (NAME) &
 ": sorry, no arc between objects",
 EMPHASIS => FALSE,
 RESULT => TRUE,
 HISTORIC => FALSE);
 end if ;
 end ;
 FK_DISPOSE_MODEL (MODEL);
end TOOL_EXAMPLE_BODY;

3.3.5. Configuration of the generic main

We thus instanciate the FrameKit generic main in order
to get an executable program :
with TOOL_EXAMPLE_BODY,
 FRAME_KIT_GENERIC_MAIN,
 TOOL_EXAMPLE_HANDLER;
use TOOL_EXAMPLE_HANDLER;
procedure TOOL_EXAMPLE is new
 FRAME_KIT_GENERIC_MAIN
 (TRACE_FILE_NAME => "Tool_example",
 IS_STANDALONE_SUPPORTED => TRUE,
 MAIN_ALGORITHM => TOOL_EXAMPLE_BODY,

 TOOL_NAME => "tool_example",
 TOOL_VERSION => "1.0",
 TOOL_COPYRIGHT => "F.Kordon & J-L.Mounier",
 KIT_NAME => "EX",
 ON_LINE_HELP => "tool_example...[-verbose]",
 FK_INTERRUPTION_FROM_IU_INIT_HANDLER_SYSTEM
 => SET_HANDLER,
 FK_INTERRUPTION_FROM_IU_HANDLER
 => INTERRUPT_HANDLER);

3.3.6. Declaration of the new service

The portion of service menu related to this example is
shown in Figure 9. It is composed with a terminal to invoke
the tool («... execution») and a submenu for options. All
items in an option list are check marks that can be set (or re-
set)

Figure 9 : Appearance of the service submenu.
The Service is declared as ToolExample. ToolExample

is a hierarchical entry composed of one terminal item and
an option list. The terminal entry associates the executable
file, its parameter, its external name (language dependent)
and its internal name (unique identifier for the menu).

To enable multi-architecture management as well as an
easy installation procedure, service environment variables
are introduced and represent absolute paths dynamically
computed at invocation time. Here, FK_TOOLS_ROOT is
computed using : 1) the FrameKit repository root (set du-
ring the installation procedure), 2) the related formalism
(tools are sorted by formalisms), 3) the execution architec-
ture. The path indicated after this variable reference is a re-
lative path.

In the description below, access permission are set to the
user me, the group list privilege. Apparently, the tool is only
compiled on Sun/Solaris and PC/Linux architectures (no
other architecture are set). Access permission can be inclu-
sive (authorized users/groups/architectures are listed) or
exclusive (unauthorized users/groups/architectures are lis-
ted).

Sometimes, users have to respect a procedure. For exam-
ple, they have to compile first and then, if no error is repor-
ted, link can be performed. Such a sequence is handled in
FrameKit by means of service preconditions. Three tags are
associated to each internal service identification :

• LAUCHED_OK that returns TRUE if the associated program
has run correctly,

• LAUNCHED_PB that returns TRUE if the associated pro-
gram has outlined a problem,

• NEVER_LAUNCHED that returns TRUE if the tool was never
launched.
Service preconditions can also be set according to values

of session variables. Session variables are strings set or re-
set by tools. They allow a more refined mechanism in the
management of available and unavailable menu entries
(service as well as options). In our example, the ToolExam-
ple service menu is unreachable until a service internally
named GRAPH_CHECKER is launched correctly (i.e. the tool
signal that its execution is correct).

The check mark «verbose mode» is associated to an
identifier (VERBOSE) in the item description. This identifier

Service submenu

Exécution leaf

Option submenu

Check mark (marked)

represents a variable that is either valued by "-verbose" (ac-
cording to the definition) or empty. This variable can be re-
ferenced in the command line associated to a service in the
EXECUTABLE command. The default value of the parameter
(on or off) is provided in the execution (here, it is on).
SERVICES_FILE
BEGIN
 SERVICE (NON_TERMINAL, 'ToolExample')
 ACCESS INCLUSIVE
 USER ('me')
 GROUP ('privilege')
 ARCHITECTURE ('SUN_SOLARIS')
 ARCHITECTURE ('PC_LINUX')
 END_ACCESS
 BEGIN_PRECONDITION
 LAUNCHED_OK (GRAPH_CHECKER)
 END_PRECONDITION
 SERVICE (TERMINAL, 'Execution')
 ACCESS INCLUSIVE
 ALL_USERS
 END_ACCESS
 BEGIN_PRECONDITION
 TRUE
 END_PRECONDITION
 EXECUTABLE ($(FK_TOOLS_ROOT)'EX/tool_example',
 '$VERBOSE',
 COMM_NAMED_PIPE, TOOLEX)
 PROTOCOL (SAFE)
 QUESTION_INFO (STOP_ALLOWED, HISTORIC,
 INFO_OBJECT, NO_FORMALISM)
 END_SERVICE
 SERVICE (LST_CHECK_MARKS, 'Options')
 ACCESS INCLUSIVE
 ALL_USERS
 END_ACCESS
 BEGIN_PRECONDITION
 TRUE
 END_PRECONDITION
 SERVICE (CHECK_MARK, 'Verbose mode')
 ACCESS INCLUSIVE
 ALL_USERS
 END_ACCESS
 BEGIN_PRECONDITION
 TRUE
 END_PRECONDITION
 CHECK_MARK (ON, VERBOSE, '-verbose')
 END_SERVICE
 END_SERVICE
 END_SERVICE
END

3.3.7. An idea about service execution

Let us assume that, after all the required stuff (connec-
tion, execution of service GRAPH_CHECKER etc.), service
TOOLEX has been activated in verbose mode. Figure 10 pro-
vides a partial screen shot when the query associated to this
option is executed.

The trace window (top right) displays state messages
provided by FrameKit and by the tool (is any). The service,
as declared in the previous section supports interruption and
thus, it contains a STOP button. At least one object is selec-
ted (node «a» is apparently one of them) in the model win-
dow (middle back) that is a necessary condition to activate
the service (its declaration mentions that complementary
objects are required). The input windows (bottom right) is
the one created when FK_GET_A_LINE is executed. We as-
sume that the user typed «Me» in the dialog box. He can
then either click on cancel (a default value is assumed by
the tool as programmed) or OK («Me» is then supplied to
the tool).

Figure 11 is a partial screen shot when the service is fi-
nished. We display the historic window (left) that contains

the execution information sent by the tool. Results are dis-
played in a specific window (bottom front) associated to a
set of objects (here, the arc relating the two designated no-
des) that contain a message. This window allows to go from
result component to result component.

Figure 10 : Execution, dialog.
From the programmer’s side, a result component is ge-

nerated by primitives like FK_PUT_MSG or FK_PUT_ERROR.
When result components are related to objects (or objects
label) the corresponding element is automatically outlined
and presented to the user. When no object is associated, the
text is displayed in the historic window.

It is also possible for a tool to generate new models or to
modify the input model.

Figure 11 : Execution, display of results.

4. Conclusion

We have presented in this paper the principles of Frame-
Kit, a software platform dedicated to the rapid prototyping
of CASE environments. FrameKit is implemented in Ada
and provides API for an easy implementation of new tools.
We have illustrates the principle of tool implementation
and declaration in FrameKit by detailing a small example.

The work presented in this paper is currently implemen-
ted and available on the Internet at <http://www-

src.lip6.fr/framekit> . It has been used to quickly pro-
totype numerous CASE environment (about 25 tools distri-
buted over 6 formalisms). The most important one is CPN-
AMI, a Petri net based environment dedicated to formal
specification and validation of parallel systems also availa-
ble on the Internet at <http://www-src.lip6.fr/cpn-
ami> . It is a collection of tools associated to three forma-
lisms (Petri Nets and two high level description : OF-Class
and H-COSTAM [3]).

We have experimented FrameKit for more than two
years. The fastest tool integration is about ten minutes (it is
reduced to a tool declaration) and one the longest took 110
hours. Average tool integration time is about fifteen hours
for imported tools and less than half an hour for tools im-
plemented using FrameKit API.

Table 1 summarizes the amount of time spent in the in-
tegration process to build CPN-AMI 2 (a full description of
these tools may be found in [14]). This corresponds to the
time required to get a first operational version, in order to

evaluate the interest of the tool. Extra work may be required
to exploit enhanced functions. All imported tools (PROD,
ERVunfold, GreatSPN and dot) where integrated using the
technique illustrated in Figure 7.a.

For most tools, we only had to perform a small adapta-
tion (by means of a shell script that centralize the emulation
of inline invocations) and the declaration to FrameKit (des-
cription of the Macao menu associated to the tool).

We use FrameKit to build demonstrators in indus-
trial contracts. It is also used for two years in a master pro-
gram to illustrate concepts of middleware components. It is
used in a student project to practice their design and imple-
mentation.

5. References

[1] J.M. Bernard & J.L. Mounier, "Conception et Mise en Oeuvre d'un
environnement système pour la modélisation, l'analyse et la réalisation de
systèmes informatiques", Thèse de doctorat de l'Université Pierre &
Marie Curie, 4 place Jussieu, 75252 Paris Cedex 05, Décembre 1990
[2] J.Buxton, "DoD requirements for Ada programming support enviro-
ments, STONEMAN", Dod High Order Language Working Group,
February 1980
[3] A.Diagne & F.Kordon, "A Multi Formalisms Prototyping Approach
from Formal Description to Implementation of Distributed Systems", in
proceedings of the 7th "International Workshop on Rapid System Prototy-
ping", N.Kanopoulos Ed, IEEE comp Soc Press, Greece, June 1996
[4] M.Dowson, "Integrated project support with ISTAR", IEEE
software, November 1987
[5] ECMA, "A Reference Model for Frameworks of Stoftware Enginee-
rings Environments", ECMA report number TR/55 (version 3), NIST
Report, April 1993
[6] C.Fernstrom & L.Ohlsson, “The ESF Vision of a Software Factory”,
Proceedings of the International Conference on Software Development
Environments & Factories, Berlin, May 1989
[7] B.D.Fromme, "HP Encapsulator : bridging the generation gap", HP
Journal, June 1990
[8] C.Gerety, "HP softbench : a new generation of software develope-
ment tools", HP Journal, June 1990
[9] C. Hylands, E. Lee & H. Reekie, "The Tycho User Interface Sys-
tem", The 5th Annual Tcl/Tk Workshop '97, Boston, Massachusetts, pp
149-157, July 14-17, 1997
[10] F. Kordon & J-L. Mounier, "FrameKit and the prototyping of CASE
environments", in proceedings 8th International Workshop on Rapid Sys-
tem Prototyping, N.Kanopoulos Ed, pp 91-97, IEEE comp Soc Press,
USA, June 1997
[11] F.Kordon & J-L. Mounier, "Implementation of Genericity for custo-
mizable CASE environments", to appear in proceedings of CARI’98,
Dakar, Senegal, October 1998
[12] J.Lonchamp, K.Benali, J.C.Derniame & C.Godart, “Towards assis-
ted software engineering environments”, Information and Software Tech-
nology, vol 33, n° 8, October 1991
[13] MARS-Team, "Macao Home page", <http://www-src.lip6.fr/
macao>
[14] MARS-Team, "The CPN-AMI environment (version 2.2.1)", <http:/
/www-src.lip6.fr/cpn-ami>
[15] T. Mowbray & R. Zahavu, "The Essential CORBA: Systems Inte-
gration Using Distributed Objects", John Wiley & Sons, 1995
[16] Ptolemy Team, "The Ptolemy Kernel-- Supporting Heterogeneous
Design", RASSP Digest Newsletter, vol. 2, no. 1, pp. 14-17, 1st Quarter,
April, 1995
[17] D.Schefström, "System Development Environments : Contemporary
Concepts", in Tool Integration : environment and framework, Edited by
D.Schefström & G. van den Broek, John Wiley & Sons, 1993
[18] A.Wasserman, “Tool Integration in Software Engineering Environ-
ments”, LNCS 467 : "Software Engineerings Environemnts", pp 138-150,
1990

fo
rm

al
is

m

Tool
name

To
ol

 ty
pe

a

a. I for integrated tools, D for Developped tools.

Integration
time (hours)

Remarks

ad
ap

ta
tio

n

de
cl

ar
at

io
n

P
et

ri
N

et
s

GreatSPN
(v 1.6)

I 6 0.2 Integration from executable files
only, performed using Unix shell
language.

CPNsimulator Db

b. Adapted from AMI, our previous platform.

110 1.5 Highly interactive tool. Major revi-
sion due to changes in the manage-
ment of interaction in FrameKit.

BooleanCon-
dition

Db 0.5 0.2 Integrated using Unix shell lan-
guage.

CPNverifier Db 1 0.2 Combination of three tools «glued»
in a Unix shell script.

CPNunfolder D 0.5 0.2 Integrated using Unix shell lan-
guage.

CPNinvariant Db 2 0.2 Integrated after a recompilation
using C APIs.

PROD
(v 3.2)

I 24 0.5 Powefull but complex tool. Adap-
ted using a specific driver imple-
mented using Ada APIs.

EVRunfold I 4 0.2 Integration from executable files
only, performed using Unix shell
language.

PetriBDD Dc

c. Reuslt of a cooperation with two other universities and thus not designed to
run in FrameKit.

4 0.2 Integrated using Unix shell lan-
guage.

PrettyGraph
(dot)

I 3 0.2 Adapted using a specific driver
implemented using Ada APIs.

LinearCha-
racterization

D / 0.2 Integrated as is (it was implemen-
ted using C APIs)

O
F

-C
la

ss

OFC-verifier D / 0.2 Integrated as is (it was implemen-
ted using C APIs)

PN-loader D / 0.2 Integrated as is (it was implemen-
ted using Ada APIs)

PROD-ofc Id

d. This integration inheritates from the one done for Petri nets.

/ 0.2 Small adaptation of the integration
for Petri nets.

H
-C

O
S

TA
M HCM-verifier D / 0.2 Integrated as is (it was implemen-

ted using Ada APIs)
HCM2PN
(prototype)

D / 0.2 Integrated as is (it was implemen-
ted using Ada APIs)

Table 1: Summary of tool integration to build CPN-AMI 2

